1
|
Coltoff A, Mascarenhas J. Fedratinib in 2025 and beyond: indications and future applications. Blood Adv 2025; 9:1907-1915. [PMID: 39951613 PMCID: PMC12008686 DOI: 10.1182/bloodadvances.2024015365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/13/2025] [Accepted: 02/08/2025] [Indexed: 02/16/2025] Open
Abstract
ABSTRACT Dysregulated JAK/STAT signaling underlies the pathogenesis of myelofibrosis, a myeloproliferative neoplasm characterized by cytopenias, splenomegaly, and constitutional symptoms. JAK inhibitors, such as fedratinib, are the primary therapeutic option for patients with high-risk or symptomatic myelofibrosis. Fedratinib has characteristics that distinguish it from other commercially available JAK inhibitors, such as its preferential inhibition of JAK2 and its inhibitory effects on kinases such as Fms-like tyrosine kinase 3 and BRD4. Fedratinib is most often used in the second-line setting after intolerance or resistance to other JAK inhibitors, but there is substantial evidence that it is an effective first-line option in the appropriate patient population. Prevention and early treatment of fedratinib-related gastrointestinal toxicity is key to maintaining adequate drug exposure, and clinicians must remain vigilant for Wernicke encephalopathy during treatment. Fedratinib's JAK2 selectivity and kinome profile make it an appealing agent for alternative indications, such as myelodysplastic/myeloproliferative neoplasms and maintenance after bone marrow transplantation, which are under active investigation.
Collapse
Affiliation(s)
- Alexander Coltoff
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - John Mascarenhas
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
2
|
Masarova L, Chifotides HT. How I individualize selection of JAK inhibitors for patients with myelofibrosis. Blood 2025; 145:1724-1737. [PMID: 39357058 DOI: 10.1182/blood.2023022415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
ABSTRACT The advent of Janus kinase inhibitors (JAKis) inaugurated a novel era in the treatment of myelofibrosis (MF), a myeloproliferative neoplasm with heterogeneous clinical manifestations. Four JAKis have been approved for intermediate or high-risk MF, in the United States. Regulatory approval of the first JAK1/2 inhibitor, ruxolitinib, in 2011, transformed the landscape of MF by markedly controlling splenomegaly and constitutional symptoms, improving patients' quality of life, and prolonging survival. Fedratinib, the second approved JAKi, is preferred in the second-line setting. Ruxolitinib and fedratinib can cause myelosuppression and are recommended for patients with the myeloproliferative phenotype. The approval of 2 less-myelosuppressive JAKis, pacritinib and momelotinib, provided essential treatment options for patients with severe thrombocytopenia and anemia, respectively. Momelotinib and pacritinib are potent activin A receptor, type 1 inhibitors with consequent significant benefits for patients with anemia. Transfusion independence was achieved with momelotinib in patients who were severely anemic, and the association of transfusion independence with prolonged overall survival was demonstrated. Judicious treatment decisions regarding JAKis can be made with in-depth understanding of the pivotal clinical trials that evaluated JAKis and their therapeutic attributes and should be guided by the dominant clinical manifestations and the type/degree of cytopenia(s) (myeloproliferative/cytopenic phenotypes). This article reviews our clinical approach to treatment with JAKis and their sequencing in patients with MF by presenting 3 clinical vignettes.
Collapse
Affiliation(s)
- Lucia Masarova
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Helen T Chifotides
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
3
|
Manghisi B, Cotilli G, Fedele M, Perfetti P, Terruzzi E, Verga L, Borin LM, Carrer A, Fumagalli M, Ferrari MB, Moretti A, Rona R, Benini A, Vergnano B, Palumbo G, Zincone A, Maglia O, Scollo C, Steidl C, Iovino L, Balduzzi A, Piazza R, Gambacorti-Passerini C, Parma M, Aroldi A. Case Report: Successful use of emapalumab in adult B-cell acute lymphoblastic leukemia experiencing severe neurotoxicity and hemophagocytic lymphohistiocytosis-like features after CAR-T cell therapy. Front Immunol 2025; 16:1563736. [PMID: 40255392 PMCID: PMC12006129 DOI: 10.3389/fimmu.2025.1563736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/19/2025] [Indexed: 04/22/2025] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a powerful adoptive immunotherapy associated with significant toxicity, including cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). As CAR-T usage expands, hyperinflammatory toxicities resembling hemophagocytic lymphohistiocytosis (HLH) syndrome are increasingly recognized. Immune effector cell-associated HLH-like syndrome (IEC-HS) describes HLH-like symptoms attributable to CAR-T cell therapy, often presenting as CRS resolves. Treatments for IEC-HS are adapted from primary HLH, including corticosteroids, the recombinant human interleukin (IL)-1 receptor antagonist anakinra and the Janus Kinase inhibitor ruxolitinib. Emapalumab, an anti-IFN-γ antibody, is promising but underexplored in adult IEC-HS cases. We report an adult B-cell acute lymphoblastic leukemia (B-ALL) patient treated with brexucabtagene autoleucel (brexu-cel). The patient developed CRS, refractory neurotoxicity, and IEC-HS with worsening multiorgan failure and hyperinflammatory markers. Treatment included tocilizumab, high-dose corticosteroids, anakinra, siltuximab, and ruxolitinib. Despite aggressive management, hyperinflammation and neurotoxicity persisted. Emapalumab was initiated on day +11, resulting in normalization of the biochemical parameters and full neurological recovery by day +21. The patient recovered from IEC-HS and underwent allogeneic stem cell transplantation. This case highlights the role of emapalumab in managing refractory IEC-HS and persistent neurotoxicity in adults, underscoring the need for targeted interventions in severe CAR-T complications.
Collapse
Affiliation(s)
- Beatrice Manghisi
- Hematology Division, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Giulia Cotilli
- Hematology Division, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Marilena Fedele
- Hematology Division, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Paola Perfetti
- Hematology Division, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | | | - Luisa Verga
- Hematology Division, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | | | - Andrea Carrer
- Hematology Division, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Monica Fumagalli
- Hematology Division, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Maria Beatrice Ferrari
- Hematology Division, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alex Moretti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Pediatric Stem Cell Transplant Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Roberto Rona
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Annalisa Benini
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Beatrice Vergnano
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Giovanni Palumbo
- Neuroradiology Department, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Alessandra Zincone
- Department of Neurology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Oscar Maglia
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Chiara Scollo
- Transfusion Medicine Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Carolina Steidl
- Lymphoma Unit, Department of Onco-Hematology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Iovino
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Adriana Balduzzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Pediatric Stem Cell Transplant Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Rocco Piazza
- Hematology Division, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Carlo Gambacorti-Passerini
- Hematology Division, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Matteo Parma
- Hematology Division, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Andrea Aroldi
- Hematology Division, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
4
|
Vinnai BÁ, Arianti R, Fischer-Posovszky P, Wabitsch M, Fésüs L, Kristóf E. The importance of thiamine availability in the thermogenic competency of human adipocytes. Mol Cell Endocrinol 2025; 599:112483. [PMID: 39884417 DOI: 10.1016/j.mce.2025.112483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/20/2025] [Accepted: 01/25/2025] [Indexed: 02/01/2025]
Abstract
Brown and beige adipocytes express uncoupling protein 1 (UCP1), which is located in the inner mitochondrial membrane and facilitates the dissipation of excess energy as heat. The activation of thermogenic adipocytes is a potential therapeutic target for treating type 2 diabetes mellitus, obesity, and related co-morbidities. Therefore, identifying novel approaches to stimulate the function of these adipocytes is crucial for advancing therapeutic strategies. Currently, there are limited amount of human adipocyte cell line models available to study the regulatory mechanisms of browning and key players in thermogenesis. The Simpson-Golabi-Behmel syndrome (SGBS) preadipocyte cell line has been proven as a valuable model to investigate human adipocyte biology. In this study, we investigated how excess thiamine (vitamin B1), and the inhibition of thiamine transporters affect the expression of thermogenic markers and functional parameters during adrenergic stimulation in SGBS adipocytes. We found that limiting thiamine availability by pharmacological inhibitors impeded the dibutyryl-cAMP (db-cAMP)-dependent induction of thiamine transporter 1 and 2 (encoded by SLC19A2 and SLC19A3), UCP1, PGC1a, and other browning markers, as well as proton leak respiration which is associated with UCP1-dependent heat generation. Contrarily, excess thiamine enhanced the db-cAMP-dependent induction of thiamine transporters, while UCP1, PGC1a, and other browning markers were upregulated. In addition, abundant amounts of thiamine increased the basal, unstimulated coupled and uncoupled respiration, and the expression of mitochondrial complex subunits. Our study highlights the critical role of excess thiamine in the thermogenic activation of SGBS adipocytes and its potential to enhance thermogenesis.
Collapse
Affiliation(s)
- Boglárka Ágnes Vinnai
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Hungary; Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, H-4032, Debrecen, Hungary
| | - Rini Arianti
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Hungary; Universitas Muhammadiyah Bangka Belitung, 33134, Pangkalpinang, Indonesia
| | - Pamela Fischer-Posovszky
- German Center for Child and Adolescent Health (DZKJ), Partner Site Ulm, Ulm, Germany; Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Martin Wabitsch
- German Center for Child and Adolescent Health (DZKJ), Partner Site Ulm, Ulm, Germany; Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - László Fésüs
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Hungary
| | - Endre Kristóf
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Hungary.
| |
Collapse
|
5
|
Li P, Zhu Z, Wang Y, Zhang X, Yang C, Zhu Y, Zhou Z, Chao Y, Long Y, Gao Y, Liu S, Zhang L, Gao P, Qu Q. Substrate transport and drug interaction of human thiamine transporters SLC19A2/A3. Nat Commun 2024; 15:10924. [PMID: 39738067 DOI: 10.1038/s41467-024-55359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025] Open
Abstract
Thiamine and pyridoxine are essential B vitamins that serve as enzymatic cofactors in energy metabolism, protein and nucleic acid biosynthesis, and neurotransmitter production. In humans, thiamine transporters SLC19A2 and SLC19A3 primarily regulate cellular uptake of both vitamins. Genetic mutations in these transporters, which cause thiamine and pyridoxine deficiency, have been implicated in severe neurometabolic diseases. Additionally, various prescribed medicines, including metformin and fedratinib, manipulate thiamine transporters, complicating the therapeutic effect. Despite their physiological and pharmacological significance, the molecular underpinnings of substrate and drug recognition remain unknown. Here we present ten cryo-EM structures of human thiamine transporters SLC19A3 and SLC19A2 in outward- and inward-facing conformations, complexed with thiamine, pyridoxine, metformin, fedratinib, and amprolium. These structural insights, combined with functional characterizations, illuminate the translocation mechanism of diverse chemical entities, and enhance our understanding of drug-nutrient interactions mediated by thiamine transporters.
Collapse
Affiliation(s)
- Peipei Li
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhini Zhu
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Yong Wang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Xuyuan Zhang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chuanhui Yang
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Yalan Zhu
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Zixuan Zhou
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Yulin Chao
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Yonghui Long
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Yina Gao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Songqing Liu
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Liguo Zhang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Pu Gao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| | - Qianhui Qu
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Yee SW, Wang J, Giacomini KM. Rare Diseases Linked to Mutations in Vitamin Transporters Expressed in the Human Blood-Brain Barrier. Clin Pharmacol Ther 2024; 116:1513-1520. [PMID: 39234898 PMCID: PMC11567784 DOI: 10.1002/cpt.3433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
Recent advances have significantly enhanced our understanding of the role of membrane transporters in drug disposition, particularly focusing on their influence on pharmacokinetics, and consequently, pharmacodynamics. The relevance of these transporters in clinical pharmacology is well acknowledged. Recent research has also underscored the critical role of membrane transporters as targets in human diseases, including their involvement in rare genetic disorders. This review focuses on transporters for water-soluble B vitamins, such as thiamine, riboflavin, and biotin, essential cofactors for metabolic enzymes. Mutations in transporters, such as SLC19A3 (thiamine), SLC52A2, and SLC52A3 (riboflavin), and SLC5A6 (multiple B vitamins including pantothenic acid and biotin) are linked to severe neurological disorders due to their role in the blood-brain barrier, which is crucial for brain vitamin supply. Current treatments, mainly involving vitamin supplementation, often result in variable response. This review also provides a short perspective on the role of the transporters in the blood-cerebrospinal fluid barrier and highlights the potential development of pharmacologic treatments for rare disorders associated with mutations in these transporters.
Collapse
Affiliation(s)
- Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington
| | - Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco
| |
Collapse
|
7
|
Gabriel F, Spriestersbach L, Fuhrmann A, Jungnickel KEJ, Mostafavi S, Pardon E, Steyaert J, Löw C. Structural basis of thiamine transport and drug recognition by SLC19A3. Nat Commun 2024; 15:8542. [PMID: 39358356 PMCID: PMC11447181 DOI: 10.1038/s41467-024-52872-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Thiamine (vitamin B1) functions as an essential coenzyme in cells. Humans and other mammals cannot synthesise this vitamin de novo and thus have to take it up from their diet. Eventually, every cell needs to import thiamine across its plasma membrane, which is mainly mediated by the two specific thiamine transporters SLC19A2 and SLC19A3. Loss of function mutations in either of these transporters lead to detrimental, life-threatening metabolic disorders. SLC19A3 is furthermore a major site of drug interactions. Many medications, including antidepressants, antibiotics and chemotherapeutics are known to inhibit this transporter, with potentially fatal consequences for patients. Despite a thorough functional characterisation over the past two decades, the structural basis of its transport mechanism and drug interactions has remained elusive. Here, we report seven cryo-electron microscopy (cryo-EM) structures of the human thiamine transporter SLC19A3 in complex with various ligands. Conformation-specific nanobodies enable us to capture different states of SLC19A3's transport cycle, revealing the molecular details of thiamine recognition and transport. We identify seven previously unknown drug interactions of SLC19A3 and present structures of the transporter in complex with the inhibitors fedratinib, amprolium and hydroxychloroquine. These data allow us to develop an understanding of the transport mechanism and ligand recognition of SLC19A3.
Collapse
Affiliation(s)
- Florian Gabriel
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
| | - Lea Spriestersbach
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
| | - Antonia Fuhrmann
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
| | - Katharina E J Jungnickel
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
| | - Siavash Mostafavi
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, 1050, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, 1050, Brussels, Belgium
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany.
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany.
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany.
| |
Collapse
|
8
|
Dang Y, Zhang T, Pidathala S, Wang G, Wang Y, Chen N, Song C, Lee CH, Zhang Z. Substrate and drug recognition mechanisms of SLC19A3. Cell Res 2024; 34:458-461. [PMID: 38503960 PMCID: PMC11143317 DOI: 10.1038/s41422-024-00951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/05/2024] [Indexed: 03/21/2024] Open
Affiliation(s)
- Yu Dang
- State Key Laboratory of Membrane Biology, Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Tianyi Zhang
- School of Life Sciences, Peking University, Beijing, China
| | - Shabareesh Pidathala
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Guopeng Wang
- Cryo-EM Platform, School of Life Sciences, Peking University, Beijing, China
| | - Yijie Wang
- School of Life Sciences, Peking University, Beijing, China
| | - Nanhao Chen
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Chen Song
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Chia-Hsueh Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Zhe Zhang
- State Key Laboratory of Membrane Biology, Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- School of Life Sciences, Peking University, Beijing, China.
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
9
|
Galetin A, Brouwer KLR, Tweedie D, Yoshida K, Sjöstedt N, Aleksunes L, Chu X, Evers R, Hafey MJ, Lai Y, Matsson P, Riselli A, Shen H, Sparreboom A, Varma MVS, Yang J, Yang X, Yee SW, Zamek-Gliszczynski MJ, Zhang L, Giacomini KM. Membrane transporters in drug development and as determinants of precision medicine. Nat Rev Drug Discov 2024; 23:255-280. [PMID: 38267543 PMCID: PMC11464068 DOI: 10.1038/s41573-023-00877-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/26/2024]
Abstract
The effect of membrane transporters on drug disposition, efficacy and safety is now well recognized. Since the initial publication from the International Transporter Consortium, significant progress has been made in understanding the roles and functions of transporters, as well as in the development of tools and models to assess and predict transporter-mediated activity, toxicity and drug-drug interactions (DDIs). Notable advances include an increased understanding of the effects of intrinsic and extrinsic factors on transporter activity, the application of physiologically based pharmacokinetic modelling in predicting transporter-mediated drug disposition, the identification of endogenous biomarkers to assess transporter-mediated DDIs and the determination of the cryogenic electron microscopy structures of SLC and ABC transporters. This article provides an overview of these key developments, highlighting unanswered questions, regulatory considerations and future directions.
Collapse
Affiliation(s)
- Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, UK.
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Kenta Yoshida
- Clinical Pharmacology, Genentech Research and Early Development, South San Francisco, CA, USA
| | - Noora Sjöstedt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Lauren Aleksunes
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Xiaoyan Chu
- Department of Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics, Merck & Co., Inc., Rahway, NJ, USA
| | - Raymond Evers
- Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, PA, USA
| | - Michael J Hafey
- Department of Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics, Merck & Co., Inc., Rahway, NJ, USA
| | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA, USA
| | - Pär Matsson
- Department of Pharmacology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Andrew Riselli
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Hong Shen
- Department of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, NJ, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Manthena V S Varma
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, CT, USA
| | - Jia Yang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Xinning Yang
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | | | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
10
|
Kharve K, Engley AS, Paine MF, Sprowl JA. Impact of Drug-Mediated Inhibition of Intestinal Transporters on Nutrient and Endogenous Substrate Disposition…an Afterthought? Pharmaceutics 2024; 16:447. [PMID: 38675109 PMCID: PMC11053474 DOI: 10.3390/pharmaceutics16040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
A large percentage (~60%) of prescription drugs and new molecular entities are designed for oral delivery, which requires passage through a semi-impervious membrane bilayer in the gastrointestinal wall. Passage through this bilayer can be dependent on membrane transporters that regulate the absorption of nutrients or endogenous substrates. Several investigations have provided links between nutrient, endogenous substrate, or drug absorption and the activity of certain membrane transporters. This knowledge has been key in the development of new therapeutics that can alleviate various symptoms of select diseases, such as cholestasis and diabetes. Despite this progress, recent studies revealed potential clinical dangers of unintended altered nutrient or endogenous substrate disposition due to the drug-mediated disruption of intestinal transport activity. This review outlines reports of glucose, folate, thiamine, lactate, and bile acid (re)absorption changes and consequent adverse events as examples. Finally, the need to comprehensively expand research on intestinal transporter-mediated drug interactions to avoid the unwanted disruption of homeostasis and diminish therapeutic adverse events is highlighted.
Collapse
Affiliation(s)
- Kshitee Kharve
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA;
| | - Andrew S. Engley
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA; (A.S.E.); (M.F.P.)
| | - Mary F. Paine
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA; (A.S.E.); (M.F.P.)
| | - Jason A. Sprowl
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA;
| |
Collapse
|
11
|
Duminuco A, Torre E, Palumbo GA, Harrison C. A Journey Through JAK Inhibitors for the Treatment of Myeloproliferative Diseases. Curr Hematol Malig Rep 2023; 18:176-189. [PMID: 37395943 DOI: 10.1007/s11899-023-00702-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE OF REVIEW Chronic myeloproliferative neoplasms (MPN) represent a group of diseases characterised by constitutive activation of the JAK/STAT pathway in a clonal myeloid precursor. The therapeutic approach aims to treat the symptom burden (headache, itching, debilitation), splenomegaly, slow down the fibrotic proliferation in the bone marrow and reduce the risk of thrombosis/bleeding whilst avoiding leukaemic transformation. RECENT FINDINGS In recent years, the advent of JAK inhibitors (JAKi) has significantly broadened treatment options for these patients. In myelofibrosis, symptom control and splenomegaly reduction can improve quality of life with improved overall survival, not impacting progression into acute leukaemia. Several JAKi are available and used worldwide, and combination approaches are now being explored. In this chapter, we review the approved JAKi, highlighting its strengths, exploring potential guidelines in choosing which one to use and reasoning towards future perspectives, where the combinations of therapies seem to promise the best results.
Collapse
Affiliation(s)
- Andrea Duminuco
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, SE1 9RT, UK
- Haematology with BMT Unit, A.O.U. Policlinico "G.Rodolico-San Marco", Catania, Italy
| | - Elena Torre
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, SE1 9RT, UK
- Clinica di Ematologia, Università Politecnica delle Marche, Ancona, Italy
| | - Giuseppe A Palumbo
- Haematology with BMT Unit, A.O.U. Policlinico "G.Rodolico-San Marco", Catania, Italy
| | - Claire Harrison
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, SE1 9RT, UK.
| |
Collapse
|
12
|
Verstovsek S, Mesa RA, Livingston RA, Hu W, Mascarenhas J. Ten years of treatment with ruxolitinib for myelofibrosis: a review of safety. J Hematol Oncol 2023; 16:82. [PMID: 37501130 PMCID: PMC10373260 DOI: 10.1186/s13045-023-01471-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023] Open
Abstract
Myelofibrosis (MF) is a chronic myeloproliferative neoplasm characterized by bone marrow fibrosis, anemia, extramedullary hematopoiesis, and splenomegaly. Patients with MF are at risk for reduced survival versus the general population and often experience burdensome signs and symptoms that reduce quality of life. The oral Janus kinase (JAK) 1/JAK2 inhibitor ruxolitinib was initially approved by the US Food and Drug Administration in 2011 for the treatment of patients with intermediate or high-risk MF, including primary MF, post-polycythemia vera MF, and post-essential thrombocythemia MF, based on efficacy and safety findings from the randomized, controlled, phase 3 COMFORT trials. Over a decade later, ruxolitinib continues to be the standard of care in higher-risk MF, and dose optimization and management remain crucial for safely maximizing clinical benefits of ruxolitinib. This review summarizes the safety profile of ruxolitinib in patients with MF in the COMFORT trials leading up to approval and in the subsequent JUMP, ROBUST, EXPAND, and REALISE trials; in pooled analyses; and in postmarketing analyses in the 10 years following approval. There is a focus on the occurrence of common hematologic and nonhematologic adverse events, with guidance provided on the management of patients with anemia or thrombocytopenia, including dosing strategies based on findings from the REALISE and EXPAND trials. Finally, to ensure a greater understanding of the safety profile of ruxolitinib, practical considerations are discussed.
Collapse
Affiliation(s)
- Srdan Verstovsek
- Leukemia Department, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - Ruben A Mesa
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Medical Center Blvd, 11th Floor, Winston-Salem, NC, 27157, USA
| | | | - Wilson Hu
- Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, DE, 19803, USA
| | - John Mascarenhas
- Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
| |
Collapse
|
13
|
Wen A, Zhu Y, Yee SW, Park BI, Giacomini KM, Greenberg AS, Newman JW. The Impacts of Slc19a3 Deletion and Intestinal SLC19A3 Insertion on Thiamine Distribution and Brain Metabolism in the Mouse. Metabolites 2023; 13:885. [PMID: 37623829 PMCID: PMC10456376 DOI: 10.3390/metabo13080885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 08/26/2023] Open
Abstract
The Thiamine Transporter 2 (THTR2) encoded by SLC19A3 plays an ill-defined role in the maintenance of tissue thiamine, thiamine monophosphate, and thiamine diphosphate (TDP) levels. To evaluate the impact of THTR2 on tissue thiamine status and metabolism, we expressed the human SLC19A3 transgene in the intestine of total body Slc19a3 knockout (KO) mice. Male and female wildtype (WT) and transgenic (TG) mice were fed either 17 mg/kg (1×) or 85 mg/kg (5×) thiamine hydrochloride diet, while KOs were only fed the 5× diet. Thiamine vitamers in plasma, red blood cells, duodenum, brain, liver, kidney, heart, and adipose tissue were measured. Untargeted metabolomics were performed on the brain tissues of groups with equivalent plasma thiamine. KO mice had ~two- and ~three-fold lower plasma and brain thiamine levels than WT on the 5× diet. Circulating vitamers were sensitive to diet and equivalent in TG and WT mice. However, TG had 60% lower thiamine but normal brain TDP levels regardless of diet, with subtle differences in the heart and liver. The loss of THTR2 reduced levels of nucleic acid and amino acid derivatives in the brain. Therefore, mutation or inhibition of THTR2 may alter the brain metabolome and reduce the thiamine reservoir for TDP biosynthesis.
Collapse
Affiliation(s)
- Anita Wen
- Department of Nutrition, University of California, Davis, CA 95616, USA
- West Coast Metabolomics Center, Genome Center, University of California, Davis, CA 95616, USA
| | - Ying Zhu
- Gerald J. and Dorothy R. Friedman School of Nutrition Science & Policy, Tufts University, Boston, MA 02111, USA
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 92521, USA
| | - Brian I. Park
- Gerald J. and Dorothy R. Friedman School of Nutrition Science & Policy, Tufts University, Boston, MA 02111, USA
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 92521, USA
| | - Andrew S. Greenberg
- Gerald J. and Dorothy R. Friedman School of Nutrition Science & Policy, Tufts University, Boston, MA 02111, USA
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - John W. Newman
- Department of Nutrition, University of California, Davis, CA 95616, USA
- West Coast Metabolomics Center, Genome Center, University of California, Davis, CA 95616, USA
- USDA Western Human Nutrition Research Center, Davis, CA 95616, USA
| |
Collapse
|
14
|
Gaido OER, Pavlaki N, Granger JM, Mesubi OO, Liu B, Lin BL, Long A, Walker D, Mayourian J, Schole KL, Terrillion CE, Nkashama LJ, Hulsurkar MM, Dorn LE, Ferrero KM, Huganir RL, Müller FU, Wehrens XHT, Liu JO, Luczak ED, Bezzerides VJ, Anderson ME. An improved reporter identifies ruxolitinib as a potent and cardioprotective CaMKII inhibitor. Sci Transl Med 2023; 15:eabq7839. [PMID: 37343080 PMCID: PMC11022683 DOI: 10.1126/scitranslmed.abq7839] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/31/2023] [Indexed: 06/23/2023]
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) hyperactivity causes cardiac arrhythmias, a major source of morbidity and mortality worldwide. Despite proven benefits of CaMKII inhibition in numerous preclinical models of heart disease, translation of CaMKII antagonists into humans has been stymied by low potency, toxicity, and an enduring concern for adverse effects on cognition due to an established role of CaMKII in learning and memory. To address these challenges, we asked whether any clinically approved drugs, developed for other purposes, were potent CaMKII inhibitors. For this, we engineered an improved fluorescent reporter, CaMKAR (CaMKII activity reporter), which features superior sensitivity, kinetics, and tractability for high-throughput screening. Using this tool, we carried out a drug repurposing screen (4475 compounds in clinical use) in human cells expressing constitutively active CaMKII. This yielded five previously unrecognized CaMKII inhibitors with clinically relevant potency: ruxolitinib, baricitinib, silmitasertib, crenolanib, and abemaciclib. We found that ruxolitinib, an orally bioavailable and U.S. Food and Drug Administration-approved medication, inhibited CaMKII in cultured cardiomyocytes and in mice. Ruxolitinib abolished arrhythmogenesis in mouse and patient-derived models of CaMKII-driven arrhythmias. A 10-min pretreatment in vivo was sufficient to prevent catecholaminergic polymorphic ventricular tachycardia, a congenital source of pediatric cardiac arrest, and rescue atrial fibrillation, the most common clinical arrhythmia. At cardioprotective doses, ruxolitinib-treated mice did not show any adverse effects in established cognitive assays. Our results support further clinical investigation of ruxolitinib as a potential treatment for cardiac indications.
Collapse
Affiliation(s)
- Oscar E. Reyes Gaido
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nikoleta Pavlaki
- Department of Cardiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan M. Granger
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Olurotimi O. Mesubi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bian Liu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Brian L. Lin
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alan Long
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David Walker
- Department of Cardiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Joshua Mayourian
- Department of Cardiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kate L. Schole
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chantelle E. Terrillion
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lubika J. Nkashama
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mohit M. Hulsurkar
- Cardiovascular Research Institute and Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lauren E. Dorn
- Cardiovascular Research Institute and Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kimberly M. Ferrero
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard L. Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Frank U. Müller
- Institute of Pharmacology and Toxicology, University of Münster, Münster 48149, Germany
| | - Xander H. T. Wehrens
- Cardiovascular Research Institute and Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Medicine, Neuroscience, and Pediatrics, Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jun O. Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elizabeth D. Luczak
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vassilios J. Bezzerides
- Department of Cardiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mark E. Anderson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Division of Biological Sciences and the Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
15
|
Arianti R, Ágnes Vinnai B, Győry F, Guba A, Csősz É, Kristóf E, Fésüs L. Availability of abundant thiamine determines efficiency of thermogenic activation in human neck area derived adipocytes. J Nutr Biochem 2023:109385. [PMID: 37230255 DOI: 10.1016/j.jnutbio.2023.109385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/23/2022] [Accepted: 05/20/2023] [Indexed: 05/27/2023]
Abstract
Brown/beige adipocytes express uncoupling protein-1 (UCP1) that enables them to dissipate energy as heat. Systematic activation of this process can alleviate obesity. Human brown adipose tissues are interspersed in distinct anatomical regions including deep neck. We found that UCP1 enriched adipocytes differentiated from precursors of this depot highly expressed ThTr2 transporter of thiamine and consumed thiamine during thermogenic activation of these adipocytes by cAMP which mimics adrenergic stimulation. Inhibition of ThTr2 led to lower thiamine consumption with decreased proton leak respiration reflecting reduced uncoupling. In the absence of thiamine, cAMP-induced uncoupling was diminished but restored by thiamine addition reaching the highest levels at thiamine concentrations larger than present in human blood plasma. Thiamine is converted to thiamine pyrophosphate (TPP) in cells; the addition of TPP to permeabilized adipocytes increased uncoupling fueled by TPP-dependent pyruvate dehydrogenase. ThTr2 inhibition also hampered cAMP-dependent induction of UCP1, PGC1a, and other browning marker genes, and thermogenic induction of these genes was potentiated by thiamine in a concentration dependent manner. Our study reveals the importance of amply supplied thiamine during thermogenic activation in human adipocytes which provides TPP for TPP-dependent enzymes not fully saturated with this cofactor and by potentiating the induction of thermogenic genes.
Collapse
Affiliation(s)
- Rini Arianti
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Hungary; Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, H-4032, Debrecen, Hungary
| | - Boglárka Ágnes Vinnai
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Hungary; Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, H-4032, Debrecen, Hungary
| | - Ferenc Győry
- Department of Surgery, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Hungary
| | - Andrea Guba
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Hungary; Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, H-4032, Debrecen, Hungary
| | - Éva Csősz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Hungary
| | - Endre Kristóf
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Hungary.
| | - László Fésüs
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Hungary.
| |
Collapse
|
16
|
Saleh K, Ribrag V. An evaluation of fedratinib for adult patients with newly diagnosed and previously treated myelofibrosis. Expert Rev Hematol 2023; 16:227-236. [PMID: 36939633 DOI: 10.1080/17474086.2023.2192473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/14/2023] [Indexed: 03/21/2023]
Abstract
INTRODUCTION Myelofibrosis (MF) is a life-shortening myeloproliferative neoplasm that has multiple features such as clonal proliferation, fibrosis and splenomegaly. Until recently, ruxolitinib, a Janus Kinase (JAK) 1/2 inhibitor was the only targeted therapy approved for transplant-ineligible patients with MF and who require treatment for symptoms and/or splenomegaly. However, the discontinuation rate with ruxolitinib at 3 to 5 years is high and mostly due to loss of response or toxicity, and these patients had no subsequent treatment. AREAS COVERED Fedratinib, a selective JAK2 inhibitor, was approved by the Food and Drug Administration (FDA) in August 2019 for the treatment of intermediate-2 or high-risk primary or secondary MF, regardless of prior JAK inhibitor treatment for the management of symptoms and splenomegaly. We discuss herein the development of fedratinib and its pharmacology and pharmacokinetics as well as the clinical development and the future directions. We used PubMed for the search of articles related to fedratinib and myelofibrosis. EXPERT OPINION Fedratinib provided a second-line treatment for patients with MF who failed or discontinued ruxolitinib. New combinations of JAK inhibitors with other targeted therapies are a must in order to improve the management of MF.
Collapse
Affiliation(s)
- Khalil Saleh
- Department of Hematology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Vincent Ribrag
- Department of Hematology, Gustave Roussy Cancer Campus, Villejuif, France
- Departement d'Innovation Therapeutique Et d'Essais Precoces (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
17
|
Carss KJ, Deaton AM, Del Rio-Espinola A, Diogo D, Fielden M, Kulkarni DA, Moggs J, Newham P, Nelson MR, Sistare FD, Ward LD, Yuan J. Using human genetics to improve safety assessment of therapeutics. Nat Rev Drug Discov 2023; 22:145-162. [PMID: 36261593 DOI: 10.1038/s41573-022-00561-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2022] [Indexed: 02/07/2023]
Abstract
Human genetics research has discovered thousands of proteins associated with complex and rare diseases. Genome-wide association studies (GWAS) and studies of Mendelian disease have resulted in an increased understanding of the role of gene function and regulation in human conditions. Although the application of human genetics has been explored primarily as a method to identify potential drug targets and support their relevance to disease in humans, there is increasing interest in using genetic data to identify potential safety liabilities of modulating a given target. Human genetic variants can be used as a model to anticipate the effect of lifelong modulation of therapeutic targets and identify the potential risk for on-target adverse events. This approach is particularly useful for non-clinical safety evaluation of novel therapeutics that lack pharmacologically relevant animal models and can contribute to the intrinsic safety profile of a drug target. This Review illustrates applications of human genetics to safety studies during drug discovery and development, including assessing the potential for on- and off-target associated adverse events, carcinogenicity risk assessment, and guiding translational safety study designs and monitoring strategies. A summary of available human genetic resources and recommended best practices is provided. The challenges and future perspectives of translating human genetic information to identify risks for potential drug effects in preclinical and clinical development are discussed.
Collapse
Affiliation(s)
| | - Aimee M Deaton
- Amgen, Cambridge, MA, USA.,Alnylam Pharmaceuticals, Cambridge, MA, USA
| | - Alberto Del Rio-Espinola
- Novartis Institutes for BioMedical Research, Basel, Switzerland.,GentiBio Inc., Cambridge, MA, USA
| | | | - Mark Fielden
- Amgen, Thousand Oaks, MA, USA.,Kate Therapeutics, San Diego, CA, USA
| | | | - Jonathan Moggs
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | - Frank D Sistare
- Merck & Co., West Point, PA, USA.,315 Meadowmont Ln, Chapel Hill, NC, USA
| | - Lucas D Ward
- Amgen, Cambridge, MA, USA. .,Alnylam Pharmaceuticals, Cambridge, MA, USA.
| | - Jing Yuan
- Amgen, Cambridge, MA, USA.,Pfizer, Cambridge, MA, USA
| |
Collapse
|
18
|
FDA-Approved Kinase Inhibitors in Preclinical and Clinical Trials for Neurological Disorders. Pharmaceuticals (Basel) 2022; 15:ph15121546. [PMID: 36558997 PMCID: PMC9784968 DOI: 10.3390/ph15121546] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Cancers and neurological disorders are two major types of diseases. We previously developed a new concept termed "Aberrant Cell Cycle Diseases" (ACCD), revealing that these two diseases share a common mechanism of aberrant cell cycle re-entry. The aberrant cell cycle re-entry is manifested as kinase/oncogene activation and tumor suppressor inactivation, which are hallmarks of both tumor growth in cancers and neuronal death in neurological disorders. Therefore, some cancer therapies (e.g., kinase inhibition, tumor suppressor elevation) can be leveraged for neurological treatments. The United States Food and Drug Administration (US FDA) has so far approved 74 kinase inhibitors, with numerous other kinase inhibitors in clinical trials, mostly for the treatment of cancers. In contrast, there are dire unmet needs of FDA-approved drugs for neurological treatments, such as Alzheimer's disease (AD), intracerebral hemorrhage (ICH), ischemic stroke (IS), traumatic brain injury (TBI), and others. In this review, we list these 74 FDA-approved kinase-targeted drugs and identify those that have been reported in preclinical and/or clinical trials for neurological disorders, with a purpose of discussing the feasibility and applicability of leveraging these cancer drugs (FDA-approved kinase inhibitors) for neurological treatments.
Collapse
|
19
|
Reynolds SB, Pettit K. New approaches to tackle cytopenic myelofibrosis. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:235-244. [PMID: 36485113 PMCID: PMC9820710 DOI: 10.1182/hematology.2022000340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myelofibrosis (MF) is a clonal hematopoietic stem cell neoplasm characterized by constitutional symptoms, splenomegaly, and risks of marrow failure or leukemic transformation and is universally driven by Jak/STAT pathway activation. Despite sharing this pathogenic feature, MF disease behavior can vary widely. MF can generally be categorized into 2 distinct subgroups based on clinical phenotype: proliferative MF and cytopenic (myelodepletive) MF. Compared to proliferative phenotypes, cytopenic MF is characterized by lower blood counts (specifically anemia and thrombocytopenia), more frequent additional somatic mutations outside the Jak/STAT pathway, and a worse prognosis. Cytopenic MF presents unique therapeutic challenges. The first approved Jak inhibitors, ruxolitinib and fedratinib, can both improve constitutional symptoms and splenomegaly but carry on-target risks of worsening anemia and thrombocytopenia, limiting their use in patients with cytopenic MF. Supportive care measures that aim to improve anemia or thrombocytopenia are often ineffective. Fortunately, new treatment strategies for cytopenic MF are on the horizon. Pacritinib, selective Jak2 inhibitor, was approved in 2022 to treat patients with symptomatic MF and a platelet count lower than 50 × 109/L. Several other Jak inhibitors are in development to extend therapeutic benefits to those with either anemia or thrombocytopenia. While many other novel non-Jak inhibitor therapies are in development for MF, most carry a risk of hematologic toxicities and often exclude patients with baseline thrombocytopenia. As a result, significant unmet needs remain for cytopenic MF. Here, we discuss clinical implications of the cytopenic MF phenotype and present existing and future strategies to tackle this challenging disease.
Collapse
Affiliation(s)
- Samuel B Reynolds
- Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI
| | - Kristen Pettit
- Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
20
|
England JT, Gupta V. Fedratinib: a pharmacotherapeutic option for JAK-inhibitor naïve and exposed patients with myelofibrosis. Expert Opin Pharmacother 2022; 23:1677-1686. [PMID: 36252265 DOI: 10.1080/14656566.2022.2135989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Ruxolitinib is the most commonly used JAK-inhibitor (JAKi) for the management of symptoms related to splenomegaly and cytokine-mediated inflammation in patients with myelofibrosis (MF), but is limited by variable durability of response with most patients experiencing failure after 2-3 years. Long-term data on other approved JAKi, fedratinib and pacritinib, are not available due to the clinical hold put on pivotal trials for toxicity concerns. AREAS COVERED Following the initial hold for concern of Wernicke's encephalopathy, fedratinib was approved by the Food and Drug Administration (FDA) in 2019 for MF. We review the data available from early, and late phase critical trials, outline a role for fedratinib in the current treatment landscape of MF, and highlight the knowledge gaps in optimizing use of fedratinib. EXPERT OPINION The JAKARTA and JAKARTA2 trials established efficacy in spleen volume response (SVR) and symptom reduction in JAKi-naïve and ruxolitinib-exposed MF patients, respectively. Further trials, FREEDOM and FREEDOM2, are in progress to understand long-term effects of fedratinib; and include strategies to mitigate gastrointestinal toxicity, monitor thiamine levels and surveil for encephalopathy. We use fedratinib for symptomatic MF following ruxolitinib failure in patients without significant cytopenias; with practical strategies for monitoring and managing potential toxicity.
Collapse
Affiliation(s)
- James T England
- Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Vikas Gupta
- Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Rahman MM, Islam MR, Rahman F, Rahaman MS, Khan MS, Abrar S, Ray TK, Uddin MB, Kali MSK, Dua K, Kamal MA, Chellappan DK. Emerging Promise of Computational Techniques in Anti-Cancer Research: At a Glance. Bioengineering (Basel) 2022; 9:bioengineering9080335. [PMID: 35892749 PMCID: PMC9332125 DOI: 10.3390/bioengineering9080335] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 01/07/2023] Open
Abstract
Research on the immune system and cancer has led to the development of new medicines that enable the former to attack cancer cells. Drugs that specifically target and destroy cancer cells are on the horizon; there are also drugs that use specific signals to stop cancer cells multiplying. Machine learning algorithms can significantly support and increase the rate of research on complicated diseases to help find new remedies. One area of medical study that could greatly benefit from machine learning algorithms is the exploration of cancer genomes and the discovery of the best treatment protocols for different subtypes of the disease. However, developing a new drug is time-consuming, complicated, dangerous, and costly. Traditional drug production can take up to 15 years, costing over USD 1 billion. Therefore, computer-aided drug design (CADD) has emerged as a powerful and promising technology to develop quicker, cheaper, and more efficient designs. Many new technologies and methods have been introduced to enhance drug development productivity and analytical methodologies, and they have become a crucial part of many drug discovery programs; many scanning programs, for example, use ligand screening and structural virtual screening techniques from hit detection to optimization. In this review, we examined various types of computational methods focusing on anticancer drugs. Machine-based learning in basic and translational cancer research that could reach new levels of personalized medicine marked by speedy and advanced data analysis is still beyond reach. Ending cancer as we know it means ensuring that every patient has access to safe and effective therapies. Recent developments in computational drug discovery technologies have had a large and remarkable impact on the design of anticancer drugs and have also yielded useful insights into the field of cancer therapy. With an emphasis on anticancer medications, we covered the various components of computer-aided drug development in this paper. Transcriptomics, toxicogenomics, functional genomics, and biological networks are only a few examples of the bioinformatics techniques used to forecast anticancer medications and treatment combinations based on multi-omics data. We believe that a general review of the databases that are now available and the computational techniques used today will be beneficial for the creation of new cancer treatment approaches.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Firoza Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Md. Shajib Khan
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Sayedul Abrar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Tanmay Kumar Ray
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Mohammad Borhan Uddin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Most. Sumaiya Khatun Kali
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia;
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Mohammad Amjad Kamal
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Enzymoics, 7 Peterlee Place, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Correspondence:
| |
Collapse
|
22
|
Loscocco GG, Vannucchi AM. Role of JAK inhibitors in myeloproliferative neoplasms: current point of view and perspectives. Int J Hematol 2022; 115:626-644. [PMID: 35352288 DOI: 10.1007/s12185-022-03335-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/06/2022] [Accepted: 03/15/2022] [Indexed: 12/29/2022]
Abstract
Classic Philadelphia-negative myeloproliferative neoplasms (MPN) include polycythemia vera (PV), essential thrombocythemia (ET), and myelofibrosis (MF), classified as primary (PMF), or secondary to PV or ET. All MPN, regardless of the underlying driver mutation in JAK2/CALR/MPL, are invariably associated with dysregulation of JAK/STAT pathway. The discovery of JAK2V617F point mutation prompted the development of small molecules inhibitors of JAK tyrosine kinases (JAK inhibitors-JAKi). To date, among JAKi, ruxolitinib (RUX) and fedratinib (FEDR) are approved for intermediate and high-risk MF, and RUX is also an option for high-risk PV patients inadequately controlled by or intolerant to hydroxyurea. While not yet registered, pacritinib (PAC) and momelotinib (MMB), proved to be effective particularly in thrombocytopenic and anemic MF patients, respectively. In most cases, JAKi are effective in reducing splenomegaly and alleviating disease-related symptoms. However, almost 50% lose response by three years and dose-dependent toxicities may lead to suboptimal dosing or treatment discontinuation. To date, although not being disease-modifying agents, JAKi represent the therapeutic backbone particularly in MF patient. To optimize therapeutic strategies, many trials with drug combinations of JAKi with novel molecules are ongoing. This review critically discusses the role of JAKi in the modern management of patients with MPN.
Collapse
Affiliation(s)
- Giuseppe G Loscocco
- Department of Experimental and Clinical Medicine, University of Florence, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla, 3 pad 27B, 50134, Florence, Italy
- Doctorate School GenOMec, University of Siena, Siena, Italy
| | - Alessandro M Vannucchi
- Department of Experimental and Clinical Medicine, University of Florence, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla, 3 pad 27B, 50134, Florence, Italy.
| |
Collapse
|
23
|
Hu X, Li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther 2021; 6:402. [PMID: 34824210 PMCID: PMC8617206 DOI: 10.1038/s41392-021-00791-1] [Citation(s) in RCA: 1191] [Impact Index Per Article: 297.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway was discovered more than a quarter-century ago. As a fulcrum of many vital cellular processes, the JAK/STAT pathway constitutes a rapid membrane-to-nucleus signaling module and induces the expression of various critical mediators of cancer and inflammation. Growing evidence suggests that dysregulation of the JAK/STAT pathway is associated with various cancers and autoimmune diseases. In this review, we discuss the current knowledge about the composition, activation, and regulation of the JAK/STAT pathway. Moreover, we highlight the role of the JAK/STAT pathway and its inhibitors in various diseases.
Collapse
Affiliation(s)
- Xiaoyi Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Jing Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Maorong Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Xia Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
| |
Collapse
|
24
|
Waksal JA, Tremblay D, Mascarenhas J. Clinical Utility of Fedratinib in Myelofibrosis. Onco Targets Ther 2021; 14:4509-4521. [PMID: 34456572 PMCID: PMC8387309 DOI: 10.2147/ott.s267001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
Myelofibrosis (MF) is a clonal hematologic malignancy characterized by bone marrow fibrosis, extramedullary hematopoiesis, splenomegaly, and constitutional symptoms with a propensity towards leukemic transformation. Constitutive activation of the JAK/STAT pathway is a well-described pathogenic feature of MF. Allogeneic stem cell transplant is the only curative therapy, but due to high morbidity and mortality this option is not available for most patients. There are two approved targeted therapy options for MF, ruxolitinib and fedratinib. In this review, we discuss the clinical utility of fedratinib in the myelofibrosis treatment paradigm. Fedratinib has shown impressive pre-clinical and clinical efficacy in patients with untreated MF as well as in those with ruxolitinib intolerance and those with relapsed/refractory MF. Here, we review the pre-clinical and clinical trials that led to the approval of fedratinib, and the ongoing late-phase trials. We highlight several areas regarding the clinical utility of fedratinib that remain unanswered. We discuss the limitations of fedratinib and address areas that are understudied and require further clinical evaluation and research. The approval of fedratinib has provided a significant expansion to the very limited treatment armamentarium available to patients with MF.
Collapse
Affiliation(s)
- Julian A Waksal
- Department of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Douglas Tremblay
- Department of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Mascarenhas
- Department of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
25
|
Nihal M, Wu J, Stonesifer CJ, Daniels J, Choi J, Geskin L, Rook AH, Wood GS. Epigenetic Regulation of Apoptosis in Cutaneous T-Cell Lymphoma: Implications for Therapy with Methotrexate, Jak Inhibitors, and Resveratrol. J Invest Dermatol 2021; 142:493-496.e7. [PMID: 34358529 DOI: 10.1016/j.jid.2021.06.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 01/12/2023]
Affiliation(s)
- Minakshi Nihal
- Department of Dermatology, The School of Medicine and Public Health, University of Wisconsin and William S. Middleton VAMC, Madison, Wisconsin, USA.
| | - Jianqiang Wu
- Department of Dermatology, The School of Medicine and Public Health, University of Wisconsin and William S. Middleton VAMC, Madison, Wisconsin, USA
| | - Connor J Stonesifer
- Department of Dermatology, Irving Medical Center, Columbia University, New York, New York, USA
| | - Jay Daniels
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jaehyuk Choi
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Larisa Geskin
- Department of Dermatology, Irving Medical Center, Columbia University, New York, New York, USA
| | - Alain H Rook
- Department of Dermatology, Penn Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gary S Wood
- Department of Dermatology, The School of Medicine and Public Health, University of Wisconsin and William S. Middleton VAMC, Madison, Wisconsin, USA
| |
Collapse
|
26
|
Wang X, Dai C, Yin Y, Wu L, Jin W, Fu Y, Chen Z, Hao K, Lu B. Blocking the JAK2/STAT3 and ERK pathways suppresses the proliferation of gastrointestinal cancers by inducing apoptosis. J Zhejiang Univ Sci B 2021; 22:492-503. [PMID: 34128372 DOI: 10.1631/jzus.b2000842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Dysregulated crosstalk between different signaling pathways contributes to tumor development, including resistance to cancer therapy. In the present study, we found that the mitogen-activated extracellular signal-regulated kinase (MEK) inhibitor trametinib failed to suppress the proliferation of PANC-1 and MGC803 cells by activating the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway, while the JAK2 inhibitor fedratinib failed to inhibit the growth of the PANC-1 cells upon stimulation of extracellular signal-regulated kinase (ERK) signaling. In particular, the most prominent enhancement of the anti-proliferative effect resulted from the concurrent blockage of the JAK2/STAT3 and ERK signaling pathways. Furthermore, the combination of the two inhibitors resulted in a reduced tumor burden in mice. Our evidence suggests novel crosstalk between JAK2/STAT3 and ERK signaling in gastric cancer (GC) and pancreatic ductal adenocarcinoma (PDAC) cells and provides a therapeutic strategy to overcome potential resistance in gastrointestinal cancer.
Collapse
Affiliation(s)
- Xi Wang
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Chunyan Dai
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yifei Yin
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Lin Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Weiyang Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Yufei Fu
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Zhe Chen
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Ke Hao
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Department of Blood Transfusion, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Bin Lu
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou 310006, China
| |
Collapse
|
27
|
Patel AA, Odenike O. The Next Generation of JAK Inhibitors: an Update on Fedratinib, Momelotonib, and Pacritinib. Curr Hematol Malig Rep 2021; 15:409-418. [PMID: 32780250 DOI: 10.1007/s11899-020-00596-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Ruxolitinib is the first FDA-approved JAK inhibitor for the treatment of myeloproliferative neoplasms and is an effective means of controlling symptom burden and improving splenomegaly. However, a majority of patients will develop disease progression with long-term use. Fedratinib, momelotinib, and pacritinib are three newer-generation JAK inhibitors being prospectively evaluated and we will discuss their roles in the treatment of myeloproliferative neoplasms. RECENT FINDINGS Fedratinib has a role in both JAK-inhibitor naive intermediate-/high-risk myelofibrosis patients and in patients that have previously received ruxolitinib. It has recently received FDA approval for these indications as well. Momelotinib does not appear to have an advantage over ruxolitinib with regards to improving splenomegaly in intermediate-/high-risk JAK-inhibitor naive myelofibrosis. However, increased rates of transfusion independence have been noted with momelotinib. Pacritinib has been studied in myelofibrosis patients with significant baseline anemia and thrombocytopenia; these trials support the use of pacritinib in myelofibrosis patients with significant thrombocytopenia. While ruxolitinib is effective in reducing the symptom burden and splenomegaly of patients with myeloproliferative neoplasms, a majority of patients will ultimately progress on therapy. Newer-generation JAK inhibitors including fedratinib, momelotinib, and pacritinib are being prospectively evaluated to determine their appropriate roles in the management of myeloproliferative neoplasms. In addition, both combination therapies with JAK inhibitors and novel investigational therapies are being actively explored.
Collapse
Affiliation(s)
- Anand A Patel
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medicine, 5841 S. Maryland Avenue, MC 2115, Chicago, IL, 60637, USA
| | - Olatoyosi Odenike
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medicine, 5841 S. Maryland Avenue, MC 2115, Chicago, IL, 60637, USA.
| |
Collapse
|
28
|
Flick AC, Leverett CA, Ding HX, McInturff E, Fink SJ, Mahapatra S, Carney DW, Lindsey EA, DeForest JC, France SP, Berritt S, Bigi-Botterill SV, Gibson TS, Liu Y, O'Donnell CJ. Synthetic Approaches to the New Drugs Approved during 2019. J Med Chem 2021; 64:3604-3657. [PMID: 33783211 DOI: 10.1021/acs.jmedchem.1c00208] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
New drugs introduced to the market are privileged structures having affinities for biological targets implicated in human diseases and conditions. These new chemical entities (NCEs), particularly small molecules and antibody-drug conjugates, provide insight into molecular recognition and simultaneously function as leads for the design of future medicines. This review is part of a continuing series presenting the most likely process-scale synthetic approaches to 40 NCEs approved for the first time anywhere in the world in 2019.
Collapse
Affiliation(s)
- Andrew C Flick
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Carolyn A Leverett
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Hong X Ding
- Pharmacodia (Beijing) Co., Ltd., Beijing 100085, China
| | - Emma McInturff
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Sarah J Fink
- Takeda Pharmaceuticals, 125 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Subham Mahapatra
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Daniel W Carney
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Erick A Lindsey
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Jacob C DeForest
- Pfizer Worldwide Research and Development, 10777 Science Center Drive, San Diego, California 92121, United States
| | - Scott P France
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Simon Berritt
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | | | - Tony S Gibson
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Yiyang Liu
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Christopher J O'Donnell
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
29
|
Navarro EP, Posso-Osorio I, Aguirre-Valencia D, Naranjo-Escobar J, Tobón GJ. Tofacitinib and Risk of Peripheral Neuropathy? Experience of 2 Cases in Patients With Rheumatoid Arthritis. J Clin Rheumatol 2021; 27:e58-e60. [PMID: 30028803 DOI: 10.1097/rhu.0000000000000864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Alim K, Bruyère A, Lescoat A, Jouan E, Lecureur V, Le Vée M, Fardel O. Interactions of janus kinase inhibitors with drug transporters and consequences for pharmacokinetics and toxicity. Expert Opin Drug Metab Toxicol 2021; 17:259-271. [PMID: 33292029 DOI: 10.1080/17425255.2021.1862084] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Janus kinase inhibitors (JAKinibs) constitute an emerging and promising pharmacological class of anti-inflammatory or anti-cancer drugs, used notably for the treatment of rheumatoid arthritis and some myeloproliferative neoplasms.Areas covered: This review provides an overview of the interactions between marketed JAKinibs and major uptake and efflux drug transporters. Consequences regarding pharmacokinetics, drug-drug interactions and toxicity are summarized.Expert opinion: JAKinibs interact in vitro with transporters in various ways, as inhibitors or as substrates of transporters or as regulators of transporter expression. This may theoretically result in drug-drug interactions (DDIs), with JAKinibs acting as perpetrators or as victims, or in toxicity, via impairment of thiamine transport. Clinical significance in terms of DDIs for JAKinib-transporter interactions remains however poorly documented. In this context, the in vivo unbound concentration of JAKinibs is likely a key parameter to consider for evaluating the clinical relevance of JAKinibs-mediated transporter inhibition. Additionally, the interplay with drug metabolism as well as possible interactions with transporters of emerging importance and time-dependent inhibition have to be taken into account. The role drug transporters may play in controlling cellular JAKinib concentrations and efficacy in target cells is also an issue of interest.
Collapse
Affiliation(s)
- Karima Alim
- Univ Rennes, Inserm, EHESP, Irset (Institut De Recherche En Santé, Environnement Et Travail) - UMR_S 1085, Rennes, France
| | - Arnaud Bruyère
- Univ Rennes, Inserm, EHESP, Irset (Institut De Recherche En Santé, Environnement Et Travail) - UMR_S 1085, Rennes, France
| | - Alain Lescoat
- Univ Rennes, Inserm, EHESP, Irset (Institut De Recherche En Santé, Environnement Et Travail) - UMR_S 1085, Rennes, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset (Institut De Recherche En Santé, Environnement Et Travail) - UMR_S 1085, Rennes, France
| | - Valérie Lecureur
- Univ Rennes, Inserm, EHESP, Irset (Institut De Recherche En Santé, Environnement Et Travail) - UMR_S 1085, Rennes, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut De Recherche En Santé, Environnement Et Travail) - UMR_S 1085, Rennes, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut De Recherche En Santé, Environnement Et Travail) - UMR_S 1085, Rennes, France
| |
Collapse
|
31
|
Coltro G, Vannucchi AM. The safety of JAK kinase inhibitors for the treatment of myelofibrosis. Expert Opin Drug Saf 2020; 20:139-154. [PMID: 33327810 DOI: 10.1080/14740338.2021.1865912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION During the last decade, the development of small molecule inhibitors of Janus kinases (JAKi) contributed to revolutionize the therapeutic landscape of myelofibrosis (MF). JAKi proved to be effective in controlling disease-related symptoms and splenomegaly with remarkable inter-drug variability. However, in some cases the border between clinical efficacy of JAKi and dose-dependent toxicities is narrow leading to sub-optimal dose modifications and/or treatment discontinuation. AREAS COVERED In the current review, the authors aimed at providing a comprehensive review of the safety profile of JAKi that are currently approved or in advanced clinical development. Also, a short discussion of promising JAKi in early clinical evaluation and molecules 'lost' early in clinical development is provided. Finally, we discuss the possible strategies aimed at strengthening the safety of JAKi while improving the therapeutic efficacy. EXPERT OPINION Overall, JAKi display a satisfactory risk-benefit ratio, with main toxicities being gastrointestinal or related to the myelo/immunosuppressive effects, generally mild and easily manageable. However, JAKi may be associated with potentially life-threatening toxicities, such as neurological and infectious events. Thus, many efforts are needed in order to optimize JAKi-based therapeutic strategies without burdening patient safety. This could be attempted through drug combinations or the development of more selective molecules.
Collapse
Affiliation(s)
- Giacomo Coltro
- Department of Clinical and Experimental Medicine, University of Florence , Florence, Italy.,CRIMM, Center of Research and Innovation for Myeloproliferative Neoplasms, AOU Careggi , Florence, Italy
| | - Alessandro M Vannucchi
- Department of Clinical and Experimental Medicine, University of Florence , Florence, Italy.,CRIMM, Center of Research and Innovation for Myeloproliferative Neoplasms, AOU Careggi , Florence, Italy
| |
Collapse
|
32
|
Steinbrunn T, Zovko J, Kraus S. JAK-Inhibitoren für die Behandlung hämatoonkologischer Erkrankungen. AKTUEL RHEUMATOL 2020. [DOI: 10.1055/a-1285-4125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
ZusammenfassungDie konstitutive Aktivierung des JAK-STAT-Signalwegs ist charakteristisch für die Pathogenese der myeloproliferativen Neoplasien, speziell der primären Myelofibrose, der Polycythaemia vera und der essentiellen Thrombozythämie. Die Einführung von oral verfügbaren JAK-Inhibitoren in die Klinik brachte einen entscheidenden Fortschritt für die pharmakologische Behandlung der Myelofibrose und der Polycythaemia vera, wenngleich damit noch keine Heilung verbunden ist. Im Vordergrund steht die Verbesserung der Lebensqualität der meist älteren Patienten durch Kontrolle krankheitsbedingter konstitutioneller Symptome, Reduktion einer bestehenden Splenomegalie und Vermeidung insbesondere von thromboembolischen Folgekomplikationen. Darüber hinaus kann die Therapie von Myelofibrose-Patienten mit JAK-Inhibitoren jedoch auch deren Krankheitsverlauf verlangsamen und ihr Gesamtüberleben verlängern. Der bislang einzige in Europa zugelassene JAK-Inhibitor Ruxolitinib hemmt die Isoformen JAK1 und JAK2 und besitzt sowohl antiinflammatorisches als auch antiproliferatives Potenzial. Damit zeigt dieser Inhibitor überdies eine gute Wirkung in der Therapie der Graft-versus-Host-Erkrankung nach allogener hämatopoetischer Stammzelltransplantation. Mit Fedratinib, Pacritinib und Momelatinib befinden sich derzeit 3 weitere vielversprechende JAK-Inhibitoren mit etwas unterschiedlichen Wirkprofilen in der klinischen Phase III-Testung. Diese zeigen auch bei Patienten mit unwirksamer oder unverträglicher Vorbehandlung mit Ruxolitinib Wirksamkeit, sodass eine kontinuierliche Weiterentwicklung der entsprechenden Therapiestrategien abzusehen ist.
Collapse
Affiliation(s)
- Torsten Steinbrunn
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg
| | - Josip Zovko
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg
| | - Sabrina Kraus
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg
| |
Collapse
|
33
|
Bose P, Verstovsek S. Management of myelofibrosis after ruxolitinib failure. Leuk Lymphoma 2020; 61:1797-1809. [PMID: 32297800 PMCID: PMC8565616 DOI: 10.1080/10428194.2020.1749606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022]
Abstract
Over the last decade, the Janus kinase1/2 (JAK1/2) inhibitor ruxolitinib has emerged as a cornerstone of myelofibrosis (MF) management. Ruxolitinib improves splenomegaly and symptoms regardless of driver mutation status, and confers a survival advantage in patients with intermediate-2/high risk MF. However, cytopenias remain problematic, and evidence for a robust anti-clonal effect is lacking. Furthermore, the median duration of spleen response to ruxolitinib in clinical trials is approximately 3 years, and ruxolitinib does not appear to affect the risk of leukemic transformation. There is no therapy approved specifically for patients whose disease 'progresses' on ruxolitinib, defining which remains challenging. The recent regulatory approval of the JAK2 inihibitor fedratinib partially fulfills this unmet need, but much remains to be done. Other JAK inhibitors and a plethora of novel agents are being studied in the ruxolitinib 'failure' setting, as well as 'add-on' therapies to ruxolitinib in patients having a 'sub-optimal' response.
Collapse
Affiliation(s)
- Prithviraj Bose
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Srdan Verstovsek
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
34
|
Masarova L, Bose P, Verstovsek S. The Rationale for Immunotherapy in Myeloproliferative Neoplasms. Curr Hematol Malig Rep 2020; 14:310-327. [PMID: 31228096 DOI: 10.1007/s11899-019-00527-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW The classic, chronic Philadelphia chromosome negative myeloproliferative neoplasms (MPN)-essential thrombocythemia (ET), polycythemia vera (PV), and myelofibrosis (MF)-are clonal malignancies of hematopoietic stem cells and are associated with myeloproliferation, organomegaly, and constitutional symptoms. Expanding knowledge that chronic inflammation and a dysregulated immune system are central to the pathogenesis and progression of MPNs serves as a driving force for the development of agents affecting the immune system as therapy for MPN. This review describes the rationale and potential impact of anti-inflammatory, immunomodulatory, and targeted agents in MPNs. RECENT FINDINGS The advances in molecular insights, especially the discovery of the Janus kinase 2 (JAK2) V617F mutation and its role in JAK-STAT pathway dysregulation, led to the development of the JAK inhibitor ruxolitinib, which currently represents the cornerstone of medical therapy in MF and hydroxyurea-resistant/intolerant PV. However, there remain significant unmet needs in the treatment of these patients, and many agents continue to be investigated. Novel, more selective JAK inhibitors might offer reduced myelosuppression or even improvement of blood counts. The recent approval of a novel, long-acting interferon for PV patients in Europe, might eventually lead to its broader clinical use in all MPNs. Targeted immunotherapy involving monoclonal antibodies, checkpoint inhibitors, or therapeutic vaccines against selected MPN epitopes could further enhance tumor-specific immune responses. Immunotherapeutic approaches are expanding and hopefully will extend the therapeutic armamentarium in patients with myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Lucia Masarova
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0428, Houston, TX, 77030, USA.
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0428, Houston, TX, 77030, USA
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0428, Houston, TX, 77030, USA
| |
Collapse
|
35
|
Cui W, Aouidate A, Wang S, Yu Q, Li Y, Yuan S. Discovering Anti-Cancer Drugs via Computational Methods. Front Pharmacol 2020; 11:733. [PMID: 32508653 PMCID: PMC7251168 DOI: 10.3389/fphar.2020.00733] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/01/2020] [Indexed: 12/24/2022] Open
Abstract
New drug discovery has been acknowledged as a complicated, expensive, time-consuming, and challenging project. It has been estimated that around 12 years and 2.7 billion USD, on average, are demanded for a new drug discovery via traditional drug development pipeline. How to reduce the research cost and speed up the development process of new drug discovery has become a challenging, urgent question for the pharmaceutical industry. Computer-aided drug discovery (CADD) has emerged as a powerful, and promising technology for faster, cheaper, and more effective drug design. Recently, the rapid growth of computational tools for drug discovery, including anticancer therapies, has exhibited a significant and outstanding impact on anticancer drug design, and has also provided fruitful insights into the area of cancer therapy. In this work, we discussed the different subareas of the computer-aided drug discovery process with a focus on anticancer drugs.
Collapse
Affiliation(s)
- Wenqiang Cui
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Adnane Aouidate
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shouguo Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qiuliyang Yu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shuguang Yuan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
36
|
Richardson PJ, Ottaviani S, Prelle A, Stebbing J, Casalini G, Corbellino M. CNS penetration of potential anti-COVID-19 drugs. J Neurol 2020; 267:1880-1882. [PMID: 32361836 PMCID: PMC7195609 DOI: 10.1007/s00415-020-09866-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/27/2022]
Affiliation(s)
| | - Silvia Ottaviani
- Department of Surgery and Cancer, Imperial College, London, W12 0NN, UK.
| | - Alessandro Prelle
- Department of Neurology and Stroke Unit, ASST Ovest Milanese, Milan, Italy
| | - Justin Stebbing
- Department of Surgery and Cancer, Imperial College, London, W12 0NN, UK
| | - Giacomo Casalini
- III Division of Infectious Diseases, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Mario Corbellino
- III Division of Infectious Diseases, ASST Fatebenefratelli-Sacco, Milan, Italy
| |
Collapse
|
37
|
Abstract
Fedratinib (INREBIC®) is a JAK2-selective inhibitor that has been developed as an oral treatment for myelofibrosis. In August 2019, fedratinib received its first global approval in the USA for the treatment of adult patients with intermediate-2 or high-risk primary or secondary (post-polycythemia vera or post-essential thrombocythemia) myelofibrosis. Phase III clinical development for myelofibrosis is ongoing worldwide. This article summarizes the milestones in the development of fedratinib leading to this first approval for myelofibrosis.
Collapse
|
38
|
Garmezy B, Schaefer JK, Mercer J, Talpaz M. A provider's guide to primary myelofibrosis: pathophysiology, diagnosis, and management. Blood Rev 2020; 45:100691. [PMID: 32354563 DOI: 10.1016/j.blre.2020.100691] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 03/20/2020] [Accepted: 04/02/2020] [Indexed: 12/23/2022]
Abstract
Although understanding of the pathogenesis and molecular biology of primary myelofibrosis continues to improve, treatment options are limited, and several biological features remain unexplained. With an appropriate clinical history, exam, laboratory evaluation, and bone marrow biopsy, the diagnosis can often be established. Recent studies have better characterized prognostic factors and driver mutations in myelofibrosis, facilitated by use of next-generation sequencing. These advances have facilitated development of a management strategy that is based on both risk factors and clinical phenotype. For low-risk patients, treatment will depend on symptom severity. For patients with higher-risk disease, several treatments are available including JAK inhibitors, allogeneic hematopoietic stem cell transplant, and clinical trials using novel molecularly targeted therapies and rational drug combinations. In this review, we outline what is known about the disease pathogenesis, discuss an approach to reaching the diagnosis, review the prognosis of myelofibrosis, and detail current therapeutic strategies.
Collapse
Affiliation(s)
- Benjamin Garmezy
- Division of Cancer Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Jordan K Schaefer
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Jessica Mercer
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Moshe Talpaz
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
39
|
Ragheb M, Harrison CN, McLornan DP. Current and future role of fedratinib in the treatment of myelofibrosis. Future Oncol 2020; 16:175-186. [PMID: 31971457 DOI: 10.2217/fon-2019-0612] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fedratinib (INREBIC® [fedratinib] capsules, Impact Biomedicines, Inc., a wholly owned subsidiary of Celgene Corporation), is a potent JAK2 inhibitor that has been approved for use in myelofibrosis, both as a first-line agent and also in second line following ruxolitinib (Novartis Pharmaceuticals, Basel, Switzerland) failure or intolerance. Within this article, we will review relevant preclinical and early/late clinical trial data concerning the use of fedratinib to treat myeloproliferative neoplasms. Moreover, we will review in detail the assumed safety issues that led to temporary cessation of all programs with the agent in 2013 which subsequently re-entered the clinical arena in 2017. We will discuss how physicians may safely transition a patient across from ruxolitinib to fedratinib following intolerance or lack of efficacy. At last, we will discuss potential future applications of this agent within the field.
Collapse
Affiliation(s)
- Monica Ragheb
- Department of Haematology, Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Claire N Harrison
- Department of Haematology, Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Donal P McLornan
- Department of Haematology, Guy's & St. Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
40
|
Vora B, Green EAE, Khuri N, Ballgren F, Sirota M, Giacomini KM. Drug-nutrient interactions: discovering prescription drug inhibitors of the thiamine transporter ThTR-2 (SLC19A3). Am J Clin Nutr 2020; 111:110-121. [PMID: 31764942 PMCID: PMC6944527 DOI: 10.1093/ajcn/nqz255] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/11/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Transporter-mediated drug-nutrient interactions have the potential to cause serious adverse events. However, unlike drug-drug interactions, these drug-nutrient interactions receive little attention during drug development. The clinical importance of drug-nutrient interactions was highlighted when a phase III clinical trial was terminated due to severe adverse events resulting from potent inhibition of thiamine transporter 2 (ThTR-2; SLC19A3). OBJECTIVE In this study, we tested the hypothesis that therapeutic drugs inhibit the intestinal thiamine transporter ThTR-2, which may lead to thiamine deficiency. METHODS For this exploration, we took a multifaceted approach, starting with a high-throughput in vitro primary screen to identify inhibitors, building in silico models to characterize inhibitors, and leveraging real-world data from electronic health records to begin to understand the clinical relevance of these inhibitors. RESULTS Our high-throughput screen of 1360 compounds, including many clinically used drugs, identified 146 potential inhibitors at 200 μM. Inhibition kinetics were determined for 28 drugs with half-maximal inhibitory concentration (IC50) values ranging from 1.03 μM to >1 mM. Several oral drugs, including metformin, were predicted to have intestinal concentrations that may result in ThTR-2-mediated drug-nutrient interactions. Complementary analysis using electronic health records suggested that thiamine laboratory values are reduced in individuals receiving prescription drugs found to significantly inhibit ThTR-2, particularly in vulnerable populations (e.g., individuals with alcoholism). CONCLUSIONS Our comprehensive analysis of prescription drugs suggests that several marketed drugs inhibit ThTR-2, which may contribute to thiamine deficiency, especially in at-risk populations.
Collapse
Affiliation(s)
- Bianca Vora
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Elizabeth A E Green
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Natalia Khuri
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Frida Ballgren
- Department of Pharmaceutical Biosciences, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
41
|
Bewersdorf JP, Jaszczur SM, Afifi S, Zhao JC, Zeidan AM. Beyond Ruxolitinib: Fedratinib and Other Emergent Treatment Options for Myelofibrosis. Cancer Manag Res 2019; 11:10777-10790. [PMID: 31920387 PMCID: PMC6935287 DOI: 10.2147/cmar.s212559] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022] Open
Abstract
Myelofibrosis (MF) is a myeloproliferative neoplasm characterized by clonal proliferation of differentiated myeloid cells leading to bone marrow fibrosis, cytopenias and extramedullary hematopoiesis. In late 2019, the FDA approved the highly selective JAK2 inhibitor, fedratinib, for intermediate-2 or high-risk primary or secondary MF, making it the second drug approved for MF after ruxolitinib, a JAK1/2 inhibitor, which was approved for MF in 2011. The approval of fedratinib was based on phase II trials and the phase III JAKARTA trial, in which the drug significantly reduced splenomegaly and symptom burden compared to placebo, including some patients previously treated with ruxolitinib. The main side effects of fedratinib include anemia, gastrointestinal symptoms, and elevations in liver transaminases. Fedratinib also has ablack box warning for encephalopathy, although this occurred only in about 1% of the treated patients, most of which were ultimately felt not to represent Wernicke’s encephalopathy. Nonetheless, monitoring of thiamine levels and supplementation are recommended especially in high-risk patients. This concern has led to a prolonged clinical hold and delayed the drug approval by several years during which the drug exchanged manufacturers, highlighting the need for meticulous investigation and adjudication of serious, but rare, adverse events in drug development that could end up preventing drugs with favorable risk/benefit ratio from being approved. In this review, we discuss the pharmacokinetic data and efficacy, as well as the toxicity results of clinical trials of fedratinib. We also review ongoing trials of JAK inhibitors in MF and explore future treatment options for MF patients who are refractory to ruxolitinib.
Collapse
Affiliation(s)
- Jan Philipp Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT, USA
| | | | - Salma Afifi
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Jennifer C Zhao
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT, USA.,Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, CT, USA
| |
Collapse
|
42
|
Bose P. Advances in potential treatment options for myeloproliferative neoplasm associated myelofibrosis. Expert Opin Orphan Drugs 2019; 7:415-425. [PMID: 33094033 PMCID: PMC7577425 DOI: 10.1080/21678707.2019.1664900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The Janus kinase (JAK)1/2 inhibitor ruxolitinib provides rapid, sustained and often dramatic benefits to patients with myelofibrosis, inducing spleen shrinkage and ameliorating symptoms, and improves survival. However, the drug has little effect on the underlying bone marrow fibrosis or on mutant allele burden, and clinical resistance eventually develops. Furthermore, ruxolitinib-induced cytopenias can be challenging in everyday practice. AREAS COVERED The developmental therapeutics landscape in MF is discussed. This includes potential partners for ruxolitinib being developed with an aim to improve cytopenias, or to enhance its disease-modifying effects. The development of other JAK inhibitors with efficacy post-ruxolitinib or other unique attributes is being pursued in earnest. Agents with novel mechanisms of action are being studied in patients whose disease responds sub-optimally to, is refractory to or progresses after ruxolitinib. EXPERT OPINION The JAK inhibitors fedratinib, pacritinib and momelotinib are clearly active, and it is expected that one or more of these will become licensed in the future. The activin receptor ligand traps are promising as treatments for anemia. Imetelstat has shown interesting activity post-ruxolitinib, and azactidine may be a useful partner for ruxolitinib in some patients. Appropriately, multiple pre-clinical and clinical leads are being pursued in this difficult therapeutic area.
Collapse
Affiliation(s)
- Prithviraj Bose
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
43
|
Hagos FT, Adams SM, Poloyac SM, Kochanek PM, Horvat CM, Clark RSB, Empey PE. Membrane transporters in traumatic brain injury: Pathological, pharmacotherapeutic, and developmental implications. Exp Neurol 2019; 317:10-21. [PMID: 30797827 DOI: 10.1016/j.expneurol.2019.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
Abstract
Membrane transporters regulate the trafficking of endogenous and exogenous molecules across biological barriers and within the neurovascular unit. In traumatic brain injury (TBI), they moderate the dynamic movement of therapeutic drugs and injury mediators among neurons, endothelial cells and glial cells, thereby becoming important determinants of pathogenesis and effective pharmacotherapy after TBI. There are three ways transporters may impact outcomes in TBI. First, transporters likely play a key role in the clearance of injury mediators. Second, genetic association studies suggest transporters may be important in the transition of TBI from acute brain injury to a chronic neurological disease. Third, transporters dynamically control the brain penetration and efflux of many drugs and their distribution within and elimination from the brain, contributing to pharmacoresistance and possibly in some cases pharmacosensitivity. Understanding the nature of drugs or candidate drugs in development with respect to whether they are a transporter substrate or inhibitor is relevant to understand whether they distribute to their target in sufficient concentrations. Emerging data provide evidence of altered expression and function of transporters in humans after TBI. Genetic variability in expression and/or function of key transporters adds an additional dynamic, as shown in recent clinical studies. In this review, evidence supporting the role of individual membrane transporters in TBI are discussed as well as novel strategies for their modulation as possible therapeutic targets. Since data specifically targeting pediatric TBI are sparse, this review relies mainly on experimental studies using adult animals and clinical studies in adult patients.
Collapse
Affiliation(s)
- Fanuel T Hagos
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA, United States of America
| | - Solomon M Adams
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA, United States of America
| | - Samuel M Poloyac
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America; UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States of America
| | - Christopher M Horvat
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America; UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States of America
| | - Robert S B Clark
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America; UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States of America.
| | - Philip E Empey
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
44
|
Abstract
OPINION STATEMENT Seven years after the approval of the Janus kinase 1/2 (JAK1/2) inhibitor ruxolitinib, it remains the only drug licensed for the treatment of myelofibrosis. Patients who discontinue ruxolitinib have a dismal outcome, and this is, therefore, an area of significant unmet need. Given the central role that JAK-signal transducer and activator of transcription (STAT) activation plays in disease pathogenesis, there have been many other JAK inhibitors tested, but most have been abandoned, for a variety of reasons. The JAK2-selective inhibitor fedratinib has recently been resurrected, and there has been a resurgence of interest in the failed JAK1/2 inhibitor momelotinib, which possibly improves anemia. Pacritinib, a non-myelosuppressive JAK2-selective inhibitor, is currently in a dose-ranging study mandated by regulatory authorities. A plethora of other targeted agents, most backed by preclinical data, are in various stages of investigation. These include epigenetic and immune therapies, agents targeting cellular survival, metabolic and apoptotic pathways, the cell cycle, DNA repair, and protein folding and degradation, among others. However, at this time, none of these is close to registration or even in a pivotal trial, illustrating the difficulties in recapitulating the clinical disease in preclinical models. Most current clinical trials are testing the addition of a novel agent to ruxolitinib, either in the frontline setting or in the context of an insufficient response to ruxolitinib, or attempting to study new drugs in the second-line, "ruxolitinib failure" setting. Emerging data supports the addition of azacitidine to ruxolitinib in some patients. Other strategies have focused on improving cytopenias, through amelioration of bone marrow fibrosis or other mechanisms. This is important, because cytopenias are the commonest reason for ruxolitinib interruption and/or dose reduction, and dose optimization of ruxolitinib is tied to its survival benefit. The activin receptor ligand trap, sotatercept, and the anti-fibrotic agent, PRM-151, have shown promise in this regard.
Collapse
|
45
|
Zimran E, Keyzner A, Iancu-Rubin C, Hoffman R, Kremyanskaya M. Novel treatments to tackle myelofibrosis. Expert Rev Hematol 2018; 11:889-902. [PMID: 30324817 DOI: 10.1080/17474086.2018.1536538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Despite the dramatic progress made in the treatment of patients with myelofibrosis since the introduction of the JAK1/2 inhibitor ruxolitinib, a therapeutic option that can modify the natural history of the disease and prevent evolution to blast-phase is still lacking. Recent investigational treatments including immunomodulatory drugs and histone deacetylase inhibitors benefit some patients but these effects have proven modest at best. Several novel agents do show promising activity in preclinical studies and early-phase clinical trials. We will illustrate a snapshot view of where the management of myelofibrosis is evolving, in an era of personalized medicine and advanced molecular diagnostics. Areas covered: A literature search using MEDLINE and recent meeting abstracts was performed using the keywords below. It focused on therapies in active phases of development based on their scientific and preclinical rationale with the intent to highlight agents that have novel biological effects. Expert commentary: The most mature advances in treatment of myelofibrosis are the development of second-generation JAK1/2 inhibitors and improvements in expanding access to donors for transplantation. In addition, there are efforts to identify drugs that target pathways other than JAK/STAT signaling that might improve the survival of myelofibrosis patients, and limit the need for stem-cell transplantation.
Collapse
Affiliation(s)
- Eran Zimran
- a Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , Myeloproliferative Neoplasms Research Program , New York , NY , USA
| | - Alla Keyzner
- a Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , Myeloproliferative Neoplasms Research Program , New York , NY , USA
| | - Camelia Iancu-Rubin
- a Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , Myeloproliferative Neoplasms Research Program , New York , NY , USA
| | - Ronald Hoffman
- a Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , Myeloproliferative Neoplasms Research Program , New York , NY , USA
| | - Marina Kremyanskaya
- a Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , Myeloproliferative Neoplasms Research Program , New York , NY , USA
| |
Collapse
|
46
|
Evers R, Piquette-Miller M, Polli JW, Russel FGM, Sprowl JA, Tohyama K, Ware JA, de Wildt SN, Xie W, Brouwer KLR. Disease-Associated Changes in Drug Transporters May Impact the Pharmacokinetics and/or Toxicity of Drugs: A White Paper From the International Transporter Consortium. Clin Pharmacol Ther 2018; 104:900-915. [PMID: 29756222 PMCID: PMC6424581 DOI: 10.1002/cpt.1115] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/23/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022]
Abstract
Drug transporters are critically important for the absorption, distribution, metabolism, and excretion (ADME) of many drugs and endogenous compounds. Therefore, disruption of these pathways by inhibition, induction, genetic polymorphisms, or disease can have profound effects on overall physiology, drug pharmacokinetics, drug efficacy, and toxicity. This white paper provides a review of changes in transporter function associated with acute and chronic disease states, describes regulatory pathways affecting transporter expression, and identifies opportunities to advance the field.
Collapse
Affiliation(s)
- Raymond Evers
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Kenilworth, New Jersey, USA
| | | | - Joseph W Polli
- Mechanistic Safety and Drug Disposition, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jason A Sprowl
- Department of Pharmaceutical, Social and Administrative Sciences, School of Pharmacy, D'Youville College School, Buffalo, New York, USA
| | - Kimio Tohyama
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company, Fujisawa, Kanagawa, Japan
| | - Joseph A Ware
- Department of Small Molecule Pharmaceutical Sciences, Genentech, South San Francisco, California, USA
| | - Saskia N de Wildt
- Department of Pharmacology and Toxicology and Department of Intensive Care, Radboud University Medical Center, Nijmegen, The Netherlands, and Intensive Care and Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
47
|
McGarvey C, Franconi C, Prentice D, Bynevelt M. Metformin-induced encephalopathy: the role of thiamine. Intern Med J 2018; 48:194-197. [PMID: 29415360 DOI: 10.1111/imj.13693] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 03/19/2017] [Indexed: 11/30/2022]
Abstract
A case of metformin encephalopathy is presented in a patient on haemodialysis for end-stage diabetic renal failure. The patient presented with frequent falls and clinical signs of Parkinsonism, on a background of recent anorexia and significant weight loss. Magnetic resonance imaging showed bilateral, symmetrical abnormalities centred on the lentiform nuclei. Metformin was withheld and signs and symptoms quickly resolved. We hypothesise that metformin may cause thiamine deficiency in patients with end-stage renal failure resulting in a specific metabolic encephalopathy.
Collapse
Affiliation(s)
- Caoimhe McGarvey
- Department of Neurology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Catherine Franconi
- Department of Neurology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - David Prentice
- Department of General Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Michael Bynevelt
- Department of Neurological Intervention and Imaging Service of WA, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
48
|
Zamek-Gliszczynski MJ, Taub ME, Chothe PP, Chu X, Giacomini KM, Kim RB, Ray AS, Stocker SL, Unadkat JD, Wittwer MB, Xia C, Yee SW, Zhang L, Zhang Y. Transporters in Drug Development: 2018 ITC Recommendations for Transporters of Emerging Clinical Importance. Clin Pharmacol Ther 2018; 104:890-899. [PMID: 30091177 DOI: 10.1002/cpt.1112] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/01/2018] [Indexed: 12/16/2022]
Abstract
This white paper provides updated International Transporter Consortium (ITC) recommendations on transporters that are important in drug development following the 3rd ITC workshop. New additions include prospective evaluation of organic cation transporter 1 (OCT1) and retrospective evaluation of organic anion transporting polypeptide (OATP)2B1 because of their important roles in drug absorption, disposition, and effects. For the first time, the ITC underscores the importance of transporters involved in drug-induced vitamin deficiency (THTR2) and those involved in the disposition of biomarkers of organ function (OAT2 and bile acid transporters).
Collapse
Affiliation(s)
| | - Mitchell E Taub
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim, Ridgefield, Connecticut, USA
| | - Paresh P Chothe
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts, USA
| | - Xiaoyan Chu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Kenilworth, New Jersey, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, California, USA
| | - Richard B Kim
- Division of Clinical Pharmacology, Department of Medicine, Western University, London, ON, Canada
| | - Adrian S Ray
- Clinical Research, Gilead Sciences, Foster City, California, USA
| | - Sophie L Stocker
- Department of Clinical Pharmacology & Toxicology, St Vincent's Hospital, Sydney, NSW, Australia & St Vincent's Clinical School, UNSW Sydney, NSW, Australia
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Matthias B Wittwer
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Cindy Xia
- Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International, Cambridge, Massachusetts, USA
| | - Sook-Wah Yee
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, California, USA
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yan Zhang
- Drug Metabolism Pharmacokinetics & Clinical Pharmacology, Incyte, Wilmington, Delaware, USA
| | | |
Collapse
|
49
|
Abstract
OBJECTIVE Wernicke encephalopathy (WE) is a neuropsychiatric disorder caused by thiamine deficiency. It is recognized in various stages of the cancer trajectory but has not previously been recognized during nivolumab treatment. METHOD From a series of WE patients with cancer, we report a lung cancer patient who developed WE during treatment with nivolumab. RESULT A 78-year-old woman with lung cancer was referred to our psycho-oncology clinic because of depressed mood. Psychiatric examination revealed disorientation to time, date, and place, which had not been recognized 1 month previously. Her symptoms fulfilled the diagnostic criteria for delirium. No laboratory findings or drugs explaining her delirium were identified. WE was suspected as she experienced a loss of appetite lasting 4 weeks. This diagnosis was supported by abnormal serum thiamine and the disappearance of delirium after intravenous thiamine administration. SIGNIFICANCE OF RESULTS We found WE in an advanced lung cancer patient receiving treatment with nivolumab. Further study revealed the association between nivolumab and thiamine deficiency. Oncologists should consider thiamine deficiency when a patient experiences a loss of appetite of more than 2 weeks regardless of the presence or absence of delirium.
Collapse
|
50
|
Zhou Y, Liu X, Zhang Y, Peng L, Zhang JZH. Residue-specific free energy analysis in ligand bindings to JAK2. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1442596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Yifan Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, State Key Laboratory of Precision Spectroscopy, East China Normal University , Shanghai, China
| | - Xiao Liu
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, State Key Laboratory of Precision Spectroscopy, East China Normal University , Shanghai, China
| | - Youzhi Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, State Key Laboratory of Precision Spectroscopy, East China Normal University , Shanghai, China
| | - Long Peng
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, State Key Laboratory of Precision Spectroscopy, East China Normal University , Shanghai, China
| | - John Z. H. Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, State Key Laboratory of Precision Spectroscopy, East China Normal University , Shanghai, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai, China
- Department of Chemistry, New York University , New York, NY, USA
- Collaborative Innovation Center of Extreme Optics, Shanxi University , Taiyuan, Shanxi, China
| |
Collapse
|