1
|
Sana SS, Chandel AKS, Raorane CJ, Aly Aly Saad M, Kim SC, Raj V, Sangkil Lee. Recent advances in nano and micro formulations of Ginsenoside to enhance their therapeutic efficacy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:156007. [PMID: 39276537 DOI: 10.1016/j.phymed.2024.156007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND AND AIMS Ginsenosides, the main component of Panax ginseng, have long been recognized for their therapeutic benefits and are thought to have neuroprotective, antidiabetic, anti-depressant, antioxidant, anti-cancer, and anti-stress properties. However, due to their low water solubility, low biomembrane permeability, gastrointestinal dysfunction, and total metabolism in the body, ginsenosides have a poor absorption profile that has hindered the therapeutic potential of these organic molecules. METHODS Initially, we broadly illuminated the several techniques of extraction of Ginsenosides using Panax quinquefolius and Panax ginseng. Subsequently, we focused on different delivery methods to improve the stability, permeability, and solubility of natural chemicals, which raises the bioavailability of ginsenoside. Lastly, we explained significance of a variety of nano and microscale delivery systems, including liposomes, ethosomes, transfersomes, metal/metal oxide systems, micro/nanoemulsions, polymeric micro/nanoparticles (NPs), liposomes, transfersomes, and micelles to increase the bioavailability of ginsenosides. RESULTS The utilization of micro/nanoscale delivery methods, such as liposome-based delivery, polymer micro/nanoparticle distribution, and micro/nanoemulsion, to increase the bioavailability of ginsenosides has recently advanced, and we have emphasized these advances in this study. Furthermore, the disadvantages of ginsenosides were also discussed, including the challenges associated with putting these delivery systems into practice in clinical settings and suggestions for further research. CONCLUSION In summary, ginsenosides-based administration has several benefits that make it a potentially useful substance for a range of therapeutic purposes.
Collapse
Affiliation(s)
- Siva Sankar Sana
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | | | - Mohamed Aly Aly Saad
- Department of Electrical and Computer Engineering, Georgia Tech Shenzhen Institute (GTSI), Shenzhen, Guangdong 518052, China
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Vinit Raj
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Zhang J, Wu Y, Li Y, Li S, Liu J, Yang X, Xia G, Wang G. Natural products and derivatives for breast cancer treatment: From drug discovery to molecular mechanism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155600. [PMID: 38614043 DOI: 10.1016/j.phymed.2024.155600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/20/2024] [Accepted: 04/06/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Breast cancer stands as the most common malignancy among women globally and a leading cause of cancer-related mortality. Conventional treatments, such as surgery, hormone therapy, radiotherapy, chemotherapy, and small-molecule targeted therapy, often fall short of addressing the complexity and heterogeneity of certain breast cancer subtypes, leading to drug resistance and metastatic progression. Thus, the search for novel therapeutic targets and agents is imperative. Given their low toxicity and abundant variety, natural products and their derivatives are increasingly considered valuable sources for small-molecule anticancer drugs. PURPOSE This review aims to elucidate the pharmacological impacts and underlying mechanisms of active compounds found in select natural products and their derivatives, primarily focusing on breast cancer treatment. It intends to underscore the potential of these substances in combating breast cancer and guide future research directions for the development of natural product-based therapeutics. METHODS We conducted comprehensive searches in electronic databases such as PubMed, Web of Science, and Scopus until October 2023, using keywords such as 'breast cancer', 'natural products', 'derivatives', 'mechanism', 'signaling pathways', and various keyword combinations. RESULTS The review presents a spectrum of phytochemicals, including but not limited to flavonoids, polyphenols, and alkaloids, and examines their actions in various animal and cellular models of breast cancer. The anticancer effects of these natural products and derivatives are manifested through diverse mechanisms, including induction of cell death via apoptosis and autophagy, and suppression of tumor angiogenesis. CONCLUSION An increasing array of natural products and their derivatives are proving effective against breast cancer. Future therapeutic strategies can benefit from strategic enhancement of the anticancer properties of natural compounds, optimization for targeted action, improved bioavailability, and minimized side effects. The forthcoming research on natural products should prioritize these facets to maximize their therapeutic potential.
Collapse
Affiliation(s)
- Jing Zhang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Yongya Wu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Yanhong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China; Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Shutong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Jiaxi Liu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Xiao Yang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Guiyang Xia
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5, Ocean Warehouse, Dongcheng District, Beijing, 100700, China.
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
3
|
Long J, Hu W, Ren T, Wang X, Lu C, Pan X, Wu C, Peng T. Combating multidrug resistance of breast cancer with ginsenoside Rh2-irrigated nano-in-thermogel. Int J Pharm 2024; 650:123718. [PMID: 38104849 DOI: 10.1016/j.ijpharm.2023.123718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/26/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
The emergence of multidrug resistance (MDR) is the leading cause of mortality in patients with breast cancer. Overexpressed P-glycoprotein (P-gp) that can pump out chemotherapeutics from multidrug-resistant cancer cells is the main cause of chemotherapy failure. P-gp inhibitors are hence increasingly used to sensitize chemotherapy to breast cancer with MDR by reducing the efflux of drugs. However, representative P-gp inhibitors usually have severe side effects and the effect of their release behavior on chemotherapy are neglected in current studies. We constructed a nano-in-thermogel delivery system with the sequential release of ginsenoside Rh2 (GRh2) and a chemotherapeutic drug in the tumor microenvironment as a drug compounding "reservoir" to combat MDR in breast cancer. Briefly, paclitaxel (PTX) and GRh2 were encapsulated in solid lipid nanoparticles (SLNs) and dispersed in a poloxamer-based thermogel (SLNs-Gel). GRh2 was used as an innovative and safe P-gp inhibitor to lower P-gp expression and cellular adenosine triphosphate context, thereby sensitizing PTX-resistant breast cancer cells (MCF-7/PTX) to PTX. Pharmacodynamic and in vivo safety studies confirmed that intratumoral injection of SLNs-Gel significantly suppressed the proliferation of PTX-resistant breast cancer and alleviated the PTX-induced hematotoxicity. The GRh2-irrigated nano-in-thermogel delivery system shows great potential in combating multidrug-resistant cancer.
Collapse
Affiliation(s)
- Jieyu Long
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511436, China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wanshan Hu
- College of Pharmacy, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 511436, China
| | - Tao Ren
- College of Pharmacy, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 511436, China
| | - Xuewen Wang
- College of Pharmacy, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 511436, China
| | - Chao Lu
- College of Pharmacy, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 511436, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511436, China; College of Pharmacy, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 511436, China
| | - Tingting Peng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511436, China; College of Pharmacy, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 511436, China.
| |
Collapse
|
4
|
Deng X, Wang J, Lu C, Zhou Y, Shen L, Ge A, Fan H, Liu L. Updating the therapeutic role of ginsenosides in breast cancer: a bibliometrics study to an in-depth review. Front Pharmacol 2023; 14:1226629. [PMID: 37818185 PMCID: PMC10560733 DOI: 10.3389/fphar.2023.1226629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
Breast cancer is currently the most common malignancy and has a high mortality rate. Ginsenosides, the primary bioactive constituents of ginseng, have been shown to be highly effective against breast cancer both in vitro and in vivo. This study aims to comprehensively understand the mechanisms underlying the antineoplastic effects of ginsenosides on breast cancer. Through meticulous bibliometric analysis and an exhaustive review of pertinent research, we explore and summarize the mechanism of action of ginsenosides in treating breast cancer, including inducing apoptosis, autophagy, inhibiting epithelial-mesenchymal transition and metastasis, and regulating miRNA and lncRNA. This scholarly endeavor not only provides novel prospects for the application of ginsenosides in the treatment of breast cancer but also suggests future research directions for researchers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongqiao Fan
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lifang Liu
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
5
|
Shah MA, Abuzar SM, Ilyas K, Qadees I, Bilal M, Yousaf R, Kassim RMT, Rasul A, Saleem U, Alves MS, Khan H, Blundell R, Jeandet P. Ginsenosides in cancer: Targeting cell cycle arrest and apoptosis. Chem Biol Interact 2023; 382:110634. [PMID: 37451663 DOI: 10.1016/j.cbi.2023.110634] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Despite the existence of extensive clinical research and novel therapeutic treatments, cancer remains undefeated and the significant cause of death worldwide. Cancer is a disease in which growth of cells goes out of control, being also able to invade other parts of the body. Cellular division is strictly controlled by multiple checkpoints like G1/S and G2/M which, when dysregulated, lead to uncontrollable cell division. The current remedies which are being utilized to combat cancer are monoclonal antibodies, chemotherapy, cryoablation, and bone marrow transplant etc. and these have also been greatly disheartening because of their serious adverse effects like hypotension, neuropathy, necrosis, leukemia relapse and many more. Bioactive compounds derived from natural products have marked the history of the development of novel drug therapies against cancer among which ginsenosides have no peer as they target several signaling pathways, which when abnormally regulated, lead to cancer. Substantial research has reported that ginsenosides like Rb1, Rb2, Rb3, Rc, Rd, Rg3, Rh2 etc. can prevent and treat cancer by targeting different pathways and molecules by induction of autophagy, neutralizing ROS, induction of cancerous cell death by controlling the p53 pathway, modulation of miRNAs by decreasing Smad2 expression, regulating Bcl-2 expression by normalizing the NF-Kb pathway, inhibition of inflammatory pathways by decreasing the production of cytokines like IL-8, causing cell cycle arrest by restricting cyclin E1 and CDC2, and induction of apoptosis during malignancy by decreasing β-catenin levels etc. In this review, we have analyzed the anti-cancer therapeutic potential of various ginsenoside compounds in order to consider their possible use in new strategies in the fight against cancer.
Collapse
Affiliation(s)
| | - Syed Muhammad Abuzar
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Kainat Ilyas
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Irtaza Qadees
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Momna Bilal
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Rimsha Yousaf
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | | | - Azhar Rasul
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Maria Silvana Alves
- Laboratory of Cellular and Molecular Bioactivity, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Minas Gerais, Brazil
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Renald Blundell
- Department of Physiology and Biochemistry, Faculty of Medicine, University of Malta, Msida, MSD2080, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080 Imsida, Malta
| | - Philippe Jeandet
- University of Reims, Research Unit Induced Resistance and Plant Bioprotection USC INRAe 1488 Department of Biology and Biochemistry, Faculty of Sciences, 51100, Reims, France.
| |
Collapse
|
6
|
Han E, Kim D, Cho Y, Lee S, Kim J, Kim H. Development of Polymersomes Co-Delivering Doxorubicin and Melittin to Overcome Multidrug Resistance. Molecules 2023; 28:molecules28031087. [PMID: 36770754 PMCID: PMC9920864 DOI: 10.3390/molecules28031087] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Multidrug resistance (MDR) is one of the major barriers in chemotherapy. It is often related to the overexpression of efflux receptors such as P-glycoprotein (P-gp). Overexpressed efflux receptors inhibit chemotherapeutic efficacy by pumping out intracellularly delivered anticancer drugs. In P-gp-mediated MDR-related pathways, PI3K/Akt and NF-kB pathways are commonly activated signaling pathways, but these pathways are downregulated by melittin, a main component of bee venom. In this study, a polymersome based on a poly (lactic acid) (PLA)-hyaluronic acid (HA) (20k-10k) di-block copolymer and encapsulating melittin and doxorubicin was developed to overcome anticancer resistance and enhance chemotherapeutic efficacy. Through the simultaneous delivery of doxorubicin and melittin, PI3K/Akt and NF-κB pathways could be effectively inhibited, thereby downregulating P-gp and successfully enhancing chemotherapeutic efficacy. In conclusion, a polymersome carrying an anticancer drug and melittin could overcome MDR by regulating P-gp overexpression pathways.
Collapse
Affiliation(s)
- Eunkyung Han
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Doyeon Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Youngheun Cho
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Seonock Lee
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Jungho Kim
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyuncheol Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
- Department of Biomedical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
- Correspondence:
| |
Collapse
|
7
|
Abstract
As a steroid skeleton-based saponin, ginsenoside Rh2 (G-Rh2) is one of the major bioactive ginsenosides from the plants of genus Panax L. Many studies have reported the notable pharmacological activities of G-Rh2 such as anticancer, antiinflammatory, antiviral, antiallergic, antidiabetic, and anti-Alzheimer's activities. Numerous preclinical studies have demonstrated the great potential of G-Rh2 in the treatment of a wide range of carcinomatous diseases in vitro and in vivo. G-Rh2 is able to inhibit proliferation, induce apoptosis and cell cycle arrest, retard metastasis, promote differentiation, enhance chemotherapy and reverse multi-drug resistance against multiple tumor cells. The present review mainly summarizes the anticancer effects and related mechanisms of G-Rh2 in various models as well as the recent advances in G-Rh2 delivery systems and structural modification to ameliorate its anticancer activity and pharmacokinetics characteristics.
Collapse
|
8
|
Magnesium Isoglycyrrhizinate Reduces the Target-Binding Amount of Cisplatin to Mitochondrial DNA and Renal Injury through SIRT3. Int J Mol Sci 2022; 23:ijms232113093. [DOI: 10.3390/ijms232113093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Nephrotoxicity is the dose-limiting factor of cisplatin treatment. Magnesium isoglycyrrhizinate (MgIG) has been reported to ameliorate renal ischemia–reperfusion injury. This study aimed to investigate the protective effect and possible mechanisms of MgIG against cisplatin-induced nephrotoxicity from the perspective of cellular pharmacokinetics. We found that cisplatin predominantly accumulated in mitochondria of renal tubular epithelial cells, and the amount of binding with mitochondrial DNA (mtDNA) was more than twice that with nuclear DNA (nDNA). MgIG significantly lowered the accumulation of cisplatin in mitochondria and, in particular, the degree of target-binding to mtDNA. MgIG notably ameliorated cisplatin-induced changes in mitochondrial membrane potential, morphology, function, and cell viability, while the magnesium donor drugs failed to work. In a mouse model, MgIG significantly alleviated cisplatin-caused renal dysfunction, pathological changes of renal tubules, mitochondrial ultrastructure variations, and disturbed energy metabolism. Both in vitro and in vivo data showed that MgIG recovered the reduction of NAD+-related substances and NAD+-dependent deacetylase sirtuin-3 (SIRT3) level caused by cisplatin. Furthermore, SIRT3 knockdown weakened the protective effect of MgIG on mitochondria, while SIRT3 agonist protected HK-2 cells from cisplatin and specifically reduced platinum-binding activity with mtDNA. In conclusion, MgIG reduces the target-binding amount of platinum to mtDNA and exerts a protective effect on cisplatin-induced renal injury through SIRT3, which may provide a new strategy for the treatment of cisplatin-induced nephrotoxicity.
Collapse
|
9
|
Qu PR, Jiang ZL, Song PP, Liu LC, Xiang M, Wang J. Saponins and their derivatives: Potential candidates to alleviate anthracycline-induced cardiotoxicity and multidrug resistance. Pharmacol Res 2022; 182:106352. [PMID: 35835369 DOI: 10.1016/j.phrs.2022.106352] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
Anthracyclines (ANTs) continue to play an irreplaceable role in oncology treatment. However, the clinical application of ANTs has been limited. In the first place, ANTs can cause dose-dependent cardiotoxicity such as arrhythmia, cardiomyopathy, and congestive heart failure. In the second place, the development of multidrug resistance (MDR) leads to their chemotherapeutic failure. Oncology cardiologists are urgently searching for agents that can both protect the heart and reverse MDR without compromising the antitumor effects of ANTs. Based on in vivo and in vitro data, we found that natural compounds, including saponins, may be active agents for other both natural and chemical compounds in the inhibition of anthracycline-induced cardiotoxicity (AIC) and the reversal of MDR. In this review, we summarize the work of previous researchers, describe the mechanisms of AIC and MDR, and focus on revealing the pharmacological effects and potential molecular targets of saponins and their derivatives in the inhibition of AIC and the reversal of MDR, aiming to encourage future research and clinical trials.
Collapse
Affiliation(s)
- Pei-Rong Qu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Zhi-Lin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Ping-Ping Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medicine Sciences, Beijing 100013, China
| | - Lan-Chun Liu
- Beijing University of traditional Chinese Medicine, Beijing 100029, China
| | - Mi Xiang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| |
Collapse
|
10
|
Xu JF, Wan Y, Tang F, Chen L, Yang Y, Xia J, Wu JJ, Ao H, Peng C. Emerging Significance of Ginsenosides as Potentially Reversal Agents of Chemoresistance in Cancer Therapy. Front Pharmacol 2022; 12:720474. [PMID: 34975466 PMCID: PMC8719627 DOI: 10.3389/fphar.2021.720474] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
Chemoresistance has become a prevalent phenomenon in cancer therapy, which alleviates the effect of chemotherapy and makes it difficult to break the bottleneck of the survival rate of tumor patients. Current approaches for reversing chemoresistance are poorly effective and may cause numerous new problems. Therefore, it is urgent to develop novel and efficient drugs derived from natural non-toxic compounds for the reversal of chemoresistance. Researches in vivo and in vitro suggest that ginsenosides are undoubtedly low-toxic and effective options for the reversal of chemoresistance. The underlying mechanism of reversal of chemoresistance is correlated with inhibition of drug transporters, induction of apoptosis, and modulation of the tumor microenvironment(TME), as well as the modulation of signaling pathways, such as nuclear factor erythroid-2 related factor 2 (NRF2)/AKT, lncRNA cancer susceptibility candidate 2(CASC2)/ protein tyrosine phosphatase gene (PTEN), AKT/ sirtuin1(SIRT1), epidermal growth factor receptor (EGFR)/ phosphatidylinositol 3-kinase (PI3K)/AKT, PI3K/AKT/ mammalian target of rapamycin(mTOR) and nuclear factor-κB (NF-κB). Since the effects and the mechanisms of ginsenosides on chemoresistance reversal have not yet been reviewed, this review summarized comprehensively experimental data in vivo and in vitro to elucidate the functional roles of ginsenosides in chemoresistance reversal and shed light on the future research of ginsenosides.
Collapse
Affiliation(s)
- Jin-Feng Xu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Wan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Tang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Xia
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiao-Jiao Wu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Ginsenoside 20(S)-Rh2 promotes cellular pharmacokinetics and intracellular antibacterial activity of levofloxacin against Staphylococcus aureus through drug efflux inhibition and subcellular stabilization. Acta Pharmacol Sin 2021; 42:1930-1941. [PMID: 34462563 PMCID: PMC8564512 DOI: 10.1038/s41401-021-00751-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Intracellular Staphylococcus aureus (S. aureus) often causes clinical failure and relapse after antibiotic treatment. We previously found that 20(S)-ginsenoside Rh2 [20(S)-Rh2] enhanced the therapeutic effect of quinolones in a mouse model of peritonitis, which we attributed to the increased concentrations of quinolones within bacteria. In this study, we investigated the enhancing effect of 20(S)-Rh2 on levofloxacin (LVF) from a perspective of intracellular bacteria. In S. aureus 25923-infected mice, coadministration of LVF (1.5 mg/kg, i.v.) and 20(S)-Rh2 (25, 50 mg/kg, i.g.) markedly increased the survival rate, and decreased intracellular bacteria counts accompanied by increased accumulation of LVF in peritoneal macrophages. In addition, 20(S)-Rh2 (1, 5, 10 μM) dose-dependently increased the uptake and accumulation of LVF in peritoneal macrophages from infected mice without drug treatment. In a model of S. aureus 25923-infected THP-1 macrophages, we showed that 20(S)-Rh2 (1, 5, 10 μM) dose-dependently enhanced the intracellular antibacterial activity of LVF. At the cellular level, 20(S)-Rh2 increased the intracellular accumulation of LVF by inhibiting P-gp and BCRP. PK-PD modeling revealed that 20(S)-Rh2 altered the properties of the cell but not LVF. At the subcellular level, 20(S)-Rh2 did not increase the distribution of LVF in lysosomes but exhibited a stronger sensitizing effect in acidic environments. Molecular dynamics (MD) simulations showed that 20(S)-Rh2 improved the stability of the DNA gyrase-LVF complex in lysosome-like acidic conditions. In conclusion, 20(S)-Rh2 promotes the cellular pharmacokinetics and intracellular antibacterial activities of LVF against S. aureus through efflux transporter inhibition and subcellular stabilization, which is beneficial for infection treatment.
Collapse
|
12
|
Yang L, Zhang C, Chen J, Zhang S, Pan G, Xin Y, Lin L, You Z. Shenmai injection suppresses multidrug resistance in MCF-7/ADR cells through the MAPK/NF-κB signalling pathway. PHARMACEUTICAL BIOLOGY 2020; 58:276-285. [PMID: 32251615 PMCID: PMC7170370 DOI: 10.1080/13880209.2020.1742167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Context: Shenmai Injection (SMI) is usually used to treat atherosclerotic coronary heart disease and viral myocarditis in China. However, the effect of SMI on multidrug resistance has not been reported.Objective: To investigate the reversal effect of SMI in adriamycin (ADR) resistant breast cancer cell line (MCF-7/ADR) and explore the related molecular mechanisms.Materials and methods: The effect of SMI (0.25, 0.5, 1 mg/mL) to reverse chemoresistance in MCF-7/ADR cells was elucidated by MTT, HPLC-FLD, DAPI staining, flow cytometric analysis, western blotting. At the same time, in vivo test was conducted to probe into the effect of SMI on reversing ADR resistance, and verapamil (10 μM) was used as a positive control.Results: The results showed that the toxicity of ADR to MCF-7/ADR cells was strengthened significantly after treated with SMI (0.25, 0.5, 1 mg/mL), the IC50 of ADR was decreased 54.4-fold. The intracellular concentrations of ADR were increased 2.2-fold (p < 0.05) and ADR accumulation was enhanced in the nuclei (p < 0.05). SMI could strongly enhance the ADR-induced apoptosis and increase intracellular rhodamine 123 accumulation in MCF-7/ADR cells. Additionally, a combination of ADR and SMI (5 mg/kg) could dramatically reduce the weight and volume of tumour (p < 0.05). Furthermore, the results revealed that SMI might reverse MDR via inhibiting ADR-induced activation of the mitogen-activated protein kinase/nuclear factor (NF)-κB pathway to down-regulated the expression of P-glycoprotein (P-gp).Discussion and conclusions: SMI could potentially be used to treat ADR-resistance. This suggests possibilities for future clinical research.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Combined Chemotherapy Protocols/metabolism
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Down-Regulation/drug effects
- Doxorubicin/metabolism
- Doxorubicin/pharmacology
- Doxorubicin/therapeutic use
- Drug Combinations
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Neoplasm/drug effects
- Drugs, Chinese Herbal/administration & dosage
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Female
- Humans
- MAP Kinase Signaling System/drug effects
- MCF-7 Cells
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- NF-kappa B/metabolism
- Rhodamine 123/metabolism
- Signal Transduction/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Lin Yang
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Chengda Zhang
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, China
| | - Jiaoting Chen
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Sheng Zhang
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, China
| | - Guixuan Pan
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, China
| | - Yanfei Xin
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
- Yanfei Xin
| | - Lin Lin
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, China
- Lin Lin Zhejiang Academy of Medical Sciences, 182 Tianmushan Road, Hangzhou310013, China
| | - Zhenqiang You
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, China
- CONTACT Zhenqiang You
| |
Collapse
|
13
|
Jin Y, Huynh DTN, Nguyen TLL, Jeon H, Heo KS. Therapeutic effects of ginsenosides on breast cancer growth and metastasis. Arch Pharm Res 2020; 43:773-787. [PMID: 32839835 DOI: 10.1007/s12272-020-01265-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022]
Abstract
Breast cancer is the most common cause of cancer-related deaths among women worldwide. Thus, the development of new and effective low-toxicity drugs is vital. The specific characteristics of breast cancer have allowed for the development of targeted therapy towards each breast cancer subtype. Nevertheless, increasing drug resistance is displayed by the changing phenotype and microenvironments of the tumor through mutation or dysregulation of various mechanisms. Recently, emerging data on the therapeutic potential of biocompounds isolated from ginseng have been reported. Therefore, in this review, various roles of ginsenosides in the treatment of breast cancer, including apoptosis, autophagy, metastasis, epithelial-mesenchymal transition, epigenetic changes, combination therapy, and drug delivery system, have been discussed.
Collapse
Affiliation(s)
- Yujin Jin
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea
| | - Diem Thi Ngoc Huynh
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea
| | - Thuy Le Lam Nguyen
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea
| | - Hyesu Jeon
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea
| | - Kyung-Sun Heo
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea. .,Institute of Drug Research & Development, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
14
|
McGrowder DA, Miller FG, Nwokocha CR, Anderson MS, Wilson-Clarke C, Vaz K, Anderson-Jackson L, Brown J. Medicinal Herbs Used in Traditional Management of Breast Cancer: Mechanisms of Action. MEDICINES (BASEL, SWITZERLAND) 2020; 7:E47. [PMID: 32823812 PMCID: PMC7460502 DOI: 10.3390/medicines7080047] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/29/2020] [Accepted: 08/09/2020] [Indexed: 02/06/2023]
Abstract
Background: Breast cancer is one of the principal causes of death among women and there is a pressing need to develop novel and effective anti-cancer agents. Natural plant products have shown promising results as anti-cancer agents. Their effectiveness is reported as decreased toxicity in usage, along with safety and less recurrent resistances compared with hormonal targeting anti-cancer agents. Methods: A literature search was conducted for all English-language literature published prior to June 2020. The search was conducted using electronic databases, including PubMed, Embase, Web of Science, and Cochrane Library. The search strategy included keywords such as breast cancer, herbs, anti-cancer biologically active components, clinical research, chemotherapy drugs amongst others. Results: The literature provides documented evidence of the chemo-preventative and chemotherapeutic properties of Ginseng, garlic (Allium sativum), Black cohosh (Actaea racemose), Tumeric (Curcuma longa), Camellia sinenis (green tea), Echinacea, Arctium (burdock), Flaxseed (Linum usitatissimum) and Black Cumin (Nigella sativa). Conclusions: The nine herbs displayed anti-cancer properties and their outcomes and mechanisms of action include inhibition of cell proliferation, angiogenesis and apoptosis as well as modulation of key intracellular pathways. However, more clinical trials and cohort human studies should be conducted to provide key evidence of their medical benefits.
Collapse
Affiliation(s)
- Donovan A. McGrowder
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (L.A.-J.); (J.B.)
| | - Fabian G. Miller
- Department of Physical Education, Faculty of Education, The Mico University College, 1A Marescaux Road, Kingston 5, Jamaica;
- Department of Biotechnology, Faculty of Science and Technology, The University of the West Indies, Kingston 7, Jamaica
| | - Chukwuemeka R. Nwokocha
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.R.N.); (C.W.-C.)
| | - Melisa S. Anderson
- School of Allied Health and Wellness, College of Health Sciences, University of Technology, Kingston 7, Jamaica;
| | - Cameil Wilson-Clarke
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.R.N.); (C.W.-C.)
| | - Kurt Vaz
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (L.A.-J.); (J.B.)
| | - Lennox Anderson-Jackson
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (L.A.-J.); (J.B.)
| | - Jabari Brown
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (L.A.-J.); (J.B.)
| |
Collapse
|
15
|
Długosz-Pokorska A, Pięta M, Kędzia J, Janecki T, Janecka A. New uracil analog U-332 is an inhibitor of NF-κB in 5-fluorouracil-resistant human leukemia HL-60 cell line. BMC Pharmacol Toxicol 2020; 21:18. [PMID: 32122395 PMCID: PMC7053076 DOI: 10.1186/s40360-020-0397-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/21/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND 5-Fluorouracil (5-FU) is an antimetabolite that interferes with DNA synthesis and has been widely used as a chemotherapeutic drug in various types of cancers. However, the development of drug resistance greatly limits its application. Overexpression of ATP-binding cassette (ABC) transporters in many types of cancer is responsible for the reduction of the cellular uptake of various anticancer drugs causing multidrug resistance (MDR), the major obstacle in cancer chemotherapy. Recently, we have obtained a novel synthetic 5-FU analog, U-332 [(R)-3-(4-bromophenyl)-1-ethyl-5-methylidene-6-phenyldihydrouracil], combining a uracil skeleton with an exo-cyclic methylidene group. U-332 was highly cytotoxic for HL-60 cells and showed similar cytotoxicity in the 5-FU resistant subclone (HL-60/5FU), in which this analog almost completely abolished expression of the ATP-binding cassette (ABC) transporter, multidrug resistance associate protein 1 (ABCC1). The expression of ABC transporters is usually correlated with NF-κB activation. The aim of this study was to determine the level of NF-κB subunits in the resistant HL-60/5-FU cells and to evaluate the potential of U-332 to inhibit activation of NF-κB family members in this cell line. METHODS Anti-proliferative activity of compound U-332 was assessed by the MTT assay. In order to disclose the mechanism of U-332 cytotoxicity, quantitative real-time PCR analysis of the NF-κB family genes, c-Rel, RelA, RelB, NF-κB1, and NF-κB2, was investigated. The ability of U-332 to reduce the activity of NF-κB members was studied by ELISA test. RESULTS In this report it was demonstrated, using RT-PCR and ELISA assay, that members of the NF-κB family c-Rel, RelA, RelB, NF-κB1, and NF-κB2 were all overexpressed in the 5-FU-resistant HL-60/5FU cells and that U-332 potently reduced the activity of c-Rel, RelA and NF-κB1 subunits in this cell line. CONCLUSIONS This finding indicates that c-Rel, RelA and NF-κB1 subunits are responsible for the resistance of HL-60/5FU cells to 5-FU and that U-332 is able to reverse this resistance. U-332 can be viewed as an important lead compound in the search for novel drug candidates that would not cause multidrug resistance in cancer cells.
Collapse
Affiliation(s)
- Angelika Długosz-Pokorska
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Marlena Pięta
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jacek Kędzia
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
| | - Tomasz Janecki
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland.
| |
Collapse
|
16
|
Liu J, Cai Q, Wang W, Lu M, Liu J, Zhou F, Sun M, Wang G, Zhang J. Ginsenoside Rh2 pretreatment and withdrawal reactivated the pentose phosphate pathway to ameliorate intracellular redox disturbance and promoted intratumoral penetration of adriamycin. Redox Biol 2020; 32:101452. [PMID: 32067911 PMCID: PMC7264470 DOI: 10.1016/j.redox.2020.101452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/19/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
Improving the limited penetration, accumulation and therapeutic effects of antitumor drugs in the avascular region of the tumor mass is crucial during chemotherapy. P-gp inhibitors have achieved little success despite significant efforts. Excessive P-gp inhibition disturbed the kinetic balance between intracellular accumulation and intercellular penetration, thus resulting in a more inhomogeneous distribution of substrate drugs. Here, we found that ginsenoside Rh2 pretreatment mildly downregulated P-gp expression through reactivating the pentose phosphate pathway and rebalancing redox status. This mild P-gp inhibition not only significantly increased the growth inhibition effect and accumulation profile of adriamycin (ADR) throughout the multicellular tumor spheroid (MCTS) but also had unique advantages in improving drug penetration. Furthermore, we developed a novel individual-cell-based PK-PD integrated model and proved that metabolic reprogramming and redox rebalancing-based P-gp regulation was sufficient to increase the ADR effect in both central and peripheral cells of MCTS. Thus, a “ginsenoside Rh2-ADR” sequential regimen was proposed and exhibited a potent antitumor effect in vivo. This novel P-gp inhibition via metabolic reprogramming and redox rebalancing provided a new idea for achieving better antitumor effects in the tumor avascular region during chemotherapy. Rh2 pretreatment downregulated P-gp expression through metabolic reprogramming and redox rebalancing. Rh2-pretreatment improved ADR penetration into the core of MCTS and tumour mass. “Ginsenoside Rh2-ADR” sequential regimen exhibited potent antitumor effects in vivo.
Collapse
Affiliation(s)
- Jiali Liu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Qingyun Cai
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wenjie Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Meng Lu
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jianming Liu
- Clinical Pharmacology Institute, Nanchang University, Nanchang, China
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Minjie Sun
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Jingwei Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
17
|
Guo YH, Kuruganti R, Gao Y. Recent Advances in Ginsenosides as Potential Therapeutics Against Breast Cancer. Curr Top Med Chem 2019; 19:2334-2347. [DOI: 10.2174/1568026619666191018100848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 05/10/2019] [Accepted: 08/16/2019] [Indexed: 12/14/2022]
Abstract
The dried root of ginseng (Panax ginseng C. A. Meyer or Panax quinquefolius L.) is a traditional
Chinese medicine widely used to manage cancer symptoms and chemotherapy side effects in
Asia. The anti-cancer efficacy of ginseng is attributed mainly to the presence of saponins, which are
commonly known as ginsenosides. Ginsenosides were first identified as key active ingredients in Panax
ginseng and subsequently found in Panax quinquefolius, both of the same genus. To review the recent
advances on anti-cancer effects of ginsenosides against breast cancer, we conducted a literature study of
scientific articles published from 2010 through 2018 to date by searching the major databases including
Pubmed, SciFinder, Science Direct, Springer, Google Scholar, and CNKI. A total of 50 articles authored
in either English or Chinese related to the anti-breast cancer activity of ginsenosides have been
reviewed, and the in vitro, in vivo, and clinical studies on ginsenosides are summarized. This review focuses
on how ginsenosides exert their anti-breast cancer activities through various mechanisms of action
such as modulation of cell growth, modulation of the cell cycle, modulation of cell death, inhibition of
angiogenesis, inhibition of metastasis, inhibition of multidrug resistance, and cancer immunemodulation.
In summary, recent advances in the evaluation of ginsenosides as therapeutic agents against
breast cancer support further pre-clinical and clinical studies to treat primary and metastatic breast tumors.
Collapse
Affiliation(s)
- Yu-hang Guo
- International Ginseng Institute, School of Agriculture, Middle Tennessee State University, Murfreesboro, TN 37132, United States
| | - Revathimadhubala Kuruganti
- International Ginseng Institute, School of Agriculture, Middle Tennessee State University, Murfreesboro, TN 37132, United States
| | - Ying Gao
- International Ginseng Institute, School of Agriculture, Middle Tennessee State University, Murfreesboro, TN 37132, United States
| |
Collapse
|
18
|
Tang H, Wu YJ, Xiao F, Wang B, Asenso J, Wang Y, Sun W, Wang C, Wei W. Regulation of CP-25 on P-glycoprotein in synoviocytes of rats with adjuvant arthritis. Biomed Pharmacother 2019; 119:109432. [PMID: 31521892 DOI: 10.1016/j.biopha.2019.109432] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Methotrexate (MTX) is a commonly used drug for the treatment of rheumatoid arthritis (RA) and it has been studied in RA resistance recently. P-glycoprotein (P-gp) is one of the important transporters that mediate MTX resistance. This study investigated the effect of Paeoniflorin-6'-O-benzene sulfonate (code: CP-25) in the resistance of P-gp-mediated MTX to RA. METHODS Adjuvant arthritis (AA) was induced in rats via complete Freund's adjuvant. The experimental groups were divided into normal group; AA model group; monotherapy groups, including CP-25, MTX and dexamethasone; and CP-25 combined with MTX group. The expression of P-gp in synovial tissue was measured by western blot and histochemistry. Besides, P-gp high expression of human hepatoma cell line Bel7402/5-FU and Bel7402 were chose to study in MTX resistance and the function of P-gp was detected by Flow cytometry. RESULTS CP-25 had a good therapeutic effect on AA rats, significantly improved manifestations and reduced the expression of P-gp in synovial tissue, spleen medulla and small intestinal epithelial cells in the apical tissues of AA rats. In addition, CP-25 significantly inhibited the up-regulation of P-gp induced by TNF-α stimulation in synoviocytes. Furthermore, according to the accumulation and efflux of rhodamine 123 in Bel7402/5-FU resistant cells and Bel7402 sensitive cells, CP-25 could reverse the resistance of MTX in Bel7402/5-FU cells compared with Bel7402 cells, which was reflected by the reduced IC50 values of MTX. Further study indicated that CP-25 could decrease P-gp expression and inhibit P-gp function in Bel7402/5-FU cells. CONCLUSION CP-25 regulates the expression of P-gp and inhibits the function of P-gp, thereby improving the resistance of MTX.
Collapse
Affiliation(s)
- Hao Tang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yi-Jin Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Feng Xiao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Bin Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - James Asenso
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Wei Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Chun Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China.
| |
Collapse
|
19
|
Wu YJ, Zhao MY, Wang J, Tang H, Wang B, Xiao F, Liu LH, Zhang YF, Zhou AW, Wang C, Wei W. Absorption and efflux characteristics of CP-25 in plasma and peripheral blood mononuclear cells of rats by UPLC-MS/MS. Biomed Pharmacother 2018; 108:1651-1657. [DOI: 10.1016/j.biopha.2018.09.156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 12/26/2022] Open
|
20
|
Kwon HJ, Lee H, Choi GE, Kwon SJ, Song AY, Kim SJ, Choi WS, Hwang SH, Kim SC, Kim HS. Ginsenoside F1 Promotes Cytotoxic Activity of NK Cells via Insulin-Like Growth Factor-1-Dependent Mechanism. Front Immunol 2018; 9:2785. [PMID: 30546365 PMCID: PMC6279892 DOI: 10.3389/fimmu.2018.02785] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/12/2018] [Indexed: 01/21/2023] Open
Abstract
Ginsenosides are the principal active components of ginseng and are considered attractive candidates for combination cancer therapy because they can kill tumors and have favorable safety profiles. However, the overall benefit of ginsenosides remains unclear, particularly in cancer immunosurveillance, considering the controversial results showing repression or promotion of immune responses. Here we identify a potentiating role of ginsenoside F1 (G-F1) in cancer surveillance by natural killer (NK) cells. Among 15 different ginsenosides, G-F1 most potently enhanced NK cell cytotoxicity in response to diverse activating receptors and cancer cells. G-F1 also improved cancer surveillance in mouse models of lymphoma clearance and metastatic melanoma that rely on NK cell activity. G-F1-treated NK cells exhibited elevated cytotoxic potential such as upregulation of cytotoxic mediators and of activation signals upon stimulation. NK cell potentiation by G-F1 was antagonized by insulin-like growth factor (IGF)-1 blockade and recapitulated by IGF-1 treatment, suggesting the involvement of IGF-1. Thus, our results suggest that G-F1 enhances NK cell function and may have chemotherapeutic potential in NK cell-based immunotherapy. We anticipate our results to be a starting point for further comprehensive studies of ginsenosides in the immune cells mediating cancer surveillance and the development of putative therapeutics.
Collapse
Affiliation(s)
- Hyung-Joon Kwon
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Heejae Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Go-Eun Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.,Department of Clinical Laboratory Science, Catholic University of Pusan, Busan, South Korea
| | - Soon Jae Kwon
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Ah Young Song
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - So Jeong Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Woo Seon Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Sang-Hyun Hwang
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hun Sik Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.,Department of Microbiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| |
Collapse
|
21
|
Zheng N, Wang X, Wang Y, Xu G, Zhang H, Dai W, He B, Zhang Q, Ji J, Wang X. A sensitive liquid chromatography/electrospray tandem mass spectroscopy method for simultaneous quantification of a disulfide bond doxorubicin conjugation prodrug and activated doxorubicin: Application to cellular pharmacokinetic and catabolism studies. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1065-1066:96-103. [PMID: 28957779 DOI: 10.1016/j.jchromb.2017.09.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/11/2017] [Accepted: 09/20/2017] [Indexed: 11/29/2022]
Abstract
In recent years, drug conjugates as a prodrug strategy have been widely studied, especially combined with nanotechnology. Disulfide-linked doxorubicin drug-drug conjugate (DOX-S-S-DOX) nanoparticles, have recently been developed as a doxorubicin prodrug nanoparticles with greater anticancer activity and less toxicity than doxorubicin in vivo, while its intracellular kinetics and metabolism is unclear which may provide us with a deeper understanding of its pharmacological mechanism and antitumor effect. Hence, in this study, a rapid and sensitive ultra high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed to detect doxorubicin (DOX) activated from DOX-S-S-DOX, as well as the prodrug itself in human breast cancer tumor cells (MCF-7). Sample preparation involved acetonitrile precipitation to extract the analytes simultaneously and bath sonication to remove intercalated DOX from DNA. The calibration range was 3-60ng/mL for DOX and 20-400ng/mL for DOX-S-S-DOX with the correlation coefficients (r2)≥0.99, using daunorubicin as internal standard (IS). The inter- and intra-assay precision (relative standard deviation, RSD%) of quality control samples was in the acceptable range (<15%) and relative error (RE%) for accuracy was between -5.35 and 9.18% for all analytes. Recovery (59.28-69.53% for DOX-S-S-DOX and 99.13-100.10% for DOX) and matrix effect (99.69-111.19%) was consistent, precise, and reproducible at different quality control levels in accordance with FDA guidance. Stability studies showed that DOX-S-S-DOX was unstable both during the bench-top and long-term storage, while the stability during sample preparation and LC-MS runtime was suitable for all the analytes. Hence, the samples should be prepared as soon as possible at the time point to prevent the catabolism of DOX-S-S-DOX. The assay was successfully used in the cellular metabolism and pharmacokinetics study of DOX-S-S-DOX and it may give a clue to explore analytical methods of other prodrug forms of DOX.
Collapse
Affiliation(s)
- Nan Zheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Drug Clinical Trial Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yaoqi Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Guobing Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Drug Clinical Trial Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Drug Clinical Trial Center, Peking University Cancer Hospital & Institute, Beijing 100142, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
22
|
Qi HY, Li L, Ma H. Cellular stress response mechanisms as therapeutic targets of ginsenosides. Med Res Rev 2017; 38:625-654. [DOI: 10.1002/med.21450] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/28/2017] [Accepted: 04/14/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Hong-yi Qi
- College of Chinese Medicine; Southwest University; Chongqing P.R. China
| | - Li Li
- College of Chinese Medicine; Southwest University; Chongqing P.R. China
| | - Hui Ma
- College of Chinese Medicine; Southwest University; Chongqing P.R. China
| |
Collapse
|
23
|
Lee H, Lee S, Jeong D, Kim SJ. Ginsenoside Rh2 epigenetically regulates cell-mediated immune pathway to inhibit proliferation of MCF-7 breast cancer cells. J Ginseng Res 2017; 42:455-462. [PMID: 30337805 PMCID: PMC6187096 DOI: 10.1016/j.jgr.2017.05.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/31/2017] [Accepted: 05/08/2017] [Indexed: 12/03/2022] Open
Abstract
Background Ginsenoside Rh2 has been known to enhance the activity of immune cells, as well as to inhibit the growth of tumor cells. Although the repertoire of genes regulated by Rh2 is well-known in many cancer cells, the epigenetic regulation has yet to be determined, especially for comprehensive approaches to detect methylation changes. Methods The effect of Rh2 on genome-wide DNA methylation changes in breast cancer cells was examined by treating cultured MCF-7 with Rh2. Pyrosequencing analysis was carried out to measure the methylation level of a global methylation marker, LINE1. Genome-wide methylation analysis was carried out to identify epigenetically regulated genes and to elucidate the most prominent signaling pathway affected by Rh2. Apoptosis and proliferation were monitored to examine the cellular effect of Rh2. Results LINE1 showed induction of hypomethylation at specific CpGs by 1.6–9.1% (p < 0.05). Genome-wide methylation analysis identified the “cell-mediated immune response”-related pathway as the top network. Cell proliferation of MCF-7 was retarded by Rh2 in a dose-dependent manner. Hypermethylated genes such as CASP1, INSL5, and OR52A1 showed downregulation in the Rh2-treated MCF-7, while hypomethylated genes such as CLINT1, ST3GAL4, and C1orf198 showed upregulation. Notably, a higher survival rate was associated with lower expression of INSL5 and OR52A1 in breast cancer patients, while with higher expression of CLINT1. Conclusion The results indicate that Rh2 induces epigenetic methylation changes in genes involved in immune response and tumorigenesis, thereby contributing to enhanced immunogenicity and inhibiting the growth of cancer cells.
Collapse
Affiliation(s)
- Hyunkyung Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Seungyeon Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Dawoon Jeong
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
24
|
Boonyong C, Pattamadilok C, Suttisri R, Jianmongkol S. Benzophenones and xanthone derivatives from Garcinia schomburgkiana-induced P-glycoprotein overexpression in human colorectal Caco-2 cells via oxidative stress-mediated mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 27:8-14. [PMID: 28314481 DOI: 10.1016/j.phymed.2017.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/20/2017] [Accepted: 01/29/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND Up-regulation of P-gp is an adaptive survival mechanism of cancer cells from chemotherapy. Three new phytochemicals including two benzophenones, guttiferone K (GK) and oblongifolin C (OC), and a xanthone, isojacaruebin (ISO), are potential anti-cancer agents. However, the capability of these compounds to increase multidrug-resistance (MDR) through P-gp up-regulation in cancer cells has not been reported. PURPOSE This study was to investigate the effects of GK, OC and ISO on P-gp up-regulation in colorectal adenocarcinoma cells (Caco-2 cells). In addition, the mechanisms underlying their inductive effect were also determined. METHODS The inductive effect of GK, OC and ISO on P-gp expression at transcription level was measured by real-time reverse transcription polymerase chain reaction. The reactive oxygen species production was determined by 2', 7'-dichlorofluorescin diacetate assay. The protein content of P-gp and involvement of mitogen-activated protein kinases (MAPK) pathway was evaluated by western blot analysis. RESULTS GK, OC and ISO (50 µM, 24 h) were able to increase the amount of MDR1 mRNA and protein in Caco-2 cells. The presence of N-acetyl-l-cysteine significantly prevented the inductive effect of GK, OC and ISO on MDR1 mRNA level. Moreover, MAPK inhibitors including U0126 (an ERK1/2/MAPK inhibitor) and SB202190 (p38/MAPK inhibitor) suppressed an increase of MDR1 mRNA levels in the cells treated with benzophenones (GK, OC) and xanthone ISO, respectively. These findings were in agreement with the increase of phosphorylated form of either ERK1/2 (p-ERK1/2) or p38 (p-p38) upon treatment of the cells with these three compounds. In addition, OC and ISO, but not GK, increased mRNA of c-Jun level. CONCLUSION The benzophenones GK, OC and xanthone ISO are likely MDR inducers through up-regulation of P-gp expression at transcription level. Their molecular mechanisms involve oxidative stress-mediated activation of MAPK signaling pathway.
Collapse
Affiliation(s)
- Cherdsak Boonyong
- Inter-Department Program of Pharmacology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chutichot Pattamadilok
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rutt Suttisri
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suree Jianmongkol
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
25
|
Wan JY, Wang CZ, Zhang QH, Liu Z, Musch MW, Bissonnette M, Chang EB, Li P, Qi LW, Yuan CS. Significant difference in active metabolite levels of ginseng in humans consuming Asian or Western diet: The link with enteric microbiota. Biomed Chromatogr 2017; 31:10.1002/bmc.3851. [PMID: 27606833 PMCID: PMC5339059 DOI: 10.1002/bmc.3851] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/29/2016] [Accepted: 09/06/2016] [Indexed: 01/17/2023]
Abstract
After ingestion of ginseng, the bioavailability of its parent compounds is low and enteric microbiota plays an important role in parent compound biotransformation to their metabolites. Diet type can influence the enteric microbiota profile. When human subjects on different diets ingest ginseng, their different gut microbiota profiles may influence the metabolism of ginseng parent compounds. In this study, the effects of different diet type on gut microbiota metabolism of American ginseng saponins were investigated. We recruited six healthy adults who regularly consumed different diet types. These subjects received 7 days' oral American ginseng, and their biological samples were collected for LC-Q-TOF-MS analysis. We observed significant ginsenoside Rb1 (a major parent compound) and compound K (a major active metabolite) level differences in the samples from the subjects consuming different diets. Subjects on an Asian diet had much higher Rb1 levels but much lower compound K levels compared with those on a Western diet. Since compound K possesses much better cancer chemoprevention potential, our data suggested that consumers on a Western diet should obtain better cancer prevention effects with American ginseng intake compared with those on an Asian diet. Ginseng compound levels could be enhanced or reduced via gut microbiota manipulation for clinical utility.
Collapse
Affiliation(s)
- Jin-Yi Wan
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Tang Center for Herbal Medicine Research and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Qi-Hui Zhang
- Tang Center for Herbal Medicine Research and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Zhi Liu
- Tang Center for Herbal Medicine Research and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Mark W. Musch
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL 60637, USA
| | - Marc Bissonnette
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL 60637, USA
| | - Eugene B. Chang
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL 60637, USA
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Tang Center for Herbal Medicine Research and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
26
|
Long-Term Alteration of Reactive Oxygen Species Led to Multidrug Resistance in MCF-7 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7053451. [PMID: 28058088 PMCID: PMC5183793 DOI: 10.1155/2016/7053451] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/25/2016] [Accepted: 11/06/2016] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) play an important role in multidrug resistance (MDR). This study aimed to investigate the effects of long-term ROS alteration on MDR in MCF-7 cells and to explore its underlying mechanism. Our study showed both long-term treatments of H2O2 and glutathione (GSH) led to MDR with suppressed iROS levels in MCF-7 cells. Moreover, the MDR cells induced by 0.1 μM H2O2 treatment for 20 weeks (MCF-7/ROS cells) had a higher viability and proliferative ability than the control MCF-7 cells. MCF-7/ROS cells also showed higher activity or content of intracellular antioxidants like glutathione peroxidase (GPx), GSH, superoxide dismutase (SOD), and catalase (CAT). Importantly, MCF-7/ROS cells were characterized by overexpression of MDR-related protein 1 (MRP1) and P-glycoprotein (P-gp), as well as their regulators NF-E2-related factor 2 (Nrf2), hypoxia-inducible factor 1 (HIF-1α), and the activation of PI3K/Akt pathway in upstream. Moreover, several typical MDR mediators, including glutathione S-transferase-π (GST-π) and c-Myc and Protein Kinase Cα (PKCα), were also found to be upregulated in MCF-7/ROS cells. Collectively, our results suggest that ROS may be critical in the generation of MDR, which may provide new insights into understanding of mechanisms of MDR.
Collapse
|
27
|
Velaei K, Samadi N, Soltani S, Barazvan B, Soleimani Rad J. NFκBP65 transcription factor modulates resistance to doxorubicin through ABC transporters in breast cancer. Breast Cancer 2016; 24:552-561. [DOI: 10.1007/s12282-016-0738-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/25/2016] [Indexed: 01/23/2023]
|
28
|
Kang A, Zhang S, Zhu D, Dong Y, Shan J, Xie T, Wen H, Di L. Gut microbiota in the pharmacokinetics and colonic deglycosylation metabolism of ginsenoside Rb1 in rats: Contrary effects of antimicrobials treatment and restraint stress. Chem Biol Interact 2016; 258:187-96. [DOI: 10.1016/j.cbi.2016.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/09/2016] [Accepted: 09/06/2016] [Indexed: 02/02/2023]
|
29
|
Abd Ellah NH, Taylor L, Ayres N, Elmahdy MM, Fetih GN, Jones HN, Ibrahim EA, Pauletti GM. NF-κB decoy polyplexes decrease P-glycoprotein-mediated multidrug resistance in colorectal cancer cells. Cancer Gene Ther 2016; 23:149-55. [PMID: 27125866 DOI: 10.1038/cgt.2016.17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/14/2016] [Accepted: 02/26/2016] [Indexed: 11/09/2022]
Abstract
Multidrug resistance (MDR), a major cause for chemotherapy failure, has been linked to upregulation of ATP-dependent membrane efflux systems that limit intracellular accumulation of cytotoxic anticancer agents. P-glycoprotein (P-gp) encoded by the human ABCB1 gene was the first efflux transporter identified to contribute to MDR. ABCB1 gene expression is correlated with constitutive activation of the NF-κB signaling pathway in tumor cells. The objective of this research is to modulate P-gp activity in colon cancer cells using NF-κB decoy oligodeoxynucleotides (ODNs) that are effectively delivered into the nucleus of colorectal cancer cells by self-assembling nonviral nanoparticles comprising the novel poly[N-(2-hydroxypropyl)methacrylamide]-poly(N,N-dimethylaminoethylmethacrylate) diblock copolymer (pHPMA-b-pDMAEMA). Ethidium bromide intercalation and gel retardation assays demonstrated high DNA condensation capacity of pHPMA-b-pDMAEMA. Nanoparticles prepared with and without decoy ODNs did not significantly compromise cellular safety at N/P ratios ⩽4. Transfection efficiency of pHPMA-b-pDMAEMA polyplexes (N/P=4) in Caco-2 cells was comparable to TurboFect transfection standard, resulting in a 98% reduction in P-gp protein levels. As a pharmacodynamic consequence, intracellular accumulation of the P-gp substrate Rhodamine123 significantly increased by almost twofold. In conclusion, NF-κB ODN polyplexes fabricated with pHPMA-b-pDMAEMA polymer effectively reduced P-gp-mediated efflux activity in Caco-2 cells, suggesting successful interference with NF-κB-binding sites in the promoter region of the ABCB1 gene.
Collapse
Affiliation(s)
- N H Abd Ellah
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA.,Faculty of Pharmacy, Assiut University, Assiut, Arab Republic of Egypt
| | - L Taylor
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - N Ayres
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - M M Elmahdy
- Faculty of Pharmacy, Assiut University, Assiut, Arab Republic of Egypt
| | - G N Fetih
- Faculty of Pharmacy, Assiut University, Assiut, Arab Republic of Egypt
| | - H N Jones
- Division of General and Thoracic Surgery and Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - E A Ibrahim
- Faculty of Pharmacy, Assiut University, Assiut, Arab Republic of Egypt
| | - G M Pauletti
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
30
|
Seubwai W, Vaeteewoottacharn K, Kraiklang R, Umezawa K, Okada S, Wongkham S. Inhibition of NF-κB Activity Enhances Sensitivity to Anticancer Drugs in Cholangiocarcinoma Cells. Oncol Res 2016; 23:21-28. [PMID: 26802647 PMCID: PMC7842550 DOI: 10.3727/096504015x14424348426071] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a dismal cancer. At present, there is no effective chemotherapeutic regimen for CCA. This may be due to the marked resistance of CCA to chemotherapy drugs, for which a mechanism remains unknown. Nuclear factor-κB (NF-κB) is constitutively activated in a variety of cancer cells, including CCA. It has been shown to play roles in growth, metastasis, and chemoresistance of cancer. In the present study, we examined whether NF-κB is involved in the chemoresistance of CCA and whether dehydroxymethylepoxyquinomicin (DHMEQ), an effective NF-κB inhibitor, can overcome the drug resistance of CCA. Two CCA cell lines, KKU-M213 and KKU-M214, were treated with DHMEQ and/or chemotherapeutic drugs. Cell viability, apoptosis, and the expressions of the ATP-binding cassette (ABC) transporters were compared. The combination of chemotherapy drugs, 5-fluorouracil, cisplatin, and doxorubicin, with DHMEQ significantly enhanced the cytotoxicity of all chemotherapeutic drugs compared to DHMEQ or drug alone. Furthermore, the mRNA level of ABCB1, a multidrug-resistant protein, was significantly decreased in the 5-fluorouracil combined with DHMEQ-treated cells. These findings suggest that the inhibition of NF-κB by DHMEQ enhanced the chemoresponsiveness of CCA cells, possibly by reducing the expression of ABC transporter. Inhibition of NF-κB may be a potential chemodrug-sensitizing strategy for chemoresistant cancer such as CCA.
Collapse
Affiliation(s)
- Wunchana Seubwai
- *Department of Forensic Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- †Comprehensive Cancer Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- ‡Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kulthida Vaeteewoottacharn
- ‡Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- §Department of Biochemistry,Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Ratthaphol Kraiklang
- ¶Department of Nutrition, Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand
| | - Kazuo Umezawa
- #Department of Molecular Target Medicine, Aichi Medical University, Nagakute, Japan
| | - Seiji Okada
- **Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Honjo, Kumamoto, Japan
| | - Sopit Wongkham
- ‡Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- §Department of Biochemistry,Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
31
|
Wen X, Zhang HD, Zhao L, Yao YF, Zhao JH, Tang JH. Ginsenoside Rh2 differentially mediates microRNA expression to prevent chemoresistance of breast cancer. Asian Pac J Cancer Prev 2015; 16:1105-9. [PMID: 25735339 DOI: 10.7314/apjcp.2015.16.3.1105] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Chemoresistance is the most common cause of chemotherapy failure during breast cancer (BCA) treatment. It is generally known that the mechanisms of chemoresistance in tumors involve multiple genes and multiple signaling pathways,; if appropriate drugs are used to regulate the mechanisms at the gene level, it should be possible to effectively reverse chemoresistance in BCA cells. It has been confirmed that chemoresistance in BCA cells could be reversed by ginsenoside Rh2 (G-Rh2). Preliminary studies of our group identified some drug- resistance specific miRNA. Accordingly, we proposed that G-Rh2 could mediate drug-resistance specific miRNA and corresponding target genes through the gene regulatory network; this could cut off the drug-resistance process in tumors and enhance treatment effects. G-Rh2 and breast cancer cells were used in our study. Through pharmaceutical interventions, we could explore how G-Rh2 could inhibit chemotherapy resistance in BCA, and analyze its impact on related miRNA and target genes. Finally, we will reveal the anti-resistance molecular mechanisms of G-Rh2 from a different angle in miRNA-mediated chemoresistance signals among cells.
Collapse
Affiliation(s)
- Xu Wen
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, China E-mail :
| | | | | | | | | | | |
Collapse
|
32
|
Liu J, Zhou F, Chen Q, Kang A, Lu M, Liu W, Zang X, Wang G, Zhang J. Chronic inflammation up-regulates P-gp in peripheral mononuclear blood cells via the STAT3/Nf-κb pathway in 2,4,6-trinitrobenzene sulfonic acid-induced colitis mice. Sci Rep 2015; 5:13558. [PMID: 26324318 PMCID: PMC4555107 DOI: 10.1038/srep13558] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/30/2015] [Indexed: 12/13/2022] Open
Abstract
Patients with inflammatory bowel diseases, including Crohn’s disease and ulcerative colitis, often suffer drug intolerance. This resistance can be divided into intrinsic resistance and acquired resistance. Although there is agreement on acquired resistance, studies regarding intrinsic resistance have demonstrated inconsistencies, especially for Crohn’s disease. For this reason, an animal model of Crohn’s disease was induced with 2,4,6-trinitrobenzene sulfonic acid solution (TNBS), and intrinsic resistance was analyzed by measuring the function and expression of P-glycoprotein (P-gp) in peripheral mononuclear blood cells (PMBC), followed by mechanistic studies. The results revealed reduced retention of cyclosporine A in PMBC over-expressing P-gp in a TNBS-treated group and enhanced secretion of the cytokines IL-1β, IL-6, IL-17, and TNF-α as well as LPS in plasma. These cytokines and LPS can induce P-gp expression through the STAT3/Nf-κb pathway, contributing to a decrease of cyclosporine A retention, which can be reversed by the application of a P-gp inhibitor. Our results demonstrated that the sustained chronic inflammation could induce the intrinsic resistance presented as P-gp over-expression in PBMC in Crohn’s disease through STAT3/Nf-κb pathway and this resistance might be reversed by combinational usage of P-gp inhibitors.
Collapse
Affiliation(s)
- Jiali Liu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Fang Zhou
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.,Jiangsu Key laboratory of drug design and optimization, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Qianying Chen
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - An Kang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Meng Lu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wenyue Liu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaojie Zang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guangji Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.,Jiangsu Key laboratory of drug design and optimization, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jingwei Zhang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.,Jiangsu Key laboratory of drug design and optimization, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
33
|
Lu M, Zhou F, Hao K, Liu J, Chen Q, Ni P, Zhou H, Wang G, Zhang J. Alternation of adriamycin penetration kinetics in MCF-7 cells from 2D to 3D culture based on P-gp expression through the Chk2/p53/NF-κB pathway. Biochem Pharmacol 2015; 93:210-20. [DOI: 10.1016/j.bcp.2014.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 01/09/2023]
|
34
|
Zhang J, Sun Y, Wang Y, Lu M, He J, Liu J, Chen Q, Zhang X, Zhou F, Wang G, Sun X. Non-antibiotic agent ginsenoside 20(S)-Rh2 enhanced the antibacterial effects of ciprofloxacin in vitro and in vivo as a potential NorA inhibitor. Eur J Pharmacol 2014; 740:277-84. [PMID: 25054686 DOI: 10.1016/j.ejphar.2014.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 01/27/2023]
Abstract
The aim of this study is to explore the potential enhancing effect of ginsenoside 20(S)-Rh2 (Rh2) towards ciprofloxacin (CIP) against Staphylococcus aureus (S. aureus) infection in vitro and in vivo, and analyze the possible mechanisms through NorA inhibition from a target cellular pharmacokinetic view. In combination with non-toxic dosage of Rh2, the susceptibilities of S. aureus strains to CIP were significantly augmented, and the antibacterial kinetics of CIP in the S. aureus strains were markedly promoted. This enhancing effect of Rh2 towards CIP was also observed in S. aureus infected peritonitis mice, with elevated survival rate and reduced bacteria counts in blood. However, Rh2 did not influence the plasma concentrations of CIP. Further analysis indicated that Rh2 significantly promoted the accumulations of CIP in S. aureus, and inhibited the NorA mediated efflux of pyronin Y. The expressions of NorA gene on S. aureus were positively correlated with the enhancing effect of Rh2 with CIP. This is the first report of the enhancing effect of Rh2 with CIP for S. aureus infection in vitro and in vivo, of which it is probably that Rh2 inhibited NorA-mediated efflux and promoted the accumulation of CIP in the bacteria.
Collapse
Affiliation(s)
- Jingwei Zhang
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China; Jiangsu Key laboratory of drug design and optimization, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuan Sun
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China; Jiangsu Key laboratory of drug design and optimization, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yaoyao Wang
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China; Jiangsu Key laboratory of drug design and optimization, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Meng Lu
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China; Jiangsu Key laboratory of drug design and optimization, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jichao He
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China; Jiangsu Key laboratory of drug design and optimization, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jiali Liu
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China; Jiangsu Key laboratory of drug design and optimization, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Qianying Chen
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China; Jiangsu Key laboratory of drug design and optimization, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaoxuan Zhang
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China; Jiangsu Key laboratory of drug design and optimization, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Fang Zhou
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China; Jiangsu Key laboratory of drug design and optimization, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China; Jiangsu Key laboratory of drug design and optimization, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Xianqiang Sun
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, S-106 91, Stockholm, Sweden
| |
Collapse
|
35
|
Fang XJ, Jiang H, Zhu YQ, Zhang LY, Fan QH, Tian Y. Doxorubicin induces drug resistance and expression of the novel CD44st via NF-κB in human breast cancer MCF-7 cells. Oncol Rep 2014; 31:2735-42. [PMID: 24715151 DOI: 10.3892/or.2014.3131] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 02/24/2014] [Indexed: 11/06/2022] Open
Abstract
CD44, a major receptor for hyaluronan (HA), is a member of a class of adhesion molecules of unknown classification involved in cell proliferation, differentiation, migration, angiogenesis, and the presentation of specific cytokines to the corresponding receptors as well as in cell signaling transduction. It has recently been discovered that CD44, a marker of tumor stem cells, is involved in the drug resistance and invasion of multiple types of tumors. The 20 exons in the CD44 gene that are alternatively spliced, give rise to many CD44 isoforms, possibly including tumor-specific sequences. Dozens of CD44 isoforms have been found, to date, and the standard CD44 (CD44s) isoform is the most common. We recently showed that a novel short-tail isoform of CD44 (CD44st) was expressed in multidrug-resistant human breast cancer MCF-7/Adr cells. Moreover, the novel CD44st was able to interact with HA and regulate the expression of matrix metalloproteinase (MMP)-2 and MMP-9, which increased the invasive capability of MCF-7 cells through the Ras/MAPK signaling pathway. In the present study, we verified that MCF-7 cells subjected to drug pressure develop multidrug resistance to doxorubicin, and the expression levels of multidrug resistance protein 1 (MDR1), CD44st and nuclear factor-κB (NF-κB) mRNA and protein were gradually upregulated in a dose‑dependent manner in MCF-7 cells treated with doxorubicin. HA increases the secretion of MMP-2 and MMP-9 in multidrug-resistant MCF-7 cells and affected the invasive ability of MCF-7 cells through the upregulation of CD44st expression, and such an effect was blocked by the NF-κB-specific inhibitor BMS-345541.
Collapse
Affiliation(s)
- Xin Jian Fang
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Hua Jiang
- Department of Medical Oncology, The Second People's Hospital of Lianyungang (Lianyungang Hospital Affiliated to Bengbu Medical College), Lianyungang, Jiangsu 222000, P.R. China
| | - Ya Qun Zhu
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Li Yuan Zhang
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Qiu Hong Fan
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Ye Tian
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|