1
|
Zhang M, Vuist IM, Rottschäfer V, de Lange EC. Exploring K p,uu,BBB values smaller than unity in remoxipride: A physiologically-based CNS model approach highlighting brain metabolism in drugs with passive blood-brain barrier transport. Eur J Pharm Sci 2024; 203:106883. [PMID: 39181172 DOI: 10.1016/j.ejps.2024.106883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
(AIM) Kp,uu,BBB values are crucial indicators of drug distribution into the brain, representing the steady-state relationship between unbound concentrations in plasma and in brain extracellular fluid (brainECF). Kp,uu,BBB values < 1 are often interpreted as indicators of dominant active efflux transport processes at the blood-brain barrier (BBB). However, the potential impact of brain metabolism on this value is typically not addressed. In this study, we investigated the brain distribution of remoxipride, as a paradigm compound for passive BBB transport with yet unexplained brain elimination that was hypothesized to represent brain metabolism. (METHODS) The physiologically-based LeiCNS pharmacokinetic predictor (LeiCNS-PK model) was used to compare brain distribution of remoxipride with and without Michaelis-Menten kinetics at the BBB and/or brain cell organelle levels. To that end, multiple in-house (IV 0.7, 3.5, 4, 5.2, 7, 8, 14 and 16 mg kg-1) and external (IV 4 and 8 mg kg-1) rat microdialysis studies plasma and brainECF data were analysed. (RESULTS) The incorporation of active elimination through presumed brain metabolism of remoxipride in the LeiCNS-PK model significantly improved the prediction accuracy of experimentally observed brainECF profiles of this drug. The model integrated with brain metabolism in both barriers and organelles levels is named LeiCNS-PK3.5. (CONCLUSION) For drugs with Kp,uu,BBB values < 1, not only the current interpretation of dominant BBB efflux transport, but also potential brain metabolism needs to be considered, especially because these may be concentration dependent. This will improve the mechanistic understanding of the processes that determine brain PK profiles.
Collapse
Affiliation(s)
- Mengxu Zhang
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Gorlaeus Laboratories, Leiden, the Netherlands
| | - Ilona M Vuist
- Charles River Laboratories, Groningen, the Netherlands
| | - Vivi Rottschäfer
- Mathematical Institute, Leiden University, Leiden, the Netherlands; Korteweg-de Vries Institute for Mathematics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, the Netherlands
| | - Elizabeth Cm de Lange
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Gorlaeus Laboratories, Leiden, the Netherlands.
| |
Collapse
|
2
|
Ghosh M, Roy D, Thakur S, Singh A. Exploring the Potential of Nasal Drug Delivery for Brain Targeted Therapy: A Detailed Analysis. Biopharm Drug Dispos 2024; 45:161-189. [PMID: 39665188 DOI: 10.1002/bdd.2400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024]
Abstract
The brain is a sensitive organ with numerous essential functions and complex mechanisms. It is secluded and safeguarded from the external environment as part of the central nervous system (CNS), serving as a sanctuary. By regulating their selective and specific absorption, efflux, and metabolism in the brain, the CNS controls brain homeostasis and the transit of endogenous and foreign substances. The mechanism which protects the brain from environmental chemicals, also prevent the entry of therapeutic chemicals to it. The delivery of molecules to the brain is hindered by several major barriers, such as the blood-brain barrier (BBB), blood-cerebrospinal fluid barrier (BCSFB), and blood-tumor barrier. BBB is formed by the combination of cerebral endothelial cells, astrocytes, neurons, pericytes and microglia. It is a tight junction of capillary endothelial cells, preventing the diffusion of solute into the brain. BCSFB is the second barrier, located at the choroid plexus, separating the blood from cerebrospinal fluid (CSF). It is comparatively more permeable than BBB. An uneven distribution of microvasculature across the tumor interstitial compromises drug delivery to neoplastic cells of a solid tumor, resulting in spatially inconsistent drug administration. Nasal drug delivery to the brain is a method of drug delivery that tries to deliver therapeutic substances directly from the nasal cavity to the central nervous system including the brain. In this review, besides the role of barriers we have discussed in detail about approaches adapted to deliver drugs to the brain along with mechanisms through nasal route. Further, different commercial formulations, clinical trials and patents have been thoroughly elaborated to date. The findings suggest that the nose-to-brain drug delivery method holds promise as an evolving approach, potentially contributing to the specific and targeted delivery of drugs into the brain.
Collapse
Affiliation(s)
| | - Debajyoti Roy
- Department of Pharmacy, CV Raman Global University, Bhubaneswar, India
| | - Shubham Thakur
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Amrinder Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| |
Collapse
|
3
|
Sardu ML, Poggesi I. Pharmacokinetics of intranasal drugs, still a missed opportunity? Xenobiotica 2024; 54:424-438. [PMID: 38687903 DOI: 10.1080/00498254.2024.2349046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
The intranasal (IN) route of administration is important for topical drugs and drugs intended to act systemically. More recently, direct nose-to-brain input was considered to bypass the blood-brain barrier.Processes related to IN absorption and nose-to-brain distribution are complex and depend, sometimes in contrasting ways, on chemico-physical and structural parameters of the compounds, and on formulation options.Due to the intricacies of these processes and despite the large number of articles published on many different IN compounds, it appears that absorption after IN dosing is not yet fully understood. In particular, at variance of the understanding and modelling approaches that are available for predicting the pharmacokinetics (PK) following oral administration of xenobiotics, it appears that there is not a similar understanding of the chemico-physical and structural determinants influencing drug absorption and disposition of compounds after IN administration, which represents a missed opportunity for this research field. This is even more true regarding the understanding of the direct nose-to-brain input. Due to this, IN administrations may represent an interesting and open research field for scientists aiming to develop PK property predictions tools, mechanistic PK models describing rate and extent of IN absorption, and translational tools to anticipate the clinical PK following IN dosing based on in vitro and in vivo non clinical experiments.This review intends to provide: i) some basic knowledge related to the physiology of PK after IN dosing, ii) a non-exhaustive list of preclinical and clinical examples related to compounds explored for the potential nose-to-blood and nose-to-brain passage, and iii) the identification of some areas requiring improvements, the understanding of which may facilitate the development of IN drug candidates.
Collapse
Affiliation(s)
| | - Italo Poggesi
- Clinical Pharmacology, Modeling and Simulation, GSK, Verona, Italy
| |
Collapse
|
4
|
Huttunen KM. Improving drug delivery to the brain: the prodrug approach. Expert Opin Drug Deliv 2024; 21:683-693. [PMID: 38738934 DOI: 10.1080/17425247.2024.2355180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
INTRODUCTION The prodrug approach has been thought to be a simple solution to improve brain drug delivery for decades. Nevertheless, it still comes as a surprise that there is relatively little success in the field. The best example anti-parkinsonian drug levodopa has been serendipitously discovered to be a transporter-utilizing brain-delivered prodrug rather than a rationally developed one. AREAS COVERED The lack of success can mainly be explained by the insufficient understanding of the role of membrane proteins that can facilitate drug delivery at dynamic barriers, such as the blood-brain barrier (BBB), but also by the sparse knowledge of prodrug bioconverting enzymes in the brain. This review summarizes the current status of the prodrug attempts that have been developed in the past to improve brain drug delivery. EXPERT OPINION With the expandingly improved analytical and computational technologies, it is anticipated that enhanced brain drug delivery will be eventually achieved for most of the central nervous system (CNS) acting drugs. However, this requires that carrier-mediated (pro)drug delivery methods are implemented in the very early phases of the drug development processes and not as a last step to survive a problematic investigational drug candidate.
Collapse
Affiliation(s)
- Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
5
|
Barends C, den Daas I, Driesens M, Visser A, Absalom A, Colin P. Development of a pharmacokinetic and pharmacodynamic model for intranasal administration of midazolam in older adults: a single-site two-period crossover study. Br J Anaesth 2023:S0007-0912(23)00228-3. [PMID: 37268446 DOI: 10.1016/j.bja.2023.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/09/2023] [Accepted: 04/17/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Intranasal midazolam can produce procedural sedation in frail older patients with dementia who are unable to tolerate necessary medical or dental procedures during domiciliary medical care. Little is known about the pharmacokinetics and pharmacodynamics of intranasal midazolam in older (>65 yr old) people. The aim of this study was to understand the pharmacokinetic/pharmacodynamic properties of intranasal midazolam in older people with the primary goal of developing a pharmacokinetic/pharmacodynamic model to facilitate safer domiciliary sedation care. METHODS We recruited 12 volunteers: ASA physical status 1-2, aged 65-80 yr, and received midazolam 5 mg intravenously and 5 mg intranasally on two study days separated by a 6 day washout period. Concentrations of venous midazolam and 1'-OH-midazolam, Modified Observer's Assessment of Alertness/Sedation (MOAA/S) score, bispectral index (BIS), arterial pressure, ECG, and respiratory parameters were measured for 10 h. RESULTS Time to peak effect of intranasal midazolam for BIS, MAP, and SpO2 were 31.9 (6.2), 41.0 (7.6), and 23.1 (3.0) min, respectively. Intranasal bioavailability was lower compared with intravenous administration (Fabs 95%; 95% confidence interval: 89-100%). A three-compartment model best described midazolam pharmacokinetics following intranasal administration. A separate effect compartment linked to the dose compartment best described an observed time-varying drug-effect difference between intranasal and intravenous midazolam, suggesting direct nose-to-brain transport. CONCLUSIONS Intranasal bioavailability was high and sedation onset was rapid, with maximum sedative effects after 32 min. We developed a pharmacokinetic/pharmacodynamic model for intranasal midazolam for older persons and an online tool to simulate changes in MOAA/S, BIS, MAP, and SpO2 after single and additional intranasal boluses. CLINICAL TRIAL REGISTRATION EudraCT (2019-004806-90).
Collapse
Affiliation(s)
- Clemens Barends
- Department of Anaesthesiology, University Medical Center Groningen, Groningen, The Netherlands.
| | | | - Mendy Driesens
- Department of Anaesthesiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Anita Visser
- Department of Gerodontology, Center for Dentistry and Oral Hygiene, University Medical Center Groningen, Groningen, The Netherlands; Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, Groningen, The Netherlands; Department of Gerodontology, College of Dental Sciences, Radboud University, Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Anthony Absalom
- Department of Anaesthesiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Pieter Colin
- Department of Anaesthesiology, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Kaikousidis C, Papakyriakopoulou P, Dokoumetzidis A, Valsami G. Donepezil Brain and Blood Pharmacokinetic Modeling after Nasal Film and Oral Solution Administration in Mice. Pharmaceutics 2023; 15:pharmaceutics15051409. [PMID: 37242651 DOI: 10.3390/pharmaceutics15051409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Intranasal delivery is a non-invasive mode of administration, gaining popularity due to its potential for targeted delivery to the brain. The anatomic connection of the nasal cavity with the central nervous system (CNS) is based on two nerves: olfactory and trigeminal. Moreover, the high vasculature of the respiratory area enables systemic absorption avoiding possible hepatic metabolism. Due to these physiological peculiarities of the nasal cavity, compartmental modeling for nasal formulation is considered a demanding process. For this purpose, intravenous models have been proposed, based on the fast absorption from the olfactory nerve. However, most of the sophisticated approaches are required to describe the different absorption events occurring in the nasal cavity. Donepezil was recently formulated in the form of nasal film ensuring drug delivery in both bloodstream and the brain. In this work, a three-compartment model was first developed to describe donepezil oral brain and blood pharmacokinetics. Subsequently, using parameters estimated by this model, an intranasal model was developed dividing the administered dose into three fractions, corresponding to absorption directly to the bloodstream and brain, as well as indirectly to the brain expressed through transit compartments. Hence, the models of this study aim to describe the drug flow on both occasions and quantify the direct nose-to-brain and systemic distribution.
Collapse
Affiliation(s)
- Christos Kaikousidis
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Paraskevi Papakyriakopoulou
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Aristides Dokoumetzidis
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Georgia Valsami
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| |
Collapse
|
7
|
Di Scala C, Armstrong N, Chahinian H, Chabrière E, Fantini J, Yahi N. AmyP53, a Therapeutic Peptide Candidate for the Treatment of Alzheimer’s and Parkinson’s Disease: Safety, Stability, Pharmacokinetics Parameters and Nose-to Brain Delivery. Int J Mol Sci 2022; 23:ijms232113383. [PMID: 36362170 PMCID: PMC9654333 DOI: 10.3390/ijms232113383] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Neurodegenerative disorders are a major public health issue. Despite decades of research efforts, we are still seeking an efficient cure for these pathologies. The initial paradigm of large aggregates of amyloid proteins (amyloid plaques, Lewis bodies) as the root cause of Alzheimer’s and Parkinson’s diseases has been mostly dismissed. Instead, membrane-bound oligomers forming Ca2+-permeable amyloid pores are now considered appropriate targets for these diseases. Over the last 20 years, our group deciphered the molecular mechanisms of amyloid pore formation, which appeared to involve a common pathway for all amyloid proteins, including Aβ (Alzheimer) and α-synuclein (Parkinson). We then designed a short peptide (AmyP53), which prevents amyloid pore formation by targeting gangliosides, the plasma membrane receptors of amyloid proteins. Herein, we show that aqueous solutions of AmyP53 are remarkably stable upon storage at temperatures up to 45 °C for several months. AmyP53 appeared to be more stable in whole blood than in plasma. Pharmacokinetics studies in rats demonstrated that the peptide can rapidly and safely reach the brain after intranasal administration. The data suggest both the direct transport of AmyP53 via the olfactory bulb (and/or the trigeminal nerve) and an indirect transport via the circulation and the blood–brain barrier. In vitro experiments confirmed that AmyP53 is as active as cargo peptides in crossing the blood–brain barrier, consistent with its amino acid sequence specificities and physicochemical properties. Overall, these data open a route for the use of a nasal spray formulation of AmyP53 for the prevention and/or treatment of Alzheimer’s and Parkinson’s diseases in future clinical trials in humans.
Collapse
Affiliation(s)
- Coralie Di Scala
- Neuroscience Center—HiLIFE, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Nicholas Armstrong
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille University, 13005 Marseille, France
| | - Henri Chahinian
- INSERM UMR_S 1072, Aix Marseille University, 13015 Marseille, France
| | - Eric Chabrière
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille University, 13005 Marseille, France
| | - Jacques Fantini
- INSERM UMR_S 1072, Aix Marseille University, 13015 Marseille, France
| | - Nouara Yahi
- INSERM UMR_S 1072, Aix Marseille University, 13015 Marseille, France
- Correspondence:
| |
Collapse
|
8
|
Crowe TP, Hsu WH. Evaluation of Recent Intranasal Drug Delivery Systems to the Central Nervous System. Pharmaceutics 2022; 14:629. [PMID: 35336004 PMCID: PMC8950509 DOI: 10.3390/pharmaceutics14030629] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
Neurological diseases continue to increase in prevalence worldwide. Combined with the lack of modifiable risk factors or strongly efficacious therapies, these disorders pose a significant and growing burden on healthcare systems and societies. The development of neuroprotective or curative therapies is limited by a variety of factors, but none more than the highly selective blood-brain barrier. Intranasal administration can bypass this barrier completely and allow direct access to brain tissues, enabling a large number of potential new therapies ranging from bioactive peptides to stem cells. Current research indicates that merely administering simple solutions is inefficient and may limit therapeutic success. While many therapies can be delivered to some degree without carrier molecules or significant modification, a growing body of research has indicated several methods of improving the safety and efficacy of this administration route, such as nasal permeability enhancers, gelling agents, or nanocarrier formulations. This review shall discuss promising delivery systems and their role in expanding the clinical efficacy of this novel administration route. Optimization of intranasal administration will be crucial as novel therapies continue to be studied in clinical trials and approved to meet the growing demand for the treatment of patients with neurological diseases.
Collapse
Affiliation(s)
- Tyler P. Crowe
- Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Walter H. Hsu
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
9
|
Bachhav SS, Dighe V, Mali N, Gogtay NJ, Thatte UM, Devarajan PV. Nose-to-Brain Delivery of Diazepam from an Intranasal Aqua-Triggered In-Situ (ATIS) Gelling Microemulsion: Monitoring Brain Uptake by Microdialysis. Eur J Drug Metab Pharmacokinet 2020; 45:785-799. [PMID: 32813265 DOI: 10.1007/s13318-020-00641-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND OBJECTIVES An innovative intranasal aqua-triggered in-situ (ATIS) gel is a polymer-free in-situ gelling microemulsion which gels instantaneously on contact with minute quantities of water to form a mucoadhesive gel. The objective of the study was to develop ATIS diazepam (ATIS-diazepam) as an alternative to the injection for epileptic emergencies and evaluate its brain uptake and nose-to-brain targeting efficiency in rats. METHODS ATIS-diazepam (1 mg/100 µL) was prepared and characterized for in vitro formulation characteristics. An LC-MS/MS method was developed and validated for the bioanalysis of diazepam. In vivo studies for pharmacokinetics, brain uptake and nasal irritation of intranasal ATIS-diazepam were conducted in rats. Brain uptake was investigated with brain microdialysis, a highly sensitive technique enabling quantification of free drug, which correlates to efficacy. RESULTS ATIS-diazepam exhibited globule size < 200 nm, low viscosity, negative zeta potential and good stability. A significant increase in mucoadhesion was exhibited by ATIS-diazepam following the addition of a small quantity of water. ATIS-diazepam showed burst release in pH 6.4 with 50% diazepam release in ~ 10 min, which was sustained over 1 h. The absolute bioavailability was ~ 50% with both intranasal free-diazepam and ATIS-diazepam. Intranasal administration of ATIS-diazepam revealed immediate absorption with rapid and high brain extracellular fluid concentration compared to intravenous free-diazepam solution. The estimated direct transport potential and drug targeting efficiency of intranasal ATIS-diazepam was significantly higher (2-fold) than intranasal free-diazepam solution, which was attributed to the mucoadhesive and microemulsion properties of ATIS-diazepam. The nasal irritation study revealed the safety of ATIS-diazepam compared to free-diazepam solution. CONCLUSION Intranasal ATIS-diazepam showed promise of higher direct nose-to-brain targeting, better safety and hence has an immense implication in the treatment of epileptic emergencies.
Collapse
Affiliation(s)
- Sagar S Bachhav
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga (E), Mumbai, Maharashtra, 400019, India
| | - Vikas Dighe
- National Center for Preclinical Reproductive and Genetic Toxicology, National Institute for Research in Reproductive Health (NIRRH), ICMR, J. M. Street, Parel, Mumbai, 400012, India
| | - Nitin Mali
- Department of Clinical Pharmacology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Nithya J Gogtay
- Department of Clinical Pharmacology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Urmila M Thatte
- Department of Clinical Pharmacology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga (E), Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
10
|
T. de Barros C, Rios AC, Alves TFR, Batain F, Crescencio KMM, Lopes LJ, Zielińska A, Severino P, G. Mazzola P, Souto EB, Chaud MV. Cachexia: Pathophysiology and Ghrelin Liposomes for Nose-to-Brain Delivery. Int J Mol Sci 2020; 21:ijms21175974. [PMID: 32825177 PMCID: PMC7503373 DOI: 10.3390/ijms21175974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Cachexia, a severe multifactorial condition that is underestimated and unrecognized in patients, is characterized by continuous muscle mass loss that leads to progressive functional impairment, while nutritional support cannot completely reverse this clinical condition. There is a strong need for more effective and targeted therapies for cachexia patients. There is a need for drugs that act on cachexia as a distinct and treatable condition to prevent or reverse excess catabolism and inflammation. Due to ghrelin properties, it has been studied in the cachexia and other treatments in a growing number of works. However, in the body, exogenous ghrelin is subject to very rapid degradation. In this context, the intranasal release of ghrelin-loaded liposomes to cross the blood-brain barrier and the release of the drug into the central nervous system may be a promising alternative to improve its bioavailability. The administration of nose-to-brain liposomes for the management of cachexia was addressed only in a limited number of published works. This review focuses on the discussion of the pathophysiology of cachexia, synthesis and physiological effects of ghrelin and the potential treatment of the diseased using ghrelin-loaded liposomes through the nose-to-brain route.
Collapse
Affiliation(s)
- Cecilia T. de Barros
- Laboratory of Biomaterials and Nanotechnology (LaBNUS), University of Sorocaba, Sorocaba, 18078-005 São Paulo, Brazil; (C.T.d.B.); (A.C.R.); (T.F.R.A.); (F.B.); (K.M.M.C.); (L.J.L.)
| | - Alessandra C. Rios
- Laboratory of Biomaterials and Nanotechnology (LaBNUS), University of Sorocaba, Sorocaba, 18078-005 São Paulo, Brazil; (C.T.d.B.); (A.C.R.); (T.F.R.A.); (F.B.); (K.M.M.C.); (L.J.L.)
| | - Thaís F. R. Alves
- Laboratory of Biomaterials and Nanotechnology (LaBNUS), University of Sorocaba, Sorocaba, 18078-005 São Paulo, Brazil; (C.T.d.B.); (A.C.R.); (T.F.R.A.); (F.B.); (K.M.M.C.); (L.J.L.)
| | - Fernando Batain
- Laboratory of Biomaterials and Nanotechnology (LaBNUS), University of Sorocaba, Sorocaba, 18078-005 São Paulo, Brazil; (C.T.d.B.); (A.C.R.); (T.F.R.A.); (F.B.); (K.M.M.C.); (L.J.L.)
| | - Kessi M. M. Crescencio
- Laboratory of Biomaterials and Nanotechnology (LaBNUS), University of Sorocaba, Sorocaba, 18078-005 São Paulo, Brazil; (C.T.d.B.); (A.C.R.); (T.F.R.A.); (F.B.); (K.M.M.C.); (L.J.L.)
| | - Laura J. Lopes
- Laboratory of Biomaterials and Nanotechnology (LaBNUS), University of Sorocaba, Sorocaba, 18078-005 São Paulo, Brazil; (C.T.d.B.); (A.C.R.); (T.F.R.A.); (F.B.); (K.M.M.C.); (L.J.L.)
| | - Aleksandra Zielińska
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (E.B.S.)
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Patricia Severino
- Institute of Technology and Research, University of Tiradentes (UNIT), 49032-490 Aracaju, Sergipe, Brazil;
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Priscila G. Mazzola
- Faculty of Pharmaceutical Science, University of Campinas (UNICAMP), Candido Portinari Street, Campinas, 13083-871 São Paulo, Brazil;
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (E.B.S.)
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Marco V. Chaud
- Laboratory of Biomaterials and Nanotechnology (LaBNUS), University of Sorocaba, Sorocaba, 18078-005 São Paulo, Brazil; (C.T.d.B.); (A.C.R.); (T.F.R.A.); (F.B.); (K.M.M.C.); (L.J.L.)
- Bioprocess and Biotechnology College, University of Sorocaba, Sorocaba, 18078-005 São Paulo, Brazil
- Correspondence: ; Tel.: +55-15-98172-4431
| |
Collapse
|
11
|
Kiparissides C, Vasileiadou A, Karageorgos F, Serpetsi S. A Computational Systems Approach to Rational Design of Nose-to-Brain Delivery of Biopharmaceutics. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b04885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Costas Kiparissides
- Chemical Process & Energy Resources Institute, 6th km Harilaou-Thermi Road, P.O. Box 60361, 57001 Thessaloniki, Greece
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athina Vasileiadou
- Chemical Process & Energy Resources Institute, 6th km Harilaou-Thermi Road, P.O. Box 60361, 57001 Thessaloniki, Greece
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Filippos Karageorgos
- Chemical Process & Energy Resources Institute, 6th km Harilaou-Thermi Road, P.O. Box 60361, 57001 Thessaloniki, Greece
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stefania Serpetsi
- Chemical Process & Energy Resources Institute, 6th km Harilaou-Thermi Road, P.O. Box 60361, 57001 Thessaloniki, Greece
| |
Collapse
|
12
|
Vendel E, Rottschäfer V, de Lange ECM. The need for mathematical modelling of spatial drug distribution within the brain. Fluids Barriers CNS 2019; 16:12. [PMID: 31092261 PMCID: PMC6521438 DOI: 10.1186/s12987-019-0133-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/19/2019] [Indexed: 12/17/2022] Open
Abstract
The blood brain barrier (BBB) is the main barrier that separates the blood from the brain. Because of the BBB, the drug concentration-time profile in the brain may be substantially different from that in the blood. Within the brain, the drug is subject to distributional and elimination processes: diffusion, bulk flow of the brain extracellular fluid (ECF), extra-intracellular exchange, bulk flow of the cerebrospinal fluid (CSF), binding and metabolism. Drug effects are driven by the concentration of a drug at the site of its target and by drug-target interactions. Therefore, a quantitative understanding is needed of the distribution of a drug within the brain in order to predict its effect. Mathematical models can help in the understanding of drug distribution within the brain. The aim of this review is to provide a comprehensive overview of system-specific and drug-specific properties that affect the local distribution of drugs in the brain and of currently existing mathematical models that describe local drug distribution within the brain. Furthermore, we provide an overview on which processes have been addressed in these models and which have not. Altogether, we conclude that there is a need for a more comprehensive and integrated model that fills the current gaps in predicting the local drug distribution within the brain.
Collapse
Affiliation(s)
- Esmée Vendel
- Mathematical Institute, Leiden University, Niels Bohrweg 1, 2333CA, Leiden, The Netherlands
| | - Vivi Rottschäfer
- Mathematical Institute, Leiden University, Niels Bohrweg 1, 2333CA, Leiden, The Netherlands
| | - Elizabeth C M de Lange
- Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333CC, Leiden, The Netherlands.
| |
Collapse
|
13
|
Mathematical Modeling and Simulation to Investigate the CNS Transport Characteristics of Nanoemulsion-Based Drug Delivery Following Intranasal Administration. Pharm Res 2019; 36:75. [PMID: 30923914 DOI: 10.1007/s11095-019-2610-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/14/2019] [Indexed: 01/17/2023]
Abstract
PURPOSE Despite encouraging preclinical results, mechanisms of CNS drug delivery following intranasal dosing of nanoemulsions remain incompletely understood. Herein, the transport characteristics of intranasally administered nanoemulsions are investigated using mathematical modeling and simulation. METHODS A compartmental model was developed to describe systemic and brain pharmacokinetics of drug solutions following intranasal dosing in rodents. The association between transport processes and CNS drug delivery was predicted using sensitivity analysis. Published pharmacokinetic data for four drugs; dosed as a nanoemulsion and aqueous solution were modeled to characterize differences in transport processes across formulations. RESULTS The intranasal model structure performed in a drug agnostic fashion. Sensitivity analysis suggested that though the extent of CNS drug delivery depends on nasal bioavailability, the CNS targeting efficiency is only sensitive to changes in drug permeability across the nasal epithelium. Modeling results indicated that nanoemulsions primarily improve nasal bioavailability and drug permeability across the olfactory epithelium, with minimal effect on drug permeability across the non-olfactory epithelium. CONCLUSIONS Using mathematical modeling we outlined dominant transport pathways following intranasal dosing, predicted the association between transport pathways and CNS drug delivery, predicted human CNS delivery after accounting for inter-species differences in nasal anatomy, and quantified the CNS delivery potential of different formulations in rodents.
Collapse
|
14
|
Updates on thermosensitive hydrogel for nasal, ocular and cutaneous delivery. Int J Pharm 2019; 559:86-101. [PMID: 30677480 DOI: 10.1016/j.ijpharm.2019.01.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 12/15/2022]
Abstract
Thermosensitive hydrogels are in situ gelling systems composed of hydrophilic homopolymers or block copolymers which remain as solutions at room temperature and form gels after administration into the body. Its application in advanced drug delivery has gained significant attention in recent years. The tunable characteristics of thermosensitive hydrogels make them versatile and capable of incorporating both hydrophilic and lipophilic compounds and macromolecules. The drug molecules can be included as free molecules or preformulated into nano- or micro-particles or liposomes. Although there were several reviews on the materials of thermosensitive hydrogels, the compatibility between the drug and thermosensitive material as well as its in vitro release mechanisms and in vivo performance have barely been investigated. The current review is proposed aiming to not only provide an update on the recent development in thermosensitive hydrogel formulations for nasal, ocular and cutaneous deliveries, but also identify the relationship between the drug characteristics and the loading strategies, and their impacts on the release mechanisms and the in vivo performance. Our current update for the first time highlights the essential features for successful development of in situ thermosensitive hydrogels to facilitate nasal, ocular or cutaneous drug deliveries.
Collapse
|
15
|
Improving the Prediction of Local Drug Distribution Profiles in the Brain with a New 2D Mathematical Model. Bull Math Biol 2018; 81:3477-3507. [PMID: 30091104 PMCID: PMC6722198 DOI: 10.1007/s11538-018-0469-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/13/2018] [Indexed: 12/17/2022]
Abstract
The development of drugs that target the brain is very challenging. A quantitative understanding is needed of the complex processes that govern the concentration–time profile of a drug (pharmacokinetics) within the brain. So far, there are no studies on predicting the drug concentration within the brain that focus not only on the transport of drugs to the brain through the blood–brain barrier (BBB), but also on drug transport and binding within the brain. Here, we develop a new model for a 2D square brain tissue unit, consisting of brain extracellular fluid (ECF) that is surrounded by the brain capillaries. We describe the change in free drug concentration within the brain ECF, by a partial differential equation (PDE). To include drug binding, we couple this PDE to two ordinary differential equations that describe the concentration–time profile of drug bound to specific as well as non-specific binding sites that we assume to be evenly distributed over the brain ECF. The model boundary conditions reflect how free drug enters and leaves the brain ECF by passing the BBB, located at the level of the brain capillaries. We study the influence of parameter values for BBB permeability, brain ECF bulk flow, drug diffusion through the brain ECF and drug binding kinetics, on the concentration–time profiles of free and bound drug.
Collapse
|
16
|
Bourganis V, Kammona O, Alexopoulos A, Kiparissides C. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur J Pharm Biopharm 2018; 128:337-362. [PMID: 29733950 DOI: 10.1016/j.ejpb.2018.05.009] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/26/2018] [Accepted: 05/03/2018] [Indexed: 01/06/2023]
Abstract
Central nervous system (CNS) disorders (e.g., multiple sclerosis, Alzheimer's disease, etc.) represent a growing public health issue, primarily due to the increased life expectancy and the aging population. The treatment of such disorders is notably elaborate and requires the delivery of therapeutics to the brain in appropriate amounts to elicit a pharmacological response. However, despite the major advances both in neuroscience and drug delivery research, the administration of drugs to the CNS still remains elusive. It is commonly accepted that effectiveness-related issues arise due to the inability of parenterally administered macromolecules to cross the Blood-Brain Barrier (BBB) in order to access the CNS, thus impeding their successful delivery to brain tissues. As a result, the direct Nose-to-Brain delivery has emerged as a powerful strategy to circumvent the BBB and deliver drugs to the brain. The present review article attempts to highlight the different experimental and computational approaches pursued so far to attain and enhance the direct delivery of therapeutic agents to the brain and shed some light on the underlying mechanisms involved in the pathogenesis and treatment of neurological disorders.
Collapse
Affiliation(s)
- Vassilis Bourganis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, P.O. Box 472, 54124 Thessaloniki, Greece
| | - Olga Kammona
- Chemical Process & Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece
| | - Aleck Alexopoulos
- Chemical Process & Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece
| | - Costas Kiparissides
- Department of Chemical Engineering, Aristotle University of Thessaloniki, P.O. Box 472, 54124 Thessaloniki, Greece; Chemical Process & Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece.
| |
Collapse
|
17
|
Wang Q, Zhang Y, Wong CH, Edwin Chan HY, Zuo Z. Demonstration of Direct Nose-to-Brain Transport of Unbound HIV-1 Replication Inhibitor DB213 Via Intranasal Administration by Pharmacokinetic Modeling. AAPS JOURNAL 2017; 20:23. [PMID: 29282567 DOI: 10.1208/s12248-017-0179-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/02/2017] [Indexed: 01/15/2023]
Abstract
Intranasal administration could be an attractive alternative route of administration for the delivery of drugs to the central nervous system (CNS). However, there are always doubts about the direct transport of therapeutics from nasal cavity to the CNS since there are only limited studies on the understanding of direct nose-to-brain transport. Therefore, this study aimed to (1) investigate the existence of nose-to-brain transport of intranasally administered HIV-1 replication inhibitor DB213 and (2) assess the direct nose-to-brain transport of unbound HIV-1 replication inhibitor DB213 quantitatively by a pharmacokinetic approach. Plasma samples were collected up to 6 h post-dosing after administration via intranasal or intravenous route at three bolus doses. In the brain-uptake study, the plasma, whole brain, and cerebrospinal fluid (CSF) were sampled between 15 min and 8 h post-dosing. All samples were analyzed with LC/MS/MS. Plasma, CSF, and brain concentration versus time profiles were analyzed with nonlinear mixed-effect modeling. Structural model building was performed by NONMEM (version VII, level 2.0). Intranasal administration showed better potential to deliver HIV-1 replication inhibitor DB213 to the brain with 290-fold higher brain to plasma ratio compared with intravenous administration. Based on that, a model with two absorption compartments (nose-to-systemic circulation and nose-to-brain) was developed and demonstrated 72.4% of total absorbed unbound HIV-1 replication inhibitor DB213 after intranasal administration was transported directly into the brain through nose-to-brain pathway.
Collapse
Affiliation(s)
- Qianwen Wang
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, People's Republic of China
| | - Yufeng Zhang
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, People's Republic of China
| | - Chun-Ho Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, People's Republic of China
| | - H Y Edwin Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, People's Republic of China.,Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, People's Republic of China
| | - Zhong Zuo
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, People's Republic of China.
| |
Collapse
|
18
|
Yamamoto Y, Välitalo PA, Huntjens DR, Proost JH, Vermeulen A, Krauwinkel W, Beukers MW, van den Berg DJ, Hartman R, Wong YC, Danhof M, van Hasselt JGC, de Lange ECM. Predicting Drug Concentration-Time Profiles in Multiple CNS Compartments Using a Comprehensive Physiologically-Based Pharmacokinetic Model. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2017; 6:765-777. [PMID: 28891201 PMCID: PMC5702903 DOI: 10.1002/psp4.12250] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/26/2017] [Accepted: 08/28/2017] [Indexed: 12/15/2022]
Abstract
Drug development targeting the central nervous system (CNS) is challenging due to poor predictability of drug concentrations in various CNS compartments. We developed a generic physiologically based pharmacokinetic (PBPK) model for prediction of drug concentrations in physiologically relevant CNS compartments. System‐specific and drug‐specific model parameters were derived from literature and in silico predictions. The model was validated using detailed concentration‐time profiles from 10 drugs in rat plasma, brain extracellular fluid, 2 cerebrospinal fluid sites, and total brain tissue. These drugs, all small molecules, were selected to cover a wide range of physicochemical properties. The concentration‐time profiles for these drugs were adequately predicted across the CNS compartments (symmetric mean absolute percentage error for the model prediction was <91%). In conclusion, the developed PBPK model can be used to predict temporal concentration profiles of drugs in multiple relevant CNS compartments, which we consider valuable information for efficient CNS drug development.
Collapse
Affiliation(s)
- Yumi Yamamoto
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Pyry A Välitalo
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Dymphy R Huntjens
- Quantitative Sciences, Janssen Research and Development, a division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Johannes H Proost
- Division of Pharmacokinetics, Toxicology and Targeting, University of Groningen, Groningen, The Netherlands
| | - An Vermeulen
- Quantitative Sciences, Janssen Research and Development, a division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Walter Krauwinkel
- Department of Clinical Pharmacology and Exploratory Development, Astellas Pharma BV, Leiden, The Netherlands
| | | | - Dirk-Jan van den Berg
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Robin Hartman
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Yin Cheong Wong
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Meindert Danhof
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - John G C van Hasselt
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Elizabeth C M de Lange
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
19
|
Abdou EM, Kandil SM, Miniawy HMFE. Brain targeting efficiency of antimigrain drug loaded mucoadhesive intranasal nanoemulsion. Int J Pharm 2017; 529:667-677. [PMID: 28729175 DOI: 10.1016/j.ijpharm.2017.07.030] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/06/2017] [Accepted: 07/08/2017] [Indexed: 12/28/2022]
Abstract
Zolmitriptan (ZT) is a well-tolerated drug in migraine treatment suffering from low bioavailability due to low amount of the drug that reaches the brain after oral and nasal delivery. Development of new nasal mucoadhesive nanoemulsion formulation for zolmitriptan may success in delivering the drug directly from the nose to the brain to achieve rapid onset of action and high drug concentration in the brain which is required for treatment of acute migraine. ZT mucoadhesive nanoemulsion were prepared and characterized for drug content, zeta potential, particle size, morphology, residence time and permeation through the nasal mucosa. The selected formula was tested in-vivo in mice for its pharmacokinetics in comparison with intravenous and nasal solution of zolmitriptan. Results showed that addition of chitosan as mucoadhesive agent in 0.3% concentration to the nanoemulsion enhanced its residence time and zetapotential with no significant effect on the globule size. All tested formulations showed higher permeability coefficients than the zolmitriptan solution through the nasal mucosa. In-vivo studies showed that the mucoadhesive nanoemulsion formulation of zolmitriptan has higher AUC0-8 and shorter Tmax in the brain than the intravenous or the nasal solution. This was related to the small globule size and higher permeability of the formulation.
Collapse
Affiliation(s)
- Ebtsam M Abdou
- Department of pharmaceutics, National Organization of Drug Control and Research (NODCAR), Cairo, Egypt.
| | - Soha M Kandil
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology & Information(MTI), Cairo, Egypt
| | - Hala M F El Miniawy
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Egypt
| |
Collapse
|
20
|
Micieli F, Santangelo B, Reynaud F, Mirra A, Napoleone G, Della Valle G, Portier KG, Vesce G. Sedative and cardiovascular effects of intranasal or intramuscular dexmedetomidine in healthy dogs. Vet Anaesth Analg 2017; 44:703-709. [DOI: 10.1016/j.vaa.2016.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 08/04/2016] [Accepted: 08/24/2016] [Indexed: 12/01/2022]
|
21
|
Tresadern G, Rombouts FJR, Oehlrich D, Macdonald G, Trabanco AA. Industrial medicinal chemistry insights: neuroscience hit generation at Janssen. Drug Discov Today 2017; 22:1478-1488. [PMID: 28669605 DOI: 10.1016/j.drudis.2017.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/18/2017] [Accepted: 05/25/2017] [Indexed: 12/16/2022]
Abstract
The role of medicinal chemistry has changed over the past 10 years. Chemistry had become one step in a process; funneling the output of high-throughput screening (HTS) on to the next stage. The goal to identify the ideal clinical compound remains, but the means to achieve this have changed. Modern medicinal chemistry is responsible for integrating innovation throughout early drug discovery, including new screening paradigms, computational approaches, novel synthetic chemistry, gene-family screening, investigating routes of delivery, and so on. In this Foundation Review, we show how a successful medicinal chemistry team has a broad impact and requires multidisciplinary expertise in these areas.
Collapse
Affiliation(s)
- Gary Tresadern
- Discovery Sciences, Janssen Research & Development, C/ Jarama 75A, 45007 Toledo, Spain.
| | - Frederik J R Rombouts
- Neuroscience Medicinal Chemistry, Janssen Research & Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Daniel Oehlrich
- Neuroscience Medicinal Chemistry, Janssen Research & Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Gregor Macdonald
- Neuroscience Medicinal Chemistry, Janssen Research & Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Andres A Trabanco
- Neuroscience Medicinal Chemistry, Janssen Research & Development, C/ Jarama 75A, 45007 Toledo, Spain.
| |
Collapse
|
22
|
Mandal S, Mandal SD, Chuttani K, Dharamsi A, Subudhi BB. Transnasomucosal mucoadhesive microemulsion of zaltoprofen: A comparative brain distribution study. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Katare YK, Piazza JE, Bhandari J, Daya RP, Akilan K, Simpson MJ, Hoare T, Mishra RK. Intranasal delivery of antipsychotic drugs. Schizophr Res 2017; 184:2-13. [PMID: 27913162 DOI: 10.1016/j.schres.2016.11.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 12/31/2022]
Abstract
Antipsychotic drugs are used to treat psychotic disorders that afflict millions globally and cause tremendous emotional, economic and healthcare burdens. However, the potential of intranasal delivery to improve brain-specific targeting remains unrealized. In this article, we review the mechanisms and methods used for brain targeting via the intranasal (IN) route as well as the potential advantages of improving this type of delivery. We extensively review experimental studies relevant to intranasal delivery of therapeutic agents for the treatment of psychosis and mental illnesses. We also review clinical studies in which intranasal delivery of peptides, like oxytocin (7 studies) and desmopressin (1), were used as an adjuvant to antipsychotic treatment with promising results. Experimental animal studies (17) investigating intranasal delivery of mainstream antipsychotic drugs have revealed successful targeting to the brain as suggested by pharmacokinetic parameters and behavioral effects. To improve delivery to the brain, nanotechnology-based carriers like nanoparticles and nanoemulsions have been used in several studies. However, human studies assessing intranasal delivery of mainstream antipsychotic drugs are lacking, and the potential toxicity of nanoformulations used in animal studies has not been explored. A brief discussion of future directions anticipates that if limitations of low aqueous solubility of antipsychotic drugs can be overcome and non-toxic formulations used, IN delivery (particularly targeting specific tissues within the brain) will gain more importance moving forward given the inherent benefits of IN delivery in comparison to other methods.
Collapse
Affiliation(s)
- Yogesh K Katare
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Justin E Piazza
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Jayant Bhandari
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Ritesh P Daya
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Kosalan Akilan
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Madeline J Simpson
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Ram K Mishra
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
24
|
Yamamoto Y, Danhof M, de Lange ECM. Microdialysis: the Key to Physiologically Based Model Prediction of Human CNS Target Site Concentrations. AAPS JOURNAL 2017; 19:891-909. [DOI: 10.1208/s12248-017-0050-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/25/2017] [Indexed: 01/03/2023]
|
25
|
Yamamoto Y, Välitalo PA, van den Berg DJ, Hartman R, van den Brink W, Wong YC, Huntjens DR, Proost JH, Vermeulen A, Krauwinkel W, Bakshi S, Aranzana-Climent V, Marchand S, Dahyot-Fizelier C, Couet W, Danhof M, van Hasselt JGC, de Lange ECM. A Generic Multi-Compartmental CNS Distribution Model Structure for 9 Drugs Allows Prediction of Human Brain Target Site Concentrations. Pharm Res 2016; 34:333-351. [PMID: 27864744 PMCID: PMC5236087 DOI: 10.1007/s11095-016-2065-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022]
Abstract
Purpose Predicting target site drug concentration in the brain is of key importance for the successful development of drugs acting on the central nervous system. We propose a generic mathematical model to describe the pharmacokinetics in brain compartments, and apply this model to predict human brain disposition. Methods A mathematical model consisting of several physiological brain compartments in the rat was developed using rich concentration-time profiles from nine structurally diverse drugs in plasma, brain extracellular fluid, and two cerebrospinal fluid compartments. The effect of active drug transporters was also accounted for. Subsequently, the model was translated to predict human concentration-time profiles for acetaminophen and morphine, by scaling or replacing system- and drug-specific parameters in the model. Results A common model structure was identified that adequately described the rat pharmacokinetic profiles for each of the nine drugs across brain compartments, with good precision of structural model parameters (relative standard error <37.5%). The model predicted the human concentration-time profiles in different brain compartments well (symmetric mean absolute percentage error <90%). Conclusions A multi-compartmental brain pharmacokinetic model was developed and its structure could adequately describe data across nine different drugs. The model could be successfully translated to predict human brain concentrations. Electronic supplementary material The online version of this article (doi:10.1007/s11095-016-2065-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yumi Yamamoto
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Pyry A Välitalo
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Dirk-Jan van den Berg
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Robin Hartman
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Willem van den Brink
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Yin Cheong Wong
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Dymphy R Huntjens
- Quantitative Sciences, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Johannes H Proost
- Division of Pharmacokinetics, Toxicology and Targeting, University of Groningen, Groningen, The Netherlands
| | - An Vermeulen
- Quantitative Sciences, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Walter Krauwinkel
- Department of Clinical Pharmacology & Exploratory Development, Astellas Pharma BV, Leiden, The Netherlands
| | - Suruchi Bakshi
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | - Sandrine Marchand
- Department of Medicine and Pharmacy, University of Poitiers, Poitiers, France
| | - Claire Dahyot-Fizelier
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Center of Poitiers, Poitiers, France
| | - William Couet
- Department of Medicine and Pharmacy, University of Poitiers, Poitiers, France
| | - Meindert Danhof
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Johan G C van Hasselt
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Elizabeth C M de Lange
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
- Leiden University Gorlaeus Laboratories, Einsteinweg 55, 2333CC, Leiden, The Netherlands.
| |
Collapse
|
26
|
van den Brink WJ, Wong YC, Gülave B, van der Graaf PH, de Lange ECM. Revealing the Neuroendocrine Response After Remoxipride Treatment Using Multi-Biomarker Discovery and Quantifying It by PK/PD Modeling. AAPS JOURNAL 2016; 19:274-285. [PMID: 27785749 DOI: 10.1208/s12248-016-0002-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/03/2016] [Indexed: 01/10/2023]
Abstract
To reveal unknown and potentially important mechanisms of drug action, multi-biomarker discovery approaches are increasingly used. Time-course relationships between drug action and multi-biomarker profiles, however, are typically missing, while such relationships will provide increased insight in the underlying body processes. The aim of this study was to investigate the effect of the dopamine D2 antagonist remoxipride on the neuroendocrine system. Different doses of remoxipride (0, 0.7, 5.2, or 14 mg/kg) were administered to rats by intravenous infusion. Serial brain extracellular fluid (brainECF) and plasma samples were collected and analyzed for remoxipride pharmacokinetics (PK). Plasma samples were analyzed for concentrations of the eight pituitary-related hormones as a function of time. A Mann-Whitney test was used to identify the responding hormones, which were further analyzed by pharmacokinetic/pharmacodynamic (PK/PD) modeling. A three-compartment PK model adequately described remoxipride PK in plasma and brainECF. Not only plasma PRL, but also adrenocorticotrophic hormone (ACTH) concentrations were increased, the latter especially at higher concentrations of remoxipride. Brain-derived neurotropic factor (BDNF), follicle stimulating hormone (FSH), growth hormone (GH), luteinizing hormone (LH), and thyroid stimulating hormones (TSH) did not respond to remoxipride at the tested doses, while oxytocin (OXT) measurements were below limit of quantification. Precursor pool models were linked to brainECF remoxipride PK by Emax drug effect models, which could accurately describe the PRL and ACTH responses. To conclude, this study shows how a multi-biomarker identification approach combined with PK/PD modeling can reveal and quantify a neuroendocrine multi-biomarker response for single drug action.
Collapse
Affiliation(s)
- Willem J van den Brink
- Systems Pharmacology, Division of Pharmacology, Leiden Academic Center for Drug Research, Leiden University, PO box 9502, 2300 RA, Leiden, The Netherlands
| | - Yin C Wong
- Systems Pharmacology, Division of Pharmacology, Leiden Academic Center for Drug Research, Leiden University, PO box 9502, 2300 RA, Leiden, The Netherlands
| | - Berfin Gülave
- Systems Pharmacology, Division of Pharmacology, Leiden Academic Center for Drug Research, Leiden University, PO box 9502, 2300 RA, Leiden, The Netherlands
| | - Piet H van der Graaf
- Systems Pharmacology, Division of Pharmacology, Leiden Academic Center for Drug Research, Leiden University, PO box 9502, 2300 RA, Leiden, The Netherlands.,Certara QSP, Canterbury Innovation House, Canterbury, UK
| | - Elizatbeth C M de Lange
- Systems Pharmacology, Division of Pharmacology, Leiden Academic Center for Drug Research, Leiden University, PO box 9502, 2300 RA, Leiden, The Netherlands.
| |
Collapse
|
27
|
Intracerebral microdialysis in blood-brain barrier drug research with focus on nanodelivery. DRUG DISCOVERY TODAY. TECHNOLOGIES 2016; 20:13-18. [PMID: 27986218 DOI: 10.1016/j.ddtec.2016.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/13/2016] [Indexed: 01/09/2023]
Abstract
Microdialysis has contributed significantly to advance the understanding of BBB transport of drugs and to reveal key aspects of BBB transport, including quantifying active efflux and active uptake. Microdialysis studies on pharmacokinetic-pharmacodynamic relationships have given in-depth understanding of the processes involved. Recently, nanodelivery to the brain has been investigated with microdialysis, contributing to nanodelivery science by giving quantitative information on the possible success of different delivery vehicles and how they are involved in BBB transport.
Collapse
|
28
|
Warnken ZN, Smyth HD, Watts AB, Weitman S, Kuhn JG, Williams RO. Formulation and device design to increase nose to brain drug delivery. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2016.05.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Taneja A, Vermeulen A, Huntjens DRH, Danhof M, De Lange ECM, Proost JH. Summary data of potency and parameter information from semi-mechanistic PKPD modeling of prolactin release following administration of the dopamine D2 receptor antagonists risperidone, paliperidone and remoxipride in rats. Data Brief 2016; 8:1433-7. [PMID: 27617278 PMCID: PMC5007417 DOI: 10.1016/j.dib.2016.07.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 07/23/2016] [Accepted: 07/28/2016] [Indexed: 11/25/2022] Open
Abstract
We provide the reader with relevant data related to our recently published paper, comparing two mathematical models to describe prolactin turnover in rats following one or two doses of the dopamine D2 receptor antagonists risperidone, paliperidone and remoxipride, "A comparison of two semi-mechanistic models for prolactin release and prediction of receptor occupancy following administration of dopamine D2 receptor antagonists in rats" (Taneja et al., 2016) [1]. All information is tabulated. Summary level data on the in vitro potencies and the physicochemical properties is presented in Table 1. Model parameters required to explore the precursor pool model are presented in Table 2. In Table 3, estimated parameter comparisons for both models are presented, when separate potencies are estimated for risperidone and paliperidone, as compared to a common potency for both drugs. In Table 4, parameter estimates are compared when the drug effect is parameterized in terms of drug concentration or receptor occupancy.
Collapse
Affiliation(s)
- Amit Taneja
- Division of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - An Vermeulen
- Clinical Pharmacology and Pharmacometrics, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Dymphy R H Huntjens
- Clinical Pharmacology and Pharmacometrics, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Meindert Danhof
- Department of Pharmacology, Leiden Academic Center for Drug Research, Leiden University, The Netherlands
| | - Elizabeth C M De Lange
- Department of Pharmacology, Leiden Academic Center for Drug Research, Leiden University, The Netherlands
| | - Johannes H Proost
- Division of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
30
|
Perillyl Alcohol and Its Drug-Conjugated Derivatives as Potential Novel Methods of Treating Brain Metastases. Int J Mol Sci 2016; 17:ijms17091463. [PMID: 27598140 PMCID: PMC5037741 DOI: 10.3390/ijms17091463] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 12/02/2022] Open
Abstract
Metastasis to the central nervous system remains difficult to treat, and such patients are faced with a dismal prognosis. The blood-brain barrier (BBB), despite being partially compromised within malignant lesions in the brain, still retains much of its barrier function and prevents most chemotherapeutic agents from effectively reaching the tumor cells. Here, we review some of the recent developments aimed at overcoming this obstacle in order to more effectively deliver chemotherapeutic agents to the intracranial tumor site. These advances include intranasal delivery to achieve direct nose-to-brain transport of anticancer agents and covalent modification of existing drugs to support enhanced penetration of the BBB. In both of these areas, use of the natural product perillyl alcohol, a monoterpene with anticancer properties, contributed to promising new results, which will be discussed here.
Collapse
|
31
|
Taneja A, Vermeulen A, Huntjens DRH, Danhof M, De Lange ECM, Proost JH. A comparison of two semi-mechanistic models for prolactin release and prediction of receptor occupancy following administration of dopamine D2 receptor antagonists in rats. Eur J Pharmacol 2016; 789:202-214. [PMID: 27395799 DOI: 10.1016/j.ejphar.2016.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 07/01/2016] [Accepted: 07/05/2016] [Indexed: 01/11/2023]
Abstract
We compared the model performance of two semi-mechanistic pharmacokinetic-pharmacodynamic models, the precursor pool model and the agonist-antagonist interaction model, to describe prolactin response following the administration of the dopamine D2 receptor antagonists risperidone, paliperidone or remoxipride in rats. The time course of pituitary dopamine D2 receptor occupancy was also predicted. Male Wistar rats received a single dose (risperidone, paliperidone, remoxipride) or two consecutive doses (remoxipride). Population modeling was applied to fit the pool and interaction models to the prolactin data. The pool model was modified to predict the time course of pituitary D2 receptor occupancy. Unbound plasma concentrations of the D2 receptor antagonists were considered the drivers of the prolactin response. Both models were used to predict prolactin release following multiple doses of paliperidone. Both models described the data well and model performance was comparable. Estimated unbound EC50 for risperidone and paliperidone was 35.1nM (relative standard error 51%) and for remoxipride it was 94.8nM (31%). KI values for these compounds were 11.1nM (21%) and 113nM (27%), respectively. Estimated pituitary D2 receptor occupancies for risperidone and remoxipride were comparable to literature findings. The interaction model better predicted prolactin profiles following multiple paliperidone doses, while the pool model predicted tolerance better. The performance of both models in describing the prolactin profiles was comparable. The pool model could additionally describe the time course of pituitary D2 receptor occupancy. Prolactin response following multiple paliperidone doses was better predicted by the interaction model.
Collapse
Affiliation(s)
- Amit Taneja
- Division of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - An Vermeulen
- Clinical Pharmacology and Pharmacometrics, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Dymphy R H Huntjens
- Clinical Pharmacology and Pharmacometrics, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Meindert Danhof
- Department of Pharmacology, Leiden Academic Center for Drug Research, Leiden University, The Netherlands
| | - Elizabeth C M De Lange
- Department of Pharmacology, Leiden Academic Center for Drug Research, Leiden University, The Netherlands
| | - Johannes H Proost
- Division of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
32
|
Brain targeting efficiency of Curcumin loaded mucoadhesive microemulsion through intranasal route. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2016. [DOI: 10.1007/s40005-016-0227-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Still NAAG’ing After All These Years. NEUROPSYCHOPHARMACOLOGY: A TRIBUTE TO JOSEPH T. COYLE 2016; 76:215-55. [DOI: 10.1016/bs.apha.2016.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
34
|
Rais R, Wozniak K, Wu Y, Niwa M, Stathis M, Alt J, Giroux M, Sawa A, Rojas C, Slusher BS. Selective CNS Uptake of the GCP-II Inhibitor 2-PMPA following Intranasal Administration. PLoS One 2015; 10:e0131861. [PMID: 26151906 PMCID: PMC4494705 DOI: 10.1371/journal.pone.0131861] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 06/09/2015] [Indexed: 11/19/2022] Open
Abstract
Glutamate carboxypeptidase II (GCP-II) is a brain metallopeptidase that hydrolyzes the abundant neuropeptide N-acetyl-aspartyl-glutamate (NAAG) to NAA and glutamate. Small molecule GCP-II inhibitors increase brain NAAG, which activates mGluR3, decreases glutamate, and provide therapeutic utility in a variety of preclinical models of neurodegenerative diseases wherein excess glutamate is presumed pathogenic. Unfortunately no GCP-II inhibitor has advanced clinically, largely due to their highly polar nature resulting in insufficient oral bioavailability and limited brain penetration. Herein we report a non-invasive route for delivery of GCP-II inhibitors to the brain via intranasal (i.n.) administration. Three structurally distinct classes of GCP-II inhibitors were evaluated including DCMC (urea-based), 2-MPPA (thiol-based) and 2-PMPA (phosphonate-based). While all showed some brain penetration following i.n. administration, 2-PMPA exhibited the highest levels and was chosen for further evaluation. Compared to intraperitoneal (i.p.) administration, equivalent doses of i.n. administered 2-PMPA resulted in similar plasma exposures (AUC0-t, i.n./AUC0-t, i.p. = 1.0) but dramatically enhanced brain exposures in the olfactory bulb (AUC0-t, i.n./AUC0-t, i.p. = 67), cortex (AUC0-t, i.n./AUC0-t, i.p. = 46) and cerebellum (AUC0-t, i.n./AUC0-t, i.p. = 6.3). Following i.n. administration, the brain tissue to plasma ratio based on AUC0-t in the olfactory bulb, cortex, and cerebellum were 1.49, 0.71 and 0.10, respectively, compared to an i.p. brain tissue to plasma ratio of less than 0.02 in all areas. Furthermore, i.n. administration of 2-PMPA resulted in complete inhibition of brain GCP-II enzymatic activity ex-vivo confirming target engagement. Lastly, because the rodent nasal system is not similar to humans, we evaluated i.n. 2-PMPA also in a non-human primate. We report that i.n. 2-PMPA provides selective brain delivery with micromolar concentrations. These studies support intranasal delivery of 2-PMPA to deliver therapeutic concentrations in the brain and may facilitate its clinical development.
Collapse
Affiliation(s)
- Rana Rais
- Brain Science Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Krystyna Wozniak
- Brain Science Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Ying Wu
- Brain Science Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Minae Niwa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Marigo Stathis
- Brain Science Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Jesse Alt
- Brain Science Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Marc Giroux
- Kurve Technology, Inc., Bothell, Washington, United States of America
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Camilo Rojas
- Brain Science Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Barbara S. Slusher
- Brain Science Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
35
|
Ruigrok MJR, de Lange ECM. Emerging Insights for Translational Pharmacokinetic and Pharmacokinetic-Pharmacodynamic Studies: Towards Prediction of Nose-to-Brain Transport in Humans. AAPS JOURNAL 2015; 17:493-505. [PMID: 25693488 PMCID: PMC4406961 DOI: 10.1208/s12248-015-9724-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/27/2015] [Indexed: 01/03/2023]
Abstract
To investigate the potential added value of intranasal drug administration, preclinical studies to date have typically used the area under the curve (AUC) in brain tissue or cerebrospinal fluid (CSF) compared to plasma following intranasal and intravenous administration to calculate measures of extent like drug targeting efficiencies (%DTE) and nose-to-brain transport percentages (%DTP). However, CSF does not necessarily provide direct information on the target site concentrations, while total brain concentrations are not specific to that end either as non-specific binding is not explicitly considered. Moreover, to predict nose-to-brain transport in humans, the use of descriptive analysis of preclinical data does not suffice. Therefore, nose-to-brain research should be performed translationally and focus on preclinical studies to obtain specific information on absorption from the nose, and distinguish between the different transport routes to the brain (absorption directly from the nose to the brain, absorption from the nose into the systemic circulation, and distribution between the systemic circulation and the brain), in terms of extent as well as rate. This can be accomplished by the use of unbound concentrations obtained from plasma and brain, with subsequent advanced mathematical modeling. To that end, brain extracellular fluid (ECF) is a preferred sampling site as it represents most closely the site of action for many targets. Furthermore, differences in nose characteristics between preclinical species and humans should be considered. Finally, pharmacodynamic measurements that can be obtained in both animals and humans should be included to further improve the prediction of the pharmacokinetic-pharmacodynamic relationship of intranasally administered CNS drugs in humans.
Collapse
Affiliation(s)
- Mitchel J R Ruigrok
- Division of Pharmacology, Leiden Academic Centre of Drug Research, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | | |
Collapse
|
36
|
The nasal approach to delivering treatment for brain diseases: an anatomic, physiologic, and delivery technology overview. Ther Deliv 2014; 5:709-33. [PMID: 25090283 DOI: 10.4155/tde.14.41] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The intricate pathophysiology of brain disorders, difficult access to the brain, and the complexity and high risks and costs of drug development represent major hurdles for improving therapies. Nose-to-brain drug transport offers an attractive alternative or addition to formulation-only strategies attempting to enhance drug penetration into the CNS. Although still a matter of controversy, many studies in animals claim direct nose-to-brain transport along the olfactory and trigeminal nerves, circumventing the traditional barriers to CNS entry. Some clinical trials in man also suggest nose-to-brain drug delivery, although definitive proof in man is lacking. This review focuses on new nasal delivery technologies designed to overcome inherent anatomical and physiological challenges and facilitate more efficient and targeted drug delivery for CNS disorders.
Collapse
|
37
|
Mustafa G, Alrohaimi AH, Bhatnagar A, Baboota S, Ali J, Ahuja A. Brain targeting by intranasal drug delivery (INDD): a combined effect of trans-neural and para-neuronal pathway. Drug Deliv 2014; 23:933-9. [PMID: 24959938 DOI: 10.3109/10717544.2014.923064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effectiveness of intranasal drug delivery for brain targeting has emerged as a hope of remedy for various CNS disorders. The nose to brain absorption of therapeutic molecules claims two effective pathways, which include trans-neuronal for immediate action and para-neuronal for delayed action. To evaluate the contribution of both the pathways in absorption of therapeutic molecules and nanocarriers, lidocaine, a nerve-blocking agent, was used to impair the action potential of olfactory nerve. An anti-Parkinson drug ropinirole was covalently complexes with (99m)Tc in presence of SnCl2 using in-house developed reduction technology. The radiolabeled formulations were administered intranasally in lidocaine challenged rabbit and rat. The qualitative and quantitative outcomes of neural and non-neural pathways were estimated using gamma scintigraphy and UHPLC-MS/MS, respectively. The results showed a significant (p ≤ 0.005) increase in radioactivity counts and drug concentration in the brain of rabbit and rat compared to the animal groups challenged with lidocaine. This concludes the significant contribution (p ≤ 0.005) of trans-neuronal and para-neuronal pathway in nose to brain drug delivery. Therefore, results proved that it is an art of a formulator scientist to make the drug carriers to exploit the choice of absorption pathway for their instant and extent of action.
Collapse
Affiliation(s)
- Gulam Mustafa
- a Department of Pharmaceutics, Faculty of Pharmacy , Hamdard University , New Delhi , India .,b College of pharmacy, Al-Dawadmi Campus, Shaqra University , Riyadh , Kingdom of Saudi Arabia
| | - Abdulmohsen H Alrohaimi
- a Department of Pharmaceutics, Faculty of Pharmacy , Hamdard University , New Delhi , India .,b College of pharmacy, Al-Dawadmi Campus, Shaqra University , Riyadh , Kingdom of Saudi Arabia
| | - Aseem Bhatnagar
- c Department of Nuclear Medicine Division (NMD) , Institute of Nuclear Medicine & Allied Sciences , Timarpur , Timarpur , Delhi , India , and
| | - Sanjula Baboota
- a Department of Pharmaceutics, Faculty of Pharmacy , Hamdard University , New Delhi , India
| | - Javed Ali
- a Department of Pharmaceutics, Faculty of Pharmacy , Hamdard University , New Delhi , India
| | - Alka Ahuja
- d Department of Pharmacy , Oman Medical College , Azaiba , Muscat , Sultanate of Oman
| |
Collapse
|
38
|
PKPD Aspects of Brain Drug Delivery in a Translational Perspective. DRUG DELIVERY TO THE BRAIN 2014. [DOI: 10.1007/978-1-4614-9105-7_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
|
40
|
Lao CL, Kuo YH, Hsieh YT, Chen JC. Intranasal and subcutaneous administration of dopamine D3 receptor agonists functionally restores nigrostriatal dopamine in MPTP-treated mice. Neurotox Res 2013; 24:523-31. [PMID: 23820985 DOI: 10.1007/s12640-013-9408-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/17/2013] [Accepted: 06/19/2013] [Indexed: 11/28/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with a hallmark motor defect caused by the death of dopaminergic neurons in the substantia nigra. Intranasal drug administration may be useful for Parkinson's treatment because this route avoids first-pass metabolism and increases bioavailability in the brain. In this study, we investigated the neuroprotection/neurorestoration effect of dopamine D3 receptor (D3R) agonists administered via both intranasal and subcutaneous routes in the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced PD mouse model. Furthermore, we employed D3R knock-out mice to validate the dependence on D3R signaling. We found that in wild-type mice, but not D3 receptor knockout mice, both intranasal and subcutaneous administration of D3R agonists rescue dopamine (DA) depletion in the striatum as well as DA neuronal death in the substantia nigra after MPTP treatment. Moreover, subcutaneous 7-OH-DPAT administration significantly improved gait performance (stride length and overall running speed) of MPTP-lesioned mice after 7 and 14 days of recovery. In addition, the distribution of D3 agonist 7-OH-DPAT was measured in designated brain areas by mass spectrometry analysis after subcutaneous and intranasal administration. Our data suggest that intranasal administration of D3R agonist would be a practical approach to treat PD.
Collapse
Affiliation(s)
- Chu Lan Lao
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, Healthy Ageing Research Center, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 333, Taiwan, ROC
| | | | | | | |
Collapse
|
41
|
Guastella AJ, Hickie IB, McGuinness MM, Otis M, Woods EA, Disinger HM, Chan HK, Chen TF, Banati RB. Recommendations for the standardisation of oxytocin nasal administration and guidelines for its reporting in human research. Psychoneuroendocrinology 2013; 38:612-25. [PMID: 23265311 DOI: 10.1016/j.psyneuen.2012.11.019] [Citation(s) in RCA: 283] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 11/25/2012] [Accepted: 11/26/2012] [Indexed: 12/20/2022]
Abstract
A series of studies have reported on the salubrious effects of oxytocin nasal spray on social cognition and behavior in humans, across physiology (e.g., eye gaze, heart rate variability), social cognition (e.g., attention, memory, and appraisal), and behavior (e.g., trust, generosity). Findings suggest the potential of oxytocin nasal spray as a treatment for various psychopathologies, including autism and schizophrenia. There are, however, increasing reports of variability of response to oxytocin nasal spray between experiments and individuals. In this review, we provide a summary of factors that influence transmucosal nasal drug delivery, deposition, and their impact on bioavailability. These include variations in anatomy and resultant airflow dynamic, vascularisation, status of blood vessels, mode of spray application, gallenic formulation (including presence of uptake enhancers, control release formulation), and amount and method of administration. These key variables are generally poorly described and controlled in scientific reports, in spite of their potential to alter the course of treatment outcome studies. Based on this review, it should be of no surprise that differences emerge across individuals and experiments when nasal drug delivery methods are employed. We present recommendations for researchers to use when developing and administering the spray, and guidelines for reporting on peptide nasal spray studies in humans. We hope that these recommendations assist in establishing a scientific standard that can improve the rigor and subsequent reliability of reported effects of oxytocin nasal spray in humans.
Collapse
Affiliation(s)
- Adam J Guastella
- Brain & Mind Research Institute, University of Sydney, Sydney 2006, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
de Lange EC. The mastermind approach to CNS drug therapy: translational prediction of human brain distribution, target site kinetics, and therapeutic effects. Fluids Barriers CNS 2013; 10:12. [PMID: 23432852 PMCID: PMC3602026 DOI: 10.1186/2045-8118-10-12] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 02/01/2013] [Indexed: 01/11/2023] Open
Abstract
Despite enormous advances in CNS research, CNS disorders remain the world's leading cause of disability. This accounts for more hospitalizations and prolonged care than almost all other diseases combined, and indicates a high unmet need for good CNS drugs and drug therapies.Following dosing, not only the chemical properties of the drug and blood-brain barrier (BBB) transport, but also many other processes will ultimately determine brain target site kinetics and consequently the CNS effects. The rate and extent of all these processes are regulated dynamically, and thus condition dependent. Therefore, heterogenious conditions such as species, gender, genetic background, tissue, age, diet, disease, drug treatment etc., result in considerable inter-individual and intra-individual variation, often encountered in CNS drug therapy.For effective therapy, drugs should access the CNS "at the right place, at the right time, and at the right concentration". To improve CNS therapies and drug development, details of inter-species and inter-condition variations are needed to enable target site pharmacokinetics and associated CNS effects to be translated between species and between disease states. Specifically, such studies need to include information about unbound drug concentrations which drive the effects. To date the only technique that can obtain unbound drug concentrations in brain is microdialysis. This (minimally) invasive technique cannot be readily applied to humans, and we need to rely on translational approaches to predict human brain distribution, target site kinetics, and therapeutic effects of CNS drugs.In this review the term "Mastermind approach" is introduced, for strategic and systematic CNS drug research using advanced preclinical experimental designs and mathematical modeling. In this way, knowledge can be obtained about the contributions and variability of individual processes on the causal path between drug dosing and CNS effect in animals that can be translated to the human situation. On the basis of a few advanced preclinical microdialysis based investigations it will be shown that the "Mastermind approach" has a high potential for the prediction of human CNS drug effects.
Collapse
Affiliation(s)
- Elizabeth Cm de Lange
- Division of Pharmacology, Leiden-Academic Center for Drug Research, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
43
|
Translational Approaches for Predicting CNS Drug Effects Using Microdialysis. MICRODIALYSIS IN DRUG DEVELOPMENT 2013. [DOI: 10.1007/978-1-4614-4815-0_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
44
|
Abstract
Intranasal drug delivery has attracted increasing attention as a noninvasive route of administration for therapeutic proteins and peptides. The delivery of therapeutic peptides through the nasal route provides an alternative to intravenous or subcutaneous injections. This review highlights the drug-development considerations unique to nasal therapeutics and discusses some of the factors and strategies that affect and can improve nasal absorption of peptides. The selectivity and good safety profile typical of peptide therapeutics, along with the dose limitation for intranasal administration, can provide challenges in drug development. Therefore, nasal peptide therapeutics often require special considerations in the nonclinical safety evaluations, such as determining drug exposure in the context of the maximum feasible dose in order to adequately prepare nasal products for clinical studies.
Collapse
|
45
|
Stevens J, Ploeger BA, Hammarlund-Udenaes M, Osswald G, van der Graaf PH, Danhof M, de Lange ECM. Mechanism-based PK–PD model for the prolactin biological system response following an acute dopamine inhibition challenge: quantitative extrapolation to humans. J Pharmacokinet Pharmacodyn 2012; 39:463-77. [DOI: 10.1007/s10928-012-9262-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 06/28/2012] [Indexed: 11/30/2022]
|