1
|
Liao XZ, Gao Y, Zhao HW, Zhou M, Chen DL, Tao LT, Guo W, Sun LL, Gu CY, Chen HR, Xiao ZW, Zhang JX, He MF, Lin LZ. Cordycepin Reverses Cisplatin Resistance in Non-small Cell Lung Cancer by Activating AMPK and Inhibiting AKT Signaling Pathway. Front Cell Dev Biol 2021; 8:609285. [PMID: 33520990 PMCID: PMC7843937 DOI: 10.3389/fcell.2020.609285] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
Cisplatin (DDP) is the first-line chemotherapeutic agent against lung cancer. However, the therapeutic effect of DDP loses over time due to the acquired drug resistance in non-small cell lung cancer (NSCLC) cells. In recent years, the role of the traditional Chinese medicine (TCM) cordycepin (Cor) in cancer treatment has been attracting attention. However, the effects of Cor on DDP resistance in NSCLC are unclear. In the present study, we aimed to investigate the effects of Cor in combination with DDP on cell proliferation and apoptosis in NSCLC and explore possible underlying mechanisms. The cell proliferation and apoptosis were analyzed in NSCLC parental (A549) and DDP-resistant (A549DDP) cells treated with DDP alone or in combination with Cor both in vitro and in vivo. Different genes and signaling pathways were investigated between DDP-sensitive and DDP-resistant A549 cells by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The perturbations of the MAPK and PI3K-AKT signaling pathways were evaluated by Western blot analysis. Our data showed that Cor markedly enhanced DDP inhibition on cell proliferation and promotion of apoptosis compared to the DDP-alone group in both A549 and A549DDP cells. The synergic actions were associated with activation of AMPK; inhibition of AKT, mTOR, and downstream P709S6K; and S6 phosphorylation in the AKT pathway compared with DDP alone. Collectively, combination of Cor and DDP has a synergistic effect in inhibiting proliferation and promoting apoptosis of NSCLC cells in the presence or absence of DDP resistance. The antitumor activity is associated with activation of AMPK and inhibition of the AKT pathway to enhance DDP inhibition on NSCLC. Our results suggested that Cor in combination with DDP could be an additional therapeutic option for the treatment of DDP-resistant NSCLC.
Collapse
Affiliation(s)
- Xiao-Zhong Liao
- Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Gao
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hong-Wei Zhao
- Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mi Zhou
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan-Lei Chen
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lan-Ting Tao
- Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Guo
- Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling-Ling Sun
- Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chu-Ying Gu
- Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Han-Rui Chen
- Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhi-Wei Xiao
- Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia-Xing Zhang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mei-Fang He
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li-Zhu Lin
- Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Cui W, Shen X, Agbas E, Tompkins B, Cameron-Carter H, Staudinger JL. Phosphorylation Modulates the Coregulatory Protein Exchange of the Nuclear Receptor Pregnane X Receptor. J Pharmacol Exp Ther 2020; 373:370-380. [PMID: 32205367 PMCID: PMC7228503 DOI: 10.1124/jpet.119.264762] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/10/2020] [Indexed: 01/09/2023] Open
Abstract
The pregnane X receptor (PXR), or nuclear receptor (NR) 1I2, is a ligand-activated NR superfamily member that is enriched in liver and intestine in mammals. Activation of PXR regulates the expression of genes encoding key proteins involved in drug metabolism, drug efflux, and drug transport. Recent mechanistic investigations reveal that post-translational modifications (PTMs), such as phosphorylation, play a critical role in modulating the bimodal function of PXR-mediated transrepression and transactivation of target gene transcription. Upon ligand binding, PXR undergoes a conformational change that promotes dissociation of histone deacetylase-containing multiprotein corepressor protein complexes while simultaneously favoring recruitment histone acetyl transferase-containing complexes. Here we describe a novel adenoviral vector used to deliver and recover recombinant human PXR protein from primary cultures of hepatocytes. Using liquid chromatography and tandem mass spectrometry we report here that PXR is phosphorylated at amino acid residues threonine 135 (T135) and serine 221 (S221). Biochemical analysis reveals that these two residues play an important regulatory role in the cycling of corepressor and coactivator multiprotein complexes. These data further our foundational knowledge regarding the specific role of PTMs, namely phosphorylation, in regulating the biology of PXR. Future efforts are focused on using the novel tools described here to identify additional PTMs and protein partners of PXR in primary cultures of hepatocytes, an important experimental model system. SIGNIFICANCE STATEMENT: Pregnane X receptor (PXR), or nuclear receptor 1I2, is a key master regulator of drug-inducible CYP gene expression in liver and intestine in mammals. The novel biochemical tools described in this study demonstrate for the first time that in cultures of primary hepatocytes, human PXR is phosphorylated at amino acid residues threonine 135 (T135) and serine 221 (S221). Moreover, phosphorylation of PXR promotes the transrepression of its prototypical target gene CYP3A4 through modulating its interactions with coregulatory proteins.
Collapse
Affiliation(s)
- Wenqi Cui
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| | - Xunan Shen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| | - Emre Agbas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| | - Brandon Tompkins
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| | - Hadley Cameron-Carter
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| | - Jeff L Staudinger
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| |
Collapse
|
3
|
A Systematic Review of Drug Metabolism Studies of Plants With Anticancer Properties: Approaches Applied and Limitations. Eur J Drug Metab Pharmacokinet 2019; 45:173-225. [DOI: 10.1007/s13318-019-00582-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Sun Z, Cao Y, Hu G, Zhao J, Chen M, Wang S, Ye Z, Chen H, Wang W, Wang Y. Jinfu'an Decoction Inhibits Invasion and Metastasis in Human Lung Cancer Cells (H1650) via p120ctn-Mediated Induction and Kaiso. Med Sci Monit 2018; 24:2878-2886. [PMID: 29735970 PMCID: PMC5965019 DOI: 10.12659/msm.909748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/03/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Previous research showed that Jin-Fu-An decoction has a significant effect on lung cancer. However, it remains unclear whether p120ctn and its transcription factor Kaiso play a role in lung cancer cell proliferation, adhesion, migration, and metastasis. MATERIAL AND METHODS Proliferation inhibition was detected by CCK-8 assay. The migration and invasion were detected using Transwell assay. The location and expression of p120ctn and Kaiso were monitored by immunofluorescence staining. The expression changes of p120ctn, its isoform 1A, its S288 phosphorylation, and Kaiso were measured by Western blot assay. RESULTS The lung cancer cell line H1650 administered Jin-Fu-An decoction had significantly reduced the growth in dose-dependent and time-dependent manners. Migration and metastasis were significantly inhibited by application of Jin-Fu-An decoction in a dose-dependent manner. Additionally, Jin-Fu-An decoction decreased the expressions of p120ctn, its isoform 1A, and its S288 phosphorylation, but the protein level of Kaiso was elevated. CONCLUSIONS Jin-Fu-An decoction inhibits the proliferation, adhesion, migration, and metastasis though down-regulation of p120ctn or its isoform 1A expression, mediating the up-regulation of Kaiso. The underlying mechanism of Jin-Fu-An decoction might involve targeting the lower expression of p120ctn S288 phosphorylation, which suggests that Jin-Fu-An decoction may be a potential therapeutic measure as prevention and control of recurrence and metastasis of lung cancer.
Collapse
Affiliation(s)
- Zhe Sun
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Yang Cao
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Guangyun Hu
- Guangdong Second Provincial Traditional Chinese Medicine Hospital, Guangzhou, Guangdong, P.R. China
| | - Jiuda Zhao
- Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, Xining, Qinghai, P.R. China
| | - Ming Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Sisi Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Zengjie Ye
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Hongyu Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Wenping Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Ya’nan Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
5
|
Li L, Wang S, Zheng F, Wu W, Hann SS. Chinese herbal medicine Fuzheng Kang-Ai decoction sensitized the effect of gefitinib on inhibition of human lung cancer cells through inactivating PI3-K/Akt -mediated suppressing MUC1 expression. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:918-929. [PMID: 27989877 DOI: 10.1016/j.jep.2016.10.077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/17/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese herbal medicine (CHM) Fuzheng Kang-Ai (FZKA for short) decoction has been used as adjuvant treatment strategies in lung cancer patients for decades. However, the molecular mechanism underlying the therapeutic potential especially in sensitizing the effect of EGFR-TKI gefitinib has not been well elucidated. MATERIALS AND METHODS Cell viability was detected by MTT assay. Cell cycle distribution was detected by flow cytometry. Western blot were used to examine phosphorylation and protein levels of Akt, p65, p50 and MUC1. The mRNA level of MUC1 was measured by qRT-PCR. Transient transfection experiments were used to overexpression of Akt, p65 and MUC1. Tumor xenograft and bioluminescent imaging experiments were carried out to confirm the in vitro findings. RESULTS Cell viability was inhibited by FZKA treatment and showed more significant when treated with FZKA and gefitinib in combine in lung cancer cells. FZKA induced the cell arrest at G0/G1 phase. Mechanistically, we showed that the phosphorylation of Akt, protein expressions of p65 and MUC1 were suppressed by FZKA and even more responses were observed in the FZKA and gefitinib combining. Overexpressed Akt overcame the effect of FZKA on p65 protein, and exogenously expressed p65 resisted the inhibitory effect of MUC1 protein expression by FZKA. On the contrary, while overexpressed MUC1 had no effect on p65 expression, it feedback increased phosphorylation of Akt, and more importantly, reversed the cell growth inhibition affected by FZKA. In line with the above, our results confirmed the synergistic effects of FZKA and gefitinib combination on tumor growth, the phosphorylation of Akt, and protein expression of p65 and MUC1 in vivo. CONCLUSION This study shows that FZKA decoction inhibits the growth of NSCLC cells through Akt-mediated inhibition of p65, followed by reducing the expression of MUC1. More importantly, there is a synergistic effect of FZKA decoction and gefitinib combination with greater suppression. The positive feedback regulatory loop of MUC1 to Akt signaling pathway further added the important role of MUC1 in mediating the overall responses of FZKA decoction in this process. The in vitro and in vivo study provides an additional and a novel mechanism by which the FZKA decoction enhances the growth inhibition of gefitinib in gefitinib-resistant NSCLC cells.
Collapse
Affiliation(s)
- Longmei Li
- Laboratory of Tumor Molecular Biology and Targeted Therapies of TCM, China; Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - SuMei Wang
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Fang Zheng
- Laboratory of Tumor Molecular Biology and Targeted Therapies of TCM, China
| | - WanYin Wu
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China.
| | - Swei Sunny Hann
- Laboratory of Tumor Molecular Biology and Targeted Therapies of TCM, China; Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China.
| |
Collapse
|
6
|
Li Y, Huang L, Sun J, Wei X, Wen J, Zhong G, Huang M, Bi H. Mulberroside A suppresses PXR-mediated transactivation and gene expression of P-gp in LS174T cells. J Biochem Mol Toxicol 2016; 31. [DOI: 10.1002/jbt.21884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/01/2016] [Accepted: 11/11/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Yuhua Li
- Department of Pharmacy; The First Affiliated Hospital of Nanchang University; Nanchang 330006 People's Republic of China
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou 510006 People's Republic of China
| | - Ling Huang
- School of Pharmaceutical Sciences; Hainan Medical University; Haikou 571199 People's Republic of China
| | - Jiahong Sun
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou 510006 People's Republic of China
| | - Xiaohua Wei
- Department of Pharmacy; The First Affiliated Hospital of Nanchang University; Nanchang 330006 People's Republic of China
| | - Jinhua Wen
- Department of Pharmacy; The First Affiliated Hospital of Nanchang University; Nanchang 330006 People's Republic of China
| | - Guoping Zhong
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou 510006 People's Republic of China
| | - Min Huang
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou 510006 People's Republic of China
| | - Huichang Bi
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou 510006 People's Republic of China
| |
Collapse
|
7
|
Xu Z, Mei J, Tan Y. Baicalin attenuates DDP (cisplatin) resistance in lung cancer by downregulating MARK2 and p-Akt. Int J Oncol 2016; 50:93-100. [PMID: 27878245 DOI: 10.3892/ijo.2016.3768] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/04/2016] [Indexed: 11/06/2022] Open
Abstract
DDP (cisplatin) resistance in lung cancer has been widely reported. Baicalin is a flavone glycoside found in genus Scutellaria. However, the effects of baicalin on DDP resistance in lung cancer are unclear. The aim of present study was to investigate effects of combination of baicalin and DDP on proliferation and invasion of human lung cancer cells, and explore possible mechanisms. MTT assay was utilized to evaluate effects of baicalin and DDP on the proliferation of A549 and A549/DPP (DPP-resistant) human lung cancer cells. The probability sum method was used to determine effects of the drug combination. Transwell invasion assay was utilized to detect tumor cell invasion. The mRNA expression of MARK2 in A549 and A549/DPP cells was detected by qPCR. Protein expression of MARK2, p-Akt and Akt was detected by western blot analysis. Baicalin and DPP when used alone inhibited the proliferation of A549 and A549/DDP cells in a dose-dependent manner at 24 and 48 h. For A549 cells, baicalin (8 µg/ml) antagonized DDP (1, 2, 4 and 8 µg/ml) at 24 h. For A549/DDP cells, baicalin and DDP were additive when the concentration of DDP was 4 µg/ml at 24 h. Effects of baicalin and DDP on proliferation inhibition were additive and synergistic when concentrations of DDP were 8 and 4 µg/ml, respectively, at 48 h for both A549 and A549/DDP cells. When baicalin (8 µg/ml) and DDP (4 µg/ml) were combined, the inhibitory rate of tumor cell invasion increased markedly compared to DPP or baicalin alone groups in both A549 and A549/DDP cells. A549/DDP cells had significantly higher MARK2 mRNA levels and protein expression of MARK2 and p-Akt. Baicalin decreased MARK2 mRNA and protein expression of MARK2 and p-Akt in A549/DDP cells dose-dependently. In conclusion, baicalin and DDP were synergistic at inhibiting proliferation and invasion of human lung cancer cells at appropriate dosages and incubation time in the presence or absence of DDP resistance. The attenuation of DDP resistance was associated with downregulation of MARK2 and p-Akt.
Collapse
Affiliation(s)
- Zhiwei Xu
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Ju Mei
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Yan Tan
- Department of Intensive Care Unit, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai 201399, P.R. China
| |
Collapse
|
8
|
Sumsakul W, Plengsuriyakarn T, Na-Bangchang K. Pharmacokinetics, toxicity, and cytochrome P450 modulatory activity of plumbagin. BMC Pharmacol Toxicol 2016; 17:50. [PMID: 27839515 PMCID: PMC5108082 DOI: 10.1186/s40360-016-0094-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 10/04/2016] [Indexed: 11/10/2022] Open
Abstract
Background The antimalarial activity of plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone), a naturally occurring naphthoquinone widely distributed in the Plumbaginaceae family has previously been demonstrated in vitro (good activity) and in vivo (weak activity). The aim of the study was to investigate the pharmacokinetic profile following a single oral dosing to explain inconsistency of results of the in vitro and in vivo antimalarial activities. In addition, toxicity profiles and potential of modulation of cytochrome P450 enzymes (CYP1A2 and CYP3A11) were also investigated. Methods The pharmacokinetics and toxicity of plumbagin were investigated in rats. The propensity of plumbagin to modulate the mRNA expression and activities of the two inducible forms of hepatic drug metabolizing enzyme cytochrome P450 (CYP450), i.e., CYP1A2 and CYP3A11, was investigated using microsomes prepared from mouse livers. Results Acute and subacute toxicity tests indicate low toxicity of plumbagin with maximum tolerated doses of 150 (single oral dose) and 25 (daily doses for 28 days) mg/kg body weight, respectively. The pharmacokinetic profile of plumbagin following a single oral dose of 100 mg/kg body weight suggests that delayed absorption and short residence time (median values of time to maximal concentration and elimination half-life = 9.63 and 5.0 h, respectively) in plasma. Plumbagin did not modulate mRNA expression and activities of CYP1A2 and CYP3A11. Conclusions Plumbagin was well tolerated following oral dose administration in rats. Pharmacokinetic property of this compound may be a limiting factor that explains the weak antimalarial activity of plumbagin observed in animal models. Potential metabolic interaction with co-administered drugs that are metabolized by CYP1A2 or CYP3A11 are unlikely.
Collapse
Affiliation(s)
- Wiriyaporn Sumsakul
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
| | - Tullayakorn Plengsuriyakarn
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand.,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University, Pathumthani, Thailand
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand. .,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University, Pathumthani, Thailand.
| |
Collapse
|
9
|
Chinese Herbal Medicine Fuzheng Kang-Ai Decoction Inhibited Lung Cancer Cell Growth through AMPKα-Mediated Induction and Interplay of IGFBP1 and FOXO3a. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5060757. [PMID: 27057199 PMCID: PMC4757679 DOI: 10.1155/2016/5060757] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/21/2015] [Indexed: 12/20/2022]
Abstract
The aim of this study is to investigate the actions of Chinese herbal medicine, called “Fuzheng Kang-Ai” (FZKA for short) decoction, against non-small cell lung cancer (NSCLC) and its mechanisms in vitro and in vivo. We showed that the effect of FZKA decoction significantly inhibited growth of A549 and PC9 cells. Furthermore, FZKA increased phosphorylation of AMP-activated protein kinase alpha (AMPKα) and induced protein expression of insulin-like growth factor (IGF) binding protein 1 (IGFBP1) and forkhead homeobox type O3a (FOXO3a). The specific inhibitor of AMPKα (Compound C) blocked FZKA-induced protein expression of IGFBP1 and FOXO3a. Interestingly, silencing of IGFBP1 and FOXO3a overcame the inhibitory effect of FZKA on cell growth. Moreover, silencing of IGFBP1 attenuated the effect of FZKA decoction on FOXO3a expression, and exogenous expression of FOXO3a enhanced the FZKA-stimulated phosphorylation of AMPKα. Accordingly, FZKA inhibited the tumor growth in xenograft nude mice model. Collectively, our results show that FZKA decoction inhibits proliferation of NSCLC cells through activation of AMPKα, followed by induction of IGFBP1 and FOXO3a proteins. Exogenous expression of FOXO3a feedback enhances FZKA decoction-stimulated IGFBP1 expression and phosphorylation of AMPKα. The reciprocal interplay of IGFBP1 and FOXO3a contribute to the overall responses of FAKA decoction.
Collapse
|
10
|
Scheer N, Kapelyukh Y, Rode A, Oswald S, Busch D, McLaughlin LA, Lin D, Henderson CJ, Wolf CR. Defining Human Pathways of Drug Metabolism In Vivo through the Development of a Multiple Humanized Mouse Model. Drug Metab Dispos 2015; 43:1679-90. [PMID: 26265742 DOI: 10.1124/dmd.115.065656] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/10/2015] [Indexed: 11/22/2022] Open
Abstract
Variability in drug pharmacokinetics is a major factor in defining drug efficacy and side effects. There remains an urgent need, particularly with the growing use of polypharmacy, to obtain more informative experimental data predicting clinical outcomes. Major species differences in multiplicity, substrate specificity, and regulation of enzymes from the cytochrome P450-dependent mono-oxygenase system play a critical role in drug metabolism. To develop an in vivo model for predicting human responses to drugs, we generated a mouse, where 31 P450 genes from the Cyp2c, Cyp2d, and Cyp3a gene families were exchanged for their relevant human counterparts. The model has been improved through additional humanization for the nuclear receptors constitutive androgen receptor and pregnane X receptor that control the expression of key drug metabolizing enzymes and transporters. In this most complex humanized mouse model reported to date, the cytochromes P450 function as predicted and we illustrate how these mice can be applied to predict drug-drug interactions in humans.
Collapse
Affiliation(s)
- Nico Scheer
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| | - Yury Kapelyukh
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| | - Anja Rode
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| | - Stefan Oswald
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| | - Diana Busch
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| | - Lesley A McLaughlin
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| | - De Lin
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| | - Colin J Henderson
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| | - C Roland Wolf
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| |
Collapse
|
11
|
Scheer N, Wilson ID. A comparison between genetically humanized and chimeric liver humanized mouse models for studies in drug metabolism and toxicity. Drug Discov Today 2015; 21:250-63. [PMID: 26360054 DOI: 10.1016/j.drudis.2015.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/07/2015] [Accepted: 09/01/2015] [Indexed: 12/12/2022]
Abstract
Mice that have been genetically humanized for proteins involved in drug metabolism and toxicity and mice engrafted with human hepatocytes are emerging and promising in vivo models for an improved prediction of the pharmacokinetic, drug-drug interaction and safety characteristics of compounds in humans. The specific advantages and disadvantages of these models should be carefully considered when using them for studies in drug discovery and development. Here, an overview on the corresponding genetically humanized and chimeric liver humanized mouse models described to date is provided and illustrated with examples of their utility in drug metabolism and toxicity studies. We compare the strength and weaknesses of the two different approaches, give guidance for the selection of the appropriate model for various applications and discuss future trends and perspectives.
Collapse
Affiliation(s)
| | - Ian D Wilson
- Imperial College London, South Kensington, London SW7 2AZ, UK.
| |
Collapse
|
12
|
Zheng F, Wu J, Zhao S, Luo Q, Tang Q, Yang L, Li L, Wu W, Hann SS. Baicalein increases the expression and reciprocal interplay of RUNX3 and FOXO3a through crosstalk of AMPKα and MEK/ERK1/2 signaling pathways in human non-small cell lung cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:41. [PMID: 25948105 PMCID: PMC4457308 DOI: 10.1186/s13046-015-0160-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/20/2015] [Indexed: 12/19/2022]
Abstract
Background Baicalein, a natural flavonoid obtained from the Scutellaria baicalensis root, has been reported to inhibit growth of human lung cancer. However, the detailed mechanism underlying this has not been well elucidated. Methods Cell viability was measured using a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assays. Apoptosis was detected by flow cytometry analysis and caspase 3/7 assays. The expression of RUNX3 and FOXO3a mRNA were measured by real time RT-PCR methods. Western blot analysis was performed to measure the phosphorylation and protein expression of AMP-activated protein kinase alpha (AMPKα) and extracellular signal-regulated kinase 1/2 (ERK1/2), runt-related transcription factor 3 (RUNX3) and forkhead box O3a (FOXO3a). Silencing of FOXO3a and RUNX3 were performed by small interfering RNA (siRNA) methods. Exogenous expression of FOXO3a or RUNX3 was carried out by electroporated transfection assays. Results We showed that baicalein significantly inhibited growth and induced apoptosis of non-small cell lung cancer (NSCLC) cells in a time- and dose-dependent manner. Baicalein induced RUNX3 and FOXO3a protein expression, and increased phosphorylation of AMPKα and ERK1/2. Moreover, the inhibitors of AMPK and MEK/ERK1/2 reversed the effect of baicalein on RUNX3 and FOXO3a protein expression. Interestingly, while compound C had little effect on blockade of baicalein-induced phosphorylation of ERK1/2, PD98059 significantly abrogated baicalein-induced phosphorylation of AMPKα. Intriguingly, while silencing of RUNX3 abolished the effect of baicalein on expression of FOXO3a and apoptosis, silencing of FOXO3a significantly attenuated baicalein-reduced cell proliferation. On the contrary, overexpression of FOXO3a restored the effect of baicalein on cell growth inhibition in cells silencing of endogenous FOXO3a gene and enhanced the effect of baicalein on RUNX3 protein expression. Finally, exogenous expression of RUNX3 increased FOXO3a protein and strengthened baicalein-induced phosphorylation of ERK1/2. Conclusion Collectively, our results show that baicalein inhibits growth and induces apoptosis of NSCLC cells through AMPKα- and MEK/ERK1/2-mediated increase and interaction of FOXO3a and RUNX3 protein. The crosstalk between AMPKα and MEK/ERK1/2 signaling pathways, and the reciprocal interplay of FOXO3a and RUNX3 converge on the overall response of baicalein. This study reveals a novel mechanism for regulating FOXO3a and RUNX3 signaling axis in response to baicalein and suggests a new strategy for NSCLC associated targeted therapy.
Collapse
Affiliation(s)
- Fang Zheng
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Jingjing Wu
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Shunyu Zhao
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Qingmei Luo
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Qing Tang
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - LiJun Yang
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Liuning Li
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - WanYing Wu
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China. .,Higher Education Mega Center, No. 55, Neihuan West Road, Panyu District, Guangzhou, Guangdong Province, 510006, People's Republic of China.
| |
Collapse
|
13
|
Sun M, Cui W, Woody SK, Staudinger JL. Pregnane X receptor modulates the inflammatory response in primary cultures of hepatocytes. Drug Metab Dispos 2015; 43:335-43. [PMID: 25527709 PMCID: PMC4352581 DOI: 10.1124/dmd.114.062307] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 12/12/2014] [Indexed: 12/16/2022] Open
Abstract
Bacterial sepsis is characterized by a rapid increase in the expression of inflammatory mediators to initiate the acute phase response in liver. Inflammatory mediator release is counterbalanced by the coordinated expression of anti-inflammatory molecules such as interleukin 1 receptor antagonist (IL1-Ra) through time. This study determined whether activation of pregnane X receptor (PXR, NR1I2) alters the lipopolysaccharide (LPS)-inducible gene expression program in primary cultures of hepatocytes (PCHs). Preactivation of PXR for 24 hours in PCHs isolated from wild-type mice suppressed the subsequent LPS-inducible expression of the key inflammatory mediators interleukin 1β (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor α (TNFα) but not in PCHs isolated from Pxr-null (PXR-knockout [KO]) mice. Basal expression of key inflammatory cytokines was elevated in PCHs from PXR-KO mice. Stimulation of PCHs from PXR-KO mice with LPS alone produced enhanced levels of IL-1β when compared with wild-type mice. Experiments performed using PCHs from both humanized-PXR transgenic mice as well as human donors indicate that prolonged activation of PXR produces an increased secretion of IL1-Ra from cells through time. Our data reveal a working model that describes a pivotal role for PXR in both inhibiting as well as in resolving the inflammatory response in hepatocytes. Understanding the molecular details of how PXR is converted from a positive regulator of drug-metabolizing enzymes into a transcriptional suppressor of inflammation in liver will provide new pharmacologic strategies for modulating inflammatory-related diseases in the liver and intestine.
Collapse
Affiliation(s)
- Mengxi Sun
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas
| | - Wenqi Cui
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas
| | - Sarah K Woody
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas
| | - Jeff L Staudinger
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas
| |
Collapse
|
14
|
Li L, Bonneton F, Chen XY, Laudet V. Botanical compounds and their regulation of nuclear receptor action: the case of traditional Chinese medicine. Mol Cell Endocrinol 2015; 401:221-37. [PMID: 25449417 DOI: 10.1016/j.mce.2014.10.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 10/23/2014] [Accepted: 10/31/2014] [Indexed: 02/06/2023]
Abstract
Nuclear receptors (NRs) are major pharmacological targets that allow an access to the mechanisms controlling gene regulation. As such, some NRs were identified as biological targets of active compounds contained in herbal remedies found in traditional medicines. We aim here to review this expanding literature by focusing on the informative articles regarding the mechanisms of action of traditional Chinese medicines (TCMs). We exemplified well-characterized TCM action mediated by NR such as steroid receptors (ER, GR, AR), metabolic receptors (PPAR, LXR, FXR, PXR, CAR) and RXR. We also provided, when possible, examples from other traditional medicines. From these, we draw a parallel between TCMs and phytoestrogens or endocrine disrupting chemicals also acting via NR. We define common principle of action and highlight the potential and limits of those compounds. TCMs, by finely tuning physiological reactions in positive and negative manners, could act, in a subtle but efficient way, on NR sensors and their transcriptional network.
Collapse
Affiliation(s)
- Ling Li
- Institut de Génomique Fonctionnelle de Lyon; Université de Lyon; Université Lyon 1; CNRS UMR 5242; Ecole Normale Supérieure de Lyon, France.; School of Ecological and Environmental Science, East China Normal University, Shanghai, China
| | - François Bonneton
- Institut de Génomique Fonctionnelle de Lyon; Université de Lyon; Université Lyon 1; CNRS UMR 5242; Ecole Normale Supérieure de Lyon, France
| | - Xiao Yong Chen
- School of Ecological and Environmental Science, East China Normal University, Shanghai, China
| | - Vincent Laudet
- Institut de Génomique Fonctionnelle de Lyon; Université de Lyon; Université Lyon 1; CNRS UMR 5242; Ecole Normale Supérieure de Lyon, France..
| |
Collapse
|
15
|
Hu M, Fan L, Zhou HH, Tomlinson B. Theranostics meets traditional Chinese medicine: rational prediction of drug–herb interactions. Expert Rev Mol Diagn 2014; 12:815-30. [DOI: 10.1586/erm.12.126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Scheer N, Snaith M, Wolf CR, Seibler J. Generation and utility of genetically humanized mouse models. Drug Discov Today 2013; 18:1200-11. [PMID: 23872278 DOI: 10.1016/j.drudis.2013.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/20/2013] [Accepted: 07/11/2013] [Indexed: 01/15/2023]
Abstract
Identifying in vivo models that are naturally predictive for particular areas of study in humans can be challenging due to the divergence that has occurred during speciation. One solution to this challenge that is gaining increasing traction is the use of genetic engineering to introduce human genes into mice to generate superior models for predicting human responses. This review describes the state-of-the-art for generating such models, provides an overview of the types of genetically humanized mouse models described to date and their applications in basic research, drug discovery and development and to understand clinical drug toxicity. We discuss limitations and explore promising future directions for the use of genetically humanized mice to further improve translational research.
Collapse
Affiliation(s)
- Nico Scheer
- TaconicArtemis, Neurather Ring 1, Koeln 51063, Germany.
| | | | | | | |
Collapse
|
17
|
Abstract
The nuclear receptors pregnane X receptor, constitutive androstane receptor, and peroxisome proliferator-activated receptor alpha have important endogenous functions and are also involved in the induction of drug-metabolizing enzymes and transporters in response to exogenous xenobiotics. Though not belonging to the same protein family, the Per-Sim-ARNT domain receptor aryl hydrocarbon receptor functionally overlaps with the three nuclear receptors in many aspects and is therefore included in this review. Significant species differences in ligand affinity and biological responses as a result of activation of these receptors have been described. Several xenobiotic receptor humanized mice have been created to overcome these species differences and to provide in vivo models that are more predictive for human responses. This review provides an overview of the different xenobiotic receptor humanized mouse models described to date and will summarize how these models can be applied in basic research and improve drug discovery and development. Some of the key applications in the evaluation of drug induction, drug-drug interactions, nongenotoxic carcinogenicity, other toxicity, or efficacy studies are described. We also discuss relevant considerations in the interpretation of such data and potential future directions for the use of xenobiotic receptor humanized mice.
Collapse
Affiliation(s)
- Nico Scheer
- TaconicArtemis GmbH, Neurather Ring 1, Koeln, Germany.
| | | |
Collapse
|
18
|
Wang YG, Zhou JM, Ma ZC, Li H, Liang QD, Tan HL, Xiao CR, Zhang BL, Gao Y. Pregnane X receptor mediated-transcription regulation of CYP3A by glycyrrhizin: A possible mechanism for its hepatoprotective property against lithocholic acid-induced injury. Chem Biol Interact 2012; 200:11-20. [DOI: 10.1016/j.cbi.2012.08.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 08/17/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
|
19
|
Cheng J, Ma X, Gonzalez FJ. Pregnane X receptor- and CYP3A4-humanized mouse models and their applications. Br J Pharmacol 2011; 163:461-8. [PMID: 21091656 DOI: 10.1111/j.1476-5381.2010.01129.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Pregnane X receptor (PXR) is a pivotal nuclear receptor modulating xenobiotic metabolism primarily through its regulation of CYP3A4, the most important enzyme involved in drug metabolism in humans. Due to the marked species differences in ligand recognition by PXR, PXR-humanized (hPXR) mice, and mice expressing human PXR and CYP3A4 (Tg3A4/hPXR) were established. hPXR and Tg3A4/hPXR mice are valuable models for investigating the role of PXR in xenobiotic metabolism and toxicity, in lipid, bile acid and steroid hormone homeostasis, and in the control of inflammation.
Collapse
Affiliation(s)
- Jie Cheng
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
20
|
Nonylphenol-mediated CYP induction is PXR-dependent: The use of humanized mice and human hepatocytes suggests that hPXR is less sensitive than mouse PXR to nonylphenol treatment. Toxicol Appl Pharmacol 2011; 252:259-67. [PMID: 21376070 DOI: 10.1016/j.taap.2011.02.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/22/2011] [Accepted: 02/23/2011] [Indexed: 12/22/2022]
Abstract
Nonylphenol (NP), a by-product of alkylphenol ethoxylates, is a pervasive surfactant that activates the xenosensing nuclear receptor, the pregnane X-receptor (PXR) in transactivation assays in vitro. We are interested in determining if NP activates PXR in vivo, determining if hPXR and mPXR act similarly, and investigating the role of PXR in protecting individuals from NP. Wild-type (WT), PXR-null, and humanized PXR (hPXR) mice were treated with NP at 0, 50 or 75mg/kg/day for one week, and cytochrome P450 (CYP) induction, liver histopathology, and serum NP concentrations were examined. WT mice treated with NP showed induction of Cyp2b, and male-specific induction of Cyp2c and Cyp3a. CYPs were not induced in PXR-null mice, demonstrating that PXR is necessary for NP-mediated CYP induction. CAR-mediated CYP induction was not observed in the PXR-null mice despite previous data demonstrating that NP is also a CAR activator. hPXR mice only showed moderate Cyp induction, suggesting that hPXR is not as sensitive to NP as mPXR in vivo. NP-mediated Cyp3a induction from three human hepatocyte donors was not significant, confirming that hPXR is not very sensitive to NP-mediated CYP induction. Lastly, mice with PXR (mPXR and hPXR) showed lower NP serum concentrations than PXR-null mice treated with NP suggesting that PXR plays a role in decreasing liver toxicity by basally regulating phase I-III detoxification enzymes that promote the metabolism and elimination of NP. In summary, PXR is required for NP-mediated CYP-induction, mPXR mediates greater CYP induction than hPXR in vivo, and the presence of PXR, especially mPXR, is associated with altered histopathology and increased clearance of NP.
Collapse
|
21
|
Huang L, Bi HC, Liu YH, Wang YT, Xue XP, Huang M. CAR-mediated Up-regulation of CYP3A4 Expression in LS174T Cells by Chinese Herbal Compounds. Drug Metab Pharmacokinet 2011; 26:331-40. [DOI: 10.2133/dmpk.dmpk-10-rg-115] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Wang L, Li F, Lu J, Li G, Li D, Zhong XB, Guo GL, Ma X. The Chinese herbal medicine Sophora flavescens activates pregnane X receptor. Drug Metab Dispos 2010; 38:2226-31. [PMID: 20736322 PMCID: PMC2993459 DOI: 10.1124/dmd.110.035253] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 08/23/2010] [Indexed: 01/14/2023] Open
Abstract
Sophora flavescens (SF) is an herbal medicine widely used for the treatment of viral hepatitis, cancer, viral myocarditis, gastrointestinal hemorrhage, and skin diseases. It was recently reported that SF up-regulates CYP3A expression. The mechanism of SF-induced CYP3A expression is unknown. In the current study, we tested the hypothesis that SF-induced CYP3A expression is mediated by the activation of pregnane X receptor (PXR). We used two cell lines, DPX2 and HepaRG, to investigate the role of PXR in SF-induced CYP3A expression. The DPX2 cell line is derived from HepG2 cells with the stable transfection of human PXR and a luciferase reporter gene linked with a human PXR response element identified in the CYP3A4 gene promoter. In DPX2 cells, SF activated PXR in a concentration-dependent manner. We used a metabolomic approach to identify the chemical constituents in SF, which were further analyzed for their effect on PXR activation and CYP3A regulation. One chemical in SF, N-methylcytisine, was identified as an individual chemical that activated PXR. HepaRG is a highly differentiated hepatoma cell line that mimics human hepatocytes. In HepaRG cells, N-methylcytisine significantly induced CYP3A4 expression, and this induction was suppressed by the PXR antagonist sulforaphane. These results suggest that SF induces CYP3A expression via the activation of PXR.
Collapse
Affiliation(s)
- Laiyou Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Liu YH, Mo SL, Bi HC, Hu BF, Li CG, Wang YT, Huang L, Huang M, Duan W, Liu JP, Wei MQ, Zhou SF. Regulation of human pregnane X receptor and its target gene cytochrome P450 3A4 by Chinese herbal compounds and a molecular docking study. Xenobiotica 2010; 41:259-80. [PMID: 21117944 DOI: 10.3109/00498254.2010.537395] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The pregnane X receptor (PXR) plays a critical role in the regulation of human cytochrome P450 3A4 (CYP3A4) gene. In this study, we investigated the effect of an array of compounds isolated from Chinese herbal medicines on the activity of PXR using a luciferase reporter gene assay in transiently transfected HepG2 and Huh7 cells and on the expression of PXR and CYP3A4 in LS174T cells. Furthermore, molecular docking was performed to investigate the binding modes of herbal compounds with PXR. Praeruptorin A and C, salvianolic acid B, sodium danshensu, protocatechuic aldehyde, cryptotanshinone, emodin, morin, and tanshinone IIA significantly transactivated the CYP3A4 reporter gene construct in either HepG2 or Huh7 cells. The PXR mRNA expression in LS174T cells was significantly induced by physcion, protocatechuic aldehyde, salvianolic acid B, and sodium danshensu. However, epifriedelanol, morin, praeruptorin D, mulberroside A, tanshinone I, and tanshinone IIA significantly down-regulated the expression of PXR mRNA in LS174T cells. All the herbal compounds tested can be readily docked into the ligand-binding cavity of PXR mainly through hydrogen bond and aromatic interactions with Ser247, Gln285, His407, and Arg401. These findings suggest that herbal medicines can significantly regulate PXR and CYP3A4 and this has important implication in herb-drug interactions.
Collapse
Affiliation(s)
- Ya-He Liu
- School of Health Sciences & Health Innovations Research Institute, RMIT University, Bundoora, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hu G, Xu C, Staudinger JL. Pregnane X receptor is SUMOylated to repress the inflammatory response. J Pharmacol Exp Ther 2010; 335:342-50. [PMID: 20719936 PMCID: PMC2967404 DOI: 10.1124/jpet.110.171744] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 08/17/2010] [Indexed: 01/08/2023] Open
Abstract
Long-term treatment of patients with the macrolide antibiotic and prototypical activator of pregnane X receptor (PXR) rifampicin (Rif) inhibits the inflammatory response in liver. We show here that activation of the inflammatory response in hepatocytes strongly modulates SUMOylation of ligand-bound PXR. We provide evidence that the SUMOylated PXR contains SUMO3 chains, and feedback represses the immune response in hepatocytes. This information represents the first step in developing novel pharmaceutical strategies to treat inflammatory liver disease and prevent adverse drug reactions in patients experiencing acute or systemic inflammation. These studies also provide a molecular rationale for constructing a novel paradigm that uniquely defines the molecular basis of the interface between PXR-mediated gene activation, drug metabolism, and inflammation.
Collapse
Affiliation(s)
- Gang Hu
- Pharmacology and Toxicology, University of Kansas, 1251 Wescoe Hall Dr., 5038a Malott Hall, Lawrence, KA 66045, USA
| | | | | |
Collapse
|
25
|
Kang SH, Lee HJ, Jeong SJ, Kwon HY, Kim JH, Yun SM, Kim JH, Lee HJ, Lee EO, Ahn KS, Ahn KS, Kim SH. Protective effect of Bojungbangdocktang on cisplatin-induced cytotoxicity and apoptosis in MCF-10A breast endothelial cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2009; 28:430-438. [PMID: 21784039 DOI: 10.1016/j.etap.2009.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 07/08/2009] [Accepted: 07/25/2009] [Indexed: 05/31/2023]
Abstract
Although cisplatin has been extensively used as a cancer chemotherapeutic agent for the treatment of various human cancers, it causes significant side effects such as nephrotoxicity and hepatotoxicity due to lethal bystander damage to normal cells. Thus, in the current study, we investigated the Oriental herbal medicine Bojungbangdocktang (BJBDT), as we reported previously its anti-angiogenic activity at nontoxic concentrations that could prevent cisplatin-induced toxicity and apoptosis in human normal breast epithelial cell MCF-10A, but not in MCF-7 and MDA MB-231 breast cancer cells. BJBDT protected cisplatin-induced cytotoxicity in MCF-10A cells and potentiated cytotoxicity and MMP loss in MCF-7 cells. Also, 4',6-diamidino-2-phenylindole (DAPI) staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay revealed that BJBDT reduced cisplatin-induced apoptotic bodies in MCF-10A cells compared with cisplatin-treated control. Consistently, BJBDT attenuated the apoptotic portion sub-G1 DNA contents as well as blocked the activation of caspase-3 and -9 and poly(ADP-ribose)polymerase (PARP) cleavage in cisplatin-treated MCF-10A cells. Taken together, our findings suggest that BJBDT can protect cisplatin-induced cytotoxicity and apoptosis in normal MCF-10A breast cells as a cancer chemopreventive agent.
Collapse
Affiliation(s)
- Sang-Hun Kang
- Cancer Preventive Material Development Research Center, Oriental Medical College, Kyunghee University, 1 Hoegidong, Dongdaemungu, Seoul 130-701, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chang TKH. Activation of pregnane X receptor (PXR) and constitutive androstane receptor (CAR) by herbal medicines. AAPS JOURNAL 2009; 11:590-601. [PMID: 19688601 DOI: 10.1208/s12248-009-9135-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 07/30/2009] [Indexed: 12/14/2022]
Abstract
Pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are transcription factors that control the expression of a broad array of genes involved not only in transcellular transport and biotransformation of many drugs, other xenochemicals, and endogenous substances, such as bile acid, bilirubin, and certain vitamins, but also in various physiological/pathophysiological processes such as lipid metabolism, glucose homeostasis, and inflammation. Ligands of PXR and CAR are chemicals of diverse structures, including naturally occurring compounds present in herbal medicines. The overall aim of this article is to provide an overview of our current understanding of the role of herbal medicines as modulators of PXR and CAR.
Collapse
Affiliation(s)
- Thomas K H Chang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
27
|
Hernandez J, Mota L, Baldwin W. Activation of CAR and PXR by Dietary, Environmental and Occupational Chemicals Alters Drug Metabolism, Intermediary Metabolism, and Cell Proliferation. CURRENT PHARMACOGENOMICS AND PERSONALIZED MEDICINE 2009; 7:81-105. [PMID: 20871735 PMCID: PMC2944248 DOI: 10.2174/187569209788654005] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The constitutive androstane receptor (CAR) and the pregnane × receptor (PXR) are activated by a variety of endogenous and exogenous ligands, such as steroid hormones, bile acids, pharmaceuticals, and environmental, dietary, and occupational chemicals. In turn, they induce phase I-III detoxification enzymes and transporters that help eliminate these chemicals. Because many of the chemicals that activate CAR and PXR are environmentally-relevant (dietary and anthropogenic), studies need to address whether these chemicals or mixtures of these chemicals may increase the susceptibility to adverse drug interactions. In addition, CAR and PXR are involved in hepatic proliferation, intermediary metabolism, and protection from cholestasis. Therefore, activation of CAR and PXR may have a wide variety of implications for personalized medicine through physiological effects on metabolism and cell proliferation; some beneficial and others adverse. Identifying the chemicals that activate these promiscuous nuclear receptors and understanding how these chemicals may act in concert will help us predict adverse drug reactions (ADRs), predict cholestasis and steatosis, and regulate intermediary metabolism. This review summarizes the available data on CAR and PXR, including the environmental chemicals that activate these receptors, the genes they control, and the physiological processes that are perturbed or depend on CAR and PXR action. This knowledge contributes to a foundation that will be necessary to discern interindividual differences in the downstream biological pathways regulated by these key nuclear receptors.
Collapse
Affiliation(s)
- J.P. Hernandez
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - L.C. Mota
- Institute of Environmental Toxicology, Clemson University, Pendleton, SC, USA
| | - W.S. Baldwin
- Institute of Environmental Toxicology, Clemson University, Pendleton, SC, USA
| |
Collapse
|
28
|
Lichti-Kaiser K, Xu C, Staudinger JL. Cyclic AMP-dependent protein kinase signaling modulates pregnane x receptor activity in a species-specific manner. J Biol Chem 2009; 284:6639-49. [PMID: 19141612 DOI: 10.1074/jbc.m807426200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pregnane x receptor is a ligand-activated transcription factor that regulates drug-inducible expression of several key cytochrome P450 enzymes and drug transporter proteins in liver and intestine in a species-specific manner. Activation of this receptor modulates several key biochemical pathways, including gluconeogenesis, beta-oxidation of fatty acids, fatty acid uptake, cholesterol homeostasis, and lipogenesis. It is of current interest to determine whether the interaction between pregnane x receptor and these key biochemical pathways is evolutionarily conserved. We show here that activation of the cyclic AMP-dependent protein kinase signaling pathway synergizes with pregnane x receptor-mediated gene activation in mouse hepatocytes. Conversely, cyclic AMP-dependent protein kinase signaling has a repressive effect upon pregnane x receptor-mediated gene activation in rat and human hepatocytes. We show that the human pregnane x receptor protein can serve as an effective substrate for catalytically active cyclic AMP-dependent protein kinase in vitro. Metabolic labeling of the protein in vivo indicates that human pregnane x receptor exists as a phosphoprotein and that activation of cyclic AMP-dependent protein kinase signaling modulates the phosphorylation status of pregnane x receptor. Activation of cyclic AMP-dependent protein kinase signaling also modulates the interactions of pregnane x receptor with protein cofactors. Our results define the species-specific impact of cyclic AMP-dependent protein kinase signaling on pregnane x receptor and provide a molecular explanation of cyclic AMP-dependent protein kinase-mediated repression of human pregnane x receptor activity. Taken together, our results identify a novel mode of regulation of pregnane x receptor activity and highlight prominent functional differences in the process across species.
Collapse
Affiliation(s)
- Kristin Lichti-Kaiser
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | |
Collapse
|
29
|
Yeung EYH, Sueyoshi T, Negishi M, Chang TKH. Identification of Ginkgo biloba as a novel activator of pregnane X receptor. Drug Metab Dispos 2008; 36:2270-6. [PMID: 18725505 PMCID: PMC2626634 DOI: 10.1124/dmd.108.023499] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Pregnane X receptor (PXR; NR1I2) is a ligand-activated transcription factor that plays a role not only in drug metabolism and transport but also in various other biological processes. Ginkgo biloba is a herbal medicine commonly used to manage memory impairment. Treatment of primary cultures of rat hepatocytes with G. biloba extract increases the mRNA expression of CYP3A23, which is a target gene for rat PXR. The present study was conducted to test the hypothesis that G. biloba extract activates PXR. Treatment of mouse PXR (mPXR) or human PXR (hPXR)-transfected HepG2 cells with G. biloba extract at 200 microg/ml increased mPXR and hPXR activation by 3.2- and 9.5-fold, respectively. Dose-response analysis showed a log-linear increase in hPXR activation by the extract over the range of 200 to 800 microg/ml. To determine whether G. biloba extract induces hPXR target gene expression, cultured LS180 human colon adenocarcinoma cells were treated for 72 h with the extract. G. biloba extract at 200, 400, and 800 microg/ml increased CYP3A4 mRNA expression by 1.7-, 2.4-, and 2.5-fold, respectively. The same concentrations of the extract increased CYP3A5 (1.3-3.6-fold) and P-glycoprotein (ABCB) 1 (2.7-6.4-fold) mRNA expression. At concentrations (5 and 10 microM) that did not down-regulate PXR gene expression and were not cytotoxic, L-sulforaphane (an hPXR antagonist) decreased CYP3A4, CYP3A5, and ABCB1 gene expression in cells treated with G. biloba extract. In summary, G. biloba extract activated mPXR and hPXR in a cell-based reporter gene assay and induced CYP3A4, CYP3A5, and ABCB1 gene expression in hPXR-expressing LS180 cells.
Collapse
Affiliation(s)
- Eugene Y H Yeung
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | | | |
Collapse
|