1
|
Oleksak P, Nepovimova E, Valko M, Alwasel S, Alomar S, Kuca K. Comprehensive analysis of prohibited substances and methods in sports: Unveiling trends, pharmacokinetics, and WADA evolution. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104447. [PMID: 38636744 DOI: 10.1016/j.etap.2024.104447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/24/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
This review systematically compiles sports-related drugs, substances, and methodologies based on the most frequently detected findings from prohibited lists published annually by the World Anti-Doping Agency (WADA) between 2003 and 2021. Aligned with structure of the 2023 prohibited list, it covers all proscribed items and details the pharmacokinetics and pharmacodynamics of five representatives from each section. Notably, it explores significant metabolites and metabolic pathways associated with these substances. Adverse analytical findings are summarized in tables for clarity, and the prevalence is visually represented through charts. The review includes a concise historical overview of doping and WADA's role, examining modifications in the prohibited list for an understanding of evolving anti-doping measures.
Collapse
Affiliation(s)
- Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava 812 37, Slovakia; Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh Alwasel
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Suliman Alomar
- Doping Research Chair, Zoology Department, College of Science, King Saud University, Riyadh-11451, Kingdom of Saudi Arabia.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic; Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada 18071, Spain.
| |
Collapse
|
2
|
Simão AY, Antunes M, Cabral E, Oliveira P, Rosendo LM, Brinca AT, Alves E, Marques H, Rosado T, Passarinha LA, Andraus M, Barroso M, Gallardo E. An Update on the Implications of New Psychoactive Substances in Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4869. [PMID: 35457736 PMCID: PMC9028227 DOI: 10.3390/ijerph19084869] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023]
Abstract
The emergence of new psychoactive substances has earned a great deal of attention, and several reports of acute poisoning and deaths have been issued involving, for instance, synthetic opiates. In recent years, there have been profound alterations in the legislation concerning consumption, marketing, and synthesis of these compounds; rapid alert systems have also been subject to changes, and new substances and new markets, mainly through the internet, have appeared. Their effects and how they originate in consumers are still mostly unknown, primarily in what concerns chronic toxicity. This review intends to provide a detailed description of these substances from the point of view of consumption, toxicokinetics, and health consequences, including case reports on intoxications in order to help researchers and public health agents working daily in this area.
Collapse
Affiliation(s)
- Ana Y. Simão
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, 6200-284 Covilha, Portugal
| | - Mónica Antunes
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
- Serviço de Química e Toxicologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses, Delegação do Sul, 1150-219 Lisboa, Portugal
| | - Emanuel Cabral
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
| | - Patrik Oliveira
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
| | - Luana M. Rosendo
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
| | - Ana Teresa Brinca
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
| | - Estefânia Alves
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
| | - Hernâni Marques
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, 6200-284 Covilha, Portugal
| | - Tiago Rosado
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, 6200-284 Covilha, Portugal
| | - Luís A. Passarinha
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, NOVA School of Science and Technology, Universidade NOVA, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA, 2819-516 Caparica, Portugal
| | | | - Mário Barroso
- Serviço de Química e Toxicologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses, Delegação do Sul, 1150-219 Lisboa, Portugal
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, 6200-284 Covilha, Portugal
| |
Collapse
|
3
|
Pharmacology and adverse effects of new psychoactive substances: synthetic cannabinoid receptor agonists. Arch Pharm Res 2021; 44:402-413. [PMID: 33811300 DOI: 10.1007/s12272-021-01326-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/25/2021] [Indexed: 01/07/2023]
Abstract
Over the last decade, new psychoactive substances (NPS) have continuously been the focus of the international society since their emergence on the illicit drug market. NPS can be classified into six groups including; synthetic cannabinoid receptor agonists (SCRAs), stimulants, opioids, dissociatives, sedatives/hypnotics, and classic hallucinogens with psychoactive effects. These are sold as "herbal incense," "bath salts," "legal highs," and "research chemicals". They can be synthesized easily with slight changes in the chemical moieties of known psychoactive substances. NPS are sold worldwide via on- and off-line markets without proper scientific evaluation regarding their safety or harmfulness. Abuse of NPS poses a serious public health issue, and systematic studies on their adverse effects are lacking. Therefore, it would be meaningful to collect currently available data in order to understand NPS and to establish viable solutions to cope with the various health issues related to them. In this article, we reviewed the general pharmacological characteristics, recent findings, and adverse effects of representative NPS; SCRAs. SCRAs are known as the most commonly abused NPS. Most SCRAs, cannabinoid receptor 1 and cannabinoid receptor 2 agonists, are often associated with severe toxicities, including cardiotoxicity, immunotoxicity, and even death, unlike natural cannabinoid Δ9-Tetrahydrocannabinol.
Collapse
|
4
|
Overview of the major classes of new psychoactive substances, psychoactive effects, analytical determination and conformational analysis of selected illegal drugs. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abstract
The misuse of psychoactive substances is attracting a great deal of attention from the general public. An increase use of psychoactive substances is observed among young people who do not have enough awareness of the harmful effects of these substances. Easy access to illicit drugs at low cost and lack of effective means of routine screening for new psychoactive substances (NPS) have contributed to the rapid increase in their use. New research and evidence suggest that drug use can cause a variety of adverse psychological and physiological effects on human health (anxiety, panic, paranoia, psychosis, and seizures). We describe different classes of these NPS drugs with emphasis on the methods used to identify them and the identification of their metabolites in biological specimens. This is the first review that thoroughly gives the literature on both natural and synthetic illegal drugs with old known data and very hot new topics and investigations, which enables the researcher to use it as a starting point in the literature exploration and planning of the own research. For the first time, the conformational analysis was done for selected illegal drugs, giving rise to the search of the biologically active conformations both theoretically and using lab experiments.
Collapse
|
5
|
Presley BC, Castaneto MS, Logan BK, Jansen-Varnum SA. Metabolic profiling of synthetic cannabinoid 5F-ADB and identification of metabolites in authentic human blood samples via human liver microsome incubation and ultra-high-performance liquid chromatography/high-resolution mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8908. [PMID: 32710798 DOI: 10.1002/rcm.8908] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Indazole carboxamide synthetic cannabinoids, a prevalent class of recreational drugs, are a major clinical, forensic and public health challenge. One such compound, 5F-ADB, has been implicated in fatalities worldwide. Understanding its metabolism and distribution facilitates the development of laboratory assays to substantiate its consumption. Synthetic cannabinoid metabolites have been extensively studied in urine; studies identifying metabolites in blood are limited and no data on the metabolic stability (half-life, clearance and extraction ratio) of 5F-ADB have been published prior to this report. METHODS The in vitro metabolism of 5F-ADB was elucidated via incubation with human liver microsomes for 2 h at 37°C. Samples were collected at multiple time points to determine its metabolic stability. Upon identification of metabolites, authentic forensic human blood samples underwent liquid-liquid extraction and were screened for metabolites. Extracts were analyzed via ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/QTOFMS) operated in positive electrospray ionization mode. RESULTS Seven metabolites were identified including oxidative defluorination (M1); carboxypentyl (M2); monohydroxylation of the fluoropentyl chain (M3.1/M3.2) and indazole ring system (M4); ester hydrolysis (M5); and ester hydrolysis with oxidative defluorination (M6). The half-life (3.1 min), intrinsic clearance (256.2 mL min-1 kg-1 ), hepatic clearance (18.6 mL min-1 kg-1 ) and extraction ratio (0.93) were determined for the first time. In blood, M1 was present in each sample as the most abundant substance; two samples contained M5; one contained 5F-ADB, M1 and M5. CONCLUSIONS 5F-ADB is rapidly metabolized in HLM. 5F-ADB, M1 and M5 are pharmacologically active at the cannabinoid receptors (CB1 /CB2 ) and M1 and M5 may contribute to a user's impairment profile. The results demonstrate that it is imperative that synthetic cannabinoid assays screen for pharmacologically active metabolites, especially for drugs with short half-lives. The authors propose that M1 and M5 are appropriate markers to include in laboratory blood tests screening for 5F-ADB.
Collapse
Affiliation(s)
- Brandon C Presley
- Department of Chemistry, Temple University, 1901 N. 13 St., Philadelphia, PA, 19122, USA
| | - Marisol S Castaneto
- Department of Pathology, Tripler Army Medical Center, 1 Jarrett White Rd., Honolulu, HI, 96859, USA
| | - Barry K Logan
- The Center for Forensic Science Research and Education at the Fredric Rieders Family Foundation, 2300 Stratford Ave, Willow Grove, PA, 19090, USA
| | - Susan A Jansen-Varnum
- Department of Chemistry, Temple University, 1901 N. 13 St., Philadelphia, PA, 19122, USA
| |
Collapse
|
6
|
Sezer Y, Jannuzzi AT, Huestis MA, Alpertunga B. In vitro assessment of the cytotoxic, genotoxic and oxidative stress effects of the synthetic cannabinoid JWH-018 in human SH-SY5Y neuronal cells. Toxicol Res (Camb) 2020; 9:734-740. [PMID: 33447358 DOI: 10.1093/toxres/tfaa078] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND JWH-018 was the first synthetic cannabinoid introduced as a legal high and the first of the new generation of novel psychoactive substances that flooded worldwide drug markets. JWH-018 was marketed as "spice," "herbal incense," or "herbal blend," as a popular and legal (at the time) alternative to cannabis (marijuana). JWH-018 is a potent synthetic cannabinoid with considerable toxicity associated with its use. JWH-018 has qualitatively similar but quantitatively greater pharmacological effects than cannabis, leading to intoxications and even deaths. The mechanisms of action of the drug's toxicity require research, and thus, the aim of the present study was to investigate the toxicological profile of JWH-018 in human SH-SY5Y neuronal cells. METHODS SH-SY5Y neuronal cells were exposed to increasing concentrations from 5 to 150 μM JWH-018 over 24 h. Cytotoxicity, DNA damage, the apoptotic/necrotic rate, and oxidative stress were assessed following SH-SY5Y exposure. RESULTS JWH-018 did not produce a significant decrease in SH-SY5Y cell viability, did not alter apoptotic/necrotic rate, and did not cause genotoxicity in SH-SY5Y cells with 24-h exposure. Glutathione reductase and catalase activities were significantly reduced; however, there was no significant change in glutathione peroxidase activity. Also, JWH-018 treatment significantly decreased glutathione concentrations, significantly increased protein carbonylation, and significantly increased malondialdehyde (MDA) concentrations. For significance, all P < 0.05. DISCUSSION/CONCLUSION JWH-018 produced oxidative stress in SH-SY5Y cells that could be an underlying mechanism of JWH-018 neurotoxicity. Additional in vivo animal and human-based studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Yigit Sezer
- Council of Forensic Medicine, Ministry of Justice, Istanbul 34197, Turkey
| | - Ayse Tarbin Jannuzzi
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul University, Istanbul 34126, Turkey
| | - Marilyn A Huestis
- Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Buket Alpertunga
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul University, Istanbul 34126, Turkey
| |
Collapse
|
7
|
Metabolism, CB1 cannabinoid receptor binding and in vivo activity of synthetic cannabinoid 5F-AKB48: Implications for toxicity. Pharmacol Biochem Behav 2020; 195:172949. [PMID: 32413436 DOI: 10.1016/j.pbb.2020.172949] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/11/2020] [Indexed: 11/20/2022]
Abstract
AKB48 and its fluorinated derivative 5F-AKB48 are synthetic cannabinoids (SCs) which have caused hospitalizations and deaths in human users. Abuse of SCs is dangerous because users may mistake them for natural cannabis, which is generally considered to be unlikely to elicit adverse effects. The present studies were designed to investigate the in vitro oxidative metabolism of 5F-AKB48 by human microsomal fractions from different organs and sexes as well as recombinant human cytochrome P450s (P450s). Mass spectrometry data tentatively provides evidence for the existence of mono-, di-, and trihydroxylated metabolites in a successive metabolism. Experiments utilizing P450s revealed that the most active enzymes (CYP2D6, CYP2J2, CYP3A4, and CYP3A5) effectively produced mono- and dihydroxylated metabolites, while CYP3A4/5 also produced significant amounts of the trihydroxylated metabolite. Moreover, although the affinity and potency of Phase I metabolite 4OH-5F-AKB48 is reduced when compared to that of the parent drug, this metabolite nevertheless retains similar high affinity for CB1 receptors, and greater efficacy for G protein activation, when compared to THC. Finally, 5F-AKB48 produced time- and dose-dependent cannabimimetic effects in mice which were more potent, but shorter acting, than those of Δ9-THC, and were attenuated by prior treatment with the CB1 antagonist rimonabant. Based on our data, we hypothesize that while many cases of toxicity result from genetic mutations, which can lead to a decrease or even absence of activity for Phase I drug-metabolizing enzymes, other P450s could potentially increase their role in the metabolism of these SCs. Because many metabolites of SCs remain biologically active, they could contribute to the deleterious effects of these substances.
Collapse
|
8
|
Jones S, Yarbrough AL, Fantegrossi WE, Prather PL, Bush JM, Radominska‐Pandya A, Fujiwara R. Identifying cytochrome P450s involved in oxidative metabolism of synthetic cannabinoid N-(adamantan-1-yl)-1-(5-fluoropentyl)-1H-indole-3-carboxamide (STS-135). Pharmacol Res Perspect 2020; 8:e00561. [PMID: 32003945 PMCID: PMC6993754 DOI: 10.1002/prp2.561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/19/2019] [Accepted: 01/04/2020] [Indexed: 12/31/2022] Open
Abstract
Synthetic cannabinoids (SCBs), designer drugs marketed as legal alternatives to marijuana, act as ligands to cannabinoid receptors; however, they have increased binding affinity and potency, resulting in toxicity symptoms such as cardiovascular incidents, seizures, and potentially death. N-(adamantan-1-yl)-1-(5-fluoropentyl)-1H-indole-3-carboxamide (STS-135) is a third generation SCB. When incubated with hepatocytes, it undergoes oxidation, hydrolysis, and glucuronidation, resulting in 29 metabolites, with monohydroxy STS-135 (M25) and dihydroxy STS-135 (M21) being the predominant metabolites. The enzymes responsible for this oxidative metabolism were unknown. Thus, the aim of this study was to identify the cytochrome P450 (P450s or CYPs) enzymes involved in the oxidative metabolism of STS-135. In this study, STS-135 was incubated with liver, intestinal, and brain microsomes and recombinant P450s to determine the enzymes involved in its metabolism. Metabolite quantification was carried out using ultra-performance liquid chromatography. STS-135 was extensively metabolized in HLMs and HIMs. Screening assays indicated CYP3A4 and CYP3A5 could be responsible for STS-135's oxidation. Through incubations with genotyped HLMs, CYP3A4 was identified as the primary oxidative enzyme. Interestingly, CYP2J2, a P450 isoform expressed in cardiovascular tissues, showed high activity towards the formation of M25 with a Km value of 11.4 μmol/L. Thus, it was concluded that STS-135 was primarily metabolized by CYP3A4 but may have extrahepatic metabolic pathways as well. Upon exposure to STS-135, individuals with low CYP3A4 activity could retain elevated blood concentration, resulting in toxicity. Additionally, CYP2J2 may aid in protecting against STS-135-induced cardiovascular toxicity.
Collapse
Affiliation(s)
- Sabrina Jones
- Department of Biochemistry and Molecular BiologySchool of MedicineUniversity of Arkansas for Medical SciencesLittle RockARUSA
- University of Arkansas FayettevilleFayettevilleARUSA
| | - Azure L. Yarbrough
- Department of Biochemistry and Molecular BiologySchool of MedicineUniversity of Arkansas for Medical SciencesLittle RockARUSA
- Department of BiologyUniversity of Arkansas Little RockLittle RockARUSA
| | - William E. Fantegrossi
- Department of Pharmacology & ToxicologySchool of MedicineUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Paul L. Prather
- Department of Pharmacology & ToxicologySchool of MedicineUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - John M. Bush
- Department of BiologyUniversity of Arkansas Little RockLittle RockARUSA
| | - Anna Radominska‐Pandya
- Department of Biochemistry and Molecular BiologySchool of MedicineUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Ryoichi Fujiwara
- Department of Biochemistry and Molecular BiologySchool of MedicineUniversity of Arkansas for Medical SciencesLittle RockARUSA
- Department of Pharmaceutical SciencesCollege of PharmacyUniversity of Arkansas for Medical SciencesLittle RockARUSA
| |
Collapse
|
9
|
Foster BC, Abramovici H, Harris CS. Cannabis and Cannabinoids: Kinetics and Interactions. Am J Med 2019; 132:1266-1270. [PMID: 31152723 DOI: 10.1016/j.amjmed.2019.05.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 12/26/2022]
Abstract
Cannabis sativa and related products are widely used, but their potential to cause significant clinical interactions remains unclear, particularly for cannabinoid-enriched or otherwise concentrated products. The pharmacokinetics of most cannabis products is not known. Where information is known, there is wide variation. Extrapolation of limited clinical data is complicated by the complexity and variability of cannabis products as well as their delivery through various routes of administration. In vitro evidence shows that the major cannabinoids are substrates for numerous metabolic enzymes, including the cytochrome P450 metabolizing enzymes. Whereas many consumers consider cannabis products to be safe relative to alternative prescription or narcotic drugs, clinical reports of cannabis-related drug interactions and adverse events are increasing in frequency. Patients using these products, whether for medical or nonmedical purposes, together with conventional therapeutic agents may be at increased risk of adverse events, including therapeutic failure, and require enhanced monitoring.
Collapse
Affiliation(s)
| | | | - Cory S Harris
- Department of Biology, Faculty of Science, School of Epidemiology and Public Health, University of Ottawa, Ont, Canada.
| |
Collapse
|
10
|
Jones S, Yarbrough AL, Shoeib A, Bush JM, Fantegrossi WE, Prather PL, Radominska-Pandya A, Fujiwara R. Enzymatic analysis of glucuronidation of synthetic cannabinoid 1-naphthyl 1-(4-fluorobenzyl)-1H-indole-3-carboxylate (FDU-PB-22). Xenobiotica 2019; 49:1388-1395. [PMID: 30739533 DOI: 10.1080/00498254.2019.1580403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recently, there has been a rise in abuse of synthetic cannabinoids (SCBs). The consumption of SCBs results in various effects and can induce toxic reactions, including paranoia, seizures, tachycardia and even death. 1-Naphthyl 1-(4-fluorobenzyl)-1H-indole-3-carboxylate (FDU-PB-22) is a third generation SCB whose metabolic pathway has not been fully characterized. In this study, we conducted in vitro pharmacokinetic analysis of FDU-PB-22 metabolism. Metabolic reactions containing FDU-PB-22 and human liver microsomes (HLMs) were independent of NADPH but not UDP-glucuronic acid (UDPGA), suggesting that UDP-glucuronosyltransferases (UGTs) are the primary enzymes involved in this metabolism. It was further determined that the metabolite extensively formed after incubating FDU-PB-22 with UDPGA in HLMs was the glucuronide of FDU-PB-22 3-carboxyindole (FBI-COOH). Various hepatic UGTs showed enzymatic activity for FBI-COOH. A series of UGT inhibitors showed moderate to strong inhibition of FBI-COOH-glucuronidation in HLMs, suggesting that multiple UGT isoforms are involved in FBI-COOH-glucuronidation in the liver. Interestingly, an extra-hepatic isoform, UGT1A10, exhibited the highest activity with a Km value of 38 µM and a Vmax value of 5.90 nmol/min/mg. Collectively, these results suggest that both genetic mutations of and the co-administration of inhibitors for FDU-PB-22-metabolizing UGTs will likely increase the risk of FDU-PB-22-induced toxicity.
Collapse
Affiliation(s)
- Sabrina Jones
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences , Little Rock , AR , USA.,Department of Physics and Department of Biological Sciences, University of Arkansas Fay etteville , Fayetteville , AR , USA
| | - Azure L Yarbrough
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences , Little Rock , AR , USA.,Department of Biology, University of Arkansas Little Rock , Little Rock , AR , USA
| | - Amal Shoeib
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - John M Bush
- Department of Biology, University of Arkansas Little Rock , Little Rock , AR , USA
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Paul L Prather
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Anna Radominska-Pandya
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Ryoichi Fujiwara
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences , Little Rock , AR , USA
| |
Collapse
|
11
|
Janis GC. Analysis of Synthetic Cannabinoid Metabolites by Liquid Chromatography-Tandem Mass Spectrometry. Methods Mol Biol 2019; 1872:137-147. [PMID: 30350287 DOI: 10.1007/978-1-4939-8823-5_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The analysis of synthetic cannabinoid compounds in a urine sample is currently one of the more complex tasks facing toxicologists. The list of prevalent compounds in circulation at any given time is constantly in flux, changing at a rapid rate to avoid legal control and to a lesser extent to avoid detection. Even with knowledge of the chemical entities, their detection in urine is complicated by the fact that they are present exclusively as both phase I metabolites and phase II conjugates. With proper knowledge of the correct analytical targets, relatively simple procedures are capable of extracting and analyzing synthetic cannabinoids. Following enzymatic hydrolysis, compounds can be extracted through liquid partitioning procedures, and the extracts are analyzed via LC-MS/MS.
Collapse
Affiliation(s)
- Gregory C Janis
- MedTox Laboratories, Laboratory Corporation of America Holdings, St. Paul, MN, USA.
| |
Collapse
|
12
|
Angerer V, Franz F, Moosmann B, Bisel P, Auwärter V. 5F-Cumyl-PINACA in 'e-liquids' for electronic cigarettes: comprehensive characterization of a new type of synthetic cannabinoid in a trendy product including investigations on the in vitro and in vivo phase I metabolism of 5F-Cumyl-PINACA and its non-fluorinated analog Cumyl-PINACA. Forensic Toxicol 2018; 37:186-196. [PMID: 30636986 PMCID: PMC6315005 DOI: 10.1007/s11419-018-0451-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/31/2018] [Indexed: 11/09/2022]
Abstract
PURPOSE In recent years e-liquids used in electronic cigarettes have become an attractive alternative to smoking tobacco. A new trend is the use of e-liquids containing synthetic cannabinoids (SCs) instead of smoking cannabis or herbal mixtures laced with SCs. In the frame of a systematic monitoring of the online market of 'legal high' products, e-liquids from online retailers who also sell herbal blends were bought. METHODS The products were analyzed by gas chromatography-mass spectrometry. In some of the e-liquids an unknown compound was detected which was identified as the SC 5F-Cumyl-PINACA (1-(5-fluoropentyl)-N-(2-phenylpropan-2-yl)-1H-indazole-3-carboxamide) by nuclear magnetic resonance analysis. To investigate the phase I metabolism of this new class of compounds, 5F-Cumyl-PINACA and its non-fluorinated analog Cumyl-PINACA were incubated with pooled human liver microsomes (pHLM). Cumyl-PINACA was additionally ingested orally (0.6 mg) by a volunteer in a controlled self-experiment. To assess the relative potency of Cumyl-PINACA a set of SCs were characterized using a cAMP assay. RESULTS Metabolism of 5F-Cumyl-PINACA and Cumyl-PINACA showed similarities with AM-2201 and JWH-018. The main metabolites were formed by hydroxylation at the N-pentyl side chain. The main metabolites detected in the volunteer's urine sample were the same as in the pHLM assay. All SCs tested with the cAMP assay were full agonists at the CB1 receptor. Cumyl-PINACA was the most potent SC among the tested compounds and showed an EC50 value of 0.06 nM. CONCLUSIONS The increasing popularity of e-liquids particularly among young people, and the extreme potency of the added SCs, pose a serious threat to public health. To our knowledge, this is the first report describing the tentative identification of human in vivo metabolites of Cumyl-PINACA and 5F-Cumyl-PINACA.
Collapse
Affiliation(s)
- Verena Angerer
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center–University of Freiburg, Albertstr. 9, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Breisacher Str. 153, 79110 Freiburg, Germany
| | - Florian Franz
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center–University of Freiburg, Albertstr. 9, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Breisacher Str. 153, 79110 Freiburg, Germany
- Hermann Staudinger Graduate School, University of Freiburg, Hebelstr. 27, 79104 Freiburg, Germany
| | - Bjoern Moosmann
- Institute of Forensic Medicine, Forensic Toxicology, Kantonsspital St. Gallen, Rorschacher Str. 95, 9007 St. Gallen, Switzerland
| | - Philippe Bisel
- Institute for Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| | - Volker Auwärter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center–University of Freiburg, Albertstr. 9, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Breisacher Str. 153, 79110 Freiburg, Germany
| |
Collapse
|
13
|
The ongoing challenge of novel psychoactive drugs of abuse. Part I. Synthetic cannabinoids (IUPAC Technical Report). PURE APPL CHEM 2018. [DOI: 10.1515/pac-2017-0605] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
In the past decade, the world has experienced a large increase in the number of novel compounds appearing on the illicit drug market for recreational purposes. Such substances are designed to circumvent governmental regulations; the illegal drug manufacturers take a known psychoactive compound reported in the scientific literature and slightly modify its chemical structure in order to produce analogues that will mimic the pharmacological activity of the original substance. Many of these novel substances are sold via the Internet. Among the various chemical classes, synthetic cannabinoid receptor modulators, commonly referred to as “synthetic cannabinoids” have been at the forefront, as demonstrated by the frequency of drug seizures, numerous severe toxic effects, and fatalities associated with some of these substances. This review presents the chemical structures of relevant synthetic cannabinoids and describes their mechanism of action, pharmacological features, metabolic pathways, and structure-activity relationships. It illustrates the approaches used in forensic testing, both for bulk analysis (drug seizures) and for analytical toxicology (biological matrices) and discusses aspects of regulation surrounding this drug class. This report is intended to provide pertinent information for the purposes of informing scientific, medical, social, and governmental bodies about this ever-evolving recreational drug class and the challenges it poses worldwide.
Collapse
|
14
|
Synthetic cannabinoids are substrates and inhibitors of multiple drug-metabolizing enzymes. Arch Pharm Res 2018; 41:691-710. [PMID: 30039377 DOI: 10.1007/s12272-018-1055-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 07/11/2018] [Indexed: 01/06/2023]
Abstract
Synthetic cannabinoids, a new class of psychoactive substances, are potent agonists of cannabinoid receptors, which mimic the psychoactive effects of the principal psychoactive component of cannabis, ∆9-tetrahydrocannabinol. Despite governmental scheduling as illicit drugs, new synthetic cannabinoids are being produced. The abuse of synthetic cannabinoids with several drugs containing different chemical groups has resulted in large numbers of poisonings. This has increased the urgency for forensic and public health laboratories to identify the metabolites of synthetic cannabinoids and apply this knowledge to the development of analytical methods and for toxicity prediction. It is necessary to determine whether synthetic cannabinoids are involved in drug-metabolizing enzyme-mediated drug-drug interactions. This review describes the metabolic pathways of 13 prevalent synthetic cannabinoids and various drug-metabolizing enzymes responsible for their metabolism, including cytochrome P450 (CYP), UDP-glucuronosyltransferases (UGTs), and carboxylesterases. The inhibitory effects of synthetic cannabinoids on CYP and UGT activities are also reviewed to predict the potential of synthetic cannabinoids for drug-drug interactions. The drug-metabolizing enzymes responsible for metabolism of synthetic cannabinoids should be characterized and the effects of synthetic cannabinoids on CYP and UGT activities should be determined to predict the pharmacokinetics of synthetic cannabinoids and synthetic cannabinoid-induced drug-drug interactions in the clinic.
Collapse
|
15
|
Bouquié R, Deslandes G, Mazaré H, Cogné M, Mahé J, Grégoire M, Jolliet P. Cannabis and anticancer drugs: societal usage and expected pharmacological interactions - a review. Fundam Clin Pharmacol 2018; 32:462-484. [DOI: 10.1111/fcp.12373] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/03/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Régis Bouquié
- Laboratoire de Biologie Médicale; Centre Hospitalier Léon-Jean Grégory; avenue du Roussillon 66330 Thuir France
- Clinical Pharmacology Department; Nantes University Hospital; institut de biologie; 9 quai Moncousu 44093 Nantes Cedex 1 France
- EA 4275 Biostatistique; Pharmacoépidémiologie et Mesures Subjectives en Santé; Nantes University Hospital; Nantes France
| | - Guillaume Deslandes
- Clinical Pharmacology Department; Nantes University Hospital; institut de biologie; 9 quai Moncousu 44093 Nantes Cedex 1 France
| | - Hélène Mazaré
- Clinical Pharmacology Department; Nantes University Hospital; institut de biologie; 9 quai Moncousu 44093 Nantes Cedex 1 France
| | - Marion Cogné
- Clinical Pharmacology Department; Nantes University Hospital; institut de biologie; 9 quai Moncousu 44093 Nantes Cedex 1 France
| | - Julien Mahé
- Clinical Pharmacology Department; Nantes University Hospital; institut de biologie; 9 quai Moncousu 44093 Nantes Cedex 1 France
| | - Matthieu Grégoire
- Clinical Pharmacology Department; Nantes University Hospital; institut de biologie; 9 quai Moncousu 44093 Nantes Cedex 1 France
- EA 3826 Thérapeutiques Cliniques et Expérimentales des Infections; Nantes University Hospital; Nantes France
| | - Pascale Jolliet
- Clinical Pharmacology Department; Nantes University Hospital; institut de biologie; 9 quai Moncousu 44093 Nantes Cedex 1 France
- EA 4275 Biostatistique; Pharmacoépidémiologie et Mesures Subjectives en Santé; Nantes University Hospital; Nantes France
| |
Collapse
|
16
|
Patton AL, Seely KA, Yarbrough AL, Fantegrossi W, James LP, McCain KR, Fujiwara R, Prather PL, Moran JH, Radominska-Pandya A. Altered metabolism of synthetic cannabinoid JWH-018 by human cytochrome P450 2C9 and variants. Biochem Biophys Res Commun 2018. [PMID: 29522717 DOI: 10.1016/j.bbrc.2018.03.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Synthetic cannabinoids (SCBs), synonymous with 'K2', 'Spice' or 'synthetic marijuana', are psychoactive drugs of abuse that frequently result in clinical effects and toxicity more severe than those classically associated with Δ9-tetrahydrocannabinol such as extreme agitation, hallucinations, supraventricular tachycardia, syncope, and seizures. JWH-018 is one of the earliest compounds identified in various SCB products, and our laboratory previously demonstrated that JWH-018 undergoes extensive metabolism by cytochromes P450 (P450), binds to, and activates cannabinoid receptors (CBRs). The major enzyme involved in the metabolism of JWH-018 is CYP2C9, a highly polymorphic enzyme found largely in the intestines and liver, with *1 being designated as the wild type, and *2 and *3 as the two most common variants. Three different major products have been identified in human urine and plasma: JWH-018 (ω)-OH, JWH-018 (ω-1)-OH(R), and JWH-018 (ω-1)-OH(S). The (ω-1)-OH metabolite of JWH-018 is a chiral molecule, and is thus designated as either (ω-1)-OH(R) or (ω-1)-OH(S). Here, in vitro enzyme kinetic assays performed with human recombinant CYP2C9 variants (*1, *2, and *3) revealed that oxidative metabolism by CYP2C9*3 resulted in significantly less formation of (ω)-OH and (ω-1)-OH metabolites. Surprisingly, CYP2C9*2 was roughly 3.6-fold more efficient as the CYP2C9*1 enzyme based on Vmax/Km, increasing the rate of JWH-018 metabolism and allowed for a much more rapid elimination. These results suggest that genetic polymorphisms of P450 enzymes result in the production of varying levels of biologically active JWH-018 metabolites in some individuals, offering a mechanistic explanation for the diverse clinical toxicity often observed following JWH-018 abuse.
Collapse
Affiliation(s)
- Amy L Patton
- Arkansas Department of Health, Arkansas Public Health Laboratory, 4815 W Markham St, Little Rock, AR, 72205, USA; Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, USA.
| | - Kathryn A Seely
- Arkansas Department of Health, Arkansas Public Health Laboratory, 4815 W Markham St, Little Rock, AR, 72205, USA.
| | - Azure L Yarbrough
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, USA.
| | - William Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, USA.
| | - Laura P James
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, 4301 W Markham St #550, Little Rock, AR, 72205, USA.
| | - Keith R McCain
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, 4301 W Markham St #550, Little Rock, AR, 72205, USA.
| | - Ryoichi Fujiwara
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, USA.
| | - Paul L Prather
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, USA.
| | - Jeffery H Moran
- Arkansas Department of Health, Arkansas Public Health Laboratory, 4815 W Markham St, Little Rock, AR, 72205, USA.
| | - Anna Radominska-Pandya
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, USA.
| |
Collapse
|
17
|
Staeheli SN, Poetzsch M, Veloso VP, Bovens M, Bissig C, Steuer AE, Kraemer T. In vitro metabolism of the synthetic cannabinoids CUMYL-PINACA, 5F-CUMYL-PINACA, CUMYL-4CN-BINACA, 5F-CUMYL-P7AICA and CUMYL-4CN-B7AICA. Drug Test Anal 2017; 10:148-157. [PMID: 28885775 DOI: 10.1002/dta.2298] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/25/2017] [Accepted: 09/04/2017] [Indexed: 12/12/2022]
Abstract
Synthetic cannabinoid consumption trends underlie fast changes and provide several challenges to clinical and forensic toxicologists. Due to their extensive metabolism, parent compounds are hardly detectable in urine. Therefore, knowledge of the metabolism of synthetic cannabinoids is essential to allow their detection in biological matrices. The aim of the present study was the elucidation of the metabolism of CUMYL-PINACA, 5F-CUMYL-PINACA, CUMYL-4CN-BINACA, 5F-CUMYL-P7AICA, and CUMYL-4CN-B7AICA with a focus on the analytical and interpretational differentiation of the compounds. Microsomal assay mixtures containing co-substrates, 10 μg/mL substrate and 1 mg/mL pooled human liver microsomes were incubated for 1 hour at 37°C. Investigation of the metabolites was performed on a Thermo Fischer Ultimate 3000 UHPLC system coupled to a Sciex 6600 QTOF System. Hydroxylation was observed to be a major biotransformation step for all 5 cumyl-derivatives, followed by dihydroxylation. For CUMYL-PINACA, a major metabolic pathway was hydroxylation at the pentyl moiety, followed by a second hydroxylation at that pentyl moiety or oxidation to ketone. A major metabolic pathway for the compounds containing a nitrile function was nitrile hydrolysis followed by carboxylation and further hydroxylation. For the fluorinated compounds, oxidative defluorination and carboxylation were abundant metabolic steps. Some of the metabolic transformations lead to structurally identical metabolites, which should not be used as marker for the intake of a particular parent compound. In addition, several constitutional isomers containing either an indazole or azaindole core structure were detected, which should be differentiated by retention time rather than by their mass spectra alone.
Collapse
Affiliation(s)
- Sandra N Staeheli
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Switzerland
| | - Michael Poetzsch
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Switzerland
| | - Veronica P Veloso
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Switzerland
| | | | | | - Andrea E Steuer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Switzerland
| |
Collapse
|
18
|
Toennes SW, Geraths A, Pogoda W, Paulke A, Wunder C, Theunissen EL, Ramaekers JG. Pharmacokinetic properties of the synthetic cannabinoid JWH-018 and of its metabolites in serum after inhalation. J Pharm Biomed Anal 2017; 140:215-222. [DOI: 10.1016/j.jpba.2017.03.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/14/2017] [Accepted: 03/20/2017] [Indexed: 12/29/2022]
|
19
|
Ford BM, Tai S, Fantegrossi WE, Prather PL. Synthetic Pot: Not Your Grandfather's Marijuana. Trends Pharmacol Sci 2017; 38:257-276. [PMID: 28162792 PMCID: PMC5329767 DOI: 10.1016/j.tips.2016.12.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/08/2016] [Accepted: 12/13/2016] [Indexed: 01/05/2023]
Abstract
In the early 2000s in Europe and shortly thereafter in the USA, it was reported that 'legal' forms of marijuana were being sold under the name K2 and/or Spice. Active ingredients in K2/Spice products were determined to be synthetic cannabinoids (SCBs), producing psychotropic actions via CB1 cannabinoid receptors, similar to those of Δ9-tetrahydrocannabinol (Δ9-THC), the primary active constituent in marijuana. Often abused by adolescents and military personnel to elude detection in drug tests due to their lack of structural similarity to Δ9-THC, SCBs are falsely marketed as safe marijuana substitutes. Instead, SCBs are a highly structural diverse group of compounds, easily synthesized, which produce very dangerous adverse effects occurring by, as of yet, unknown mechanisms. Therefore, available evidence indicates that K2/Spice products are clearly not safe marijuana alternatives.
Collapse
Affiliation(s)
- Benjamin M Ford
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sherrica Tai
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paul L Prather
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
20
|
Tai S, Fantegrossi WE. Pharmacological and Toxicological Effects of Synthetic Cannabinoids and Their Metabolites. Curr Top Behav Neurosci 2017; 32:249-262. [PMID: 28012093 PMCID: PMC5392241 DOI: 10.1007/7854_2016_60] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Commercial preparations containing synthetic cannabinoids (SCBs) are rapidly emerging as drugs of abuse. Although often assumed to be "safe" and "legal" alternatives to cannabis, reports indicate that SCBs induce toxicity not often associated with the primary psychoactive component of marijuana, Δ9-tetrahydrocannabinol (Δ9-THC). This chapter will summarize the evidence that use of SCBs poses greater health risks relative to marijuana and suggest that distinct pharmacological properties and metabolism of SCBs relative to Δ9-THC may contribute to this increased toxicity. Studies reviewed will indicate that in contrast to partial agonist properties of Δ9-THC typically observed in vitro, SCBs act as full CB1 and CB2 receptor agonists both in cellular assays and animal studies. Furthermore, unlike Δ9-THC metabolism, several SCB metabolites retain high affinity for and exhibit a range of intrinsic activities at CB1 and CB2 receptors. Finally, the potential for SCBs to cause adverse drug-drug interactions with other drugs of abuse, as well as with common therapeutic agents, will be discussed. Collectively, the evidence provided in this chapter indicates that SCBs should not be considered safe and legal alternatives to marijuana. Instead, the enhanced toxicity of SCBs relative to marijuana, perhaps resulting from the combined actions of a complex mixture of different SCBs present and their active metabolites that retain high affinity for CB1 and CB2 receptors, highlights the inherent danger that may accompany use of these substances.
Collapse
Affiliation(s)
- Sherrica Tai
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences College of Medicine, Mail Slot 638, 4301 West Markham Street, Little Rock, AR, 72207, USA
- Department of Pharmacology, University of Michigan Medical School, 2301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences College of Medicine, Mail Slot 638, 4301 West Markham Street, Little Rock, AR, 72207, USA.
| |
Collapse
|
21
|
Aldlgan AA, Torrance. HJ. Bioanalytical methods for the determination of synthetic cannabinoids and metabolites in biological specimens. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.03.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
22
|
Watanabe S, Kuzhiumparambil U, Winiarski Z, Fu S. Biotransformation of synthetic cannabinoids JWH-018, JWH-073 and AM2201 by Cunninghamella elegans. Forensic Sci Int 2016; 261:33-42. [DOI: 10.1016/j.forsciint.2015.12.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/10/2015] [Accepted: 12/13/2015] [Indexed: 11/26/2022]
|
23
|
Couceiro J, Bandarra S, Sultan H, Bell S, Constantino S, Quintas A. Toxicological impact of JWH-018 and its phase I metabolite N-(3-hydroxypentyl) on human cell lines. Forensic Sci Int 2016; 264:100-5. [PMID: 27054591 DOI: 10.1016/j.forsciint.2016.03.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 12/22/2015] [Accepted: 03/11/2016] [Indexed: 11/25/2022]
Abstract
The emergence and abuse of synthetic cannabinoids has been increasing as an alternative to cannabis, mainly among youth. As their appearance on the drug market has been recent, the pharmacological and toxicological profiles of these psychoactive substances are poorly understood. Current studies suggest that they have stronger effects compared to their natural alternatives and their metabolites retain affinity towards CB1 receptors in CNS. Since studies on its toxicological properties are scarce, the effects of the drug in human derived cell lines were investigated. The present study was designed to explore the toxicological impact of parent drug versus phase I metabolites of synthetic cannabinoids on human cells with and without CB1 receptor. The human cell line of neuroblastoma SH-SY5Y and human kidney cell line HEK-293T were exposed to JWH-018 and to its N-(3-hydroxypentyl) metabolite. Cell toxicity was evaluated using the MTT and LDH assay. Additionally, a dual staining methodology with fluorescent Annexin V-FITC and propidium iodide was performed to address the question of whether JWH-018 N-(3-hydroxypentyl) metabolite is inducing cell death through apoptosis or necrosis, in HEK293T and SH-SY5Y cell lines. The obtained results show that JWH-018 does not cause a statistically significant decrease in cell viability, in contrast to its N-(3-hydroxypentyl) metabolite, which at ≥25μM causes a significant decrease in cell viability. Both cell lines are affected by JWH-018 metabolite. Our results point to higher toxicity of JWH-018 metabolite when compared to its parent drug, suggesting a non-CB1 receptor mediated toxicological mechanism. Comparing the results from Annexin V/PI with MTT and LDH assays of SH-SY5Y and HEK293T in the presence of the synthetic cannabinoid metabolite, emerges the picture that cellular viability decreases and associated death is occurring through necrosis.
Collapse
Affiliation(s)
- Joana Couceiro
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Superior de Ciências da Saúde Egas Moniz, 2825-084 Caparica, Portugal; Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Campus Universitário-Quinta da Granja, Monte de Caparica, 2825-084 Caparica, Portugal
| | - Susana Bandarra
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Superior de Ciências da Saúde Egas Moniz, 2825-084 Caparica, Portugal
| | - Haider Sultan
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Superior de Ciências da Saúde Egas Moniz, 2825-084 Caparica, Portugal
| | - Suzanne Bell
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Susana Constantino
- Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina da Universidade de Lisboa, Angiogenesis Unit, Lisboa, Portugal
| | - Alexandre Quintas
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Superior de Ciências da Saúde Egas Moniz, 2825-084 Caparica, Portugal; Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Campus Universitário-Quinta da Granja, Monte de Caparica, 2825-084 Caparica, Portugal.
| |
Collapse
|
24
|
Kim JH, Kim HS, Kong TY, Lee JY, Kim JY, In MK, Lee HS. In vitro metabolism of a novel synthetic cannabinoid, EAM-2201, in human liver microsomes and human recombinant cytochrome P450s. J Pharm Biomed Anal 2015; 119:50-8. [PMID: 26641707 DOI: 10.1016/j.jpba.2015.11.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/05/2015] [Accepted: 11/18/2015] [Indexed: 11/19/2022]
Abstract
In vitro metabolism of a new synthetic cannabinoid, EAM-2201, has been investigated with human liver microsomes and major cDNA-expressed cytochrome P450 (CYP) isozymes using liquid chromatography-high resolution mass spectrometry (LC-HRMS). Incubation of EAM-2201 with human liver microsomes in the presence of NADPH resulted in the formation of 37 metabolites, including nine hydroxy-EAM-2201 (M1-M9), five dihydroxy-EAM-2201 (M10-M14), dihydrodiol-EAM-2201 (M15), oxidative defluorinated EAM-2201 (M16), two hydroxy-M16 (M17 and M18), three dihydroxy-M16 (M19-M21), N-dealkyl-EAM-2201 (M22), two hydroxy-M22 (M23 and M24), dihydroxy-M22 (M25), EAM-2201 N-pentanoic acid (M26), hydroxy-M26 (M27), dehydro-EAM-2201 (M28), hydroxy-M28 (M29), seven dihydroxy-M28 (M30-M36), and oxidative defluorinated hydroxy-M28 (M37). Multiple CYPs, including CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 2J2, 3A4, and 3A5, were involved in the metabolism of EAM-2201. In conclusion, EAM-2201 is extensively metabolized by CYPs and its metabolites can be used as an indicator of EAM-2201 abuse.
Collapse
Affiliation(s)
- Ju Hyun Kim
- College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea
| | - Hee Seung Kim
- Forensic Chemistry Laboratory, Forensic Science Division, Supreme Prosecutor's Office, 157 Banpo-daero, Seocho-gu, Seoul 137-730, Republic of Korea
| | - Tae Yeon Kong
- College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea
| | - Joo Young Lee
- College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea
| | - Jin Young Kim
- Forensic Chemistry Laboratory, Forensic Science Division, Supreme Prosecutor's Office, 157 Banpo-daero, Seocho-gu, Seoul 137-730, Republic of Korea
| | - Moon Kyo In
- Forensic Chemistry Laboratory, Forensic Science Division, Supreme Prosecutor's Office, 157 Banpo-daero, Seocho-gu, Seoul 137-730, Republic of Korea
| | - Hye Suk Lee
- College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea.
| |
Collapse
|
25
|
Ozturk S, Ozturk YE, Yeter O, Alpertunga B. Application of a validated LC-MS/MS method for JWH-073 and its metabolites in blood and urine in real forensic cases. Forensic Sci Int 2015; 257:165-171. [PMID: 26360591 DOI: 10.1016/j.forsciint.2015.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/17/2015] [Accepted: 08/23/2015] [Indexed: 10/23/2022]
Abstract
Synthetic cannabinoids, which were synthesized to improve the therapeutic effects of cannabis, have become a major issue when they are abused. They have different chemical structures from tetrahydrocannabinol (THC) but similar effects on endocannabinoid receptors. "Spice" named products have more serious side effects than cannabis and can even cause death. These mixtures are prepared by spraying chemicals onto small pieces of herbs and are being dishonestly sold as "natural" and "legal" products over the internet. Their popularity is continuously increasing. Studies on detecting synthetic cannabinoids in biological samples as well as pharmacology and toxicology studies of these chemicals are very limited. A fast, specific and robust method for the detection and quantification of JWH-073, JWH-073 N-butanoic acid, and JWH-073 N-(4-hydroxybutyl) in blood and urine has been developed that uses solid-phase extraction (SPE) followed by UPLC-MS/MS analysis. This method has been validated in terms of its linearity (0.1-50 ng/mL), selectivity, intra-assay and inter-assay accuracy and precision (CV<10%), recovery (75-95%), limits of detection (LODs) (0.08-0.13 ng/mL), and limits of quantification (LOQs) (0.11-0.17 ng/mL). Matrix effects, stability, and process efficiency parameters of this method have also been assessed. This method was applied to 2596 authentic samples received by the Department of Toxicology (Istanbul) in the Presidency of Council of Forensic Medicine (Turkey) between September 1, 2012, and February 28, 2015.
Collapse
Affiliation(s)
- Serkan Ozturk
- Council of Forensic Medicine, Istanbul Chemistry Department Toxicology, Division, Bahcelievler, 34196 Istanbul, Turkey.
| | - Yeter Erol Ozturk
- Council of Forensic Medicine, Istanbul Chemistry Department Toxicology, Division, Bahcelievler, 34196 Istanbul, Turkey
| | - Oya Yeter
- Council of Forensic Medicine, Istanbul Chemistry Department Toxicology, Division, Bahcelievler, 34196 Istanbul, Turkey
| | - Buket Alpertunga
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Beyazit, 34116 Istanbul, Turkey
| |
Collapse
|
26
|
|
27
|
Holm NB, Nielsen LM, Linnet K. CYP3A4 Mediates Oxidative Metabolism of the Synthetic Cannabinoid AKB-48. AAPS JOURNAL 2015; 17:1237-45. [PMID: 26002511 DOI: 10.1208/s12248-015-9788-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/08/2015] [Indexed: 11/30/2022]
Abstract
Synthetic cannabinoid designer drugs have emerged as drugs of abuse during the last decade, and acute intoxication cases are documented in the scientific literature. Synthetic cannabinoids are extensively metabolized, but our knowledge of the involved enzymes is limited. Here, we investigated the metabolism of N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide (AKB-48), a compound identified in herbal blends from 2012 and onwards. We screened for metabolite formation using a panel of nine recombinant cytochrome P450 (CYP) enzymes (CYP1A2, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, and 3A4) and compared the formed metabolites to human liver microsomal (HLM) incubations with specific inhibitors against CYP2D6, 2C19, and 3A4, respectively. The data reported here demonstrate CYP3A4 to be the major CYP enzyme responsible for the oxidative metabolism of AKB-48, preferentially performing the oxidation on the adamantyl moiety. Genetic polymorphisms are likely not important with regard to toxicity given the major involvement of CYP3A4. Adverse drug-drug interactions (DDIs) could potentially occur in cases with co-intake of strong CYP3A4 inhibitors, e.g., HIV antivirals and azole antifungal agents.
Collapse
Affiliation(s)
- Niels Bjerre Holm
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V's Vej 11, 3rd floor, 2100, Copenhagen, Denmark,
| | | | | |
Collapse
|
28
|
Su MK, Seely KA, Moran JH, Hoffman RS. Metabolism of classical cannabinoids and the synthetic cannabinoid JWH-018. Clin Pharmacol Ther 2015; 97:562-4. [PMID: 25788107 DOI: 10.1002/cpt.114] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/12/2015] [Indexed: 11/10/2022]
Abstract
Although the putative pharmacological targets of synthetic cannabinoids (SCBs) abused in "K2" and "Spice" are similar to Δ(9) -tetrahydrocannabinol (Δ(9) -THC), it remains unclear why SCB toxicity is similar yet different from marijuana. There are obvious potency and efficacy differences, but also important metabolic differences that help explain the unique adverse reactions associated with SCBs. This brief review discusses the limited research on the metabolism of the SCB JWH-018 and contrasts that with the metabolism of Δ(9) -THC.
Collapse
Affiliation(s)
- M K Su
- Division of Medical Toxicology, Ronald O. Perelman Department of Emergency Medicine, New York University School of Medicine, New York, New York, USA
| | - K A Seely
- Arkansas Department of Health, Public Health Laboratory, Little Rock, Arkansas, USA
| | - J H Moran
- Arkansas Department of Health, Public Health Laboratory, Little Rock, Arkansas, USA.,Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - R S Hoffman
- Division of Medical Toxicology, Ronald O. Perelman Department of Emergency Medicine, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
29
|
Castaneto MS, Wohlfarth A, Desrosiers NA, Hartman RL, Gorelick DA, Huestis MA. Synthetic cannabinoids pharmacokinetics and detection methods in biological matrices. Drug Metab Rev 2015; 47:124-74. [PMID: 25853390 DOI: 10.3109/03602532.2015.1029635] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Synthetic cannabinoids (SC), originally developed as research tools, are now highly abused novel psychoactive substances. We present a comprehensive systematic review covering in vivo and in vitro animal and human pharmacokinetics and analytical methods for identifying SC and their metabolites in biological matrices. Of two main phases of SC research, the first investigated therapeutic applications, and the second abuse-related issues. Administration studies showed high lipophilicity and distribution into brain and fat tissue. Metabolite profiling studies, mostly with human liver microsomes and human hepatocytes, structurally elucidated metabolites and identified suitable SC markers. In general, SC underwent hydroxylation at various molecular sites, defluorination of fluorinated analogs and phase II metabolites were almost exclusively glucuronides. Analytical methods are critical for documenting intake, with different strategies applied to adequately address the continuous emergence of new compounds. Immunoassays have different cross-reactivities for different SC classes, but cannot keep pace with changing analyte targets. Gas chromatography and liquid chromatography mass spectrometry assays - first for a few, then numerous analytes - are available but constrained by reference standard availability, and must be continuously updated and revalidated. In blood and oral fluid, parent compounds are frequently present, albeit in low concentrations; for urinary detection, metabolites must be identified and interpretation is complex due to shared metabolic pathways. A new approach is non-targeted HRMS screening that is more flexible and permits retrospective data analysis. We suggest that streamlined assessment of new SC's pharmacokinetics and advanced HRMS screening provide a promising strategy to maintain relevant assays.
Collapse
Affiliation(s)
- Marisol S Castaneto
- Department of Chemistry and Drug Metabolism, National Institute on Drug Abuse, NIH , Baltimore, MD , USA
| | | | | | | | | | | |
Collapse
|
30
|
Metabolite profiling of RCS-4, a novel synthetic cannabinoid designer drug, using human hepatocyte metabolism and TOF-MS. Bioanalysis 2015; 6:1471-85. [PMID: 25046048 DOI: 10.4155/bio.14.13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Since 2009, scheduling legislation of synthetic cannabinoids prompted new compound emergence to circumvent legal restrictions. 2-(4-methoxyphenyl)-1-(1-pentyl-indol-3-yl)methanone (RCS-4) is a potent cannabinoid receptor agonist sold in herbal smoking blends. Absence of parent synthetic cannabinoids in urine suggests the importance of metabolite identification for detecting RCS-4 consumption in clinical and forensic investigations. Materials & methods & Results: With 1 h human hepatocyte incubation and TOF high-resolution MS, we identified 18 RCS-4 metabolites, many not yet reported. Most metabolites were hydroxylated with or without demethylation, carboxylation and dealkylation followed by glucuronidation. One additional sulfated metabolite was also observed. O-demethylation was the most common biotransformation and generated the major metabolite. CONCLUSION For the first time, we present a metabolic scheme of RCS-4 obtained from human hepatocytes, including Phase I and II metabolites. Metabolite structural information and associated high-resolution mass spectra can be employed for developing clinical and forensic laboratory RCS-4 urine screening methods.
Collapse
|
31
|
Erol Öztürk Y, Yeter O, Alpertunga B. Validation of JWH-018 and its metabolites in blood and urine by UPLC-MS/MS: Monitoring in forensic cases. Forensic Sci Int 2015; 248:88-93. [PMID: 25616218 DOI: 10.1016/j.forsciint.2014.12.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/15/2014] [Accepted: 12/31/2014] [Indexed: 10/24/2022]
Abstract
The herbal products referred to as 'Spice' have been used as 'legal alternatives' to cannabis worldwide since 2004. The first synthetic cannabinoid JWH-018 was detected in 'Spice' products in 2008, and has been banned by many legal authorities since the beginning of 2009. In order to prove use of JWH cannabinoids (JWHs), specific and robust methods were needed. We have developed a specific and reliable method for the detection and quantification of JWH-018, JWH-018 N-pentanoic acid, and JWH-018 N-(5-hydroxypentyl) in blood and urine using solid-phase extraction followed by UPLC-MS/MS analysis. The method has been validated in terms of linearity (0.1-50ng/mL), selectivity, intra-assay and inter-assay accuracy and precision (CV<15%), recovery (85-98%), limits of detection (LOD) (0.08-0.14ng/mL), and quantification (LOQ) (0.10-0.21ng/mL). Matrix effects, stability, and process efficiency were also assessed. The method has been applied to 868 authentic samples received by the Department of Chemistry (Istanbul) in the Council of Forensic Medicine of the Ministry of Justice.
Collapse
Affiliation(s)
- Yeter Erol Öztürk
- Council of Forensic Medicine, Bursa Chemistry Department, Toxicology Division, 16140 Ataevler, Bursa, Turkey.
| | - Oya Yeter
- Council of Forensic Medicine, Istanbul Chemistry Department, Toxicology Division, 34196 Bahcelievler, Istanbul, Turkey
| | - Buket Alpertunga
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116 Beyazit, Istanbul, Turkey
| |
Collapse
|
32
|
Znaleziona J, Ginterová P, Petr J, Ondra P, Válka I, Ševčík J, Chrastina J, Maier V. Determination and identification of synthetic cannabinoids and their metabolites in different matrices by modern analytical techniques - a review. Anal Chim Acta 2015; 874:11-25. [PMID: 25910441 DOI: 10.1016/j.aca.2014.12.055] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 12/16/2014] [Accepted: 12/31/2014] [Indexed: 10/24/2022]
Abstract
Synthetic cannabinoids have gained popularity due to their easy accessibility and psychoactive effects. Furthermore, they cannot be detected in urine by routine drug monitoring. The wide range of active ingredients in analyzed matrices hinders the development of a standard analytical method for their determination. Moreover, their possible side effects are not well known which increases the danger. This review is focused on the sample preparation and the determination of synthetic cannabinoids in different matrices (serum, urine, herbal blends, oral fluid, hair) published since 2004. The review includes separation and identification techniques, such as thin layer chromatography, gas and liquid chromatography and capillary electrophoresis, mostly coupled with mass spectrometry. The review also includes results by spectral methods like infrared spectroscopy, nuclear magnetic resonance or direct-injection mass spectrometry.
Collapse
Affiliation(s)
- Joanna Znaleziona
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, Olomouc CZ-77146, Czech Republic
| | - Pavlína Ginterová
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, Olomouc CZ-77146, Czech Republic
| | - Jan Petr
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, Olomouc CZ-77146, Czech Republic
| | - Peter Ondra
- Department of Forensic Medicine and Medical Law Faculty Hospital, Hněvotínská 3, Olomouc CZ-77146, Czech Republic
| | - Ivo Válka
- Department of Forensic Medicine and Medical Law Faculty Hospital, Hněvotínská 3, Olomouc CZ-77146, Czech Republic
| | - Juraj Ševčík
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, Olomouc CZ-77146, Czech Republic
| | - Jan Chrastina
- Institute of Special Education Studies, Faculty of Education, Palacký University, Žižkovo náměsti 5, Olomouc CZ-77146, Czech Republic
| | - Vítězslav Maier
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, Olomouc CZ-77146, Czech Republic.
| |
Collapse
|
33
|
Determination of major metabolites of MAM-2201 and JWH-122 in in vitro and in vivo studies to distinguish their intake. Forensic Sci Int 2014; 244:85-91. [DOI: 10.1016/j.forsciint.2014.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/02/2014] [Accepted: 08/12/2014] [Indexed: 11/23/2022]
|
34
|
Buser GL, Gerona RR, Horowitz BZ, Vian KP, Troxell ML, Hendrickson RG, Houghton DC, Rozansky D, Su SW, Leman RF. Acute kidney injury associated with smoking synthetic cannabinoid. Clin Toxicol (Phila) 2014; 52:664-73. [PMID: 25089722 DOI: 10.3109/15563650.2014.932365] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CONTEXT AND OBJECTIVES Synthetic cannabinoids are illegal drugs of abuse known to cause adverse neurologic and sympathomimetic effects. They are an emerging health risk: 11% of high school seniors reported smoking them during the previous 12 months. We describe the epidemiology of a toxicologic syndrome of acute kidney injury associated with synthetic cannabinoids, review the toxicologic and public health investigation of the cluster, and describe clinical implications of the cluster investigation. MATERIALS AND METHODS Case series of nine patients affected by the toxicologic syndrome in Oregon and southwestern Washington during May-October 2012. Cases were defined as acute kidney injury (creatinine > 1.3 mg/dL) among persons aged 13-40 years without known renal disease who reported smoking synthetic cannabinoids. Toxicology laboratories used liquid chromatography and time-of-flight mass spectrometry to test clinical and product specimens for synthetic cannabinoids, their metabolites, and known nephrotoxins. Public health alerts informed clinicians, law enforcement, and the community about the cluster and the need to be alert for toxidromes associated with emerging drugs of abuse. RESULTS Patients were males aged 15-27 years (median, 18 years), with intense nausea and flank or abdominal pain, and included two sets of siblings. Peak creatinine levels were 2.6-17.7 mg/dL (median, 6.6 mg/dL). All patients were hospitalized; one required dialysis; none died. No alternate causes of acute kidney injury or nephrotoxins were identified. Patients reported easily purchasing synthetic cannabinoids at convenience, tobacco, and adult bookstores. One clinical and 2 product samples contained evidence of a novel synthetic cannabinoid, XLR-11 ([1-(5-fluoropentyl)-1H-indol-3-yl](2,2,3,3-tetramethylcyclopropyl)methanone). DISCUSSION AND CONCLUSION Whether caused by direct toxicity, genetic predisposition, or an as-yet unidentified nephrotoxin, this association between synthetic cannabinoid exposure and acute kidney injury reinforces the need for vigilance to detect new toxicologic syndromes associated with emerging drugs of abuse. Liquid chromatography and time-of-flight mass spectrometry are useful tools in determining the active ingredients in these evolving products and evaluating them for toxic contaminants.
Collapse
Affiliation(s)
- G L Buser
- Acute and Communicable Disease Prevention, Oregon Public Health Division, Oregon Health Authority , Portland, OR , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Health care providers are seeing an increased number of patients under the influence of several new psychoactive drug classes. Synthetic cannabinoids, cathinones, and piperazines are sought by users for their psychoactive effects, perceived safety profile, minimal legal regulations, and lack of detection on routine urine drug screening. However, these drugs are beginning to be recognized by the medical community for their toxic effects. The neuropsychiatric and cardiovascular toxicities are among the most common reasons for emergency medical treatment, which in some cases, can be severe and even life-threatening. Management strategies are often limited to supportive and symptomatic care due to the limited published data on alternative treatment approaches. The purpose of this article is to offer health care providers, emergency medical personnel in particular, an awareness and understanding of the dangers related to some of the new psychoactive drugs of abuse. The background, pharmacology, toxicity, management, detection, and legal status of each class will be discussed.
Collapse
Affiliation(s)
- Brian P. Kersten
- Pharmacy Department, Buffalo General Medical Center, Buffalo, NY, USA
| | | |
Collapse
|
36
|
Temerdashev AZ, Grigor’ev IM, Rybal’chenko IV. Evolution of new narcotic substances and methods of their determination. JOURNAL OF ANALYTICAL CHEMISTRY 2014. [DOI: 10.1134/s1061934814090111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Chimalakonda KC, James LP, Radominska-Pandya A, Moran JH. Sulfaphenazole and α-naphthoflavone attenuate the metabolism of the synthetic cannabinoids JWH-018 and AM2201 found in K2/spice. Drug Metab Lett 2014; 7:34-8. [PMID: 24329780 DOI: 10.2174/187231280701131211151523] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 08/31/2013] [Accepted: 09/05/2013] [Indexed: 11/22/2022]
Abstract
"K2" or "Spice" is an emerging drug of abuse that is laced with psychoactive synthetic cannabinoids JWH-018 and AM2201. Previous studies have identified hydroxylated (OH) and carboxylated (COOH) species as primary human metabolites, and kinetic studies have implicated CYP2C9 and -1A2 as major hepatic P450s involved in JWH-018 and AM2201 oxidation. The present study extends these findings by testing the hypothesis that CYP2C9- and 1A2-selective chemical inhibitors, sulfaphenazole (SFZ) and α-naphthoflavone (ANF), block oxidation of JWH-018 and AM2201 in human liver microsomes (HLM). A concentration-dependent inhibition of JWH-018 and AM2201 oxidation was observed in the presence of increasing concentration of SFZ (0.5 - 50 μM) and ANF (0.1 - 5.0 μM). No metabolic inhibition was observed with omeprazole, quinidine, and ketoconazole. The results presented herein further demonstrate the importance of CYP2C9- and 1A2-mediated oxidation of JWH-018 and AM2201 and the likelihood of adverse toxicity in populations with polymorphic alleles of these enzymes.
Collapse
Affiliation(s)
| | | | | | - Jeffery H Moran
- Arkansas Department of Health, Public Health Laboratory, 201 S. Monroe Street, Little Rock, AR, 72205, USA.
| |
Collapse
|
38
|
Gandhi AS, Wohlfarth A, Zhu M, Pang S, Castaneto M, Scheidweiler KB, Huestis MA. High-resolution mass spectrometric metabolite profiling of a novel synthetic designer drug, N-(adamantan-1-yl)-1-(5-fluoropentyl)-1H-indole-3-carboxamide (STS-135), using cryopreserved human hepatocytes and assessment of metabolic stability with human liver microsomes. Drug Test Anal 2014; 7:187-98. [PMID: 24827428 DOI: 10.1002/dta.1662] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/31/2014] [Accepted: 04/03/2014] [Indexed: 12/15/2022]
Abstract
N-(Adamantan-1-yl)-1-(5-fluoropentyl)-1H-indole-3-carboxamide (STS-135) is a new synthetic cannabinoid in herbal incense products discussed on Internet drug user forums and identified in police seizures. To date, there are no STS-135 clinical or in vitro studies identifying STS-135 metabolites. However, characterizing STS-135 metabolism is critical because synthetic cannabinoid metabolites can possess pharmacological activity and parent compounds are rarely detectable in urine. To characterize the metabolite profile, human hepatocytes were incubated with 10 µmol/L STS-135 for up to 3 h. High-resolution mass spectrometry with software-assisted data mining identified 29 STS-135 metabolites. Less than 25% of STS-135 parent compound remained after 3 h incubation. Primary metabolites were generated by mono-, di- or trihydroxylation with and without ketone formation, dealkylation, and oxidative defluorination of N-fluoropentyl side chain or possible oxidation to carboxylic acid, some of them further glucuronidated. Hydroxylations occurred mainly on the aliphatic adamantane ring and less commonly on the N-pentyl side chain. At 1 h, phase I metabolites predominated, while at 3 h, phase II metabolites were present in higher amounts. The major metabolites were monohydroxy STS-135 (M25) and dihydroxy STS-135 (M21), both hydroxylated on the adamantane system. Moreover, metabolic stability of STS-135 (1 µmol/L) was assessed in human liver microsomes experiments. The in vitro half-life of STS-135 was 3.1 ± 0.2 min and intrinsic clearance (CLint ) was 208.8 mL · min(-1) · kg(-1) . This is the first report characterizing STS-135 hepatic metabolic pathways. These data provide potential urinary targets to document STS-135 intake in clinical and forensic settings and potential candidates for pharmacological testing.
Collapse
Affiliation(s)
- Adarsh S Gandhi
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Holm NB, Pedersen AJ, Dalsgaard PW, Linnet K. Metabolites of 5F-AKB-48, a synthetic cannabinoid receptor agonist, identified in human urine and liver microsomal preparations using liquid chromatography high-resolution mass spectrometry. Drug Test Anal 2014; 7:199-206. [PMID: 24802286 DOI: 10.1002/dta.1663] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/20/2014] [Accepted: 04/03/2014] [Indexed: 12/20/2022]
Abstract
New types of synthetic cannabinoid designer drugs are constantly introduced to the illicit drug market to circumvent legislation. Recently, N-(1-Adamantyl)-1-(5-fluoropentyl)-1H-indazole-3-carboxamide (5F-AKB-48), also known as 5F-APINACA, was identified as an adulterant in herbal products. This compound deviates from earlier JHW-type synthetic cannabinoids by having an indazole ring connected to an adamantyl group via a carboxamide linkage. Synthetic cannabinoids are completely metabolized, and identification of the metabolites is thus crucial when using urine as the sample matrix. Using an authentic urine sample and high-resolution accurate-mass Fourier transform Orbitrap mass spectrometry, we identified 16 phase-I metabolites of 5F-AKB-48. The modifications included mono-, di-, and trihydroxylation on the adamantyl ring alone or in combination with hydroxylation on the N-fluoropentylindazole moiety, dealkylation of the N-fluoropentyl side chain, and oxidative loss of fluorine as well as combinations thereof. The results were compared to human liver microsomal (HLM) incubations, which predominantly showed time-dependent formation of mono-, di-, and trihydroxylated metabolites having the hydroxyl groups on the adamantyl ring. The results presented here may be used to select metabolites specific of 5F-AKB-48 for use in clinical and forensic screening.
Collapse
Affiliation(s)
- Niels Bjerre Holm
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V's Vej 11, 3, DK-2100, Denmark
| | | | | | | |
Collapse
|
40
|
Abstract
Smokeable herbal mixtures containing synthetic agonists of cannabinoid receptors, known under brand names such as Spice, K2 and Kronic, represent a relatively new type of designer psychoactive drugs that has recently emerged on the recreational drug market. Although the Spice packages are labelled 'not for human consumption' or 'for aromatherapy only' and declared to be purely herbal, these herbal mixtures produce cannabis-like effects after smoking. This review surveys the current state of knowledge regarding the pharmacological properties of synthetic cannabimimetics and the prevalence and pattern of their use. Special emphasis is given to the negative consequences of using these products, including, among others, hallucinations, psychoses with delusions, seizures, cardiovascular symptoms and acute kidney injury.
Collapse
|
41
|
Malik-Wolf B, Vorce S, Holler J, Bosy T. Evaluation of Abalone -Glucuronidase Substitution in Current Urine Hydrolysis Procedures. J Anal Toxicol 2014; 38:171-6. [DOI: 10.1093/jat/bku003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
42
|
Kronstrand R, Brinkhagen L, Birath-Karlsson C, Roman M, Josefsson M. LC-QTOF-MS as a superior strategy to immunoassay for the comprehensive analysis of synthetic cannabinoids in urine. Anal Bioanal Chem 2014; 406:3599-609. [PMID: 24424965 DOI: 10.1007/s00216-013-7574-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/02/2013] [Accepted: 12/10/2013] [Indexed: 11/28/2022]
Abstract
The objective of this study was to compare the performance of an immunoassay screening for synthetic cannabinoids with a newly developed confirmation method using liquid chromatography quadrupole time-of-flight mass spectrometry. The screening included metabolites from JWH-018, JWH-073, and AM-2201. The confirmation included metabolites from AM-2201, JWH-018, JWH-019, JWH-073, JWH-081, JWH-122, JWH-210, JWH-250, JWH-398, MAM-2201, RCS-4, and UR-144. The immunoassay was tested and found to have no cross-reactivity with UR-144 metabolites but considerable cross-reactivity with MAM-2201 and JWH-122 metabolites. Sensitivity and specificity for the immunoassay were evaluated with 87 authentic urine samples and found to be 87% and 82%, respectively. With a cutoff at 2 ng/ml, the confirmation showed 80 positive findings in 38 cases. The most common finding was JWH-122 5-OH-pentyl, followed by JWH-018 5-OH-pentyl. There were 9 findings of UR-144 metabolites and 3 of JWH-073 metabolites. In summary, the immunoassay performed well, presenting both high sensitivity and specificity for the synthetic cannabinoids present in the urine samples tested. The rapid exchange of one cannabinoid for another may pose problems for immunoassays as well as for confirmation methods. However, we consider time-of-flight mass spectrometry to be superior since new metabolites can be quickly included and identified.
Collapse
Affiliation(s)
- Robert Kronstrand
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, 58758, Linköping, Sweden,
| | | | | | | | | |
Collapse
|
43
|
Stout SM, Cimino NM. Exogenous cannabinoids as substrates, inhibitors, and inducers of human drug metabolizing enzymes: a systematic review. Drug Metab Rev 2013; 46:86-95. [DOI: 10.3109/03602532.2013.849268] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
44
|
Fantegrossi WE, Moran JH, Radominska-Pandya A, Prather PL. Distinct pharmacology and metabolism of K2 synthetic cannabinoids compared to Δ(9)-THC: mechanism underlying greater toxicity? Life Sci 2013; 97:45-54. [PMID: 24084047 DOI: 10.1016/j.lfs.2013.09.017] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/10/2013] [Accepted: 09/19/2013] [Indexed: 02/01/2023]
Abstract
K2 or Spice products are emerging drugs of abuse that contain synthetic cannabinoids (SCBs). Although assumed by many teens and first time drug users to be a "safe" and "legal" alternative to marijuana, many recent reports indicate that SCBs present in K2 produce toxicity not associated with the primary psychoactive component of marijuana, ∆(9)-tetrahydrocannabinol (Δ(9)-THC). This mini-review will summarize recent evidence that use of K2 products poses greater health risks relative to marijuana, and suggest that distinct pharmacological properties and metabolism of SCBs relative to Δ(9)-THC may contribute to the observed toxicity. Studies reviewed will indicate that in contrast to partial agonist properties of Δ(9)-THC typically observed in vitro, SCBs in K2 products act as full cannabinoid receptor type 1 (CB1R) and type 2 (CB2R) agonists in both cellular assays and animal studies. Furthermore, unlike Δ(9)-THC metabolism, several SCB metabolites retain high affinity for, and exhibit a range of intrinsic activities at, CB1 and CB2Rs. Finally, several reports indicate that although quasi-legal SCBs initially evaded detection and legal consequences, these presumed "advantages" have been limited by new legislation and development of product and human testing capabilities. Collectively, evidence reported in this mini-review suggests that K2 products are neither safe nor legal alternatives to marijuana. Instead, enhanced toxicity of K2 products relative to marijuana, perhaps resulting from the combined actions of a complex mixture of different SCBs present and their active metabolites that retain high affinity for CB1 and CB2Rs, highlights the inherent danger that may accompany use of these substances.
Collapse
Affiliation(s)
- William E Fantegrossi
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jeffery H Moran
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Arkansas Department of Public Health, Public Health Laboratory, Little Rock, AR 72205, USA
| | - Anna Radominska-Pandya
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Paul L Prather
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
45
|
Brents LK, Prather PL. The K2/Spice phenomenon: emergence, identification, legislation and metabolic characterization of synthetic cannabinoids in herbal incense products. Drug Metab Rev 2013; 46:72-85. [PMID: 24063277 DOI: 10.3109/03602532.2013.839700] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In 2008, the European Monitoring Center for Drugs and Drug Addiction (EMCDDA) detected unregulated, psychoactive synthetic cannabinoids (SCBs) in purportedly all-natural herbal incense products (often known as K2 or Spice) that were being covertly abused as marijuana substitutes. These drugs, which include JWH-018, JWH-073 and CP-47,497, bind and activate the cannabinoid receptors CB1R and CB2R with remarkable potency and efficacy. Serious adverse effects that often require medical attention, including severe cardiovascular, gastrointestinal and psychiatric sequelae, are highly prevalent with SCB abuse. Consequently, progressively restrictive legislation in the US and Europe has banned the distribution, sale and use of prevalent SCBs, initiating cycles in which herbal incense manufacturers replace banned SCBs with newer unregulated SCBs. The contents of the numerous, diverse herbal incense products was unknown when SCB abuse first emerged. Furthermore, the pharmacology of the active components was largely uncharacterized, and confirmation of SCB use was hindered by a lack of known biomarkers. These knowledge gaps prompted scientists across multiple disciplines to rapidly (1) monitor, identify and quantify with chromatography/mass spectrometry the ever-changing contents of herbal incense products, (2) determine the metabolic pathways and major urinary metabolites of several commonly abused SCBs and (3) identify active metabolites that possibly contribute to the severe adverse effect profile of SCBs. This review comprehensively describes the emergence of SCB abuse and provides a historical account of the major case reports, legal decisions and scientific discoveries of the "K2/Spice Phenomenon". Hypotheses concerning potential mechanisms SCB adverse effects are proposed in this review.
Collapse
Affiliation(s)
- Lisa K Brents
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences , Little Rock, AR , USA and
| | | |
Collapse
|
46
|
Patton AL, Seely KA, Chimalakonda KC, Tran JP, Trass M, Miranda A, Fantegrossi WE, Kennedy PD, Dobrowolski P, Radominska-Pandya A, McCain KR, James LP, Endres GW, Moran JH. Targeted Metabolomic Approach for Assessing Human Synthetic Cannabinoid Exposure and Pharmacology. Anal Chem 2013; 85:9390-9. [DOI: 10.1021/ac4024704] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Amy L. Patton
- Arkansas
Department of Health, Public Health Laboratory, Little Rock, Arkansas 72205, United States
| | - Kathryn A. Seely
- Arkansas
Department of Health, Public Health Laboratory, Little Rock, Arkansas 72205, United States
| | - Krishna C. Chimalakonda
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Johnny P. Tran
- Arkansas
Department of Health, Public Health Laboratory, Little Rock, Arkansas 72205, United States
| | - Matthew Trass
- Phenomenex, Torrance, California 90501, United States
| | - Art Miranda
- Phenomenex, Torrance, California 90501, United States
| | - William E. Fantegrossi
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Paul D. Kennedy
- Cayman Chemical Co., Ann Arbor, Michigan 48108, United States
| | | | - Anna Radominska-Pandya
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Keith R. McCain
- Arkansas Poison & Drug Information Center, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Laura P. James
- Section
of Clinical Pharmacology and Toxicology, Arkansas Children’s Hospital and Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences and Arkansas Children’s Hospital, Little Rock, Arkansas 72205, United States
| | | | - Jeffery H. Moran
- Arkansas
Department of Health, Public Health Laboratory, Little Rock, Arkansas 72205, United States
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| |
Collapse
|
47
|
Brents LK, Zimmerman SM, Saffell AR, Prather PL, Fantegrossi WE. Differential drug-drug interactions of the synthetic Cannabinoids JWH-018 and JWH-073: implications for drug abuse liability and pain therapy. J Pharmacol Exp Ther 2013; 346:350-61. [PMID: 23801678 PMCID: PMC3920092 DOI: 10.1124/jpet.113.206003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/24/2013] [Indexed: 11/22/2022] Open
Abstract
Marijuana substitutes often contain blends of multiple psychoactive synthetic cannabinoids (SCBs), including the prevalent SCBs (1-pentyl-1H-indole-3-yl)-1-naphthalenyl-methanone (JWH-018) and (1-butyl-1H-indole-3-yl)-1-naphthalenyl-methanone (JWH-073). Because SCBs are frequently used in combinations, we hypothesized that coadministering multiple SCBs induces synergistic drug-drug interactions. Drug-drug interactions between JWH-018 and JWH-073 were investigated in vivo for Δ(9)-tetrahydrocannabinol (Δ(9)-THC)-like discriminative stimulus effects, analgesia, task disruption, and hypothermia. Combinations (JWH-018:JWH-073) of these drugs were administered to mice in assays of Δ(9)-THC discrimination, tail-immersion, and food-maintained responding, and rectal temperatures were measured. Synergism occurred in the Δ(9)-THC discrimination assay for two constant dose ratio combinations (1:3 and 1:1). A 1:1 and 2:3 dose ratio induced additivity and synergy, respectively, in the tail-immersion assay. Both 1:1 and 2:3 dose ratios were additive for hypothermia, whereas a 1:3 dose ratio induced subadditive suppression of food-maintained responding. In vitro drug-drug interactions were assessed using competition receptor-binding assays employing mouse brain homogenates and cannabinoid 1 receptor (CB1R)-mediated inhibition of adenylyl cyclase activity in Neuro2A wild-type cells. Interestingly, synergy occurred in the competition receptor-binding assay for two dose ratios (1:5 and 1:10), but not in the adenylyl cyclase activity assay (1:5). Altogether, these data indicate that drug-drug interactions between JWH-018 and JWH-073 are effect- and ratio-dependent and may increase the relative potency of marijuana substitutes for subjective Δ(9)-THC-like effects. Combinations may improve the therapeutic profile of cannabinoids, considering that analgesia but not hypothermia or task disruption was potentiated. Importantly, synergy in the competition receptor-binding assay suggests multiple CB1R-SCB binding sites.
Collapse
Affiliation(s)
- Lisa K Brents
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | |
Collapse
|
48
|
Gandhi AS, Zhu M, Pang S, Wohlfarth A, Scheidweiler KB, Liu HF, Huestis MA. First characterization of AKB-48 metabolism, a novel synthetic cannabinoid, using human hepatocytes and high-resolution mass spectrometry. AAPS JOURNAL 2013; 15:1091-8. [PMID: 23913126 DOI: 10.1208/s12248-013-9516-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/15/2013] [Indexed: 11/30/2022]
Abstract
Since the federal authorities scheduled the first synthetic cannabinoids, JWH-018 and JWH-073, new synthetic cannabinoids were robustly marketed. N-(1-Adamantyl)-1-pentylindazole-3-carboxamide (AKB-48), also known as APINACA, was recently observed in Japanese herbal smoking blends. The National Forensic Laboratory Information System registered 443 reports of AKB-48 cases in the USA from March 2010 to January 2013. In May 2013, the Drug Enforcement Administration listed AKB-48 as a Schedule I drug. Recently, AKB-48 was shown to have twice the CB1 receptor binding affinity than CB2. These pharmacological effects and the difficulty in detecting the parent compound in urine highlight the importance of metabolite identification for developing analytical methods for clinical and forensic investigations. Using human hepatocytes and TripleTOF mass spectrometry, we identified 17 novel phase I and II AKB-48 metabolites, products of monohydroxylation, dihydroxylation, or trihydroxylation on the aliphatic adamantane ring or N-pentyl side chain. Glucuronide conjugation of some mono- and dihydroxylated metabolites also occurred. Oxidation and dihydroxylation on the adamantane ring and N-pentyl side chain formed a ketone. More metabolites were identified after 3 h of incubation than at 1 h. For the first time, we present a AKB-48 metabolic scheme obtained from human hepatocytes and high-resolution mass spectrometry. These data are needed to develop analytical methods to identify AKB-48 consumption in clinical and forensic testing.
Collapse
Affiliation(s)
- Adarsh S Gandhi
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Boulevard, Suite 200, Room 05A-721, Baltimore, Maryland, 21224, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Spaderna M, Addy PH, D’Souza DC. Spicing things up: synthetic cannabinoids. Psychopharmacology (Berl) 2013; 228:525-40. [PMID: 23836028 PMCID: PMC3799955 DOI: 10.1007/s00213-013-3188-4] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/14/2013] [Indexed: 02/06/2023]
Abstract
RATIONALE Recently, products containing synthetic cannabinoids, collectively referred to as Spice, are increasingly being used recreationally. OBJECTIVES The availability, acute subjective effects-including self-reports posted on Erowid-laboratory detection, addictive potential, and regulatory challenges of the Spice phenomenon are reviewed. RESULTS Spice is sold under the guise of potpourri or incense. Unlike delta-9-tetrahydrocannabinol, the synthetic cannabinoids present in Spice are high-potency, high-efficacy, cannabinoid receptor full agonists. Since standard urine toxicology does not test for the synthetic cannabinoids in Spice, it is often used by those who want to avoid detection of drug use. These compounds have not yet been subjected to rigorous testing in humans. Acute psychoactive effects include changes in mood, anxiety, perception, thinking, memory, and attention. Adverse effects include anxiety, agitation, panic, dysphoria, psychosis, and bizarre behavior. Psychosis outcomes associated with Spice provide additional data linking cannabinoids and psychosis. Adverse events necessitating intervention by Poison Control Centers, law enforcement, emergency responders, and hospitals are increasing. Despite statutes prohibiting the manufacture, distribution, and sale of Spice products, manufacturers are replacing banned compounds with newer synthetic cannabinoids that are not banned. CONCLUSIONS There is an urgent need for better research on the effects of synthetic cannabinoids to help clinicians manage adverse events and to better understand cannabinoid pharmacology in humans. The reported psychosis outcomes associated with synthetic cannabinoids contribute to the ongoing debate on the association between cannabinoids and psychosis. Finally, drug detection tests for synthetic cannabinoids need to become clinically available.
Collapse
Affiliation(s)
- Max Spaderna
- Dept of Psychiatry, Yale University School of Medicine, New Haven, CT 06511
| | - Peter H Addy
- Dept of Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Medical Informatics, VA Connecticut Healthcare System, West Haven, CT 06516
- Substance Abuse Treatment Unit, Connecticut Mental Health Center, New Haven, CT 06511
| | - Deepak Cyril D’Souza
- Dept of Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Schizophrenia Research Program, Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT 06516
- Clinical Neurosciences Research Unit, Connecticut Mental Health Center, New Haven, CT 06508
| |
Collapse
|
50
|
Kavanagh P, Grigoryev A, Melnik A, Savchuk S, Simonov A, Rozhanets V. Detection and tentative identification of urinary phase I metabolites of phenylacetylindole cannabimimetics JWH-203 and JWH-251, by GC-MS and LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 934:102-8. [PMID: 23917406 DOI: 10.1016/j.jchromb.2013.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/17/2013] [Accepted: 07/06/2013] [Indexed: 10/26/2022]
Abstract
The synthetic phenylacetylindole cannabimimetics, JWH-203 and JWH-251, have been identified in 'herbal' smoking mixtures following the widespread legislative control of 'first generation' compounds such as JWH-018 and CP47, 497(C8). N-Alkylindole cannabimimetics (including phenylacetylindoles) undergo extensive metabolism and little or none of the parent compounds are found in urine. Utilizing GC-MS and LC-MS/MS, a series of JWH-203 and JWH-251 urinary metabolites have been tentatively identified. These are products of mono- and dihydroxylation, monohydroxylation combined with formation of carbonyl group on the N-pentyl chain, carboxylation of N-pentyl chain and N-dealkylation combined with monohydroxylation. Additionally, trihydroxylated metabolites were detected for JWH-203. No parent compounds were detected. The monohydroxylated metabolites with the hydroxyl group positioned on the N-pentyl chain were the most abundant and were found to be suitable for establishing ingestion of JWH-203 or JWH-250. Maximum urinary concentrations of chain-monohydroxylated metabolites were observed at 2.5-3h (JWH-203) and 6-10h (JWH-251) following ingestion. These metabolites were observed (GC-MS) for to 10 and 8 days (JWH-203 and JWH-251, respectively).
Collapse
Affiliation(s)
- Pierce Kavanagh
- Department of Pharmacology and Therapeutics, Trinity College, School of Medicine, Dublin 8, Ireland
| | | | | | | | | | | |
Collapse
|