1
|
Zhao Y, Huang H, Lv N, Huang C, Chen H, Xing H, Guo C, Li N, Zhao D, Chen X, Zhang Y. Glutathione S-Transferases Mediate In Vitro and In Vivo Inactivation of Genipin: Implications for an Underlying Detoxification Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2399-2410. [PMID: 36705628 DOI: 10.1021/acs.jafc.2c08175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Genipin (GP), the reactive metabolite of geniposide (GE), is responsible for GE-induced hepatotoxicity. As a potential detoxification pathway, the inactivation of GP by glutathione S-transferases (GSTs) has not yet been characterized. In this study, the thiol-GSH conjugates of GP, M532-1 and M532-2 were first identified and the catalytic activities of GSTs were investigated both in vitro and in vivo. GSTA1-1 and GSTA4-4 showed high activity in the formation of both thiol-GSH conjugates, whereas GSTA4-4 specifically catalyzed M532-2 formation in vitro. The active GST isoforms protect against alkylation of N-acetylcysteine (NAC), a classic model nucleophile. GST inhibition attenuated M532-1 formation in rat bile, confirming the in vivo catalytic role of GSTs. In conclusion, this study demonstrated the inactivation of GP by GSTs and implied that interindividual variability of GSTs may be a risk factor for susceptibility to GE-induced hepatotoxicity.
Collapse
Affiliation(s)
- Yulin Zhao
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing211198, China
| | - Haoyan Huang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing211198, China
| | - Ning Lv
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing211198, China
| | - Chunyan Huang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing211198, China
| | - Huili Chen
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando32827, United States
| | - Han Xing
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, China
| | - Chaorui Guo
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing211198, China
| | - Ning Li
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing211198, China
| | - Di Zhao
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing211198, China
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing211198, China
| | - Yongjie Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing211198, China
| |
Collapse
|
2
|
Li Y, Sun C, Zhang Y, Chen X, Huang H, Han L, Xing H, Zhao D, Chen X, Zhang Y. Phase I Metabolism of Pterostilbene, a Dietary Resveratrol Derivative: Metabolite Identification, Species Differences, Isozyme Contribution, and Further Bioactivation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:331-346. [PMID: 36538288 DOI: 10.1021/acs.jafc.2c05334] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Pterostilbene (PTE), a dietary derivative of resveratrol, displayed pleiotropic health-promoting activities. This study aimed to explore the metabolic profiles and species differences of the phase I metabolism of PTE and to investigate subsequent detoxification after PTE bioactivation. PTE was found to be biotransformed to two pharmacologically active metabolites, pinostilbene and 3'-hydroxypterostilbene, in vivo and in vitro with substantial species differences. Human CYP1A2 was proved to be mainly responsible for the demethylation and 3'-hydroxylation of PTE, with its contribution to a demethylation of 94.5% and to a 3'-hydroxylation of 97.9%. An in vitro glutathione trapping experiment revealed the presence of an ortho-quinone intermediate formed by further oxidation of 3'-hydroxypterostilbene. Human glutathione S-transferase isoforms A2, T1, and A1 inactivated the ortho-quinone intermediate by catalyzing glutathione conjugation, implicating a potential protective pathway against PTE bioactivation-derived toxicity. Overall, this study provided a comprehensive view of PTE phase I metabolism and facilitated its further development as a promising nutraceutical.
Collapse
Affiliation(s)
- Ying Li
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Changcheng Sun
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yutian Zhang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473004, China
| | - Xiang Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Haoyan Huang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Luyao Han
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Han Xing
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Di Zhao
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yongjie Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
3
|
Gu R, Liang A, Liao G, To I, Shehu A, Ma X. Roles of Cofactors in Drug-Induced Liver Injury: Drug Metabolism and Beyond. Drug Metab Dispos 2022; 50:646-654. [PMID: 35221288 PMCID: PMC9132098 DOI: 10.1124/dmd.121.000457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 02/22/2022] [Indexed: 11/22/2022] Open
Abstract
Drug-induced liver injury (DILI) remains one of the major concerns for healthcare providers and patients. Unfortunately, it is difficult to predict and prevent DILI in the clinic because detailed mechanisms of DILI are largely unknown. Many risk factors have been identified for both "intrinsic" and "idiosyncratic" DILI, suggesting that cofactors are an important aspect in understanding DILI. This review outlines the cofactors that potentiate DILI and categorizes them into two types: (1) the specific cofactors that target metabolic enzymes, transporters, antioxidation defense, immune response, and liver regeneration; and (2) the general cofactors that include inflammation, age, gender, comorbidity, gut microbiota, and lifestyle. The underlying mechanisms by which cofactors potentiate DILI are also discussed. SIGNIFICANCE STATEMENT: This review summarizes the risk factors for DILI, which can be used to predict and prevent DILI in the clinic. This work also highlights the gaps in the DILI field and provides future perspectives on the roles of cofactors in DILI.
Collapse
Affiliation(s)
- Ruizhi Gu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences (R.G., A.S., X.M.) and School of Pharmacy (A.L., G.L., I.T.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alina Liang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences (R.G., A.S., X.M.) and School of Pharmacy (A.L., G.L., I.T.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Grace Liao
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences (R.G., A.S., X.M.) and School of Pharmacy (A.L., G.L., I.T.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Isabelle To
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences (R.G., A.S., X.M.) and School of Pharmacy (A.L., G.L., I.T.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Amina Shehu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences (R.G., A.S., X.M.) and School of Pharmacy (A.L., G.L., I.T.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences (R.G., A.S., X.M.) and School of Pharmacy (A.L., G.L., I.T.), University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
4
|
Wei H, Li AP. Permeabilized Cryopreserved Human Hepatocytes as an Exogenous Metabolic System in a Novel Metabolism-Dependent Cytotoxicity Assay for the Evaluation of Metabolic Activation and Detoxification of Drugs Associated with Drug-Induced Liver Injuries: Results with Acetaminophen, Amiodarone, Cyclophosphamide, Ketoconazole, Nefazodone, and Troglitazone. Drug Metab Dispos 2022; 50:140-149. [PMID: 34750194 DOI: 10.1124/dmd.121.000645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022] Open
Abstract
We report here a novel in vitro experimental system, the metabolism-dependent cytotoxicity assay (MDCA), for the definition of the roles of hepatic drug metabolism in toxicity. MDCA employs permeabilized cofactor-supplemented cryopreserved human hepatocytes (MetMax Human Hepatocytes, MMHH), as an exogenous metabolic activating system, and human embryonic kidney 293 (HEK293) cells, a cell line devoid of drug-metabolizing enzyme activity, as target cells for the quantification of drug toxicity. The assay was performed in the presence and absence of cofactors for key drug metabolism pathways known to play key roles in drug toxicity: NADPH/NAD+ for phase 1 oxidation, uridine 5'-diphosphoglucuronic acid (UDPGA) for uridine 5'-diphospho-glucuronosyltransferase (UGT) mediated glucuronidation, 3'-phosphoadenosine-5'-phosphosulfate (PAPS) for cytosolic sulfotransferase (SULT) mediated sulfation, and glutathione (GSH) for glutathione S-transferase (GST) mediated GSH conjugation. Six drugs with clinically significant hepatoxicity, resulting in liver failure or a need for liver transplantation: acetaminophen, amiodarone, cyclophosphamide, ketoconazole, nefazodone, and troglitazone were evaluated. All six drugs exhibited cytotoxicity enhancement by NADPH/NAD+, suggesting metabolic activation via phase 1 oxidation. Attenuation of cytotoxicity by UDPGA was observed for acetaminophen, ketoconazole, and troglitazone, by PAPS for acetaminophen, ketoconazole, and troglitazone, and by GSH for all six drugs. Our results suggest that MDCA can be applied toward the elucidation of metabolic activation and detoxification pathways, providing information that can be applied in drug development to guide structure optimization to reduce toxicity and to aid the assessment of metabolism-based risk factors for drug toxicity. GSH detoxification represents an endpoint for the identification of drugs forming cytotoxic reactive metabolites, a key property of drugs with idiosyncratic hepatotoxicity. SIGNIFICANCE STATEMENT: Application of the metabolism-dependent cytotoxicity assay (MDCA) for the elucidation of the roles of metabolic activation and detoxification pathways in drug toxicity may provide information to guide structure optimization in drug development to reduce hepatotoxic potential and to aid the assessment of metabolism-based risk factors. Glutathione (GSH) detoxification represents an endpoint for the identification of drugs forming cytotoxic reactive metabolites that may be applied toward the evaluation of idiosyncratic hepatotoxicity.
Collapse
Affiliation(s)
- Hong Wei
- In Vitro ADMET Laboratories, Inc., Columbia, MD
| | - Albert P Li
- In Vitro ADMET Laboratories, Inc., Columbia, MD
| |
Collapse
|
5
|
Glutathione-S-transferase genetic polymorphism and risk of hepatotoxicity to antitubercular drugs in a North-African population: A case-control study. Gene 2022; 809:146019. [PMID: 34656741 DOI: 10.1016/j.gene.2021.146019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022]
Abstract
INTRODUCTION GST non-functional genotypes can lead to the accumulation of toxic intermediates, resulting in liver damage and increasing susceptibility to ATDH. AIM To investigate the impact of GST Mu (GSTM1), GST Theta (GSTT1) null genotypes, and GST Pi (GSTP1; adenosine (A) > guanine (G), rs1695) variant allele on the development of ATDH in Tunisian patients treated with anti-tuberculosis therapy. METHODS This was a case-control study including patients receiving anti-tuberculosis regimen. Cases (n = 23) were tuberculosis patients presenting ATDH during two months of anti-tuberculosis drug therapy. Controls (n = 30) were patients treated for tuberculosis, but presenting no ATDH. Genotyping was performed using a polymerase chain reaction-restriction fragment length polymorphism. RESULTS No statistically significant association was observed between GSTM1 and GSTT1 homozygous null genotypes, and the risk of ATDH. A statistically significant association between GSTM1 and GSTT1 double null genotypes, and the risk of ATDH was found (p = 0.033) between cases and controls. For GSTP1, the distribution of GG homozygous mutant genotype was significantly associated with ATDH compared with the wild and the transition A to G (AA + AG) genotypes. CONCLUSION Double deletion of GSTM1 and GSTT1 may predispose to ATDH in a Tunisian population. Moreover, GSTP1 rs1695 (A > G) genotyping can predict susceptibility to developing ATDH.
Collapse
|
6
|
Shao Q, Mao X, Zhou Z, Huai C, Li Z. Research Progress of Pharmacogenomics in Drug-Induced Liver Injury. Front Pharmacol 2021; 12:735260. [PMID: 34552491 PMCID: PMC8450320 DOI: 10.3389/fphar.2021.735260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/25/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Drug-induced liver injury (DILI) is a common and serious adverse drug reaction with insufficient clinical diagnostic strategies and treatment methods. The only clinically well-received method is the Roussel UCLAF Causality Assessment Method scale, which can be applied to both individuals and prospective or retrospective studies. However, in severe cases, patients with DILI still would develop acute liver failure or even death. Pharmacogenomics, a powerful tool to achieve precision medicine, has been used to study the polymorphism of DILI related genes. Summary: We summarized the pathogenesis of DILI and findings on associated genes and variations with DILI, including but not limited to HLA genes, drug metabolizing enzymes, and transporters genes, and pointed out further fields for DILI related pharmacogenomics study to provide references for DILI clinical diagnosis and treatment. Key Messages: At present, most of the studies are mainly limited to CGS and GWAS, and there is still a long way to achieve clinical transformation. DNA methylation could be a new consideration, and ethnic differences and special populations also deserve attention.
Collapse
Affiliation(s)
- Qihui Shao
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Mao
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixuan Zhou
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Huai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Zhiling Li
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Mulder T, Bobba S, Johnson K, Grandner JM, Wang W, Zhang C, Cai J, Choo EF, Khojasteh SC, Zhang D. Bioactivation of α, β-Unsaturated Carboxylic Acids Through Acyl Glucuronidation. Drug Metab Dispos 2020; 48:819-829. [PMID: 32616543 DOI: 10.1124/dmd.120.000096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/23/2020] [Indexed: 02/13/2025] Open
Abstract
After oral administration to monkeys of [14C]GDC-0810, an α,β-unsaturated carboxylic acid, unchanged parent and its acyl glucuronide metabolite, M6, were the major circulating drug-related components. In addition, greater than 50% of circulating radioactivity in plasma was found to be nonextractable 12 hours post-dose, suggesting possible covalent binding to plasma proteins. In the same study, one of the minor metabolites was a cysteine conjugate of M6 (M11) that was detected in plasma and excreta (urine and bile). The potential mechanism for the covalent binding to proteins was further investigated using in vitro methods. In incubations with glutathione (GSH) or cysteine (5 mM), GSH and cysteine conjugates of M6 were identified, respectively. The cysteine reaction was efficient with a half-life of 58.6 minutes (k react = 0.04 1/M per second). Loss of 176 Da (glucuronic acid) followed by 129 Da (glutamate) in mass fragmentation analysis of the GSH adduct of M6 (M13) suggested the glucuronic acid moiety was not modified. The conjugation of N-glucuronide M4 with cysteine in buffer was >1000-fold slower than with M6. Incubations of GDC-0810, M4, or M6 with monkey or human liver microsomes in the presence of NADPH and GSH did not produce any oxidative GSH adducts, and the respective substrates were qualitatively recovered. In silico analysis quantified the inherent reactivity differences between the glucuronide and its acid precursor. Collectively, these results show that acyl glucuronidation of α,β-unsaturated carboxylic acids can activate the compound toward reactivity with GSH, cysteine, or other biologically occurring thiols and should be considered during the course of drug discovery. SIGNIFICANCE STATEMENT: Acyl glucuronidation of the α,β-unsaturated carboxylic acid in GDC-0810 activates the conjugated alkene toward nucleophilic addition by glutathione or other reactive thiols. This is the first example that a bioactivation mechanism could lead to protein covalent binding to α,β-unsaturated carboxylic acid compounds.
Collapse
Affiliation(s)
- Teresa Mulder
- Drug Metabolism and Disposition (T.M., S.B., K.J., W.W., C.Z., J.C., E.F.C., S.C.K., D.Z.) and Discovery Chemistry (J.M.G.), Genentech, South San Francisco, California
| | - Sudheer Bobba
- Drug Metabolism and Disposition (T.M., S.B., K.J., W.W., C.Z., J.C., E.F.C., S.C.K., D.Z.) and Discovery Chemistry (J.M.G.), Genentech, South San Francisco, California
| | - Kevin Johnson
- Drug Metabolism and Disposition (T.M., S.B., K.J., W.W., C.Z., J.C., E.F.C., S.C.K., D.Z.) and Discovery Chemistry (J.M.G.), Genentech, South San Francisco, California
| | - Jessica M Grandner
- Drug Metabolism and Disposition (T.M., S.B., K.J., W.W., C.Z., J.C., E.F.C., S.C.K., D.Z.) and Discovery Chemistry (J.M.G.), Genentech, South San Francisco, California
| | - Wei Wang
- Drug Metabolism and Disposition (T.M., S.B., K.J., W.W., C.Z., J.C., E.F.C., S.C.K., D.Z.) and Discovery Chemistry (J.M.G.), Genentech, South San Francisco, California
| | - Chenghong Zhang
- Drug Metabolism and Disposition (T.M., S.B., K.J., W.W., C.Z., J.C., E.F.C., S.C.K., D.Z.) and Discovery Chemistry (J.M.G.), Genentech, South San Francisco, California
| | - Jingwei Cai
- Drug Metabolism and Disposition (T.M., S.B., K.J., W.W., C.Z., J.C., E.F.C., S.C.K., D.Z.) and Discovery Chemistry (J.M.G.), Genentech, South San Francisco, California
| | - Edna F Choo
- Drug Metabolism and Disposition (T.M., S.B., K.J., W.W., C.Z., J.C., E.F.C., S.C.K., D.Z.) and Discovery Chemistry (J.M.G.), Genentech, South San Francisco, California
| | - S Cyrus Khojasteh
- Drug Metabolism and Disposition (T.M., S.B., K.J., W.W., C.Z., J.C., E.F.C., S.C.K., D.Z.) and Discovery Chemistry (J.M.G.), Genentech, South San Francisco, California
| | - Donglu Zhang
- Drug Metabolism and Disposition (T.M., S.B., K.J., W.W., C.Z., J.C., E.F.C., S.C.K., D.Z.) and Discovery Chemistry (J.M.G.), Genentech, South San Francisco, California
| |
Collapse
|
8
|
Li XQ, Grönberg G, Bangur EH, Hayes MA, Castagnoli N, Weidolf L. Metabolism of Strained Rings: Glutathione S-transferase-Catalyzed Formation of a Glutathione-Conjugated Spiro-azetidine without Prior Bioactivation. Drug Metab Dispos 2019; 47:1247-1256. [PMID: 31492694 DOI: 10.1124/dmd.119.088658] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/28/2019] [Indexed: 11/22/2022] Open
Abstract
AZD1979 [(3-(4-(2-oxa-6-azaspiro[3.3]heptan-6-ylmethyl)phenoxy)azetidin-1-yl)(5-(4-methoxyphenyl)-1,3,4-oxadiazol-2-yl)methanone] is a melanin-concentrating hormone receptor 1 antagonist designed for the treatment of obesity. In this study, metabolite profiles of AZD1979 in human hepatocytes revealed a series of glutathione-related metabolites, including the glutathionyl, cysteinyl, cysteinylglycinyl, and mercapturic acid conjugates. The formation of these metabolites was not inhibited by coincubation with the cytochrome P450 (P450) inhibitor 1-aminobenzotriazole. In efforts to identify the mechanistic features of this pathway, investigations were performed to characterize the structure of the glutathionyl conjugate M12 of AZD1979 and to identify the enzyme system catalyzing its formation. Studies with various human liver subcellular fractions established that the formation of M12 was NAD(P)H-independent and proceeded in cytosol and S9 fractions but not in microsomal or mitochondrial fractions. The formation of M12 was inhibited by ethacrynic acid, an inhibitor of glutathione S-transferases (GSTs). Several human recombinant GSTs, including GSTA1, A2-2, M1a, M2-2, T1-1, and GST from human placenta, were incubated with AZD1979. All GSTs tested catalyzed the formation of M12, with GSTA2-2 being the most efficient. Metabolite M12 was purified from rat liver S9 incubations and its structure elucidated by NMR. These results establish that M12 is the product of the GST-catalyzed glutathione attack on the carbon atom α to the nitrogen atom of the strained spiro-azetidinyl moiety to give, after ring opening, the corresponding amino-thioether conjugate product, a direct conjugation pathway that occurs without the prior substrate bioactivation by P450. SIGNIFICANCE STATEMENT: The investigated compound, AZD1979, contains a 6-substituted-2-oxa-6-azaspiro[3.3]heptanyl derivative that is an example of strained heterocycles, including spiro-fused ring systems, that are widely used in synthetic organic chemistry. An unusual azetidinyl ring-opening reaction involving a nucleophilic attack by glutathione, which does not involve prior cytochrome P450-catalyzed bioactivation of the substrate and which is catalyzed by glutathione transferases, is reported. We propose a mechanism involving the protonated cyclic aminyl intermediate that undergoes nucleophilic attack by glutathione thiolate anion in this reaction, catalyzed by glutathione transferases.
Collapse
Affiliation(s)
- Xue-Qing Li
- Drug Metabolism and Pharmacokinetics, Research and Early Development Cardiovascular, Renal and Metabolism (X.-Q.L., E.-H.B., L.W.), Hit Discovery, Discovery Sciences (M.A.H.), and Medicinal Chemistry, Early Respiratory, Inflammation and Autoimmunity (G.G.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; and Department of Chemistry, Virginia Tech, Blacksburg, Virginia (N.C.J.)
| | - Gunnar Grönberg
- Drug Metabolism and Pharmacokinetics, Research and Early Development Cardiovascular, Renal and Metabolism (X.-Q.L., E.-H.B., L.W.), Hit Discovery, Discovery Sciences (M.A.H.), and Medicinal Chemistry, Early Respiratory, Inflammation and Autoimmunity (G.G.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; and Department of Chemistry, Virginia Tech, Blacksburg, Virginia (N.C.J.)
| | - Eva-Henriette Bangur
- Drug Metabolism and Pharmacokinetics, Research and Early Development Cardiovascular, Renal and Metabolism (X.-Q.L., E.-H.B., L.W.), Hit Discovery, Discovery Sciences (M.A.H.), and Medicinal Chemistry, Early Respiratory, Inflammation and Autoimmunity (G.G.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; and Department of Chemistry, Virginia Tech, Blacksburg, Virginia (N.C.J.)
| | - Martin A Hayes
- Drug Metabolism and Pharmacokinetics, Research and Early Development Cardiovascular, Renal and Metabolism (X.-Q.L., E.-H.B., L.W.), Hit Discovery, Discovery Sciences (M.A.H.), and Medicinal Chemistry, Early Respiratory, Inflammation and Autoimmunity (G.G.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; and Department of Chemistry, Virginia Tech, Blacksburg, Virginia (N.C.J.)
| | - Neal Castagnoli
- Drug Metabolism and Pharmacokinetics, Research and Early Development Cardiovascular, Renal and Metabolism (X.-Q.L., E.-H.B., L.W.), Hit Discovery, Discovery Sciences (M.A.H.), and Medicinal Chemistry, Early Respiratory, Inflammation and Autoimmunity (G.G.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; and Department of Chemistry, Virginia Tech, Blacksburg, Virginia (N.C.J.)
| | - Lars Weidolf
- Drug Metabolism and Pharmacokinetics, Research and Early Development Cardiovascular, Renal and Metabolism (X.-Q.L., E.-H.B., L.W.), Hit Discovery, Discovery Sciences (M.A.H.), and Medicinal Chemistry, Early Respiratory, Inflammation and Autoimmunity (G.G.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; and Department of Chemistry, Virginia Tech, Blacksburg, Virginia (N.C.J.)
| |
Collapse
|
9
|
Comparison of three human liver cell lines for in vitro drug-induced liver injury assessment: Huh7, HepaRG, and stem cell-derived hepatocytes. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-0031-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Zhang Y, den Braver-Sewradj SP, den Braver MW, Hiemstra S, Vermeulen NPE, van de Water B, Commandeur JNM, Vos JC. Glutathione S-Transferase P1 Protects Against Amodiaquine Quinoneimines-Induced Cytotoxicity but Does Not Prevent Activation of Endoplasmic Reticulum Stress in HepG2 Cells. Front Pharmacol 2018; 9:388. [PMID: 29720942 PMCID: PMC5915463 DOI: 10.3389/fphar.2018.00388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
Formation of the reactive amodiaquine quinoneimine (AQ-QI) and N-desethylamodiaquine quinoneimine (DEAQ-QI) plays an important role in the toxicity of the anti-malaria drug amodiaquine (AQ). Glutathione conjugation protects against AQ-induced toxicity and GSTP1 is able to conjugate its quinoneimine metabolites AQ-QI and DEA-QI with glutathione. In this study, HepG2 cells transiently transfected with the human GSTP1 construct were utilized to investigate the protective effect of GSTP1 in a cellular context. HepG2 cells were exposed to synthesized QIs, which bypasses the need for intracellular bioactivation of AQ or DEAQ. Exposure was accompanied by decreased cell viability, increased caspase 3 activity, and decreased intracellular GSH levels. Using high-content imaging-based BAC-GFP reporters, it was shown that AQ-QI and DEAQ-QI specifically activated the endoplasmic reticulum (ER) stress response. In contrast, oxidative stress, DNA damage, or inflammatory stress responses were not activated. Overexpression of GSTP1 resulted in a two-fold increase in GSH-conjugation of the QIs, attenuated QI-induced cytotoxicity especially under GSH-depletion condition, abolished QIs-induced apoptosis but did not significantly inhibit the activation of the ER stress response. In conclusion, these results indicate a protective role of GSTP1 by increasing enzymatic detoxification of AQ-QI and DEAQ-QI and suggest a second protective mechanism by interfering with ER stress induced apoptosis.
Collapse
Affiliation(s)
- Yongjie Zhang
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Clinical Pharmacokinetics Research Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shalenie P den Braver-Sewradj
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Michiel W den Braver
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Steven Hiemstra
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Nico P E Vermeulen
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Jan N M Commandeur
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - J C Vos
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
11
|
Daly AK. Are Polymorphisms in Genes Relevant to Drug Disposition Predictors of Susceptibility to Drug-Induced Liver Injury? Pharm Res 2016; 34:1564-1569. [PMID: 28028769 PMCID: PMC5498650 DOI: 10.1007/s11095-016-2091-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/20/2016] [Indexed: 01/06/2023]
Abstract
Despite considerable progress in identifying specific HLA alleles as genetic risk factors for some forms of drug-induced liver injury, progress in understanding whether genetic polymorphisms relevant to drug disposition also contribute to risk for developing this serious toxicity has been more limited. Evidence from both candidate-gene case control studies and genome-wide association studies is now discussed. In the case of genes relevant to drug metabolism, polymorphisms in cytochromes P450, UDP-glucuronosyltransferases, N-acetyltransferases and glutathione S-transferases as risk factors for DILI are assessed. The relevance of ABC transporters to drug-induced liver injury is also considered, together with data showing associations of particular ABCB11, ABCB1 and ABCC2 polymorphisms with some forms of drug-induced liver injury. Very few of the associations with genes relevant to drug disposition that have been reported have been well replicated. Even apparently well-studied associations such as that between isoniazid liver injury and N-acetyltransferase 2 slow acetylators remain problematic, though it seems likely that polymorphisms in drug metabolism genes do contribute to risk for some specific drugs. A better understanding of genetic risk factors for drug-induced liver injury will require further genome-wide association studies with larger numbers of cases, especially for forms of drug-induced liver injury where HLA genotype does not appear to be a risk factor.
Collapse
Affiliation(s)
- Ann K Daly
- Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
12
|
Apuy JL, Xiang C, Franc S, Hegde SG, Hubbard R, Zhao J, Moghaddam MF. Formation of A Novel Purine Metabolite through CYP3A4 Bioactivation and Glutathione Conjugation. Drug Metab Lett 2016; 10:144-50. [PMID: 27165340 PMCID: PMC5405620 DOI: 10.2174/1872312810666160511150558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/11/2016] [Accepted: 05/03/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND The study of novel sites of metabolism is important in understanding new mechanisms of biotransformation of a particular moiety by metabolic enzymes. This information is valuable in designing metabolically-stable compounds with drug-like properties. It may also provide insights into the existence of active and reactive metabolites. METHODS We utilized small scale incubations to generate adequate amounts of the metabolite of interest. After purification, LC-MS/MS and Proton Nuclear Magnetic Resonance (1H-NMR) were utilized to unequivocally assign the novel site of glutathione conjugation on the purine ring system. RESULTS A proposed novel site of glutathione conjugation was investigated on a diaminopurine-containing molecule. It was demonstrated that the formation of the glutathione conjugate at the C-6 position of the purine ring system was due to the bioactivation of the compound to a di-imine intermediate by CYP3A4, followed by the nucleophilic addition of glutathione. CONCLUSION S-glutathionylation at C-6 position of a purine was proven unequivocally. This previously unreported mechanism constitutes a novel biotransformation for purines.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mehran F Moghaddam
- Celgene Corporation, 10300 Campus Point Dr, Suite 100, San Diego, CA 92121, USA.
| |
Collapse
|
13
|
Demethylation of neferine in human liver microsomes and formation of quinone methide metabolites mediated by CYP3A4 accentuates its cytotoxicity. Chem Biol Interact 2014; 224:89-99. [DOI: 10.1016/j.cbi.2014.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/07/2014] [Accepted: 10/13/2014] [Indexed: 12/19/2022]
|
14
|
Dragovic S, Boerma JS, Vermeulen NPE, Commandeur JNM. Effect of Human Glutathione S-Transferases on Glutathione-Dependent Inactivation of Cytochrome P450-Dependent Reactive Intermediates of Diclofenac. Chem Res Toxicol 2013; 26:1632-41. [DOI: 10.1021/tx400204d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sanja Dragovic
- Division of Molecular Toxicology,
Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty
of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Jan Simon Boerma
- Division of Molecular Toxicology,
Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty
of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Nico P. E. Vermeulen
- Division of Molecular Toxicology,
Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty
of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Jan N. M. Commandeur
- Division of Molecular Toxicology,
Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty
of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
15
|
Mezine I, Bode C, Raughley B, Bhoopathy S, Roberts KJ, Owen AJ, Hidalgo IJ. Application of exogenous mixture of glutathione and stable isotope labeled glutathione for trapping reactive metabolites in cryopreserved human hepatocytes. Detection of the glutathione conjugates using high resolution accurate mass spectrometry. Chem Biol Interact 2013; 204:173-84. [DOI: 10.1016/j.cbi.2013.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/23/2013] [Accepted: 05/24/2013] [Indexed: 11/27/2022]
|