1
|
Skryabina AA, Nikiforov VV, Shakhmardanov MZ, Zastrozhin MS, Sychev DA. Pharmacogenetic markers and macrolide safety in influenza patients: insights from a prospective study. Pharmacogenomics 2025; 25:661-665. [PMID: 39829075 PMCID: PMC11901476 DOI: 10.1080/14622416.2025.2454217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Macrolides are widely used antibiotics, but adverse drug reactions (ADRs), particularly in genetically predisposed individuals, can compromise their safety. This study examines the impact of pharmacogenetic markers on macrolide safety in participants with bacterial complications of influenza. OBJECTIVE To evaluate how polymorphisms in genes encoding transporter proteins (ABCB1) and enzymes (CYP3A4, CYP3A5) influence ADR risk during macrolide therapy. METHODS A prospective study included 100 participants with lower respiratory tract bacterial complications of influenza treated with azithromycin or erythromycin for five days. Genotyping targeted ABCB1 (3435C>T), CYP3A4 (C>T intron 6), and CYP3A5 (6986A>G) polymorphisms. ADRs were monitored daily and correlated with genetic markers. RESULTS The ABCB1 (3435C>T) polymorphism was associated with higher rates of abdominal pain and diarrhea in CT and TT genotypes (OR = 2.12, p = 0.043). The CYP3A4 (C>T intron 6) polymorphism increased ADR risk in erythromycin-treated participants (OR = 24.0, p = 0.0339). No significant effects were observed for CYP3A5 (6986A>G). CONCLUSION Genetic polymorphisms in ABCB1 and CYP3A4 genes predict macrolide-related ADRs. Pharmacogenetic screening could improve macrolide safety, particularly for genetically susceptible individuals.
Collapse
Affiliation(s)
- A. A. Skryabina
- Infectious Diseases Department, Pirogov Russian National Research Medical University, Moscow, Russia
| | - V. V. Nikiforov
- Infectious Diseases Department, Pirogov Russian National Research Medical University, Moscow, Russia
| | - M. Z. Shakhmardanov
- Infectious Diseases Department, Pirogov Russian National Research Medical University, Moscow, Russia
| | - M. S. Zastrozhin
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, USA
| | - D. A. Sychev
- Department of Clinical Pharmacology, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
2
|
Keppler M, Straß S, Geiger S, Fischer T, Späth N, Weinstein T, Schwamborn A, Guezguez J, Guse JH, Laufer S, Burnet M. Imidazoquinolines with improved pharmacokinetic properties induce a high IFNα to TNFα ratio in vitro and in vivo. Front Immunol 2023; 14:1168252. [PMID: 37409123 PMCID: PMC10319141 DOI: 10.3389/fimmu.2023.1168252] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
TLR Agonists have promising activity in preclinical models of viral infection and cancer. However, clinical use is only in topical application. Systemic uses of TLR-ligands such as Resiquimod, have failed due to adverse effects that limited dose and thus, efficacy. This issue could be related to pharmacokinetic properties that include fast elimination leading to low AUC with simultaneously high cmax at relevant doses. The high cmax is associated with a sharp, poorly tolerated cytokine pulse, suggesting that a compound with a higher AUC/cmax-ratio could provide a more sustained and tolerable immune activation. Our approach was to design TLR7/8-agonist Imidazoquinolines intended to partition to endosomes via acid trapping using a macrolide-carrier. This can potentially extend pharmacokinetics and simultaneously direct the compounds to the target compartment. The compounds have hTLR7/8-agonist activity (EC50 of the most active compound in cellular assays: 75-120 nM hTLR7, 2.8-3.1 µM hTLR8) and maximal hTLR7 activation between 40 and 80% of Resiquimod. The lead candidates induce secretion of IFNα from human Leukocytes in the same range as Resiquimod but induce at least 10-fold less TNFα in this system, consistent with a higher specificity for human TLR7. This pattern was reproduced in vivo in a murine system, where small molecules are thought not to activate TLR8. We found that Imidazoquinolines conjugated to a macrolide or, substances carrying an unlinked terminal secondary amine, had longer exposure compared with Resiquimod. The kinetics of pro-inflammatory cytokine release for these substances in vivo were slower and more extended (for comparable AUCs, approximately half-maximal plasma concentrations). Maximal IFNα plasma levels were reached 4 h post application. Resiquimod-treated groups had by then returned to baseline from a peak at 1 h. We propose that the characteristic cytokine profile is likely a consequence of altered pharmacokinetics and, potentially, enhanced endosomal tropism of the novel substances. In particular, our substances are designed to partition to cellular compartments where the target receptor and a distinct combination of signaling molecules relevant to IFNα-release are located. These properties could address the tolerability issues of TLR7/8 ligands and provide insight into approaches to fine-tune the outcomes of TLR7/8 activation by small molecules.
Collapse
Affiliation(s)
| | - Simon Straß
- Synovo GmbH, Tübingen, Germany
- Pharmaceutical Chemistry, Institute for Pharmaceutical Sciences, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | - Stefan Laufer
- Pharmaceutical Chemistry, Institute for Pharmaceutical Sciences, Eberhard Karls University Tübingen, Tübingen, Germany
| | | |
Collapse
|
3
|
Plasma Protein Binding Rate and Pharmacokinetics of Lekethromycin in Rats. Antibiotics (Basel) 2022; 11:antibiotics11091241. [PMID: 36140019 PMCID: PMC9494998 DOI: 10.3390/antibiotics11091241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Lekethromycin (LKMS), a novel macrolide lactone, is still unclear regarding its absorption. Thus, we conducted this study to investigate the characteristics of LKMS in rats. We chose the ultrafiltration method to measure the plasma protein binding rate of LKMS. As a result, LKMS was characterized by quick absorption, delayed elimination, and extensive distribution in rats following intramuscular (im) and subcutaneous (sc) administration. Moreover, LKMS has a high protein binding rate (78–91%) in rats at a concentration range of 10–800 ng/mL. LKMS bioavailability was found to be approximately 84–139% and 52–77% after im and sc administration, respectively; however, LKMS was found to have extremely poor bioavailability after oral administration (po) in rats. The pharmacokinetic parameters cannot be considered linearly correlated with the administered dose. Additionally, LKMS and its corresponding metabolites were shown to be metabolically stable in the liver microsomes of rats, dogs, pigs, and humans. Notably, only one phase I metabolite was identified during in vitro study, suggesting most of drug was not converted. Collectively, LKMS had quick absorption but poor absorption after oral administration, extensive tissue distribution, metabolic stability, and slow elimination in rats.
Collapse
|
4
|
Leong CW, Yee KM, Nalaiya J, Kassim Z, Rahim SRSA, Ahmad S, Amran A, Krishnamurthy L. Pharmacokinetics and Bioequivalence of 2 Azithromycin Tablet Formulations: A Randomized, Open-Label, 2-Stage Crossover Study in Healthy Volunteers. Clin Pharmacol Drug Dev 2022; 11:1078-1083. [PMID: 35394123 DOI: 10.1002/cpdd.1098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/06/2022] [Indexed: 01/26/2023]
Abstract
The current study aimed to assess the bioequivalence of a new branded azithromycin with the reference formulation. An open-label, randomized, 2-stage, crossover study design was implemented involving 77 healthy volunteers under fasting conditions. Each volunteer received a single dose of 250-mg azithromycin tablets test and reference formulations separated by a 21-day washout period. Twenty-two samples were collected at pre-dose and until 72 hours post-dose. Azithromycin concentrations were analyzed using a high-performance liquid chromatography-mass spectrometry validated method following a solid-phase plasma extraction. Noncompartmental analysis was carried out to estimate the pharmacokinetic parameters, which were compared between the test and reference products using a multivariate analysis of variance. The difference between Cmax and AUC0-72 of the test and reference formulation was not significant. The 94.1% confidence intervals of ln-transformed Cmax and AUC0-72 of azithromycin were within the bioequivalence acceptance limits of 80%-125%, therefore it can be concluded that the tested formulation is bioequivalent to the reference formulation.
Collapse
Affiliation(s)
| | - Kar Ming Yee
- Duopharma Innovation Sdn. Bhd, Shah Alam, Selangor, Malaysia
| | | | - Zawahil Kassim
- Duopharma Innovation Sdn. Bhd, Shah Alam, Selangor, Malaysia
| | | | - Shahnun Ahmad
- Duopharma Innovation Sdn. Bhd, Shah Alam, Selangor, Malaysia
| | - Atiqah Amran
- Duopharma Innovation Sdn. Bhd, Shah Alam, Selangor, Malaysia
| | | |
Collapse
|
5
|
Lenz KD, Klosterman KE, Mukundan H, Kubicek-Sutherland JZ. Macrolides: From Toxins to Therapeutics. Toxins (Basel) 2021; 13:347. [PMID: 34065929 PMCID: PMC8150546 DOI: 10.3390/toxins13050347] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/17/2022] Open
Abstract
Macrolides are a diverse class of hydrophobic compounds characterized by a macrocyclic lactone ring and distinguished by variable side chains/groups. Some of the most well characterized macrolides are toxins produced by marine bacteria, sea sponges, and other species. Many marine macrolide toxins act as biomimetic molecules to natural actin-binding proteins, affecting actin polymerization, while other toxins act on different cytoskeletal components. The disruption of natural cytoskeletal processes affects cell motility and cytokinesis, and can result in cellular death. While many macrolides are toxic in nature, others have been shown to display therapeutic properties. Indeed, some of the most well known antibiotic compounds, including erythromycin, are macrolides. In addition to antibiotic properties, macrolides have been shown to display antiviral, antiparasitic, antifungal, and immunosuppressive actions. Here, we review each functional class of macrolides for their common structures, mechanisms of action, pharmacology, and human cellular targets.
Collapse
Affiliation(s)
| | | | | | - Jessica Z. Kubicek-Sutherland
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (K.D.L.); (K.E.K.); (H.M.)
| |
Collapse
|
6
|
Abou Assi R, M. Abdulbaqi I, Seok Ming T, Siok Yee C, A. Wahab H, Asif SM, Darwis Y. Liquid and Solid Self-Emulsifying Drug Delivery Systems (SEDDs) as Carriers for the Oral Delivery of Azithromycin: Optimization, In Vitro Characterization and Stability Assessment. Pharmaceutics 2020; 12:E1052. [PMID: 33158058 PMCID: PMC7693798 DOI: 10.3390/pharmaceutics12111052] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
Azithromycin (AZM) is a macrolide antibiotic used for the treatment of various bacterial infections. The drug is known to have low oral bioavailability (37%) which may be attributed to its relatively high molecular weight, low solubility, dissolution rate, and incomplete intestinal absorption. To overcome these drawbacks, liquid (L) and solid (S) self-emulsifying drug delivery systems (SEDDs) of AZM were developed and optimized. Eight different pseudo-ternary diagrams were constructed based on the drug solubility and the emulsification studies in various SEDDs excipients at different surfactant to co-surfactant (Smix) ratios. Droplet size (DS) < 150 nm, dispersity (Đ) ≤ 0.7, and transmittance (T)% > 85 in three diluents of distilled water (DW), 0.1 mM HCl, and simulated intestinal fluids (SIF) were considered as the selection criteria. The final formulations of L-SEDDs (L-F1(H)), and S-SEDDs (S-F1(H)) were able to meet the selection requirements. Both formulations were proven to be cytocompatible and able to open up the cellular epithelial tight junctions (TJ). The drug dissolution studies showed that after 5 min > 90% and 52.22% of the AZM was released from liquid and solid SEDDs formulations in DW, respectively, compared to 11.27% of the pure AZM, suggesting the developed SEDDs may enhance the oral delivery of the drug. The formulations were stable at refrigerator storage conditions.
Collapse
Affiliation(s)
- Reem Abou Assi
- The Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (R.A.A.); (I.M.A.); (T.S.M.); (S.M.A.)
- The Discipline of Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Altun kupri, Kirkuk 36001, Iraq
| | - Ibrahim M. Abdulbaqi
- The Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (R.A.A.); (I.M.A.); (T.S.M.); (S.M.A.)
- The Discipline of Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Altun kupri, Kirkuk 36001, Iraq
| | - Toh Seok Ming
- The Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (R.A.A.); (I.M.A.); (T.S.M.); (S.M.A.)
| | - Chan Siok Yee
- The Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (R.A.A.); (I.M.A.); (T.S.M.); (S.M.A.)
| | - Habibah A. Wahab
- The Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (R.A.A.); (I.M.A.); (T.S.M.); (S.M.A.)
| | - Shaik Mohammed Asif
- The Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (R.A.A.); (I.M.A.); (T.S.M.); (S.M.A.)
- Pharma Research, Wockhardt Research Center, Aurangabad 431002, India
| | - Yusrida Darwis
- The Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (R.A.A.); (I.M.A.); (T.S.M.); (S.M.A.)
| |
Collapse
|
7
|
Parnham MJ, Geisslinger G. Pharmacological plasticity-How do you hit a moving target? Pharmacol Res Perspect 2019; 7:e00532. [PMID: 31768257 PMCID: PMC6868654 DOI: 10.1002/prp2.532] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 12/23/2022] Open
Abstract
Paul Ehrlich's concept of the magic bullet, by which a single drug induces pharmacological effects by interacting with a single receptor has been a strong driving force in pharmacology for a century. It is continually thwarted, though, by the fact that the treated organism is highly dynamic and the target molecule(s) is (are) never static. In this article, we address some of the factors that modify and cause the mobility and plasticity of drug targets and their interactions with ligands and discuss how these can lead to unexpected (lack of) effects of drugs. These factors include genetic, epigenetic, and phenotypic variability, cellular plasticity, chronobiological rhythms, time, age and disease resolution, sex, drug metabolism, and distribution. We emphasize four existing approaches that can be taken, either singly or in combination, to try to minimize effects of pharmacological plasticity. These are firstly, to enhance specificity using target conditions close to those in diseases, secondly, by simultaneously or thirdly, sequentially aiming at multiple targets, and fourthly, in synchronization with concurrent dietary, psychological, training, and biorhythm-synchronizing procedures to optimize drug therapy.
Collapse
Affiliation(s)
- Michael J. Parnham
- Fraunhofer Institute for Molecular Biology & Applied Ecology IMEBranch for Translational Medicine and Pharmacology TMPFrankfurt am MainGermany
| | - Gerd Geisslinger
- Fraunhofer Institute for Molecular Biology & Applied Ecology IMEBranch for Translational Medicine and Pharmacology TMPFrankfurt am MainGermany
- Institute of Clinical PharmacologyJ.W. Goethe UniversityFrankfurtGermany
| |
Collapse
|
8
|
Chang WK, Chen CH, Chen YA, Tang MC, Ju SY, Huang SW, Wu KM. Unique Pharmacokinetic Parameters with Prolonged Elimination Half-life of Oral Azithromycin and Analysis of Pharmacokinetic Phenotype in Young Taiwanese Population. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.981.991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Mendes C, Meirelles GC, Silva MA, Ponchel G. Intestinal permeability determinants of norfloxacin in Ussing chamber model. Eur J Pharm Sci 2018; 121:236-242. [DOI: 10.1016/j.ejps.2018.05.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 12/18/2022]
|
10
|
PharmGKB summary: Macrolide antibiotic pathway, pharmacokinetics/pharmacodynamics. Pharmacogenet Genomics 2018; 27:164-167. [PMID: 28146011 DOI: 10.1097/fpc.0000000000000270] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Mora MJ, Onnainty R, Granero GE. Comparative Oral Drug Classification Systems: Acetazolamide, Azithromycin, Clopidogrel, and Efavirenz Case Studies. Mol Pharm 2018; 15:3187-3196. [DOI: 10.1021/acs.molpharmaceut.8b00274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Maria Julia Mora
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000-HUA Córdoba, Argentina
| | - Renée Onnainty
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000-HUA Córdoba, Argentina
| | - Gladys Ester Granero
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000-HUA Córdoba, Argentina
| |
Collapse
|
12
|
Berlin S, Wallstabe S, Scheuch E, Oswald S, Hasan M, Wegner D, Grube M, Venner M, Ullrich A, Siegmund W. Intestinal and hepatic contributions to the pharmacokinetic interaction between gamithromycin and rifampicin after single-dose and multiple-dose administration in healthy foals. Equine Vet J 2017; 50:525-531. [PMID: 29239016 DOI: 10.1111/evj.12796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 12/02/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Standard treatment of foals with severe abscessing lung infection caused by Rhodococcus equi using rifampicin and a macrolide antibiotic can be compromised by extensive inhibition and/or induction of drug metabolising enzymes (e.g. CYP3A4) and transport proteins (e.g. P-glycoprotein), as has been shown for rifampicin and clarithromycin. The combination of rifampicin with the new, poorly metabolised gamithromycin, a long-acting analogue of azithromycin and tulathromycin with lower pharmacokinetic interaction potential, might be a suitable alternative. OBJECTIVES To evaluate the pharmacokinetic interactions and pulmonary distribution of rifampicin and gamithromycin in healthy foals, and to investigate the cellular uptake of gamithromycin in vitro. STUDY DESIGN Controlled, four-period, consecutive, single-dose and multiple-dose study. METHODS Pharmacokinetics and lung distribution of rifampicin (10 mg/kg) and gamithromycin (6 mg/kg) were measured in nine healthy foals using LC-MS/MS. Enzyme induction was confirmed using the 4β-OH-cholesterol/cholesterol ratio. Affinity of gamithromycin to drug transport proteins was evaluated in vitro using equine hepatocytes and MDCKII-cells stably transfected with human OATP1B1, OATP1B3 and OATP2B1. RESULTS Rifampicin significantly (P<0.05) increased the plasma exposure of gamithromycin (16.2 ± 4.77 vs. 8.57 ± 3.10 μg × h/mL) by decreasing the total body clearance. Otherwise, gamithromycin significantly lowered plasma exposure of single- and multiple-dose rifampicin (83.8 ± 35.3 and 112 ± 43.1 vs. 164 ± 96.7 μg × h/mL) without a change in metabolic ratio and half-life. Gamithromycin was identified as an inhibitor of human OATP1B1, OATP1B3 and OATP2B1 and as a substrate of OATP2B1. In addition, it was extracted by equine hepatocytes via a mechanism which could be inhibited by rifampicin. MAIN LIMITATIONS Influence of gamithromycin on pulmonary distribution of rifampicin was not evaluated. CONCLUSION The plasma exposure of gamithromycin is significantly increased by co-administration of rifampicin which is most likely caused by inhibition of hepatic elimination.
Collapse
Affiliation(s)
- S Berlin
- Department of Clinical Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine of Greifswald, Greifswald, Germany
| | | | - E Scheuch
- Department of Clinical Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine of Greifswald, Greifswald, Germany
| | - S Oswald
- Department of Clinical Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine of Greifswald, Greifswald, Germany
| | - M Hasan
- Department of Clinical Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine of Greifswald, Greifswald, Germany
| | - D Wegner
- Department of Clinical Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine of Greifswald, Greifswald, Germany
| | - M Grube
- Department of General Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine of Greifswald, Greifswald, Germany
| | - M Venner
- Veterinary Clinic for Horses, Destedt, Germany
| | - A Ullrich
- PRIMACYT Cell Culture Technology GmbH, Schwerin, Germany
| | - W Siegmund
- Department of Clinical Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine of Greifswald, Greifswald, Germany
| |
Collapse
|
13
|
Giguère S. Treatment of Infections Caused by Rhodococcus equi. Vet Clin North Am Equine Pract 2017; 33:67-85. [DOI: 10.1016/j.cveq.2016.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
14
|
Moj D, Hanke N, Britz H, Frechen S, Kanacher T, Wendl T, Haefeli WE, Lehr T. Clarithromycin, Midazolam, and Digoxin: Application of PBPK Modeling to Gain New Insights into Drug–Drug Interactions and Co-medication Regimens. AAPS JOURNAL 2016; 19:298-312. [DOI: 10.1208/s12248-016-0009-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/25/2016] [Indexed: 12/26/2022]
|
15
|
Matsson P, Doak BC, Over B, Kihlberg J. Cell permeability beyond the rule of 5. Adv Drug Deliv Rev 2016; 101:42-61. [PMID: 27067608 DOI: 10.1016/j.addr.2016.03.013] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/25/2016] [Accepted: 03/31/2016] [Indexed: 11/17/2022]
Abstract
Drug discovery for difficult targets that have large and flat binding sites is often better suited to compounds beyond the "rule of 5" (bRo5). However, such compounds carry higher pharmacokinetic risks, such as low solubility and permeability, and increased efflux and metabolism. Interestingly, recent drug approvals and studies suggest that cell permeable and orally bioavailable drugs can be discovered far into bRo5 space. Tactics such as reduction or shielding of polarity by N-methylation, bulky side chains and intramolecular hydrogen bonds may be used to increase cell permeability in this space, but often results in decreased solubility. Conformationally flexible compounds can, however, combine high permeability and solubility, properties that are keys for cell permeability and intestinal absorption. Recent developments in computational conformational analysis will aid design of such compounds and hence prediction of cell permeability. Transporter mediated efflux occurs for most investigated drugs in bRo5 space, however it is commonly overcome by high local intestinal concentrations on oral administration. In contrast, there is little data to support significant impact of transporter-mediated intestinal absorption in bRo5 space. Current knowledge of compound properties that govern transporter effects of bRo5 drugs is limited and requires further fundamental and comprehensive studies.
Collapse
Affiliation(s)
- Pär Matsson
- Department of Pharmacy, BMC, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
| | - Bradley C Doak
- Department of Medicinal Chemistry, MIPS, Monash University, 381 Royal Parade, Parkville, Victoria, Australia
| | - Björn Over
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Jan Kihlberg
- Department of Chemistry - BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
16
|
Berlin S, Spieckermann L, Oswald S, Keiser M, Lumpe S, Ullrich A, Grube M, Hasan M, Venner M, Siegmund W. Pharmacokinetics and Pulmonary Distribution of Clarithromycin and Rifampicin after Concomitant and Consecutive Administration in Foals. Mol Pharm 2016; 13:1089-99. [DOI: 10.1021/acs.molpharmaceut.5b00907] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sarah Berlin
- Department
of Clinical Pharmacology, Center of Drug Absorption and Transport
(C_DAT), University Medicine of Greifswald, Greifswald, Germany
| | | | - Stefan Oswald
- Department
of Clinical Pharmacology, Center of Drug Absorption and Transport
(C_DAT), University Medicine of Greifswald, Greifswald, Germany
| | - Markus Keiser
- Department
of Clinical Pharmacology, Center of Drug Absorption and Transport
(C_DAT), University Medicine of Greifswald, Greifswald, Germany
| | | | - Anett Ullrich
- PRIMACYT Cell Culture Technology GmbH, Schwerin, Germany
| | - Markus Grube
- Department
of General Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine of Greifswald, Greifswald, Germany
| | - Mahmoud Hasan
- Department
of Clinical Pharmacology, Center of Drug Absorption and Transport
(C_DAT), University Medicine of Greifswald, Greifswald, Germany
| | | | | |
Collapse
|
17
|
Tsai D, Jamal JA, Davis JS, Lipman J, Roberts JA. Interethnic differences in pharmacokinetics of antibacterials. Clin Pharmacokinet 2015; 54:243-60. [PMID: 25385446 DOI: 10.1007/s40262-014-0209-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Optimal antibacterial dosing is imperative for maximising clinical outcome. Many factors can contribute to changes in the pharmacokinetics of antibacterials to the extent where dose adjustment may be needed. In acute illness, substantial changes in important pharmacokinetic parameters such as volume of distribution and clearance can occur for certain antibacterials. The possibility of interethnic pharmacokinetic differences can further complicate attempts to design an appropriate dosing regimen. Factors of ethnicity, such as genetics, body size and fat distribution, contribute to differences in absorption, distribution, metabolism and elimination of drugs. Despite extensive previous work on the altered pharmacokinetics of antibacterials in some patient groups such as the critically ill, knowledge of interethnic pharmacokinetic differences for antibacterials is limited. OBJECTIVES This systematic review aims to describe any pharmacokinetic differences in antibacterials between different ethnic groups, and discuss their probable mechanisms as well as any clinical implications. METHODS We performed a structured literature review to identify and describe available data of the interethnic differences in the pharmacokinetics of antibacterials. RESULTS We found 50 articles that met our inclusion criteria and only six of these compared antibacterial pharmacokinetics between different ethnicities within the same study. Overall, there was limited evidence available. We found that interethnic pharmacokinetic differences are negligible for carbapenems, most β-lactams, aminoglycosides, glycopeptides, most fluoroquinolones, linezolid and daptomycin, whereas significant difference is likely for ciprofloxacin, macrolides, clindamycin, tinidazole and some cephalosporins. In general, subjects of Asian ethnicity achieve drug exposures up to two to threefold greater than Caucasian counterparts for these antibacterials. This difference is caused by a comparatively lower volume of distribution and/or drug clearance. CONCLUSION Interethnic pharmacokinetic differences of antibacterials are likely; however, the clinical relevance of these differences is unknown and warrants further research.
Collapse
Affiliation(s)
- Danny Tsai
- Burns, Trauma and Critical Care Research Centre, School of Medicine, The University of Queensland, Level 3, Ned Hanlon Building, Royal Brisbane and Women's Hospital, Herston, Brisbane, QLD, 4029, Australia
| | | | | | | | | |
Collapse
|
18
|
Baietto L, Corcione S, Pacini G, Perri GD, D'Avolio A, De Rosa FG. A 30-years review on pharmacokinetics of antibiotics: is the right time for pharmacogenetics? Curr Drug Metab 2015; 15:581-98. [PMID: 24909419 PMCID: PMC4435065 DOI: 10.2174/1389200215666140605130935] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 04/17/2014] [Accepted: 05/21/2014] [Indexed: 12/28/2022]
Abstract
Drug bioavailability may vary greatly amongst individuals, affecting both efficacy and toxicity: in humans, genetic variations account for a relevant proportion of such variability. In the last decade the use of pharmacogenetics in clinical practice, as a tool to individualize treatment, has shown a different degree of diffusion in various clinical fields. In the field of infectious diseases, several studies identified a great number of associations between host genetic polymor-phisms and responses to antiretroviral therapy. For example, in patients treated with abacavir the screening for HLA-B*5701 before starting treatment is routine clinical practice and standard of care for all patients; efavirenz plasma levels are influenced by single nucleotide polymorphism (SNP) CYP2B6-516G> T (rs3745274). Regarding antibiotics, many studies investigated drug transporters involved in antibiotic bioavailability, especially for fluoroquinolones, cephalosporins, and antituberculars. To date, few data are available about pharmacogenetics of recently developed antibiotics such as tigecycline, daptomycin or linezolid. Considering the effect of SNPs in gene coding for proteins involved in antibiotics bioavailability, few data have been published. Increasing knowledge in the field of antibiotic pharmacogenetics could be useful to explain the high drug inter-patients variability and to individualize therapy. In this paper we reported an overview of pharmacokinetics, pharmacodynamics, and pharmacogenetics of antibiotics to underline the importance of an integrated approach in choosing the right dosage in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesco Giuseppe De Rosa
- Department of Medical Sciences, University of Turin, Infectious Diseases at Amedeo di Savoia Hospital, Corso Svizzera 164, 10149. Turin, Italy.
| |
Collapse
|
19
|
Doak B, Over B, Giordanetto F, Kihlberg J. Oral Druggable Space beyond the Rule of 5: Insights from Drugs and Clinical Candidates. ACTA ACUST UNITED AC 2014; 21:1115-42. [DOI: 10.1016/j.chembiol.2014.08.013] [Citation(s) in RCA: 504] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Parnham MJ, Erakovic Haber V, Giamarellos-Bourboulis EJ, Perletti G, Verleden GM, Vos R. Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol Ther 2014; 143:225-45. [PMID: 24631273 DOI: 10.1016/j.pharmthera.2014.03.003] [Citation(s) in RCA: 409] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 03/04/2014] [Indexed: 01/02/2023]
Abstract
Azithromycin is a macrolide antibiotic which inhibits bacterial protein synthesis, quorum-sensing and reduces the formation of biofilm. Accumulating effectively in cells, particularly phagocytes, it is delivered in high concentrations to sites of infection, as reflected in rapid plasma clearance and extensive tissue distribution. Azithromycin is indicated for respiratory, urogenital, dermal and other bacterial infections, and exerts immunomodulatory effects in chronic inflammatory disorders, including diffuse panbronchiolitis, post-transplant bronchiolitis and rosacea. Modulation of host responses facilitates its long-term therapeutic benefit in cystic fibrosis, non-cystic fibrosis bronchiectasis, exacerbations of chronic obstructive pulmonary disease (COPD) and non-eosinophilic asthma. Initial, stimulatory effects of azithromycin on immune and epithelial cells, involving interactions with phospholipids and Erk1/2, are followed by later modulation of transcription factors AP-1, NFκB, inflammatory cytokine and mucin release. Delayed inhibitory effects on cell function and high lysosomal accumulation accompany disruption of protein and intracellular lipid transport, regulation of surface receptor expression, of macrophage phenotype and autophagy. These later changes underlie many immunomodulatory effects of azithromycin, contributing to resolution of acute infections and reduction of exacerbations in chronic airway diseases. A sub-group of post-transplant bronchiolitis patients appears to be sensitive to azithromycin, as may be patients with severe sepsis. Other promising indications include chronic prostatitis and periodontitis, but weak activity in malaria is unlikely to prove crucial. Long-term administration of azithromycin must be balanced against the potential for increased bacterial resistance. Azithromycin has a very good record of safety, but recent reports indicate rare cases of cardiac torsades des pointes in patients at risk.
Collapse
Affiliation(s)
- Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Project Group Translational Medicine and Pharmacology, Frankfurt am Main, Germany; Institute of Pharmacology for Life Scientists, Goethe University Frankfurt, Frankfurt am Main, Germany; Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt am Main, Germany.
| | | | - Evangelos J Giamarellos-Bourboulis
- 4th Department of Internal Medicine, University of Athens, Medical School, Athens, Greece; Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.
| | - Gianpaolo Perletti
- Biomedical Research Division, Department of Theoretical and Applied Sciences, University of Insubria, Busto A., Varese, Italy; Department of Basic Medical Sciences, Ghent University, Ghent, Belgium.
| | - Geert M Verleden
- Respiratory Division, Lung Transplantation Unit, University Hospitals Leuven and Department of Clinical and Experimental Medicine, KU Leuven, Belgium.
| | - Robin Vos
- Respiratory Division, Lung Transplantation Unit, University Hospitals Leuven and Department of Clinical and Experimental Medicine, KU Leuven, Belgium.
| |
Collapse
|
21
|
Zakeri-Milani P, Islambulchilar Z, Majidpour F, Jannatabadi E, Lotfipour F, Valizadeh H. A study on enhanced intestinal permeability of clarithromycin nanoparticles. BRAZ J PHARM SCI 2014. [DOI: 10.1590/s1984-82502011000100012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The main objective of the present study was to determine the permeability of clarithromycin (CLA)-PLGA nanoparticles using single-pass intestinal perfusion technique in rats. Clarithromycin nanoparticles were prepared by nano-precipitation according to the modified quasi emulsion solvent diffusion technique and evaluated for their physicochemical characteristics. Permeability coefficients (Peff) in anaesthetized rats were determined at 3 different concentrations. Drug solution or suspensions in PBS was perfused through a cannulated jejunal segment and samples were taken from outlet tubing at different time points up to 90 min. Microbiological assay of CLA and phenol red in the samples were analyzed using an agar well diffusion procedure and HPLC method respectively. The average particle size of prepared nanoparticles was 305 ± 134 nm. The mean Peff of CLA solution in concentrations of 150, 250 and 400 µg/mL was found to be 1.20 (±0.32) ×10-3, 9.62 (±0.46) ×10-4, and 1.36 (±0.95) ×10-3 cm/sec, respectively. The corresponding values for the same concentration of nanoparticles were found to be 2.74 (±0.73) ×10-3, 2.45 (±0.88) ×10-3, and 3.68 (±0.46) ×10-3 cm/s, respectively. The two-tailed Student’s t-test showed that the intestinal permeability of CLA nanoparticle suspensions in prepared concentrations were significantly increased in comparison with its solution.
Collapse
Affiliation(s)
| | - Ziba Islambulchilar
- Tabriz University of Medical Sciences, Iran; Zanjan University of Medical Sciences, Iran
| | | | | | | | | |
Collapse
|
22
|
Milić A, Mihaljević VB, Ralić J, Bokulić A, Nožinić D, Tavčar B, Mildner B, Munić V, Malnar I, Padovan J. A comparison of in vitro ADME properties and pharmacokinetics of azithromycin and selected 15-membered ring macrolides in rodents. Eur J Drug Metab Pharmacokinet 2013; 39:263-76. [DOI: 10.1007/s13318-013-0155-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 09/05/2013] [Indexed: 12/20/2022]
|
23
|
Comparative plasma exposure and lung distribution of two human use commercial azithromycin formulations assessed in murine model: a preclinical study. BIOMED RESEARCH INTERNATIONAL 2013; 2013:392010. [PMID: 24073402 PMCID: PMC3773390 DOI: 10.1155/2013/392010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/03/2013] [Accepted: 07/24/2013] [Indexed: 12/02/2022]
Abstract
Azithromycin (AZM) therapeutic failure and relapses of patients treated with generic formulations have been observed in clinical practice. The main goal of this research was to compare in a preclinical study the serum exposure and lung tissue concentration of two commercial formulations AZM-based in murine model. The current study involved 264 healthy Balb-C. Mice were divided into two groups (n = 44): animals of Group A (reference formulation -R-) were orally treated with AZM suspension at 10 mg/kg of b.w. Experimental animals of Group B (generic formulation -G-) received identical treatment than Group A with a generic formulation AZM-based. The study was repeated twice as Phase II and III. Serum and lung tissue samples were taken 24 h post treatment. Validated microbiological assay was used to determine the serum pharmacokinetic and lung distribution of AZM. After the pharmacokinetic analysis was observed, a similar serum exposure for both formulations of AZM assayed. In contrast, statistical differences (P < 0.001) were obtained after comparing the concentrations of both formulations in lung tissue, being the values obtained for AUC and Cmax (AZM-R-) +1586 and 122%, respectively, than those obtained for AZM-G- in lung. These differences may indicate large differences on the distribution process of both formulations, which may explain the lack of efficacy/therapeutic failure observed on clinical practice.
Collapse
|
24
|
Long-Lasting Inhibition of the Intestinal Absorption of Fexofenadine by Cyclosporin a in Rats. J Pharm Sci 2012; 101:2606-15. [DOI: 10.1002/jps.23174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 03/21/2012] [Accepted: 04/10/2012] [Indexed: 12/24/2022]
|
25
|
Guimarães CRW, Mathiowetz AM, Shalaeva M, Goetz G, Liras S. Use of 3D Properties to Characterize Beyond Rule-of-5 Property Space for Passive Permeation. J Chem Inf Model 2012; 52:882-90. [DOI: 10.1021/ci300010y] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cristiano R. W. Guimarães
- Worldwide Medicinal Chemistry Department, Pfizer Global Research and Development, Eastern Point
Road, Groton, Connecticut 06340, United States
| | - Alan M. Mathiowetz
- Worldwide Medicinal Chemistry Department, Pfizer Global Research and Development, Eastern Point
Road, Groton, Connecticut 06340, United States
| | - Marina Shalaeva
- Worldwide Medicinal Chemistry Department, Pfizer Global Research and Development, Eastern Point
Road, Groton, Connecticut 06340, United States
| | - Gilles Goetz
- Worldwide Medicinal Chemistry Department, Pfizer Global Research and Development, Eastern Point
Road, Groton, Connecticut 06340, United States
| | - Spiros Liras
- Worldwide Medicinal Chemistry Department, Pfizer Global Research and Development, Eastern Point
Road, Groton, Connecticut 06340, United States
| |
Collapse
|
26
|
Peters J, Eggers K, Oswald S, Block W, Lütjohann D, Lämmer M, Venner M, Siegmund W. Clarithromycin is absorbed by an intestinal uptake mechanism that is sensitive to major inhibition by rifampicin: results of a short-term drug interaction study in foals. Drug Metab Dispos 2012; 40:522-8. [PMID: 22170330 DOI: 10.1124/dmd.111.042267] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Pulmonary penetration of clarithromycin (CLR) in epithelial lining fluid (ELF) and bronchoalveolar lavage cells (BALCs) can be influenced by CYP3A4, by P-glycoprotein, and, according to our hypothesis, by a member of the organic anion-transporting protein (OATP) family, for which rifampicin (RIF) is inhibiting in single doses but inducing after long-term coadministration. To assess the partial inhibitory effect, we measured absorption and pulmonary distribution of CLR after short-term (2.5-day) coadministration of RIF, after which up-regulation is not expected. The drug interaction study was performed with five doses (12-h interval) of CLR (7.5 mg/kg) and RIF (10 mg/kg) in nine healthy foals; horse transporters are very similar in protein sequence and transcriptional regulation to the human analogs. RIF was equally distributed in ELF but reached half the plasma levels in BALCs. The deacetylated metabolite accumulated 1.4- to 6-fold in ELF and 8- to 60-fold in BALCs. CLR did not significantly influence the distribution of RIF. CLR and 14-hydroxyclarithromycin (14OH-CLR) accumulated approximately 20- to 40-fold and 1.5- to 4.5-fold in ELF and 300- to 1800-fold and 25- to 90-fold in BALCs, respectively. With RIF, plasma levels of CLR decreased by more than 70% without changes in 14OH-CLR formation, the half-lives of CLR and 14OH-CLR, and the 4β-hydroxycholesterol/cholesterol ratio (a surrogate for CYP3A4 induction). CLR was an inhibitor of OATP1B3 (IC(50) = 9.50 ± 3.50 μM), OATP1B1 (IC(50) = 46.0 ± 2.27 μM), OATP1A2 (IC(50) = 92.6 ± 1.49 μM), and OATP2B1 (IC(50) = 384 ± 5.30 μM) but was not a substrate for these transporters in transfected human embryonic kidney cells. In conclusion, despite having no significant inducing effects, RIF decreased plasma levels of CLR below the minimal inhibitory concentration required to inhibit 90% of growth of pathogenic bacteria, most likely through inhibition of an unknown intestinal uptake transporter.
Collapse
Affiliation(s)
- Jette Peters
- Department of Clinical Pharmacology, Ernst Moritz Arndt University, Felix-Hausdorff-Str. 3, D-17487 Greifswald, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Padovan J, Ralić J, Letfus V, Milić A, Bencetić Mihaljević V. Investigating the barriers to bioavailability of macrolide antibiotics in the rat. Eur J Drug Metab Pharmacokinet 2011; 37:163-71. [DOI: 10.1007/s13318-011-0074-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/09/2011] [Indexed: 11/30/2022]
|
28
|
Peters J, Block W, Oswald S, Freyer J, Grube M, Kroemer HK, Lämmer M, Lütjohann D, Venner M, Siegmund W. Oral absorption of clarithromycin is nearly abolished by chronic comedication of rifampicin in foals. Drug Metab Dispos 2011; 39:1643-9. [PMID: 21690264 DOI: 10.1124/dmd.111.039206] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
The delivery of clarithromycin (CRL) to its site of action in bronchial/alveolar epithelial cells (EC), bronchial epithelial lining fluid (ELF), and bronchoalveolar lavage cells (BALC) may be influenced by CYP3A4 and the drug transporters, ATP-binding cassette (ABC) B1 and ABCC2 and organic anion-transporting polypeptides (OATPs), which can be modulated and/or up-regulated via the nuclear pregnane X receptor (PXR) by rifampicin (RIF). Therefore, we evaluated the disposition and pulmonary distribution of CLR (7.5 mg/kg b.i.d., 21 days) and expression of ABCB1, ABCC2, OATP1A2, and OATP2B1 in EC and BALC before and after comedication of RIF (10 mg/kg b.i.d., 11 days) in nine healthy foals (41-61 days, 115-159 kg) in which the genetic homology of drug transporters is close to that of their human analogs. After RIF comedication, relative bioavailability of CLR decreased by more than 90%. Concentrations in plasma (29.8 ± 26.3 versus 462 ± 368 ng/ml), ELF (0.69 ± 0.66 versus 9.49 ± 6.12 μg/ml), and BALC (10.2 ± 10.2 μg/ml 264 ± 375 μg/ml; all P < 0.05) were lowered drastically, whereas levels of the metabolite 14-hydroxyclarithromycin were not elevated despite higher 4β-hydroxycholesterol/cholesterol plasma concentration ratio, a surrogate for CYP3A4 induction. In the presence of CLR, ABCC2 and PXR mRNA contents were significantly and coordinately (r(2) = 0.664, P < 0.001) reduced in BALC after RIF. In EC, mRNA expression of OATP1A2 increased but that of OATP2B1 decreased (both P < 0.05). RIF interrupts oral absorption and decreases CRL plasma levels below the minimal inhibitory concentration for eradication of Rhodococcus equi. Evidence that RIF influences the cellular uptake of CLR in bronchial cells and the PXR expression in BALC in the presence of high CLR concentrations exists.
Collapse
Affiliation(s)
- Jette Peters
- Department of Clinical Pharmacology, Ernst Moritz Arndt University, Friedrich-Loeffler-Str. 23d, D-17487 Greifswald, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Oswald S, Peters J, Venner M, Siegmund W. LC–MS/MS method for the simultaneous determination of clarithromycin, rifampicin and their main metabolites in horse plasma, epithelial lining fluid and broncho-alveolar cells. J Pharm Biomed Anal 2011; 55:194-201. [DOI: 10.1016/j.jpba.2011.01.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/10/2011] [Accepted: 01/14/2011] [Indexed: 10/18/2022]
|
30
|
Schiff E, May K, Goldstein LH. Neuropsychiatric manifestations associated with azithromycin in two brothers. Eur J Clin Pharmacol 2010; 66:1273-5. [DOI: 10.1007/s00228-010-0900-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 08/30/2010] [Indexed: 11/28/2022]
|
31
|
Lan T, Rao A, Haywood J, Davis CB, Han C, Garver E, Dawson PA. Interaction of macrolide antibiotics with intestinally expressed human and rat organic anion-transporting polypeptides. Drug Metab Dispos 2009; 37:2375-82. [PMID: 19741038 PMCID: PMC2784704 DOI: 10.1124/dmd.109.028522] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 09/03/2009] [Indexed: 01/11/2023] Open
Abstract
The macrolide antibiotics azithromycin and clarithromycin are large molecular weight compounds that exhibit moderate to excellent oral bioavailability in preclinical species and humans. Previous concomitant dosing studies in rats using rifamycin SV, a general organic anion-transporting polypeptide (OATP) inhibitor, suggested that the high oral absorption of azithromycin and clarithromycin may be caused by facilitative uptake by intestinal Oatps. In this study, we used OATP/Oatp-expressing cells to investigate the interaction of macrolides with rat Oatp1a5, human OATP1A2, and human/rat OATP2B1/Oatp2b1. These experiments showed that azithromycin and clarithromycin were potent inhibitors of rat Oatp1a5-mediated taurocholate uptake with apparent inhibitor constant (K(i)) values of 3.3 and 2.4 microM, respectively. The macrolides functioned as noncompetitive inhibitors but were not transport substrates for rat Oatp1a5, as assessed by direct uptake measurements of radiolabeled azithromycin and clarithromycin. cis-Inhibition and direct uptake studies further showed that azithromycin and clarithromycin were only very weak inhibitors and not substrates for human OATP1A2 and human/rat OATP2B1/Oatp2b1. In summary, these results indicate that the macrolides azithromycin and clarithromycin potently inhibit rat Oatp1a5 but do not significantly interact with OATP1A2 and OATP2B1/Oatp2b1. These intestinally expressed OATP/Oatp(s) are not responsible for the postulated facilitative uptake of azithromycin and clarithromycin, and alternative facilitative pathways must exist for their intestinal absorption.
Collapse
Affiliation(s)
- Tian Lan
- Department of Internal Medicine, Section on Gastroenterology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (T.L., A.R., J.H., P.A.D.); and Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, Pennsylvania (C.B.D., C.H., E.G.)
| | - Anuradha Rao
- Department of Internal Medicine, Section on Gastroenterology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (T.L., A.R., J.H., P.A.D.); and Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, Pennsylvania (C.B.D., C.H., E.G.)
| | - Jamie Haywood
- Department of Internal Medicine, Section on Gastroenterology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (T.L., A.R., J.H., P.A.D.); and Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, Pennsylvania (C.B.D., C.H., E.G.)
| | - Charles B. Davis
- Department of Internal Medicine, Section on Gastroenterology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (T.L., A.R., J.H., P.A.D.); and Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, Pennsylvania (C.B.D., C.H., E.G.)
| | - Chao Han
- Department of Internal Medicine, Section on Gastroenterology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (T.L., A.R., J.H., P.A.D.); and Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, Pennsylvania (C.B.D., C.H., E.G.)
| | - Eric Garver
- Department of Internal Medicine, Section on Gastroenterology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (T.L., A.R., J.H., P.A.D.); and Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, Pennsylvania (C.B.D., C.H., E.G.)
| | - Paul A. Dawson
- Department of Internal Medicine, Section on Gastroenterology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (T.L., A.R., J.H., P.A.D.); and Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, Pennsylvania (C.B.D., C.H., E.G.)
| |
Collapse
|