1
|
Maraolo AE, Gatti M, Principe L, Marino A, Pipitone G, De Pascale G, Ceccarelli G. Management of methicillin-resistant Staphylococcus aureus bloodstream infections: a comprehensive narrative review of available evidence focusing on current controversies and the challenges ahead. Expert Rev Anti Infect Ther 2025:1-26. [PMID: 40165471 DOI: 10.1080/14787210.2025.2487163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Bloodstream infections (BSIs) caused by Staphylococcus aureus are common worldwide, representing one of the most relevant issues in clinical infectious diseases practice. In particular, BSIs by methicillin-resistant S. aureus (MRSA-BSI) are still today a challenge since mortality burden remains elevated although decades of research. AREAS COVERED The following topics regarding MRSA-BSI were reviewed and discussed by resorting to best available evidence retrieved from PubMed/MEDLINE up to October 2024: i) epidemiology; ii) microbiology; iii) classification, with a focus on complicated and not complicated forms; iv) the structured approach to the patient; v) pharmacokinetics and pharmacodynamics of the main antimicrobial options; vi) controversies regarding the best therapeutic approach. EXPERT OPINION Despite ongoing efforts to better stratify and manage MRSA-BSI, there is no universally accepted classification system accurately distinguishing between uncomplicated/low risk and complicated/high risk forms. Biomarkers such as interleukin(IL)-10 hold promise in order to enable a more precise stratification, premise for an appropriate treatment plan. There is a theoretical rationale for implementing a combination therapy including a beta-lactam agent upfront, especially for patients considered at higher risk of unfavorable outcomes, but further data are necessary, and the same applies to newer adjuvants. Novel microbiological techniques may help in guiding antimicrobial duration.
Collapse
Affiliation(s)
- Alberto Enrico Maraolo
- Section of Infectious Diseases, Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Luigi Principe
- Microbiology and Virology Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Andrea Marino
- Department of Clinical and Experimental Medicine, Infectious Diseases Unit, ARNAS Garibaldi Hospital, University of Catania, Catania, Italy
| | | | - Gennaro De Pascale
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze dell 'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, University Hospital Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Alosaimy S, Rybak MJ, Sakoulas G. Understanding vancomycin nephrotoxicity augmented by β-lactams: a synthesis of endosymbiosis, proximal renal tubule mitochondrial metabolism, and β-lactam chemistry. THE LANCET. INFECTIOUS DISEASES 2024; 24:e179-e188. [PMID: 37883984 DOI: 10.1016/s1473-3099(23)00432-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/08/2023] [Accepted: 06/29/2023] [Indexed: 10/28/2023]
Abstract
The recent understanding that hydrophobic β-lactams have greater affinity for organic anion transporter-3 (OAT-3) of the proximal renal tubule could provide valuable insights for anticipating β-lactams that may exacerbate vancomycin-induced nephrotoxicity. Vancomycin alone provides oxidative stress on the highly metabolic proximal tubular cells. Hydrophobic β-lactams (eg, piperacillin and anti-staphylococcal β-lactams) could have greater OAT-3 mediated uptake into proximal tubular cells than hydrophilic β-lactams (eg, most cephalosporins and carbapenems), thereby causing greater mitochondrial stress on these susceptible cells. It remains to be seen whether concomitant drugs that inhibit OAT-3 mediated cellular uptake of β-lactams into proximal tubular cells or provide antioxidant effects might mitigate β-lactam augmented vancomycin nephrotoxicity. Furthermore, the serum creatinine rise seen with vancomycin and hydrophobic β-lactams might represent competition for creatinine-secreting transporters (of which OAT-3 is one), thus, indicating creatinine retention rather than renal injury. In the meantime, clinicians are advised to utilise less nephrotoxic combinations in both empirical and directed antibiotic selection settings until further research is conducted.
Collapse
Affiliation(s)
- Sara Alosaimy
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA; Nestlé Health Science, Bridgewater Township, NJ, USA
| | - Michael J Rybak
- Division of Infectious Diseases, School of Medicine, Wayne State University, Detroit, MI, USA; Department of Pharmacy, Detroit Receiving Hospital, Detroit, MI, USA.
| | - George Sakoulas
- University of California San Diego School of Medicine, Division of Host-Microbe Systems and Therapeutics, La Jolla, CA, USA; Sharp Rees-Stealy, San Diego, CA, USA
| |
Collapse
|
3
|
Pais GM, Marianski S, Valdez K, Melicor RP, Liu J, Rohani R, Chang J, Tong SYC, Davis JS, Scheetz MH. Flucloxacillin worsens while imipenem-cilastatin protects against vancomycin-induced kidney injury in a translational rat model. Br J Pharmacol 2024; 181:670-680. [PMID: 37696768 PMCID: PMC10872794 DOI: 10.1111/bph.16234] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/11/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Vancomycin is one of the most common clinical antibiotics, yet acute kidney injury is a major limiting factor. Common combinations of antibiotics with vancomycin have been reported to worsen and improve vancomycin-induced kidney injury. We aimed to study the impact of flucloxacillin and imipenem-cilastatin on kidney injury when combined with vancomycin in our translational rat model. EXPERIMENTAL APPROACH Male Sprague-Dawley rats received allometrically scaled (1) vancomycin, (2) flucloxacillin, (3) vancomycin + flucloxacillin, (4) vancomycin + imipenem-cilastatin or (5) saline for 4 days. Kidney injury was evaluated via drug accumulation and urinary biomarkers including urinary output, kidney injury molecule-1 (KIM-1), clusterin and osteopontin. Relationships between vancomycin accumulation in the kidney and urinary kidney injury biomarkers were explored. KEY RESULTS Urinary output increased every study day for vancomycin + flucloxacillin, but after the first dose only in the vancomycin group. In the vancomycin + flucloxacillin group, urinary KIM-1 increased on all days compared with vancomycin. In the vancomycin + imipenem-cilastatin group, urinary KIM-1 was decreased on Days 1 and 2 compared with vancomycin. Similar trends were observed for clusterin. More vancomycin accumulated in the kidney with vancomycin + flucloxacillin compared with vancomycin and vancomycin + imipenem-cilastatin. The accumulation of vancomycin in the kidney tissue correlated with increasing urinary KIM-1. CONCLUSIONS AND IMPLICATIONS Vancomycin + flucloxacillin caused more kidney injury compared with vancomycin alone and vancomycin + imipenem-cilastatin in a translational rat model. The combination of vancomycin + imipenem-cilastatin was nephroprotective.
Collapse
Affiliation(s)
- Gwendolyn M. Pais
- Midwestern University- Downers Grove Campus, Department of Pharmacy Practice, Downers Grove, IL, USA
- Midwestern University- Downers Grove Campus, Pharmacometrics Center of Excellence, Downers Grove, IL, USA
| | - Sylwia Marianski
- Midwestern University- Downers Grove Campus, Department of Pharmacy Practice, Downers Grove, IL, USA
| | - Kimberly Valdez
- Midwestern University- Downers Grove Campus, Department of Pharmacy Practice, Downers Grove, IL, USA
| | - Renz Paulo Melicor
- Midwestern University- Downers Grove Campus, Department of Pharmacy Practice, Downers Grove, IL, USA
| | - Jiajun Liu
- Present affiliation: Division of Pharmacometrics, Office of Clinical Pharmacology, Office of Translational Sciences, United States Food and Drug Administration, Silver Spring, MD, USA; work was carried out while employed at Midwestern University College of Pharmacy, Downers Grove, IL, USA
| | - Roxane Rohani
- Midwestern University- Downers Grove Campus, Department of Pharmacy Practice, Downers Grove, IL, USA
- Midwestern University- Downers Grove Campus, Pharmacometrics Center of Excellence, Downers Grove, IL, USA
- Present affiliation: Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Jack Chang
- Midwestern University- Downers Grove Campus, Department of Pharmacy Practice, Downers Grove, IL, USA
- Midwestern University- Downers Grove Campus, Pharmacometrics Center of Excellence, Downers Grove, IL, USA
- Northwestern Memorial Hospital, Department of Pharmacy, Chicago, IL, USA
| | - Steven Y. C. Tong
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Joshua S Davis
- Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Marc H. Scheetz
- Midwestern University- Downers Grove Campus, Department of Pharmacy Practice, Downers Grove, IL, USA
- Midwestern University- Downers Grove Campus, Pharmacometrics Center of Excellence, Downers Grove, IL, USA
- Northwestern Memorial Hospital, Department of Pharmacy, Chicago, IL, USA
- Midwestern University- Downers Grove Campus, Department of Pharmacology, Downers Grove, IL, USA
| |
Collapse
|
4
|
Bi Y, Xing Y, Gui C, Tian Y, Zhang M, Yao Y, Hu G, Han L, He F, Zhang Y. Potential Involvement of Organic Anion Transporters in Drug Interactions with Shuganning Injection, a Traditional Chinese Patent Medicine. PLANTA MEDICA 2023; 89:940-951. [PMID: 37236232 DOI: 10.1055/a-2085-2367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Traditional Chinese medicine injections have been widely used in China for the treatment of various diseases. Transporter-mediated drug-drug interactions are a major contributor to adverse drug reactions. However, the research on transporter-mediated Traditional Chinese medicine injection-drug interactions is limited. Shuganning injection is a widely used Traditional Chinese medicine injection for treating various liver diseases. In this study, we investigated the inhibitory effect of Shuganning injection and its four main ingredients (baicalin, geniposide, chlorogenic acid, and oroxylin A) on 9 drug transporters. Shuganning injection strongly inhibited organic anion transporter 1 and organic anion transporter 3 with IC50 values < 0.1% (v/v), and moderately inhibited organic anion transporter 2, organic anion transporting-polypeptide 1B1, and organic anion transporting-polypeptide 1B3 with IC50 values < 1.0%. Baicalin, the most abundant bioactive ingredient in the Shuganning injection, was identified as both an inhibitor and substrate of organic anion transporter 1, organic anion transporter 3, and organic anion transporting-polypeptide 1B3. Oroxylin A had the potential to act as both an inhibitor and substrate of organic anion transporting-polypeptide 1B1 and organic anion transporting-polypeptide 1B3. In contrast, geniposide and chlorogenic acid had no significant inhibitory effect on drug transporters. Notably, Shuganning injection markedly altered the pharmacokinetics of furosemide and atorvastatin in rats. Using Shuganning injection as an example, our findings support the implementation of transporter-mediated Traditional Chinese medicine injection-drug interactions in the development of Traditional Chinese medicine injection standards.
Collapse
Affiliation(s)
- Yajuan Bi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Yanchao Xing
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Chunshan Gui
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Yiqing Tian
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Mingzhe Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Yao Yao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Ge Hu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Feng He
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| |
Collapse
|
5
|
Nie J, Zhou J, Shen Y, Lin R, Hu H, Zeng K, Bi H, Huang M, Yu L, Zeng S, Miao J. Studies on the interaction of five triazole fungicides with human renal transporters in cells. Toxicol In Vitro 2023; 88:105555. [PMID: 36669674 DOI: 10.1016/j.tiv.2023.105555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/26/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
The widespread use of triazole fungicides in agricultural production poses a potential risk to human health. This study investigates the interaction of five triazole fungicides, i.e., tebuconazole, triticonazole, hexaconazole, penconazole, and uniconazole with human renal transporters, including OAT1, OAT3, OCT2, OCTN1, OCTN2, MATE1, MATE2-K, MRP2, MDR1, and BCRP, using transgenic cell models. For uptake transporters, triticonazole was the substrate of OAT1 and OAT3 and the inhibitor of OCT2. Tebuconazole and penconazole inhibited OCTN2 (100 μM), while tebuconazole, triticonazole, hexaconazole, penconazole, and uniconazole inhibited MATE1 (100 μM). Tebuconazole and hexaconazole inhibited MATE2-K (100 μM). All five triazole fungicides were not substrates or strong inhibitors of MRP2, MDR1, and BCRP efflux transporters. Penconazole inhibited OCT2 with IC50 = 1.12 μM. Penconazole and uniconazole inhibited MATE1 with IC50 = 0.94 μM and 0.87 μM. Tebuconazole and hexaconazole inhibited MATE2-K with IC50 = 0.96 μM and 1.04 μM, indicating that triazole fungicides may inhibit renal drug transporter activity at low concentrations. Triticonazole was transported by OAT1 and OAT3, and the Km values of triticonazole were 5.81 ± 1.75 and 47.35 ± 14.27, respectively. Tebuconazole and uniconazole were transported by OAT3, and the Km values of tebuconazole and uniconazole were 30.28 ± 7.18 and 87.61 ± 31.70, respectively, which may induce nephrotoxicity.
Collapse
Affiliation(s)
- Jing Nie
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, Zhejiang 310058, China; Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center of Zhejiang University, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, Zhejiang 310058, China
| | - Jiabei Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yi Shen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ruimiao Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Haihong Hu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center of Zhejiang University, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, Zhejiang 310058, China
| | - Kui Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center of Zhejiang University, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, Zhejiang 310058, China
| | - Huichang Bi
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Min Huang
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center of Zhejiang University, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, Zhejiang 310058, China
| | - Su Zeng
- Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, Zhejiang 310058, China; Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center of Zhejiang University, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, Zhejiang 310058, China.
| | - Jing Miao
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
6
|
Moreira FDL, Benzi JRDL, Pinto L, Thomaz MDL, Duarte G, Lanchote VL. Optimizing Therapeutic Drug Monitoring in Pregnant Women: A Critical Literature Review. Ther Drug Monit 2023; 45:159-172. [PMID: 36127797 DOI: 10.1097/ftd.0000000000001039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/18/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND More than 90% of pregnant women take at least one drug during pregnancy. Drug dose adjustments during pregnancy are sometimes necessary due to various pregnancy-induced physiological alterations frequently associated with lower plasma concentrations. However, the clinical relevance or benefits of therapeutic drug monitoring (TDM) in pregnant women have not been specifically studied. Clinical pharmacokinetic studies in pregnant women are incredibly challenging for many reasons. Despite this, regulatory agencies have made efforts to encourage the inclusion of this population in clinical trials to achieve more information on the pharmacotherapy of pregnant women. This review aims to provide support for TDM recommendations and dose adjustments in pregnant women. METHODS The search was conducted after a predetermined strategy on PubMed and Scopus databases using the MeSH term "pregnancy" alongside other terms such as "Pregnancy and dose adjustment," "Pregnancy and therapeutic drug monitoring," "Pregnancy and PBPK," "Pregnancy and pharmacokinetics," and "Pregnancy and physiological changes." RESULTS The main information on TDM in pregnant women is available for antiepileptics, antipsychotics, antidepressants, antibiotics, antimalarials, and oncologic and immunosuppressive drugs. CONCLUSIONS More data are needed to support informed benefit-risk decision making for the administration of drugs to pregnant women. TDM and/or pharmacokinetic studies could ensure that pregnant women receive an adequate dosage of an active drug. Mechanistic modeling approaches potentially could increase our knowledge about the pharmacotherapy of this special population, and they could be used to better design dosage regimens.
Collapse
Affiliation(s)
- Fernanda de Lima Moreira
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo; and
| | - Jhohann Richard de Lima Benzi
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo; and
| | - Leonardo Pinto
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo; and
| | - Matheus de Lucca Thomaz
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo; and
| | - Geraldo Duarte
- Department of Obstetrics and Gynecology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Vera Lucia Lanchote
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo; and
| |
Collapse
|
7
|
Alosaimy S, Lagnf AM, Hobbs ALV, Mubarez M, Kufel WD, Morrisette T, Polisetty RS, Li D, Veve MP, Simon SP, Truong J, Finch N, Venugopalan V, Rico M, Amaya L, Yost C, Cubillos A, Chandler E, Patch M, Smith IMK, Biagi M, Wrin J, Moore WJ, Molina KC, Rebold N, Holger D, Kunz Coyne AJ, Jorgensen SCJ, Witucki P, Tran NN, Davis SL, Sakoulas G, Rybak MJ. Nephrotoxicity of Vancomycin in Combination With Beta-Lactam Agents: Ceftolozane-Tazobactam vs Piperacillin-Tazobactam. Clin Infect Dis 2023; 76:e1444-e1455. [PMID: 35982631 DOI: 10.1093/cid/ciac670] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/27/2022] [Accepted: 08/16/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Vancomycin (VAN)-associated acute kidney injury (AKI) is increased when VAN is combined with certain beta-lactams (BLs) such as piperacillin-tazobactam (TZP) but has not been evaluated with ceftolozane-tazobactam (C/T). Our aim was to investigate the AKI incidence of VAN in combination with C/T (VAN/C/T) compared with VAN in combination to TZP (VAN-TZP). METHODS We conducted a multicenter, observational, comparative study across the United States. The primary analysis was a composite outcome of AKI and risk, injury, failure, loss, end stage renal disease; Acute Kidney Injury Network; or VAN-induced nephrotoxicity according to the consensus guidelines. Multivariable logistic regression analysis was conducted to adjust for confounding variables and stratified Kaplan-Meir analysis to assess the time to nephrotoxicity between the 2 groups. RESULTS We included VAN/C/T (n = 90) and VAN-TZP (n = 284) at an enrollment ratio of 3:1. The primary outcome occurred in 12.2% vs 25.0% in the VAN-C/T and VAN-TZP groups, respectively (P = .011). After adjusting for confounding variables, VAN-TZP was associated with increased odds of AKI compared with VAN-C/T; with an adjusted odds ratio of 3.308 (95% confidence interval, 1.560-6.993). Results of the stratified Kaplan-Meir analysis with log-rank time-to-nephrotoxicity analysis indicate that time to AKI was significantly shorter among patients who received VAN-TZP (P = .004). Cox proportional hazards analysis demonstrated that TZP was consistent with the primary analysis (P = .001). CONCLUSIONS Collectively, our results suggest that the AKI is not likely to be related to tazobactam but rather to piperacillin, which is a component in VAN-TZP but not in VAN-C/T.
Collapse
Affiliation(s)
- Sara Alosaimy
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Abdalhamid M Lagnf
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Athena L V Hobbs
- Department of Pharmacy, Baptist Memorial Hospital-Memphis, Memphis, Tennessee, USA
| | - Musa Mubarez
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center College of Pharmacy, Memphis, Tennessee, USA
| | - Wesley D Kufel
- Department of Pharmacy Practice, Binghamton University School of Pharmacy and Pharmaceutical Sciences, Binghamton, New York, USA.,Department of Pharmacy, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Taylor Morrisette
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA.,Department of Clinical Pharmacy and Outcomes Sciences, Medical University of South Carolina College of Pharmacy, Charleston, South Carolina, USA.,Department of Pharmacy Services, Medical University of South Carolina Shawn Jenkins Children's Hospital, Charleston, South Carolina, USA
| | - Radhika S Polisetty
- Department of Pharmacy Practice, Midwestern University College of Pharmacy Downers Grove Campus, Downers Grove, Illinois, USA.,Department of Pharmacy, Northwestern Medicine Central Dupage Hospital, Winfield, Illinois, USA
| | - David Li
- Department of Pharmacy, Northwestern Medicine Central Dupage Hospital, Winfield, Illinois, USA
| | - Michael P Veve
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA.,Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center College of Pharmacy, Memphis, Tennessee, USA.,Department of Pharmacy, Henry Ford Hospital, Detroit, Michigan, USA
| | - Sam P Simon
- Maimonides Medical Center, Brooklyn, New York, USA
| | - James Truong
- Department of Pharmacy, Brooklyn Hospital, Brooklyn, New York, USA
| | - Natalie Finch
- Department of Pharmacy Services, Harris Health System, Bellaire, Texas, USA
| | - Veena Venugopalan
- Department of Pharmacotherapy & Translational Research, University of Florida, Gainesville, Florida, USA
| | - Matthew Rico
- Department of Pharmacy, Beaumont Hospital, Royal Oak, Michigan, USA
| | - Lee Amaya
- Department of Pharmacy, Beaumont Hospital, Royal Oak, Michigan, USA
| | - Christine Yost
- Department of Pharmacy, Beaumont Hospital, Royal Oak, Michigan, USA
| | - Ashley Cubillos
- Department of Pharmacy, Lee Memorial Health System, Fort Myers, Florida, USA
| | - Elisabeth Chandler
- Department of Pharmacy, Lee Memorial Health System, Fort Myers, Florida, USA
| | - Megan Patch
- Department of Pharmacy, Lee Memorial Health System, Fort Myers, Florida, USA
| | | | - Mark Biagi
- Department of Pharmacy, Swedish American Hospital, Rockford, Illinois, USA
| | - Justin Wrin
- Department of Pharmacy, Indiana University Health, Indianapolis, Indiana, USA
| | - W Justin Moore
- Department of Pharmacy, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Kyle C Molina
- Department of Pharmacy-Infectious Disease, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| | - Nicholas Rebold
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Dana Holger
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Ashlan J Kunz Coyne
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Sarah C J Jorgensen
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Paige Witucki
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Nikki N Tran
- Department of Pharmacy, Henry Ford Hospital, Detroit, Michigan, USA.,Department of Pharmacy, Ohio State University Waxner Medical Center, Columbus, Ohio, USA
| | - Susan L Davis
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA.,Department of Pharmacy, Henry Ford Hospital, Detroit, Michigan, USA
| | - George Sakoulas
- Division of Host-Microbe Systems and Therapeutics, University of California San Diego School of Medicine, San Diego, California, USA
| | - Michael J Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA.,Department of Pharmacy, Detroit Receiving Hospital, Detroit, Michigan, USA.,Department of Medicine, Division of Infectious Diseases, School of Medicine, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
8
|
Legg A, Meagher N, Johnson SA, Roberts MA, Cass A, Scheetz MH, Davies J, Roberts JA, Davis JS, Tong SYC. Risk Factors for Nephrotoxicity in Methicillin-Resistant Staphylococcus aureus Bacteraemia: A Post Hoc Analysis of the CAMERA2 Trial. Clin Drug Investig 2023; 43:23-33. [PMID: 36217068 PMCID: PMC9834357 DOI: 10.1007/s40261-022-01204-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Clinical risk factors for nephrotoxicity in Staphylococcus aureus bacteraemia remain largely undetermined, despite its common occurrence and clinical significance. In an international, multicentre, prospective clinical trial (CAMERA2), which compared standard therapy (vancomycin monotherapy) to combination therapy (adding an anti-staphylococcal beta-lactam) for methicillin-resistant S. aureus bacteraemia, significantly more people in the combination therapy arm experienced acute kidney injury compared with those in the monotherapy arm (23% vs 6%). OBJECTIVE The aim of this post hoc analysis was to explore in greater depth the risk factors for acute kidney injury from the CAMERA2 trial. METHODS Among participants of the CAMERA2 trial, demographic-related, infection-related and treatment-related risk factors were assessed for their relationship with acute kidney injury by univariable and multivariable logistic regression. Acute kidney injury was defined by a modified-KDIGO (Kidney Disease: Improving Global Outcomes) criteria (not including urinary output). RESULTS Of the 266 participants included, age (p = 0.04), randomisation to combination therapy (p = 0.002), vancomycin area under the concentration-time curve (p = 0.03) and receipt of (flu)cloxacillin as the companion beta-lactam (p < 0.001) were significantly associated with acute kidney injury. On a multivariable analysis, concurrent use of (flu)cloxacillin increased the risk of acute kidney injury over four times compared with the use of cefazolin or no beta-lactam. The association of vancomycin area under the concentration-time curve with acute kidney injury also persisted in the multivariable model. CONCLUSIONS For participants receiving vancomycin for S. aureus bacteraemia, use of (flu)cloxacillin and increased vancomycin area under the concentration-time curve were risk factors for acute kidney injury. These represent potentially modifiable risk factors for nephrotoxicity and highlight the importance of avoiding the use of concurrent nephrotoxins.
Collapse
Affiliation(s)
- Amy Legg
- grid.271089.50000 0000 8523 7955Menzies School of Health Research, Darwin, NT Australia
| | - Niamh Meagher
- grid.1008.90000 0001 2179 088XCentre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Infectious Diseases at The Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC Australia
| | - Sandra A. Johnson
- grid.1008.90000 0001 2179 088XMicrobiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC Australia
| | - Matthew A. Roberts
- grid.1002.30000 0004 1936 7857Eastern Health Clinical School, Monash University, Box Hill, VIC Australia
| | - Alan Cass
- grid.271089.50000 0000 8523 7955Menzies School of Health Research, Darwin, NT Australia
| | - Marc H. Scheetz
- grid.260024.20000 0004 0627 4571Department of Pharmacy Practice, Midwestern University Chicago College of Pharmacy, Downers Grove, IL USA ,grid.260024.20000 0004 0627 4571Department of Pharmacology, Midwestern University College of Graduate Studies, Downers Grove, IL USA ,grid.260024.20000 0004 0627 4571Pharmacometrics Center of Excellence, Midwestern University, Downers Grove, IL USA ,grid.490348.20000000446839645Department of Pharmacy, Northwestern Medicine, Chicago, IL USA
| | - Jane Davies
- grid.271089.50000 0000 8523 7955Menzies School of Health Research, Darwin, NT Australia ,grid.240634.70000 0000 8966 2764Department of Infectious Diseases, Royal Darwin Hospital, Darwin, NT Australia
| | - Jason A. Roberts
- grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Departments of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia ,grid.121334.60000 0001 2097 0141Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Joshua S. Davis
- grid.271089.50000 0000 8523 7955Menzies School of Health Research, Darwin, NT Australia ,grid.266842.c0000 0000 8831 109XSchool of Medicine and Public Health, The University of Newcastle, Newcastle, NSW Australia
| | - Steven Y. C. Tong
- grid.416153.40000 0004 0624 1200Victorian Infectious Diseases Service, The Royal Melbourne Hospital, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC Australia
| |
Collapse
|
9
|
Dolly LM, Rivera CG, Jensen KL, Mara KC, Schreier DJ, Virk A, Arensman Hannan KN. Comparative renal risk of long-term use of beta-lactams in combination with vancomycin across the continuum of care. Ther Adv Infect Dis 2023; 10:20499361231189589. [PMID: 37576023 PMCID: PMC10422906 DOI: 10.1177/20499361231189589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
Background Data are controversial regarding nephrotoxicity risk with vancomycin plus piperacillin-tazobactam (VPT) compared to vancomycin alone or in combination with other beta-lactams (BLs) in acute care use. Furthermore, data are lacking on the incidence of acute kidney injury (AKI) with long-term use of VPT including outpatient parenteral antimicrobial therapy (OPAT). Methods This retrospective study included 826 adult patients on an intravenous vancomycin plus BL for ⩾2 weeks, including cefepime, piperacillin/tazobactam, ertapenem, or meropenem, from August 2017 to January 2022. The primary outcome was incidence of AKI. Univariate and multivariable Cox proportional hazard regression analyses were conducted to adjust for confounding variables. A secondary analysis based on the propensity score (PS)-matched cohort was performed. Results AKI occurred in 14.4% of patients in the VPT group (n = 15/104) compared to 5.5% in the other BL group (n = 40/722) (p < 0.001). Average time to AKI from start of combination therapy was 9.4 (1.7-12.0) days in the VPT group and 10.9 (5-22.7) days in the other BL group (p = 0.20). The median duration of vancomycin and BL in the overall cohort was approximately 1 month. Beyond BL selection, patient characteristics were not associated with AKI other than the receipt of concomitant acyclovir [hazard ratio (HR) 2.48 (95% confidence interval (CI): 1.33-4.65), p = 0.004]. In the PS-matched cohort, AKI occurred in 14.4% of patients in the VPT group (n = 15/104) and 5.3% in the other BL group (n = 11/208) (p = 0.006). Receipt of VPT [HR: 2.55 (1.36-4.78), p = 0.004] and acyclovir [HR: 2.38 (1.19-4.74), p = 0.014) remained significantly associated with AKI in the multivariable model. Conclusion Clinicians should exercise caution when using VPT for >2 weeks, including in the OPAT setting, even when no renal dysfunction is observed during the initial week of combination therapy.
Collapse
Affiliation(s)
- Lauren M. Dolly
- Department of Pharmacy, U.S. Department of Veterans Affairs, 2501 W 22nd Street, Sioux Falls, SD 57105, US
| | | | - Kelsey L. Jensen
- Department of Pharmacy, Mayo Clinic Health System, Austin, MN, USA
| | - Kristin C. Mara
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Abinash Virk
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
10
|
Dong J, Liu Y, Li L, Ding Y, Qian J, Jiao Z. Interactions between meropenem and renal drug transporters. Curr Drug Metab 2022; 23:423-431. [PMID: 35490314 DOI: 10.2174/1389200223666220428081109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/23/2021] [Accepted: 01/18/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Meropenem is a carbapenem antibiotic and commonly used with other antibiotics for the treatment of bacterial infections. It is primarily eliminated renally by glomerular filtration and renal tubular secretion. OBJECTIVE To evaluate the roles of renal uptake and efflux transporters in the excretion of meropenem and potential drug interactions mediated by renal drug transporters. METHOD Uptake and inhibition studies were conducted in human embryonic kidney 293 cells stably transfected with organic anion transporter (OAT) 1, OAT3, multidrug and toxin extrusion protein (MATE) 1 and MATE2K, as well as membrane vesicles containing breast cancer resistance-related protein (BCRP), multidrug resistance protein 1 (MDR1) and multidrug resistance-associated protein 2 (MRP2). Probenecid and piperacillin were used to assess potential drug interactions with meropenem in rats. RESULTS We observed that meropenem was a low-affinity substrate of OAT1/3 and had a weak inhibitory effect on OAT1/3 and MATE2K. BCRP, MDR1, MRP2, MATE1 and MATE2K could not mediate renal excretion of meropenem. Moreover, meropenem was not an inhibitor of BCRP, MDR1, MRP2 or MATE1. Among five tested antibiotics, moderate inhibition on OAT3-mediated meropenem uptake was observed for linezolid (IC50 value was 69.2 μM), weak inhibition was observed for piperacillin, benzylpenicillin and tazobactam (IC50 values were 282.2, 308.0 and 668.1 μM, respectively), and no inhibition was observed for sulbactam. Although piperacillin had a relatively high drug-drug interaction index (ratio of maximal unbound plasma concentration to IC50 was 1.42) in vitro, it had no meaningful impact on the pharmacokinetics of meropenem in rats. CONCLUSION Our results indicate that clinically significant interactions between meropenem and these five antibiotics are low.
Collapse
Affiliation(s)
- Jing Dong
- Department of Pharmacy, Shanghai Pudong New Area Gongli Hospital, The Second Military Medical University, 219 Miaopu Road, Shanghai 200135, China
| | - Yanhui Liu
- Department of Pharmacy, Shanghai Pudong New Area Gongli Hospital, The Second Military Medical University, 219 Miaopu Road, Shanghai 200135, China
| | - Longxuan Li
- Department of Neurology, Shanghai Pudong New Area Gongli Hospital, The Second Military Medical University, 219 Miaopu Road, Shanghai 200135, China
| | - Yunhe Ding
- Department of Pharmacy, Shanghai Pudong New Area Gongli Hospital, The Second Military Medical University, 219 Miaopu Road, Shanghai 200135, China
| | - Jun Qian
- Department of Pharmacy, Shanghai Pudong New Area Gongli Hospital, The Second Military Medical University, 219 Miaopu Road, Shanghai 200135, China
| | - Zheng Jiao
- Department of Pharmacy, Shanghai Chest Hospital, 241 West Huaihai Road, Shanghai 200030, China
| |
Collapse
|
11
|
Rose W, Volk C, Dilworth TJ, Sakoulas G. Approaching 65 Years: Is it Time to Consider Retirement of Vancomycin for Treating Methicillin-Resistant Staphylococcus aureus Endovascular Infections? Open Forum Infect Dis 2022; 9:ofac137. [PMID: 35493116 PMCID: PMC9043000 DOI: 10.1093/ofid/ofac137] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/17/2022] [Indexed: 11/21/2022] Open
Abstract
Vancomycin was introduced nearly 65 years ago and remains the standard antibiotic for serious methicillin-resistant Staphylococcus aureus (MRSA) infections. Staphylococcus aureus remains highly susceptibility to vancomycin (>97%). Despite this, MRSA treatment failure with vancomycin is high in complicated bacteremia. Additionally, vancomycin can cause nephrotoxicity, leading to new therapeutic drug monitoring guidance. This demonstrates how difficult it is to dose vancomycin in a way that is both efficacious and safe, especially during long courses of therapy. Often underappreciated are the cost, resources, and complexity of vancomycin care at a time when alternative antibiotics are becoming cost comparable. This perspective highlights a bigger picture of how the treatment repertoires of many other diseases have changed and advanced since vancomycin’s introduction in the 1950s, yet the vancomycin MRSA treatment standard remains. While vancomycin can still have a role, 65 years may be a practical retirement age for vancomycin in highly complex endovascular infections.
Collapse
Affiliation(s)
- Warren Rose
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Cecilia Volk
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Thomas J Dilworth
- Department of Pharmacy Services, Advocate Aurora Health, Milwaukee, WI, USA
| | - George Sakoulas
- Division of Host-Microbe Systems & Therapeutics, Center for Immunity, Infection & Inflammation, University of California-San Diego School of Medicine, La Jolla, CA, USA
| |
Collapse
|
12
|
Is the Success of Cefazolin plus Ertapenem in Methicillin-Susceptible
Staphylococcus aureus
Bacteremia Based on Release of Interleukin 1-beta? Antimicrob Agents Chemother 2022; 66:e0216621. [DOI: 10.1128/aac.02166-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cefazolin and ertapenem has been shown to be an effective salvage regimen for refractory methicillin-susceptible
Staphylococcus aureus
bacteremia. Our findings suggest cefazolin plus ertapenem
in vitro
stimulates interleukin-1β release from peripheral blood monocytes both with and without
S. aureus
presence. This IL-1β augmentation was primarily driven by ertapenem. These findings support further exploration of cefazolin plus ertapenem in MSSA bacteremia and may partially explain its marked potency
in vivo
despite modest synergy
in vitro
.
Collapse
|
13
|
Marić P, Ahel M, Maraković N, Lončar J, Mihaljević I, Smital T. Selective interaction of microcystin congeners with zebrafish (Danio rerio) Oatp1d1 transporter. CHEMOSPHERE 2021; 283:131155. [PMID: 34182632 DOI: 10.1016/j.chemosphere.2021.131155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Microcystins (MCs) are the most studied cyanotoxins. The uptake of MCs in cells and tissues of mammals and fish species is mostly mediated by organic anion-transporting polypeptides (OATPs in humans and rodents; Oatps in other species), and the Oatp1d1 appears to be a major transporter for MCs in fish. In this study, six MC congeners of varying physicochemical properties (MC-LR, -RR, -YR, -LW, -LF, -LA) were tested by measuring their effect on the uptake of model Oatp1d1 fluorescent substrate Lucifer yellow (LY) in HEK293T cells transiently or stably overexpressing zebrafish Oatp1d1. MC-LW and -LF showed the strongest interaction resulting in an almost complete inhibition of LY transport with IC50 values of 0.21 and 0.26 μM, while congeners -LR, -YR and -LA showed lower inhibitory effects. To discern between Oatp1d1 substrates and inhibitors, results were complemented by Michaelis-Menten kinetics and chemical analytical determinations of MCs uptake, along with molecular docking studies performed using the developed zebrafish Oatp1d1 homology model. Our study showed that Oatp1d1-mediated transport of MCs could be largely dependent on their basic physicochemical properties, with log POW being the most obvious determinant. Finally, apart from determination of the chemical composition of cynobacterial blooms, a reliable risk assessment should take into account the interaction of identified MC congeners with Oatp1d1 as their primary transporter, and herewith we demonstrated that such a comprehensive approach could be based on the use of highly specific in vitro models, accompanied by chemical assessment and in silico molecular docking studies.
Collapse
Affiliation(s)
- Petra Marić
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Marijan Ahel
- Laboratory for Analytical Chemistry and Biogeochemistry of Organic Compounds, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Nikola Maraković
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000, Zagreb, Croatia
| | - Jovica Lončar
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Ivan Mihaljević
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Tvrtko Smital
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.
| |
Collapse
|
14
|
Li W, Jiao Z, Liu Y, Yao J, Li G, Dong J. Role of organic anion transporter 3 in the renal excretion of biapenem and potential drug-drug interactions. Eur J Pharm Sci 2021; 162:105814. [PMID: 33753216 DOI: 10.1016/j.ejps.2021.105814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/28/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022]
Abstract
Biapenem is a carbapenem antibiotic. It is excreted predominantly through the kidney as unchanged forms. However, the molecular mechanism of renal excretion of biapenem and potential drug-drug interactions (DDIs) were still unknown. In the present study, the role of organic anion transporters (OAT) 1/3 and organic cation transporters (OCT) 2 in the renal excretion of biapenem, and the potential DDIs between biapenem and six clinical commonly prescribed antibiotics and antiviral drugs that acted as substrates or inhibitors of OAT3 were evaluated in vitro. Further, the effect of probenecid on the pharmacokinetics of biapenem was explored in the rats. We observed that biapenem could not inhibit the transport activities of OAT1 or OCT2, while mildly inhibited OAT3 (IC50 >500 μM). Among the tested antibiotics and antiviral drugs, the relatively high DDI index values (maximal unbound plasma concentration over IC50, Imax,u/IC50) were found for piperacillin, linezolid and benzylpenicillin, which were 2.84, 1.7 and 0.62, respectively. Although probenecid had the highest DDI index (27.1) in vitro, no significant impact of it on the pharmacokinetics of biapenem was observed in the rats. Our results indicated that biapenem was primarily eliminated by the glomerular filtration, while OAT3-mediated renal tubular secretion was a minor route. Biapenem is not a clinically relevant substrate or inhibitor because of its low affinity to OAT3. According to current results, it would be safe to use biapenem with other antibiotics and antiviral drugs that acted as substrates or inhibitors of OAT3.
Collapse
Affiliation(s)
- Wenyan Li
- Department of Pharmacy, Shanghai Pudong New Area Gongli Hospital, The Second Military Medical University, 219 Miaopu Road, Shanghai 200135, PR China
| | - Zheng Jiao
- Department of Pharmacy, Shanghai Chest Hospital, 241 West Huaihai Road, Shanghai 200030, PR China
| | - Yanhui Liu
- Department of Pharmacy, Shanghai Pudong New Area Gongli Hospital, The Second Military Medical University, 219 Miaopu Road, Shanghai 200135, PR China
| | - Jiacheng Yao
- Department of Pharmacy, Shanghai Pudong New Area Gongli Hospital, The Second Military Medical University, 219 Miaopu Road, Shanghai 200135, PR China
| | - Guodong Li
- Research Institute for Liver Diseases (Shanghai) Co., Ltd., Building 5, No. 200 Niudun Road, Zhangjiang High-tech Park, Pudong, Shanghai 201203, PR China
| | - Jing Dong
- Department of Pharmacy, Shanghai Pudong New Area Gongli Hospital, The Second Military Medical University, 219 Miaopu Road, Shanghai 200135, PR China.
| |
Collapse
|
15
|
Rose W, Fantl M, Geriak M, Nizet V, Sakoulas G. Current Paradigms of Combination therapy in Methicillin-Resistant Staphylococcus aureus (MRSA) Bacteremia: Does it Work, Which Combination and For Which Patients? Clin Infect Dis 2021; 73:2353-2360. [PMID: 33993226 DOI: 10.1093/cid/ciab452] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Indexed: 11/13/2022] Open
Abstract
The last several years have seen an emergence of literature documenting the utility of combination antimicrobial therapy, particularly in the salvage of refractory MRSA bacteremia. Recent clinical data are shaping conundrums of which regimens may be more beneficial, which can be potentially harmful, and which subset of patients stand to benefit from more aggressive treatment regimens than called for by current standards. In addition, the incorporation of combination therapy for MRSA bacteremia should be accompanied by the reminder that antimicrobial therapy does not need to be uniform for the entire duration, with an early intensive phase in high inoculum infections (e.g. with combination therapy), followed by a consolidation phase (i.e. monotherapy). This review and perspective consolidates the recent data on this subject and directs future goals in filling the knowledge gaps to methodically move forward towards improving patient outcomes.
Collapse
Affiliation(s)
- Warren Rose
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Fantl
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Matthew Geriak
- Pharmacy Department, Sharp Memorial Hospital, San Diego, CA, USA
| | - Victor Nizet
- Division of Host-Microbe Systems & Therapeutics, Center for Immunity, Infection & Inflammation, University of California-San Diego School of Medicine, La Jolla, CA, USA
| | - George Sakoulas
- Division of Host-Microbe Systems & Therapeutics, Center for Immunity, Infection & Inflammation, University of California-San Diego School of Medicine, La Jolla, CA, USA
| |
Collapse
|
16
|
Yu X, Chu Z, Li J, He R, Wang Y, Cheng C. Pharmacokinetic Drug-drug Interaction of Antibiotics Used in Sepsis Care in China. Curr Drug Metab 2021; 22:5-23. [PMID: 32990533 DOI: 10.2174/1389200221666200929115117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/17/2020] [Accepted: 07/07/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Many antibiotics have a high potential for interactions with drugs, as a perpetrator and/or victim, in critically ill patients, and particularly in sepsis patients. METHODS The aim of this review is to summarize the pharmacokinetic drug-drug interaction (DDI) of 45 antibiotics commonly used in sepsis care in China. Literature search was conducted to obtain human pharmacokinetics/ dispositions of the antibiotics, their interactions with drug-metabolizing enzymes or transporters, and their associated clinical drug interactions. Potential DDI is indicated by a DDI index ≥ 0.1 for inhibition or a treatedcell/ untreated-cell ratio of enzyme activity being ≥ 2 for induction. RESULTS The literature-mined information on human pharmacokinetics of the identified antibiotics and their potential drug interactions is summarized. CONCLUSION Antibiotic-perpetrated drug interactions, involving P450 enzyme inhibition, have been reported for four lipophilic antibacterials (ciprofloxacin, erythromycin, trimethoprim, and trimethoprim-sulfamethoxazole) and three antifungals (fluconazole, itraconazole, and voriconazole). In addition, seven hydrophilic antibacterials (ceftriaxone, cefamandole, piperacillin, penicillin G, amikacin, metronidazole, and linezolid) inhibit drug transporters in vitro. Despite no clinical PK drug interactions with the transporters, caution is advised in the use of these antibacterials. Eight hydrophilic antibiotics (all β-lactams; meropenem, cefotaxime, cefazolin, piperacillin, ticarcillin, penicillin G, ampicillin, and flucloxacillin), are potential victims of drug interactions due to transporter inhibition. Rifampin is reported to perpetrate drug interactions by inducing CYP3A or inhibiting OATP1B; it is also reported to be a victim of drug interactions, due to the dual inhibition of CYP3A4 and OATP1B by indinavir. In addition, three antifungals (caspofungin, itraconazole, and voriconazole) are reported to be victims of drug interactions because of P450 enzyme induction. Reports for other antibiotics acting as victims in drug interactions are scarce.
Collapse
Affiliation(s)
- Xuan Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zixuan Chu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Rongrong He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yaya Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chen Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
17
|
Jensen O, Brockmöller J, Dücker C. Identification of Novel High-Affinity Substrates of OCT1 Using Machine Learning-Guided Virtual Screening and Experimental Validation. J Med Chem 2021; 64:2762-2776. [PMID: 33606526 DOI: 10.1021/acs.jmedchem.0c02047] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OCT1 is the most highly expressed cation transporter in the liver and affects pharmacokinetics and pharmacodynamics. Newly marketed drugs have previously been screened as potential OCT1 substrates and verified by virtual docking. Here, we used machine learning with transport experiment data to predict OCT1 substrates based on classic molecular descriptors, pharmacophore features, and extended-connectivity fingerprints and confirmed them by in vitro uptake experiments. We virtually screened a database of more than 1000 substances. Nineteen predicted substances were chosen for in vitro testing. Sixteen of the 19 newly tested substances (85%) were confirmed as, mostly strong, substrates, including edrophonium, fenpiverinium, ritodrine, and ractopamine. Even without a crystal structure of OCT1, machine learning algorithms predict substrates accurately and may contribute not only to a more focused screening in drug development but also to a better molecular understanding of OCT1 in general.
Collapse
Affiliation(s)
- Ole Jensen
- Institute of Clinical Pharmacology, University Medical Center Göttingen, D-37075 Göttingen, Germany
| | - Jürgen Brockmöller
- Institute of Clinical Pharmacology, University Medical Center Göttingen, D-37075 Göttingen, Germany
| | - Christof Dücker
- Institute of Clinical Pharmacology, University Medical Center Göttingen, D-37075 Göttingen, Germany
| |
Collapse
|
18
|
Bhagunde P, Colon‐Gonzalez F, Liu Y, Wu J, Xu SS, Garrett G, Jumes P, Lasseter K, Marbury T, Rizk ML, Lala M, Rhee EG, Butterton JR, Boundy K. Impact of renal impairment and human organic anion transporter inhibition on pharmacokinetics, safety and tolerability of relebactam combined with imipenem and cilastatin. Br J Clin Pharmacol 2020; 86:944-957. [PMID: 31856304 PMCID: PMC7163372 DOI: 10.1111/bcp.14204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/06/2019] [Accepted: 11/17/2019] [Indexed: 01/22/2023] Open
Abstract
AIMS Two phase 1, open-label studies were conducted to investigate the effect of renal impairment (RI) and organic anion transporter (OAT) inhibition on pharmacokinetics (PK) and safety of relebactam (REL) plus imipenem/cilastatin (IMI). METHODS Study PN005 evaluated the PK of REL (125 mg) plus IMI (250 mg) in participants with RI vs healthy controls. Study PN019 evaluated the PK of REL (250 mg) and imipenem (500 mg; dosed as IMI) with/without probenecid (1 g; OAT inhibitor) in healthy adults. RESULTS Geometric mean ratios (RI/healthy matched controls) of area under the concentration-time curve from time 0 to infinity (AUC0-∞ ; 90% confidence interval) for REL, imipenem and cilastatin increased as RI increased from mild (1.6 [1.1, 2.4], 1.4 [1.1, 1.8] and 1.6 [1.0, 2.5], respectively) to severe (4.9 [3.4, 7.0], 2.5 [1.9, 3.3] and 5.6 [3.6, 8.6], respectively). For all 3 analytes, plasma and renal clearance decreased and corresponding plasma apparent terminal half-life increased with increasing RI. Geometric mean ratios ([probenecid+IMI/REL]/[IMI/REL]) of plasma exposure for REL and imipenem were 1.24 (1.19, 1.28) and 1.16 (1.13, 1.20), respectively. The dose fraction excreted (fe) in the urine decreased progressively from mild to severe RI. Probenecid reduced renal clearance of REL and imipenem by 25 and 31%, respectively. Compared with IMI/REL, coadministration of IMI/REL with probenecid yielded lower fe for REL and imipenem. In both studies, treatment was well tolerated; there were no serious adverse events or discontinuations due to adverse events. CONCLUSION RI increased plasma exposure and similarly decreased clearance of REL, imipenem and cilastatin; IMI/REL dose adjustment (fixed-ratio) will be required for patients with RI. Probenecid had no clinically meaningful impact on the PK of REL or imipenem.
Collapse
Affiliation(s)
| | | | - Yang Liu
- Merck & Co., Inc.KenilworthNJUSA
| | - Jin Wu
- Merck & Co., Inc.KenilworthNJUSA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhu Y, Huo X, Wang C, Meng Q, Liu Z, Sun H, Tan A, Ma X, Peng J, Liu K. Organic anion transporters also mediate the drug-drug interaction between imipenem and cilastatin. Asian J Pharm Sci 2020; 15:252-263. [PMID: 32373203 PMCID: PMC7193450 DOI: 10.1016/j.ajps.2018.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/03/2018] [Accepted: 11/17/2018] [Indexed: 12/11/2022] Open
Abstract
This study aimed to clarify that organic anion transporters (OATs) mediate the drug-drug interaction (DDI) between imipenem and cilastatin. After co-administration with imipenem, the plasma concentrations and the plasma concentration-time curve (AUC) of cilastatin were significantly increased, while renal clearance and cumulative urinary excretion of cilastatin were decreased. At the same time, imipenem significantly inhibited the uptake of cilastatin in rat kidney slices and in human OAT1 (hOAT1)-HEK293 and human OAT3 (hOAT3)-HEK293 cells. Probenecid, p-aminohippurate, and benzylpenicillin inhibited the uptake of imipenem and cilastatin in rat kidney slices and in hOAT1- and hOAT3-HEK 293 cells, respectively. The uptakes of imipenem and cilastatin in hOAT1- and hOAT3-HEK 293 cells were significantly higher than that in mock-HEK-293 cells. Moreover, the Km values of cilastatin were increased in the presence of imipenem with unchanged Vmax , indicating that imipenem inhibited the uptake of cilastatin in a competitive manner. When imipenem and cilastatin were co-administered, the level of imipenem was higher compared with imipenem alone both in vivo and in vitro. But, cilastatin significantly inhibited the uptake of imipenem when dehydropeptidase-1 (DPEP1) was silenced by RNAi technology in hOAT1- and hOAT3-HEK 293 cells. In conclusion, imipenem and cilastatin are the substrates of OAT1 and OAT3. OAT1 and OAT3 mediate the DDI between imipenem and cilastatin. Meanwhile, cilastatin also reduces the hydrolysis of imipenem by inhibiting the uptake of imipenem mediated by OAT1 and OAT3 in the kidney as a complement.
Collapse
Affiliation(s)
- Yanna Zhu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
- College (Institute) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaokui Huo
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
- College (Institute) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian Medical University, Dalian 116044, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
- College (Institute) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian Medical University, Dalian 116044, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
- College (Institute) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian Medical University, Dalian 116044, China
| | - Zhihao Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
- College (Institute) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian Medical University, Dalian 116044, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
- College (Institute) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian Medical University, Dalian 116044, China
| | - Aiping Tan
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaodong Ma
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian Medical University, Dalian 116044, China
| | - Jinyong Peng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
- College (Institute) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian Medical University, Dalian 116044, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
- College (Institute) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
20
|
Lalanne S, Le Vée M, Lemaitre F, Le Corre P, Verdier MC, Fardel O. Differential interactions of the β-lactam cloxacillin with human renal organic anion transporters (OATs). Fundam Clin Pharmacol 2020; 34:476-483. [PMID: 32100322 DOI: 10.1111/fcp.12541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 01/17/2023]
Abstract
The β-lactam penicillin antibiotic cloxacillin (CLX) presents wide inter-individual pharmacokinetics variability. To better understand its molecular basis, the precise identification of the detoxifying actors involved in CLX disposition and elimination would be useful, notably with respect to renal secretion known to play a notable role in CLX elimination. The present study was consequently designed to analyze the interactions of CLX with the solute carrier transporters organic anion transporter (OAT) 1 and OAT3, implicated in tubular secretion through mediating drug entry at the basolateral pole of renal proximal cells. CLX was first shown to block OAT1 and OAT3 activity in cultured OAT-overexpressing HEK293 cells. Half maximal inhibitory concentration (IC50 ) value for OAT3 (13 µm) was however much lower than that for OAT1 (560 µm); clinical inhibition of OAT activity and drug-drug interactions may consequently be predicted for OAT3, but not OAT1. OAT3, unlike OAT1, was next shown to mediate CLX uptake in OAT-overexpressing HEK293 cells. Kinetic parameters for this OAT3-mediated transport of CLX (Km = 10.7 µm) were consistent with a possible in vivo saturation of this process for high CLX plasma concentrations. OAT3 is consequently likely to play a pivotal role in renal CLX secretion and consequently in total renal CLX elimination, owing to the low plasma unbound fraction of the antibiotic. OAT3 genetic polymorphisms as well as co-administered drugs inhibiting in vivo OAT3 activity may therefore be considered as potential sources of CLX pharmacokinetics variability.
Collapse
Affiliation(s)
- Sébastien Lalanne
- Laboratory of Experimental and Clinical Pharmacology, Faculty of Medicine, Univ Rennes, CHU Rennes, 2 avenue du Professeur Léon Bernard, F-35000, Rennes, France
| | - Marc Le Vée
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Univ Rennes, 2 avenue du Professeur Léon Bernard, F-35000, Rennes, France
| | - Florian Lemaitre
- Laboratory of Experimental and Clinical Pharmacology, Faculty of Medicine, Univ Rennes, CHU Rennes, 2 avenue du Professeur Léon Bernard, F-35000, Rennes, France
| | - Pascal Le Corre
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, CHU Rennes, Univ Rennes, 2 avenue du Professeur Léon Bernard, F-35000, Rennes, France
| | - Marie-Clémence Verdier
- Laboratory of Experimental and Clinical Pharmacology, Faculty of Medicine, Univ Rennes, CHU Rennes, 2 avenue du Professeur Léon Bernard, F-35000, Rennes, France
| | - Olivier Fardel
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, CHU Rennes, Univ Rennes, 2 avenue du Professeur Léon Bernard, F-35000, Rennes, France
| |
Collapse
|
21
|
Luo SS, Yu CP, Hsieh YW, Chao PDL, Sweet DH, Hou YC, Lin SP. Effects of antibiotics on the pharmacokinetics of indoxyl sulfate, a nephro-cardiovascular toxin. Xenobiotica 2019; 50:588-592. [PMID: 31448977 DOI: 10.1080/00498254.2019.1660433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Indoxyl sulfate (IS), a highly protein-bound nephro-cardiovascular toxin, was poorly removed by hemodialysis. IS exists as anions in the body and the renal excretion is mediated by organic anion transporter 1 (OAT1) and OAT3. Acidic antibiotics such as cephalosporins and fluoroquinolones were putative substrates/inhibitors of OATs. We hypothesized that cephalosporins and fluoroquinolones might compete with IS for OAT1- and/or OAT3-mediated renal excretions.This study investigated the effects of ciprofloxacin, cefuroxime, cefotaxime, cefazolin and ofloxacin on the intravenous pharmacokinetics of IS in rats. IS was intravenously injected with and without each individual antibiotics, and the concentrations of IS in serum and lysate were determined by HPLC.The results showed that ciprofloxacin significantly increased AUC0-t and T1/2 of IS by 272% and 491%, respectively, and decreased the clearance by 71%. However, ofloxacin, cefuroxime, cefotaxime and cefazolin did not alter the pharmacokinetics of IS. Furthermore, cell line study showed that ciprofloxacin inhibited the OAT3-mediated transport of IS.This study indicates 30 mg/kg of ciprofloxacin decreased the clearance of IS through inhibition on the OAT3-mediated transport, whereas 50 mg/kg of ofloxacin, cefuroxime, cefotaxime and cefazolin did not show significant influence.
Collapse
Affiliation(s)
- Shu-Shang Luo
- School of Pharmacy, China Medical University, Taichung, Taiwan, ROC
| | - Chung-Ping Yu
- Department of Pharmacy, China Medical University Hospital, Taichung, Taiwan, ROC
| | - Yow-Wen Hsieh
- School of Pharmacy, China Medical University, Taichung, Taiwan, ROC.,Department of Pharmacy, China Medical University Hospital, Taichung, Taiwan, ROC
| | | | - Douglas H Sweet
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, USA
| | - Yu-Chi Hou
- School of Pharmacy, China Medical University, Taichung, Taiwan, ROC.,Department of Pharmacy, China Medical University Hospital, Taichung, Taiwan, ROC
| | - Shiuan-Pey Lin
- School of Pharmacy, China Medical University, Taichung, Taiwan, ROC
| |
Collapse
|
22
|
Dual actions of norathyriol as a new candidate hypouricaemic agent: uricosuric effects and xanthine oxidase inhibition. Eur J Pharmacol 2019; 853:371-380. [DOI: 10.1016/j.ejphar.2019.04.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/11/2019] [Accepted: 04/16/2019] [Indexed: 01/16/2023]
|
23
|
The inhibitory effects of eighteen front-line antibiotics on the substrate uptake mediated by human Organic anion/cation transporters, Organic anion transporting polypeptides and Oligopeptide transporters in in vitro models. Eur J Pharm Sci 2018; 115:132-143. [DOI: 10.1016/j.ejps.2018.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/07/2017] [Accepted: 01/02/2018] [Indexed: 12/14/2022]
|
24
|
Wen S, Wang C, Duan Y, Huo X, Meng Q, Liu Z, Yang S, Zhu Y, Sun H, Ma X, Yang S, Liu K. OAT1 and OAT3 also mediate the drug-drug interaction between piperacillin and tazobactam. Int J Pharm 2018; 537:172-182. [DOI: 10.1016/j.ijpharm.2017.12.037] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/15/2017] [Accepted: 12/21/2017] [Indexed: 10/18/2022]
|
25
|
Bush KT, Wu W, Lun C, Nigam SK. The drug transporter OAT3 (SLC22A8) and endogenous metabolite communication via the gut-liver-kidney axis. J Biol Chem 2017; 292:15789-15803. [PMID: 28765282 DOI: 10.1074/jbc.m117.796516] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/27/2017] [Indexed: 12/12/2022] Open
Abstract
The organic anion transporters OAT1 (SLC22A6) and OAT3 (SLC22A8) have similar substrate specificity for drugs, but it is far from clear whether this holds for endogenous substrates. By analysis of more than 600 metabolites in the Oat3KO (Oat3 knockout) by LC/MS, we demonstrate OAT3 involvement in the movement of gut microbiome products, key metabolites, and signaling molecules, including those flowing through the gut-liver-kidney axis. Major pathways affected included those involved in metabolism of bile acids, flavonoids, nutrients, amino acids (including tryptophan-derivatives that are uremic toxins), and lipids. OAT3 is also critical in elimination of liver-derived phase II metabolites, particularly those undergoing glucuronidation. Analysis of physicochemical features revealed nine distinct metabolite groups; at least one member of most clusters has been previously validated in transport assays. In contrast to drugs interacting with the OATs, endogenous metabolites accumulating in the Oat1KO (Oat1 knockout) versus Oat3KO have distinct differences in their physicochemical properties; they are very different in size, number of rings, hydrophobicity, and molecular complexity. Consistent with the Remote Sensing and Signaling Hypothesis, the data support the importance of the OAT transporters in inter-organ and inter-organismal remote communication via transporter-mediated movement of key metabolites and signaling molecules (e.g. gut microbiome-to-intestine-to-blood-to-liver-to-kidney-to-urine). We discuss the possibility of an intimate connection between OATs and metabolite sensing and signaling pathways (e.g. bile acids). Furthermore, the metabolomics and pathway analysis support the view that OAT1 plays a greater role in kidney proximal tubule metabolism and OAT3 appears relatively more important in systemic metabolism, modulating levels of metabolites flowing through intestine, liver, and kidney.
Collapse
Affiliation(s)
| | | | - Christina Lun
- Biology, University of California San Diego, La Jolla, California 92093
| | | |
Collapse
|
26
|
Abstract
Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Collapse
Affiliation(s)
- Anton Ivanyuk
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland.
| | - Françoise Livio
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Jérôme Biollaz
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Thierry Buclin
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| |
Collapse
|
27
|
Römermann K, Fedrowitz M, Hampel P, Kaczmarek E, Töllner K, Erker T, Sweet DH, Löscher W. Multiple blood-brain barrier transport mechanisms limit bumetanide accumulation, and therapeutic potential, in the mammalian brain. Neuropharmacology 2017; 117:182-194. [DOI: 10.1016/j.neuropharm.2017.02.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/31/2017] [Accepted: 02/07/2017] [Indexed: 12/21/2022]
|
28
|
Abstract
Methotrexate is an antifolate agent used in the treatment of autoimmune diseases and various types of cancers. It is a unique antiproliferative agent because it can be administered by multiple routes with a wide variation of dosing. Methotrexate pharmacokinetics have generated numerous papers focusing on descriptive data and pharmacodynamics. Methotrexate is one of the rare anticancer agents which pharmacokinetics are routinely monitoring to control excessive toxicity when administrated at high dose (>1 g/m2). The identification of transporters involved in its disposition has permitted the understanding and the prevention of most drug interactions. Pharmacogenetic factors affecting the expression of MRP2 and OATP1B1 partly explain the interindividual variability of methotrexate clearance. The remaining challenge in methotrexate pharmacokinetics is to further understand unexplained delayed renal elimination despite the implementation of preventive measures.
Collapse
|
29
|
Liu HC, Jamshidi N, Chen Y, Eraly SA, Cho SY, Bhatnagar V, Wu W, Bush KT, Abagyan R, Palsson BO, Nigam SK. An Organic Anion Transporter 1 (OAT1)-centered Metabolic Network. J Biol Chem 2016; 291:19474-86. [PMID: 27440044 DOI: 10.1074/jbc.m116.745216] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Indexed: 01/06/2023] Open
Abstract
There has been a recent interest in the broader physiological importance of multispecific "drug" transporters of the SLC and ABC transporter families. Here, a novel multi-tiered systems biology approach was used to predict metabolites and signaling molecules potentially affected by the in vivo deletion of organic anion transporter 1 (Oat1, Slc22a6, originally NKT), a major kidney-expressed drug transporter. Validation of some predictions in wet-lab assays, together with re-evaluation of existing transport and knock-out metabolomics data, generated an experimentally validated, confidence ranked set of OAT1-interacting endogenous compounds enabling construction of an "OAT1-centered metabolic interaction network." Pathway and enrichment analysis indicated an important role for OAT1 in metabolism involving: the TCA cycle, tryptophan and other amino acids, fatty acids, prostaglandins, cyclic nucleotides, odorants, polyamines, and vitamins. The partly validated reconstructed network is also consistent with a major role for OAT1 in modulating metabolic and signaling pathways involving uric acid, gut microbiome products, and so-called uremic toxins accumulating in chronic kidney disease. Together, the findings are compatible with the hypothesized role of drug transporters in remote inter-organ and inter-organismal communication: The Remote Sensing and Signaling Hypothesis (Nigam, S. K. (2015) Nat. Rev. Drug Disc. 14, 29). The fact that OAT1 can affect many systemic biological pathways suggests that drug-metabolite interactions need to be considered beyond simple competition for the drug transporter itself and may explain aspects of drug-induced metabolic syndrome. Our approach should provide novel mechanistic insights into the role of OAT1 and other drug transporters implicated in metabolic diseases like gout, diabetes, and chronic kidney disease.
Collapse
Affiliation(s)
| | | | - Yuchen Chen
- Bioinformatics and Systems Biology Graduate Program
| | | | | | | | | | | | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093
| | | | - Sanjay K Nigam
- Medicine, Pediatrics, and Cellular and Molecular Medicine,
| |
Collapse
|
30
|
Donovan MD, O'Brien FE, Boylan GB, Cryan JF, Griffin BT. The effect of organic anion transporter 3 inhibitor probenecid on bumetanide levels in the brain: an integrated in vivo microdialysis study in the rat. J Pharm Pharmacol 2014; 67:501-10. [DOI: 10.1111/jphp.12341] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 09/28/2014] [Indexed: 01/29/2023]
Abstract
Abstract
Objectives
Recent data highlight the potential of bumetanide as a treatment for neonatal seizures and autism, as it facilitates the excitatory to inhibitory switch in gamma-aminobutyric acid signalling. This study examines the extent of blood-brain barrier (BBB) permeation of bumetanide, a key determinant of the efficacy of centrally acting drugs. Furthermore, the impact of efflux transporter organic anion transporter 3 (oat3) inhibition on bumetanide pharmacokinetics was investigated.
Methods
Bumetanide levels in extracellular fluid (ECF) and plasma in the presence and absence of oat3 inhibitor probenecid were monitored using integrated microdialysis.
Key findings
Following a bumetanide bolus/continuous infusion of 10 mg/kg and 6 mg/kg/h, bumetanide was detected in hippocampal ECF at the estimated concentration of 131 ± 55 ng/ml. Plasma bumetanide levels were ∼20 mg/l at steady state. Coadministration of probenecid resulted in an increase in bumetanide levels in both ECF and plasma, indicating that oat3 inhibition influences the pharmacokinetics of bumetanide primarily in the periphery.
Conclusion
Although bumetanide reached detectable levels in hippocampal ECF, bumetanide concentration in ECF was low relative to systemic concentration. Oat3 inhibition by probenecid resulted in increased bumetanide concentrations in brain and plasma. As an acute treatment in neonatal seizures, the bumetanide/probenecid combination may hold therapeutic potential.
Collapse
Affiliation(s)
- Maria D Donovan
- Pharmacodelivery Group, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Fionn E O'Brien
- Pharmacodelivery Group, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Geraldine B Boylan
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
- Irish Centre for Fetal and Neonatal Translational Research, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | | |
Collapse
|
31
|
Ma L, Zhao L, Hu H, Qin Y, Bian Y, Jiang H, Zhou H, Yu L, Zeng S. Interaction of five anthraquinones from rhubarb with human organic anion transporter 1 (SLC22A6) and 3 (SLC22A8) and drug-drug interaction in rats. JOURNAL OF ETHNOPHARMACOLOGY 2014; 153:864-871. [PMID: 24685584 DOI: 10.1016/j.jep.2014.03.055] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 03/21/2014] [Accepted: 03/22/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhubarb is a well-known traditional Chinese medicine and has been used in China for thousands of years. Anthraquinone derivatives including rhein, emodin, aloe-emodin, chrysophanol and physcion are the important components in rhubarb. MATERIALS AND METHODS Here we studied the interaction of five anthraquinone derivatives with human renal organic anion transporter 1 (hOAT1) and hOAT3 stably expressed in cells, and interaction of rhein or rhubarb extract (RE) with furosemide (FS, substrate of OATs) in rats. RESULTS Uptake of 6-carboxyl fluorescein via hOAT1 and fluorescein via hOAT3 were markedly inhibited by rhein, emodin and aloe-emodin, and slightly inhibited by chrysophanol and physcion. The estimated IC₅₀ values for rhein, emodin, aloe-emodin and probenecid (typical inhibitor of hOAT1 and hOAT3) were 0.23, 0.61, 2.29 and 18.34 μM for hOAT1, and 0.08, 1.22, 5.37 and 5.83 μM for hOAT3, respectively. Furthermore, the data from the cellular accumulation assay indicated that these five compounds were not substrates of hOAT1 or hOAT3. Pharmacokinetic interaction between rhein and FS in rats showed that area under the curve (AUC₀-t) for FS was increased by 65% when coadministrated with rhein. RE was also used to interact with FS in rats and results showed that AUC₀-t of FS was increased by 32% and by 52% when coadministrated with single-dose or multiple-dose of RE, respectively. CONCLUSIONS These findings suggested that five anthraquinones inhibited hOAT1 and hOAT3, but these compounds were not transported by hOAT1 or hOAT3. Furthermore, rhein or RE, might cause drug-drug interaction when coadministrated with substrates of OAT1 or OAT3 in vivo.
Collapse
Affiliation(s)
- Liping Ma
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Lei Zhao
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Haihong Hu
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yahong Qin
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yicong Bian
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Huidi Jiang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Hui Zhou
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Lushan Yu
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Su Zeng
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
32
|
Witczak ZJ, Poplawski T, Czubatka A, Sarnik J, Tokarz P, VanWert AL, Bielski R. A potential CARB-pharmacophore for antineoplastic activity: Part 1. Bioorg Med Chem Lett 2014; 24:1752-7. [DOI: 10.1016/j.bmcl.2014.02.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 11/28/2022]
|
33
|
Soars MG, Barton P, Elkin LL, Mosure KW, Sproston JL, Riley RJ. Application of anin vitroOAT assay in drug design and optimization of renal clearance. Xenobiotica 2014; 44:657-65. [DOI: 10.3109/00498254.2013.879625] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|