1
|
Wu C, Liu W, Pu J, Feng T, Chang Y, Wang X, Liang X, Kai J. Fractional exhaled nitric oxide in checkpoint inhibitor pneumonitis: a case report and literature review. Immunotherapy 2022; 14:1361-1367. [PMID: 36472185 DOI: 10.2217/imt-2022-0094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Checkpoint inhibitor pneumonitis (CIP) is a relatively rare adverse event and a potential cause of death in patients treated with immune checkpoint inhibitors (ICIs). Because the symptoms and signs are nonspecific, the diagnosis of CIP is challenging. Additionally, compared with the biomarkers that can monitor the effect of ICIs, there is less research evaluating markers to monitor CIP. We report a case of CIP induced by camrelizumab in a patient with advanced non-small-cell lung cancer, in which the fractional exhaled nitric oxide levels showed obvious increases. Fractional exhaled nitric oxide may have the potential to monitor the condition of airway inflammation in patients using ICIs.
Collapse
Affiliation(s)
- Chen Wu
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Weiying Liu
- Department of Respiration and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Jiayuan Pu
- Department of Respiration and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Tao Feng
- Department of Respiration and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yingxuan Chang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Xin Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Xuejie Liang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Jinjun Kai
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
2
|
Hoshino M, Akitsu K, Kubota K, Ohtawa J. Association between biomarkers and house dust mite sublingual immunotherapy in allergic asthma. Clin Exp Allergy 2020; 50:1035-1043. [PMID: 32557974 DOI: 10.1111/cea.13686] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND House dust mite (HDM) sublingual immunotherapy (SLIT) has demonstrated efficacy in clinical trials of patients with asthma. Airway inflammation is a characteristic of respiratory allergy, but its relationship to SLIT remains unclear. OBJECTIVE We evaluate the association between clinical outcomes with pulmonary function and biomarkers in before and after HDM SLIT (UMIN Number 000022390). METHODS One hundred twelve patients with asthma sensitized to HDM were randomized to add-on 6 standardized quality (SQ)-HDM SLIT to pharmacotherapy or pharmacotherapy alone for 48 weeks. At baseline and end of study, biomarkers, blood eosinophils, serum IgE, serum periostin, fractional exhaled nitric oxide (FeNO), and spirometry and clinical symptoms were measured. Association between biomarkers and an increase in FEV1 of 120 mL or greater were analysed. RESULTS Sublingual immunotherapy (SLIT) demonstrated a significant reduction of serum periostin (P < .001), FeNO (P < .01), and increase in HDM-specific IgE (P < .05), FEV1 (P < .001) and improvement of clinical symptom scores, when compared to pharmacotherapy. The change in FEV1 correlated with the changes in serum periostin (r = .696, P < .001) and the changes in FeNO (r = .682, P < .001). The independent predictor of improvement in airflow limitation was changed in serum periostin (r2 = .753, P = .013) and FeNO (P = .038). Based on cut-off values derived by receiver operating characteristic analysis (periostin 30.9 ng/mL, FeNO 28.0 ppb), patients were distinguished responders from non-responders, but with no predictive value for blood eosinophils or total IgE. The proportion of patients with both high periostin and FeNO levels was significantly higher in responder than in non-responder (P = .026). CONCLUSIONS AND CLINICAL RELEVANCE Adding HDM SLIT to pharmacotherapy resulted in reduced serum periostin and FeNO, and improved pulmonary function. Serum periostin and FeNO may be useful biomarkers for prediction of SLIT.
Collapse
Affiliation(s)
- Makoto Hoshino
- Division of Clinical Allergy, Department of Internal Medicine, Atami Hospital, International University of Health and Welfare, Atami, Japan
| | - Kenta Akitsu
- Department of Radiology, Atami Hospital, International University of Health and Welfare, Atami, Japan
| | - Kengo Kubota
- Department of Radiology, Atami Hospital, International University of Health and Welfare, Atami, Japan
| | - Junichi Ohtawa
- Department of Radiology, Atami Hospital, International University of Health and Welfare, Atami, Japan
| |
Collapse
|
3
|
Talmon M, Bosso L, Quaregna M, Lopatriello A, Rossi S, Gavioli D, Marotta P, Caprioglio D, Boldorini R, Miggiano R, Fresu LG, Pollastro F. Anti-inflammatory Activity of Absinthin and Derivatives in Human Bronchoepithelial Cells. JOURNAL OF NATURAL PRODUCTS 2020; 83:1740-1750. [PMID: 32496797 DOI: 10.1021/acs.jnatprod.9b00685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bitter taste receptors (hTAS2R) are expressed ectopically in various tissues, raising the possibility of a pharmacological exploitation. This seems of particular relevance in airways, since hTAS2Rs are involved in the protection of the aerial tissues from infections and in bronchodilation. The bis-guaianolide absinthin (1), one of the most bitter compounds known, targets the hTAS2R46 bitter receptor. Absinthin (1), an unstable compound, readily turns into anabsinthin (2) with substantial retention of the bitter properties, and this compound was used as a starting material to explore the chemical space around the bis-guaianolide bitter pharmacophore. Capitalizing on the chemoselective opening of the allylic lactone ring, the esters 3 and 4, and the nor-azide 6 were prepared and assayed on human bronchoepithelial (BEAS-2B) cells expressing hTAS2R46. Anti-inflammatory activity was evaluated by measuring the expression of MUC5AC, iNOS, and cytokines, as well as the production of superoxide anion, qualifying the methyl ester 3 as the best candidate for additional studies.
Collapse
Affiliation(s)
- Maria Talmon
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Lorenza Bosso
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy
| | - Martina Quaregna
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Annalisa Lopatriello
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Silvia Rossi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Daniele Gavioli
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Patrizia Marotta
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy
| | - Diego Caprioglio
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy
| | - Renzo Boldorini
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Riccardo Miggiano
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy
| | - Luigia G Fresu
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy
| |
Collapse
|
4
|
Hariri BM, McMahon DB, Chen B, Freund JR, Mansfield CJ, Doghramji LJ, Adappa ND, Palmer JN, Kennedy DW, Reed DR, Jiang P, Lee RJ. Flavones modulate respiratory epithelial innate immunity: Anti-inflammatory effects and activation of the T2R14 receptor. J Biol Chem 2017; 292:8484-8497. [PMID: 28373278 DOI: 10.1074/jbc.m116.771949] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/21/2017] [Indexed: 12/18/2022] Open
Abstract
Chronic rhinosinusitis has a significant impact on patient quality of life, creates billions of dollars of annual healthcare costs, and accounts for ∼20% of adult antibiotic prescriptions in the United States. Because of the rise of resistant microorganisms, there is a critical need to better understand how to stimulate and/or enhance innate immune responses as a therapeutic modality to treat respiratory infections. We recently identified bitter taste receptors (taste family type 2 receptors, or T2Rs) as important regulators of sinonasal immune responses and potentially important therapeutic targets. Here, we examined the immunomodulatory potential of flavones, a class of flavonoids previously demonstrated to have antibacterial and anti-inflammatory effects. Some flavones are also T2R agonists. We found that several flavones inhibit Muc5AC and inducible NOS up-regulation as well as cytokine release in primary and cultured airway cells in response to several inflammatory stimuli. This occurs at least partly through inhibition of protein kinase C and receptor tyrosine kinase activity. We also demonstrate that sinonasal ciliated epithelial cells express T2R14, which closely co-localizes (<7 nm) with the T2R38 isoform. Heterologously expressed T2R14 responds to multiple flavones. These flavones also activate T2R14-driven calcium signals in primary cells that activate nitric oxide production to increase ciliary beating and mucociliary clearance. TAS2R38 polymorphisms encode functional (PAV: proline, alanine, and valine at positions 49, 262, and 296, respectively) or non-functional (AVI: alanine, valine, isoleucine at positions 49, 262, and 296, respectively) T2R38. Our data demonstrate that T2R14 in sinonasal cilia is a potential therapeutic target for upper respiratory infections and that flavones may have clinical potential as topical therapeutics, particularly in T2R38 AVI/AVI individuals.
Collapse
Affiliation(s)
| | | | - Bei Chen
- Department of Otorhinolaryngology-Head and Neck Surgery
| | | | | | | | | | | | | | - Danielle R Reed
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104
| | - Peihua Jiang
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104
| | - Robert J Lee
- Department of Otorhinolaryngology-Head and Neck Surgery; Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia.
| |
Collapse
|
5
|
Asano T, Takemura M, Fukumitsu K, Takeda N, Ichikawa H, Hijikata H, Kanemitsu Y, Uemura T, Takakuwa O, Ohkubo H, Maeno K, Ito Y, Oguri T, Nakamura A, Niimi A. Diagnostic utility of fractional exhaled nitric oxide in prolonged and chronic cough according to atopic status. Allergol Int 2017; 66:344-350. [PMID: 27693513 DOI: 10.1016/j.alit.2016.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/17/2016] [Accepted: 08/22/2016] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Cough-variant asthma (CVA) and cough-predominant asthma (CPA) are the major causes of persistent cough in Japan. The utility of fractional exhaled nitric oxide (FeNO) measurement in the differential diagnosis of persistent cough has been reported, but the influence of atopic status, which is associated with higher FeNO levels, on the diagnostic utility of FeNO has been unknown. METHODS We retrospectively analyzed 105 non-smoking patients with prolonged and chronic cough that were not treated with corticosteroids and anti-leukotrienes. RESULTS CPA was diagnosed in 37 patients, CVA in 40, and non-asthmatic cough (NAC) in 28. FeNO levels were significantly higher in the CPA [35.8 (7.0-317.9) ppb] and CVA [24.9 (3.1-156.0) ppb] groups than in the NAC group [18.2 (6.9-49.0) ppb] (p < 0.01 by Kruskal-Wallis test). The optimal cut-off for distinguishing asthmatic cough (AC; CPA and CVA) from NAC was 29.2 ppb [area under the curve (AUC) 0.74, p < 0.01]. Ninety-one percent of subjects with FeNO levels ≥29.2 ppb had AC. Meanwhile, 40% of AC patients had FeNO levels <29.2 ppb. Stratified cut-off levels were 31.1 ppb (AUC 0.83) in atopic subjects vs. 19.9 ppb (AUC 0.65) in non-atopic subjects (p = 0.03 for AUC). CONCLUSIONS Although high FeNO levels suggested the existence of AC, lower FeNO levels had limited diagnostic significance. Atopic status affects the utility of FeNO levels in the differential diagnosis of prolonged and chronic cough.
Collapse
Affiliation(s)
- Takamitsu Asano
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masaya Takemura
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | - Kensuke Fukumitsu
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Norihisa Takeda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroya Ichikawa
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hisatoshi Hijikata
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshihiro Kanemitsu
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takehiro Uemura
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Osamu Takakuwa
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hirotsugu Ohkubo
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ken Maeno
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yutaka Ito
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tetsuya Oguri
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Atsushi Nakamura
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akio Niimi
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
6
|
Springer J, Scholz FR, Peiser C, Dinh QT, Fischer A, Quarcoo D, Groneberg DA. Transcriptional down-regulation of suppressor of cytokine signaling (SOCS)-3 in chronic obstructive pulmonary disease. J Occup Med Toxicol 2013; 8:29. [PMID: 24138793 PMCID: PMC4015747 DOI: 10.1186/1745-6673-8-29] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 10/10/2013] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Tobacco is a leading environmental factor in the initiation of respiratory diseases and causes chronic obstructive pulmonary disease (COPD). Suppressor of cytokine signaling (SOCS) family members are involved in the pathogenesis of many inflammatory diseases and SOCS-3 has been shown to play an important role in the regulation, onset and maintenance of airway allergic inflammation indicating that SOCS-3 displays a potential therapeutic target for anti-inflammatory respiratory drugs development. Since chronic obstructive pulmonary disease (COPD) is also characterized by inflammatory changes and airflow limitation, the present study assessed the transcriptional expression of SOCS-3 in COPD. METHODS Real-time PCR was performed to assess quantitative changes in bronchial biopsies of COPD patients in comparison to unaffected controls. RESULTS SOCS-3 was significantly down-regulated in COPD at the transcriptional level while SOCS-4 and SOCS-5 displayed no change. CONCLUSIONS It can be concluded that the presently observed inhibition of SOCS-3 mRNA expression may be related to the dysbalance of cytokine signaling observed in COPD.
Collapse
Affiliation(s)
- Jochen Springer
- Allergy-Centre-Charité, Pneumology and Immunology, Charité – Unversitätsmedizin Berlin, Free University and Humboldt University, Berlin D-13353, Germany
- Division of Applied Cachexia Research, Dept. of Medicine, Charité – Unversitätsmedizin Berlin, Free University and Humboldt-University, Berlin D-13353, Germany
| | - Frank R Scholz
- Department of Hematology and Oncology, Charité – Unversitätsmedizin Berlin, Free University and Humboldt University, Berlin D-13353, Germany
| | - Christian Peiser
- Allergy-Centre-Charité, Pneumology and Immunology, Charité – Unversitätsmedizin Berlin, Free University and Humboldt University, Berlin D-13353, Germany
| | - Q Thai Dinh
- Department of Respiratory Medicine, Medical School of Hannover, Hannover D-30625, Germany
| | - Axel Fischer
- Allergy-Centre-Charité, Pneumology and Immunology, Charité – Unversitätsmedizin Berlin, Free University and Humboldt University, Berlin D-13353, Germany
| | - David Quarcoo
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe-University, Frankfurt 60590, Germany
| | - David A Groneberg
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe-University, Frankfurt 60590, Germany
| |
Collapse
|
7
|
Uibel S, Scutaru C, Mueller D, Klingelhoefer D, Hoang DML, Takemura M, Fischer A, Spallek MF, Unger V, Quarcoo D, Groneberg DA. Mobile air quality studies (MAQS) in inner cities: particulate matter PM10 levels related to different vehicle driving modes and integration of data into a geographical information program. J Occup Med Toxicol 2012; 7:20. [PMID: 23031208 PMCID: PMC3539871 DOI: 10.1186/1745-6673-7-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/17/2012] [Indexed: 12/15/2022] Open
Abstract
Background Particulate matter (PM) is assumed to exert a major burden on public health. Most studies that address levels of PM use stationary measure systems. By contrast, only few studies measure PM concentrations under mobile conditions to analyze individual exposure situations. Methods By combining spatial-temporal analysis with a novel vehicle-mounted sensor system, the present Mobile Air Quality Study (MAQS) aimed to analyse effects of different driving conditions in a convertible vehicle. PM10 was continuously monitored in a convertible car, driven with roof open, roof closed, but windows open, or windows closed. Results PM10 values inside the car were nearly always higher with open roof than with roof and windows closed, whereas no difference was seen with open or closed windows. During the day PM10 values varied with high values before noon, and occasional high median values or standard deviation values due to individual factors. Vehicle speed in itself did not influence the mean value of PM10; however, at traffic speed (10 – 50 km/h) the standard deviation was large. No systematic difference was seen between PM10 values in stationary and mobile cars, nor was any PM10 difference observed between driving within or outside an environmental (low emission) zone. Conclusions The present study has shown the feasibility of mobile PM analysis in vehicles. Individual exposure of the occupants varies depending on factors like time of day as well as ventilation of the car; other specific factors are clearly identifiably and may relate to specific PM10 sources. This system may be used to monitor individual exposure ranges and provide recommendations for preventive measurements. Although differences in PM10 levels were found under certain ventilation conditions, these differences are likely not of concern for the safety and health of passengers.
Collapse
Affiliation(s)
- Stefanie Uibel
- The Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Faculty and University School of Medicine, Goethe-University, Frankfurt, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Uibel S, Takemura M, Mueller D, Quarcoo D, Klingelhoefer D, Groneberg DA. Nanoparticles and cars - analysis of potential sources. J Occup Med Toxicol 2012; 7:13. [PMID: 22726351 PMCID: PMC3408366 DOI: 10.1186/1745-6673-7-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 06/22/2012] [Indexed: 11/10/2022] Open
Abstract
Urban health is potentially affected by particle emissions. The potential toxicity of nanoparticles is heavily debated and there is an enormous global increase in research activity in this field. In this respect, it is commonly accepted that nanoparticles may also be generated in processes occurring while driving vehicles. So far, a variety of studies addressed traffic-related particulate matter emissions, but only few studies focused on potential nanoparticles.Therefore, the present study analyzed the literature with regard to nanoparticles and cars. It can be stated that, to date, only a limited amount of research has been conducted in this area and more studies are needed to 1) address kind and sources of nanoparticles within automobiles and to 2) analyse whether there are health effects caused by these nanoparticles.
Collapse
Affiliation(s)
- Stefanie Uibel
- Institute of Occupational, Social and Environmental Medicine, Goethe-University, Frankfurt, Germany.
| | | | | | | | | | | |
Collapse
|
9
|
Cai TG, Cai Y. Triterpenes from the fungus Poria cocos and their inhibitory activity on nitric oxide production in mouse macrophages via blockade of activating protein-1 pathway. Chem Biodivers 2012; 8:2135-43. [PMID: 22083926 DOI: 10.1002/cbdv.201100013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Two new triterpenes, 29-hydroxydehydrotumulosic acid (1) and 29-hydroxydehydropachymic acid (2), together with six known compounds, dehydropachymic acid (3), dehydrotumulosic acid (4), 29-hydroxypolyporenic acid C (5), polyporenic acid C (6), tumulosic acid (7), and pachymic acid (8), were isolated from the dried sclerotia of Poria cocos. In the in vitro bioassays, these isolated compounds reduced, in a dose-dependent manner, nitric oxide (NO) production from lipopolysaccharide (LPS)-induced RAW 264.7 cells, with compounds 5 and 6, the IC(50) values of which were 16.8±2.7 and 18.2±3.3 μM, respectively, exhibiting the greatest inhibition activity. Further Western blot analysis conducted on cells pre-treated with compounds 5 and 6, and luciferase assays on activator protein 1-dependent gene expression revealed that the inhibited NO release was attributed to the reduced expression of iNOs (=inducible NO synthase) enzymes, which might be regulated via the blockade of activator protein-1 signaling pathway.
Collapse
Affiliation(s)
- Tian-Ge Cai
- School of Life Science, Liaoning University, Shenyang, P R China
| | | |
Collapse
|
10
|
Tobacco smoke particles and indoor air quality (ToPIQ) - the protocol of a new study. J Occup Med Toxicol 2011; 6:35. [PMID: 22188808 PMCID: PMC3260229 DOI: 10.1186/1745-6673-6-35] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 12/21/2011] [Indexed: 11/13/2022] Open
Abstract
Environmental tobacco smoke (ETS) is a major contributor to indoor air pollution. Since decades it is well documented that ETS can be harmful to human health and causes premature death and disease. In comparison to the huge research on toxicological substances of ETS, less attention was paid on the concentration of indoor ETS-dependent particulate matter (PM). Especially, investigation that focuses on different tobacco products and their concentration of deeply into the airways depositing PM-fractions (PM10, PM2.5 and PM1) must be stated. The tobacco smoke particles and indoor air quality study (ToPIQS) will approach this issue by device supported generation of indoor ETS and simultaneously measurements of PM concentration by laser aerosol spectrometry. Primarily, the ToPIQ study will conduct a field research with focus on PM concentration of different tobacco products and within various microenvironments. It is planned to extend the analysis to basic research on influencing factors of ETS-dependent PM concentration.
Collapse
|
11
|
Müller D, Klingelhöfer D, Uibel S, Groneberg DA. Car indoor air pollution - analysis of potential sources. J Occup Med Toxicol 2011; 6:33. [PMID: 22177291 PMCID: PMC3261090 DOI: 10.1186/1745-6673-6-33] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 12/16/2011] [Indexed: 11/10/2022] Open
Abstract
The population of industrialized countries such as the United States or of countries from the European Union spends approximately more than one hour each day in vehicles. In this respect, numerous studies have so far addressed outdoor air pollution that arises from traffic. By contrast, only little is known about indoor air quality in vehicles and influences by non-vehicle sources.Therefore the present article aims to summarize recent studies that address i.e. particulate matter exposure. It can be stated that although there is a large amount of data present for outdoor air pollution, research in the area of indoor air quality in vehicles is still limited. Especially, knowledge on non-vehicular sources is missing. In this respect, an understanding of the effects and interactions of i.e. tobacco smoke under realistic automobile conditions should be achieved in future.
Collapse
Affiliation(s)
- Daniel Müller
- Institute of Occupational, Social and Environmental Medicine, Goethe-University, Frankfurt, Germany.
| | | | | | | |
Collapse
|
12
|
Phosphatidylinositol 3-kinase inhibitor suppresses inducible nitric oxide synthase expression in bronchiole epithelial cells in asthmatic rats. Mol Cell Biochem 2011; 359:293-9. [PMID: 21847581 DOI: 10.1007/s11010-011-1023-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 07/29/2011] [Indexed: 02/06/2023]
Abstract
Inducible nitric oxide synthase (iNOS) is known to produce nitric oxide (NO), which is a main contributor to asthmatic airway inflammation. Recent studies have shown that phosphatidylinositol 3-kinase (PI3K) is ubiquitously expressed in airway epithelial cells and its inhibition could relieve airway inflammation and hyperresponsiveness. This study aimed to explore the interaction of PI3K and NO signaling in allergic asthma. We investigated the effects of PI3K inhibitor wortmannin on iNOS expression in bronchiole epithelial cells and NO, IL-4 and IFN-γ levels in lung tissues of asthmatic rat model, which was prepared by 10% OVA solution sensitization and 1% OVA aerosol challenge. Our results showed that the ratio of eosinophils to total cells in BALF, PI3K activity, NO and IL-4 levels in lung tissues was increased after OVA sensitization and challenge, but then was attenuated by the administration of wortmannin. In contrast, IFN-γ level in lung tissues was decreased after OVA sensitization and challenge and increased after the administration of wortmannin. The expression of iNOS protein in bronchiole epithelial cells, iNOS mRNA level and iNOS activity in lung tissues was markedly upregulated after OVA sensitization and challenge, but the upregulation was significantly antagonized by wortmannin. Taken together, these data provide evidence that PI3K functions upstream to modulate iNOS/NO signaling, which then promotes the development of airway inflammation in asthmatic animal model. PI3K inhibitor wortmannin could lead to reduced iNOS expression and NO production, therefore inhibiting airway inflammatory responses.
Collapse
|
13
|
Goyal M, Jaseja H, Verma N. Increased parasympathetic tone as the underlying cause of asthma: a hypothesis. Med Hypotheses 2010; 74:661-664. [PMID: 20044211 DOI: 10.1016/j.mehy.2009.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 11/16/2009] [Indexed: 02/08/2023]
Abstract
Asthma is a chronic inflammatory disease of airways that is characterized by increased responsiveness of the tracheo-bronchial tree to multiple number of stimuli. Immunological theory does not explain all features in asthma, for example hyper-reactivity of the airways. Neurogenic theory also fails to explain the pathogenesis of asthma comprehensively. Higher parasympathetic tone has been reported in asthmatics but has never been suggested as a major underlying cause of asthma. This article attempts to explain the occurrence of hyper-responsiveness, inflammatory/allergic reactions and broncho-constriction in asthma on a common basis of inherent higher parasympathetic tone in asthmatics. The higher background parasympathetic firing leads to increased nitric oxide (NO) production owing to its co-localization with acetylcholine (ACh) in inhibitory non-adrenergic and non-cholinergic (i-NANC) nerves. NO is a neurotransmitter of i-NANC system and it mediates bronchodilation. Increased NO release has been found to be responsible for hyper-responsiveness and increased inflammation in the airways. The authors suggest that an inherently higher background parasympathetic tone in concert with inflammation or a specific genetic background could modify the effects of NO on lung homeostasis in humans leading to increased susceptibility to an asthmatic state.
Collapse
Affiliation(s)
- Manish Goyal
- Department of Physiology, All India Institute of Medical Sciences, New Delhi 110 029, India.
| | | | | |
Collapse
|
14
|
Chamberland A, Madore AM, Tremblay K, Laviolette M, Laprise C. A comparison of two sets of microarray experiments to define allergic asthma expression pattern. Exp Lung Res 2009; 35:399-410. [PMID: 19842841 DOI: 10.1080/01902140902745174] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Allergic asthma is a complex trait. Several approaches have been used to identify biomarkers involved in this disease. This study aimed at demonstrating the relevance and validity of microarrays in the definition of allergic asthma expression pattern. The authors compared the transcript expressions of bronchial biopsy of 2 different microarray experiments done 2 years apart, both including nonallergic healthy and allergic asthmatic subjects (n = 4 in each experiment). U95Av2 and U133A GeneChips detected respectively 89 and 40 differentially expressed genes. Fifty-five percent of the U133A genes were previously identified with the U95Av2 arrays. The immune signaling molecules and the proteolytic enzymes were the most preserved categories between the 2 experiments, because 3/4 of the genes identified by the U133A were also significant in the U95Av2 study for both categories. These results demonstrate the relevance of microarray experiments using bronchial tissues in allergic asthma. The comparison of these GeneChip studies suggests that earlier microarray results are as relevant as actual ones to target new genes of interest, particularly in function categories linked to the studied disease. Moreover, it demonstrates that microarrays are a valuable technology to target novel allergic asthma pathways as well as biomarkers.
Collapse
Affiliation(s)
- Annie Chamberland
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| | | | | | | | | |
Collapse
|
15
|
Inhibition of inducible nitric oxide synthase in respiratory diseases. Biochem Soc Trans 2009; 37:886-91. [PMID: 19614613 DOI: 10.1042/bst0370886] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nitric oxide (NO) is a key physiological mediator and disturbed regulation of NO release is associated with the pathophysiology of almost all inflammatory diseases. A multitude of inhibitors of NOSs (nitric oxide synthases) have been developed, initially with low or even no selectivity against the constitutively expressed NOS isoforms, eNOS (endothelial NOS) and nNOS (neuronal NOS). In the meanwhile these efforts yielded potent and highly selective iNOS (inducible NOS) inhibitors. Moreover, iNOS inhibitors have been shown to exert beneficial anti-inflammatory effects in a wide variety of acute and chronic animal models of inflammation. In the present mini-review, we summarize some of our current knowledge of inhibitors of the iNOS isoenzyme, their biochemical properties and efficacy in animal models of pulmonary diseases and in human disease itself. Moreover, the potential benefit of iNOS inhibition in animal models of COPD (chronic obstructive pulmonary disease), such as cigarette smoke-induced pulmonary inflammation, has not been explicitly studied so far. In this context, we demonstrated recently that both a semi-selective iNOS inhibitor {L-NIL [N6-(1-iminoethyl)-L-lysine hydrochloride]} and highly selective iNOS inhibitors (GW274150 and BYK402750) potently diminished inflammation in a cigarette smoke mouse model mimicking certain aspects of human COPD. Therefore, despite the disappointing results from recent asthma trials, iNOS inhibition could still be of therapeutic utility in COPD, a concept which needs to be challenged and validated in human disease.
Collapse
|
16
|
Wells JW, Choy K, Lloyd CM, Noble A. Suppression of allergic airway inflammation and IgE responses by a class I restricted allergen peptide vaccine. Mucosal Immunol 2009; 2:54-62. [PMID: 19079334 PMCID: PMC3385352 DOI: 10.1038/mi.2008.69] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CD8 T cells are known to deviate CD4 T-cell responses from Th2 toward Th1. Reduction of Th2 cytokines and increased interferon-gamma ameliorates allergic airway disease. We have developed a novel approach to the suppression of allergic airway inflammation, by designing a MHC class I-restricted allergen peptide vaccine, which induces potent and long-lived CD8 T-cell responses. Vaccination of C57BL/6 mice before allergen sensitization completely prevented allergen-specific immunoglobulin E (IgE) antibody responses. Vaccination after sensitization failed to suppress IgE, but inhibited accumulation of eosinophils and neutrophils in airways after subsequent allergen challenge. Vaccination suppressed Th2 airway infiltration and enhanced the lung Th1 response without inducing excessive CD8 cellular infiltration or interleukin-17, and the combination of class I peptide with adjuvant was more effective than adjuvant alone. Airway hyperreactivity was prevented by vaccination in an allergen-specific fashion. Class I peptide vaccines might therefore represent a robust and long-lasting immunotherapeutic strategy in allergic disease.
Collapse
Affiliation(s)
- JW Wells
- King’s College London, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Guy’s Hospital, London, UK
| | - K Choy
- Imperial College London, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, National Heart and Lung Institute, London, UK
| | - CM Lloyd
- Imperial College London, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, National Heart and Lung Institute, London, UK
| | - A Noble
- King’s College London, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Guy’s Hospital, London, UK
| |
Collapse
|
17
|
Wells JW, Cowled CJ, Giorgini A, Kemeny DM, Noble A. Regulation of allergic airway inflammation by class I-restricted allergen presentation and CD8 T-cell infiltration. J Allergy Clin Immunol 2006; 119:226-34. [PMID: 17208606 DOI: 10.1016/j.jaci.2006.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 08/31/2006] [Accepted: 09/06/2006] [Indexed: 11/23/2022]
Abstract
BACKGROUND CD8 T cells are known to respond to exogenous antigens through cross-presentation. The importance of the CD8 cell response in the lung after inhalation of allergen and its effects on asthmatic inflammation are less clear. OBJECTIVE We sought to determine the dynamics, nature, and immunoregulatory activities of the class I CD8 T-cell response to inhaled allergen. METHODS We studied a murine model of respiratory allergen sensitization, adoptive transfer of transgenic T cells, and flow cytometric analysis of lung infiltrates. RESULTS Class I-restricted CD8 T cells responded rapidly to inhaled allergen and dominated the acute infiltration of T cells into the lung after secondary exposure. CD8 cells in the lung expressed a type 1 phenotype and suppressed the systemic IgE response to subsequent immunization. Dendritic cells purified from conducting airways or lung tissue were highly efficient at cross-presentation of antigen into the class I pathway after intranasal challenge. Adoptive transfer of transgenic antigen-specific CD8, but not CD4, cells resulted in increased IL-12 levels and reduced IL-13 and IL-5 levels in bronchoalveolar lavage fluid, coupled with substantially reduced airway eosinophilia after repeated allergen inhalation, a process mimicked by intranasal administration of IL-12 and inhibited by anti-IL-12 antibody. CONCLUSION The data suggest that CD8 cells specific for inhaled allergens are generated in draining lymph nodes but suppress allergic airway inflammation through induction of IL-12 in the lung during interaction with respiratory dendritic cells. CLINICAL IMPLICATIONS Novel peptide immunotherapeutics targeting the class I-restricted CD8 T-cell response to allergen represent a promising strategy for extrinsic asthma.
Collapse
|
18
|
Wagner U, Staats P, Fehmann HC, Fischer A, Welte T, Groneberg DA. Analysis of airway secretions in a model of sulfur dioxide induced chronic obstructive pulmonary disease (COPD). J Occup Med Toxicol 2006; 1:12. [PMID: 16759388 PMCID: PMC1559628 DOI: 10.1186/1745-6673-1-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Accepted: 06/07/2006] [Indexed: 01/08/2023] Open
Abstract
Hypersecretion and chronic phlegm are major symptoms of chronic obstructive pulmonary disease (COPD) but animal models of COPD with a defined functional hypersecretion have not been established so far. To identify an animal model of combined morphological signs of airway inflammation and functional hypersecretion, rats were continuously exposed to different levels of sulfur dioxide (SO2, 5 ppm, 10 ppm, 20 ppm, 40 ppm, 80 ppm) for 3 (short-term) or 20–25 (long-term) days. Histology revealed a dose-dependent increase in edema formation and inflammatory cell infiltration in short-term-exposed animals. The submucosal edema was replaced by fibrosis after long-term-exposure. The basal secretory activity was only significantly increased in the 20 ppm group. Also, stimulated secretion was significantly increased only after exposure to 20 ppm. BrdU-assays and AgNOR-analysis demonstrated cellular metaplasia and glandular hypertrophy rather than hyperplasia as the underlying morphological correlate of the hypersecretion. In summary, SO2-exposure can lead to characteristic airway remodeling and changes in mucus secretion in rats. As only long-term exposure to 20 ppm leads to a combination of hypersecretion and airway inflammation, only this mode of exposure should be used to mimic human COPD. Concentrations less or higher than 20 ppm or short term exposure do not induce the respiratory symptom of hypersecretion. The present model may be used to characterize the effects of new compounds on mucus secretion in the background of experimental COPD.
Collapse
Affiliation(s)
- Ulrich Wagner
- Department of Medicine, Pulmonary and Critical Care Division, Philipps-University, Baldingerstr., D-35043 Marburg, Germany
- Department of Medicine/Respiratory Medicine, Klinik Löwenstein, Geißhölzle 62, D-74245 Löwenstein, Germany
| | - Petra Staats
- Department of Medicine, Pulmonary and Critical Care Division, Philipps-University, Baldingerstr., D-35043 Marburg, Germany
| | - Hans-Christoph Fehmann
- Department of Medicine, Pulmonary and Critical Care Division, Philipps-University, Baldingerstr., D-35043 Marburg, Germany
| | - Axel Fischer
- Allergy-Centre-Charité, Otto-Heubner-Centre, Pneumology and Immunology, Charité – Universitätsmedizin Berlin, Free and Humboldt-University Berlin, Augustenburger Platz 1 OR-1, D-13353 Berlin, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Carl-Neuberg-Str. 1 OE 6870, D-30625 Hannover, Germany
| | - David A Groneberg
- Department of Respiratory Medicine, Hannover Medical School, Carl-Neuberg-Str. 1 OE 6870, D-30625 Hannover, Germany
- Institute of Occupational Medicine, Charité – Universitätsmedizin Berlin, Free and Humboldt-University Berlin, Ostpreussendamm 111, D-12207 Berlin, Germany
| |
Collapse
|
19
|
Prado CM, Leick-Maldonado EA, Yano L, Leme AS, Capelozzi VL, Martins MA, Tibério IFLC. Effects of nitric oxide synthases in chronic allergic airway inflammation and remodeling. Am J Respir Cell Mol Biol 2006; 35:457-65. [PMID: 16709960 DOI: 10.1165/rcmb.2005-0391oc] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The precise role of each nitric oxide (NO) synthase (NOS) isoform in the pathobiology of asthma is not well established. Our objective was to investigate the contribution of constitutive NO synthase (cNOS) and inducible NOS (iNOS) isoforms to lung mechanics and inflammatory and remodeling responses in an experimental model of chronic allergic pulmonary inflammation. Guinea pigs were submitted to seven ovalbumin exposures with increasing doses (1 approximately 5 mg/ml) for 4 wk. The animals received either chronic L-NAME (N-nitro-L-arginine methyl ester, in drinking water) or 1,400 W (iNOS-specific inhibitor, intraperitoneal) treatments. At 72 h after the seventh inhalation of ovalbumin solution, animals were anesthetized, mechanically ventilated, exhaled NO was collected, and lung mechanical responses were evaluated before and after antigen challenge. Both L-NAME and 1,400 W treatments increased baseline resistance and decreased elastance of the respiratory system in nonsensitized animals. After challenge, L-NAME increased resistance of the respiratory system and collagen deposition on airways, and decreased peribronchial edema and mononuclear cell recruitment. Administration of 1,400 W reduced resistance of the respiratory system response, eosinophilic and mononuclear cell recruitment, and collagen and elastic fibers content in airways. L-NAME treatment reduced both iNOS- and neuronal NOS-positive eosinophils, and 1,400 W diminished only the number of eosinophils expressing iNOS. In this experimental model, inhibition of NOS-derived NO by L-NAME treatment amplifies bronchoconstriction and increases collagen deposition. However, blockage of only iNOS attenuates bronchoconstriction and inflammatory and remodeling processes.
Collapse
Affiliation(s)
- Carla M Prado
- Department of Medicine and Pathology, School of Medicine, University of São Paulo, Av. Dr. Arnaldo, 455-Sala 1216, 01246-903, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
20
|
Groneberg DA, Rabe KF, Fischer A. Novel concepts of neuropeptide-based drug therapy: vasoactive intestinal polypeptide and its receptors. Eur J Pharmacol 2006; 533:182-94. [PMID: 16473346 DOI: 10.1016/j.ejphar.2005.12.055] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2005] [Indexed: 11/26/2022]
Abstract
Chronic inflammatory airway diseases such as bronchial asthma or chronic obstructive pulmonary disease (COPD) are major contributors to the global burden of disease. Although inflammatory cells play the central role in the pathogenesis of the diseases, recent observations indicate that also resident respiratory cells represent important targets for pulmonary drug development. Especially targeting airway neuromediators offers a possible mechanism by which respiratory diseases may be treated in the future. Among numerous peptide mediators such as tachykinins, calcitonin gene-related peptide, neurotrophins or opioids, vasoactive intestinal polypeptide (VIP) is one of the most abundant molecules found in the respiratory tract. In human airways, it influences many respiratory functions via the receptors VPAC1, VPAC2 and PAC1. VIP-expressing nerve fibers are present in the tracheobronchial smooth muscle layer, submucosal glands and in the walls of pulmonary and bronchial arteries and veins. Next to its strong bronchodilator effects, VIP potently relaxes pulmonary vessels, and plays a pivotal role in the mediation of immune mechanisms. A therapy utilizing the respiratory effects of VIP would offer potential benefits in the treatment of obstructive and inflammatory diseases and long acting VIP-based synthetic non-peptide compounds may represent a novel target for drug development.
Collapse
Affiliation(s)
- David A Groneberg
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.
| | | | | |
Collapse
|
21
|
Groneberg DA, Nowak D, Wussow A, Fischer A. Chronic cough due to occupational factors. J Occup Med Toxicol 2006; 1:3. [PMID: 16722562 PMCID: PMC1436005 DOI: 10.1186/1745-6673-1-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Accepted: 02/02/2006] [Indexed: 12/01/2022] Open
Abstract
Within the large variety of subtypes of chronic cough, either defined by their clinical or pathogenetic causes, occupational chronic cough may be regarded as one of the most preventable forms of the disease. Next to obstructive airway diseases such as asthma or chronic obstructive pulmonary disease, which are sometimes concomitant with chronic cough, this chronic airway disease gains importance in the field of occupational medicine since classic fiber-related occupational airway diseases will decrease in the future. Apart from acute accidents and incidental exposures which may lead to an acute form of cough, there are numerous sources for the development of chronic cough within the workplace. Over the last years, a large number of studies has focused on occupational causes of respiratory diseases and it has emerged that chronic cough is one of the most prevalent work-related airway diseases. Best-known examples of occupations related to the development of cough are coal miners, hard-rock miners, tunnel workers, or concrete manufacturing workers. As chronic cough is often based on a variety of non-occupational factors such as tobacco smoke, a distinct separation into either occupational or personally -evoked can be difficult. However, revealing the occupational contribution to chronic cough and to the symptom cough in general, which is the commonest cause for the consultation of a physician, can significantly lead to a reduction of the socioeconomic burden of the disease.
Collapse
Affiliation(s)
- David A Groneberg
- Division of Allergy Research, Otto-Heubner-Centre, Charité School of Medicine, Free University and Humboldt-University, 13353 Berlin, Germany
| | - Dennis Nowak
- Institute and Outpatient Clinics for Occupational and Environmental Medicine, University of Munich, 80336 Munich, Germany
| | - Anke Wussow
- Institute of Occupational Medicine, University of Lübeck, 23538 Lübeck, Germany
| | - Axel Fischer
- Division of Allergy Research, Otto-Heubner-Centre, Charité School of Medicine, Free University and Humboldt-University, 13353 Berlin, Germany
| |
Collapse
|
22
|
Maarsingh H, Leusink J, Bos IST, Zaagsma J, Meurs H. Arginase strongly impairs neuronal nitric oxide-mediated airway smooth muscle relaxation in allergic asthma. Respir Res 2006; 7:6. [PMID: 16409620 PMCID: PMC1363345 DOI: 10.1186/1465-9921-7-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 01/12/2006] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Using guinea pig tracheal preparations, we have recently shown that endogenous arginase activity attenuates inhibitory nonadrenergic noncholinergic (iNANC) nerve-mediated airway smooth muscle relaxation by reducing nitric oxide (NO) production--due to competition with neuronal NO-synthase (nNOS) for the common substrate, L-arginine. Furthermore, in a guinea pig model of allergic asthma, airway arginase activity is markedly increased after the early asthmatic reaction (EAR), leading to deficiency of agonist-induced, epithelium-derived NO and subsequent airway hyperreactivity. In this study, we investigated whether increased arginase activity after the EAR affects iNANC nerve-derived NO production and airway smooth muscle relaxation. METHODS Electrical field stimulation (EFS; 150 mA, 4 ms, 4 s, 0.5-16 Hz)-induced relaxation was measured in tracheal open-ring preparations precontracted to 30% with histamine in the presence of 1 microM atropine and 3 microM indomethacin. The contribution of NO to EFS-induced relaxation was assessed by the nonselective NOS inhibitor Nomega-nitro-L-arginine (L-NNA, 100 microM), while the involvement of arginase activity in the regulation of EFS-induced NO production and relaxation was investigated by the effect of the specific arginase inhibitor Nomega-hydroxy-nor-L-arginine (nor-NOHA, 10 microM). Furthermore, the role of substrate availability to nNOS was measured in the presence of exogenous L-arginine (5.0 mM). RESULTS At 6 h after ovalbumin-challenge (after the EAR), EFS-induced relaxation (ranging from 3.2 +/- 1.1% at 0.5 Hz to 58.5 +/- 2.2% at 16 Hz) was significantly decreased compared to unchallenged controls (7.1 +/- 0.8% to 75.8 +/- 0.7%; P < 0.05 all). In contrast to unchallenged controls, the NOS inhibitor L-NNA did not affect EFS-induced relaxation after allergen challenge, indicating that NO deficiency underlies the impaired relaxation. Remarkably, the specific arginase inhibitor nor-NOHA normalized the impaired relaxation to unchallenged control (P < 0.05 all), which effect was inhibited by L-NNA (P < 0.01 all). Moreover, the effect of nor-NOHA was mimicked by exogenous L-arginine. CONCLUSION The results clearly demonstrate that increased arginase activity after the allergen-induced EAR contributes to a deficiency of iNANC nerve-derived NO and decreased airway smooth muscle relaxation, presumably via increased substrate competition with nNOS.
Collapse
Affiliation(s)
- Harm Maarsingh
- Department of Molecular Pharmacology, University Centre for Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - John Leusink
- Department of Molecular Pharmacology, University Centre for Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - I Sophie T Bos
- Department of Molecular Pharmacology, University Centre for Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Johan Zaagsma
- Department of Molecular Pharmacology, University Centre for Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Herman Meurs
- Department of Molecular Pharmacology, University Centre for Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
23
|
Martin JG, Tamaoka M. Rat models of asthma and chronic obstructive lung disease. Pulm Pharmacol Ther 2005; 19:377-85. [PMID: 16337418 DOI: 10.1016/j.pupt.2005.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2005] [Accepted: 10/25/2005] [Indexed: 11/20/2022]
Abstract
The rat has been extensively used to model asthma and somewhat less extensively to model chronic obstructive pulmonary disease (COPD). The features of asthma that have been successfully modeled include allergen-induced airway constriction, eosinophilic inflammation and allergen-induced airway hyperresponsiveness. T-cell involvement has been directly demonstrated using adoptive transfer techniques. Both CD4+ and CD8+ T cells are activated in response to allergen challenge in the sensitized rat and express Thelper2 cytokines (IL-4, IL-5 and IL-13). Repeated allergen exposure causes airway remodeling. Dry gas hyperpnea challenge also evokes increases in lung resistance, allowing exercise-induced asthma to be modeled. COPD is modeled using elastase-induced parenchymal injury to mimic emphysema. Cigarette smoke-induced airspace enlargement occurs but requires months of cigarette exposure. Inflammation and fibrosis of peripheral airways is an important aspect of COPD that is less well modeled. Novel approaches to the treatment of COPD have been reported including treatments aimed at parenchymal regeneration.
Collapse
Affiliation(s)
- James G Martin
- Meakins Christie Laboratories, McGill University, Montreal, QUE, Canada.
| | | |
Collapse
|
24
|
Groneberg DA, Poutanen SM, Low DE, Lode H, Welte T, Zabel P. Treatment and vaccines for severe acute respiratory syndrome. THE LANCET. INFECTIOUS DISEASES 2005; 5:147-55. [PMID: 15766649 PMCID: PMC7106466 DOI: 10.1016/s1473-3099(05)01307-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The causative agent of severe acute respiratory syndrome (SARS), which affected over 8000 individuals worldwide and was responsible for over 700 deaths in the 2002-2003 outbreak, is a coronavirus that was unknown before the outbreak. Although many different treatments were used during the outbreak, none were implemented in a controlled fashion. Thus, the optimal treatment for SARS is unknown. Since the outbreak, much work has been done testing new agents against SARS using in-vitro methods and animal models. In addition, global research efforts have focused on the development of vaccines against SARS. Efforts should be made to evaluate the most promising treatments and vaccines in controlled clinical trials, should another SARS outbreak occur.
Collapse
Affiliation(s)
- David A Groneberg
- Department of Pneumology, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
Groneberg DA, Peiser C, Eynott PR, Welker P, Erbes R, Witt C, Chung KF, Fischer A. Transcriptional down-regulation of neurotrophin-3 in chronic obstructive pulmonary disease. Biol Chem 2005; 386:53-9. [PMID: 15843147 DOI: 10.1515/bc.2005.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) leads to progressive development of airflow limitation and is characterised by cough, mucus hypersecretion and inflammatory changes. These characteristic features of the disease may be modulated by neural mediators such as neurotrophins (NT). Here we examined the expression and transcriptional regulation of neurotrophins in bronchial biopsies of COPD patients and compared the data to control biopsies. Histology revealed characteristic changes in the COPD tissues, including remodelling of the epithelial lining. RT-PCR demonstrated the mRNA expression of neurotrophins in all biopsies. Immunohistochemistry confirmed the expression of different proteins. To assess changes in the transcriptional expression level, quantitative real-time PCR was carried out and revealed differential mRNA expression of neurotrophins, with marked down-regulation of NT-3 mRNA expression and constant levels of nerve growth factor (NGF), brain-derived nerve factor (BDNF), and NT-4/5 mRNA expression. The present data on neurotrophin-specific transcriptional down-regulation of NT-3 in human COPD indicate a pathophysiological role for neurotrophins in COPD.
Collapse
Affiliation(s)
- David A Groneberg
- Otto-Heubner-Centre, Pneumology and Immunology, Free University Berlin and Humboldt-University, D-13353 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Reynaert NL, Ckless K, Wouters EFM, van der Vliet A, Janssen-Heininger YMW. Nitric oxide and redox signaling in allergic airway inflammation. Antioxid Redox Signal 2005; 7:129-43. [PMID: 15650402 DOI: 10.1089/ars.2005.7.129] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A number of diseases of the respiratory tract, as exemplified in this review by asthma, are associated with increased amounts of nitric oxide (NO) in the expired breath. Asthma is furthermore characterized by increased production of reactive oxygen species that scavenge NO to form more reactive nitrogen species as demonstrated by the enhanced presence of nitrated proteins in the lungs of these patients. This increased oxidative metabolism leaves less bioavailable NO and coincides with lower amounts of S-nitrosothiols. In this review, we speculate on mechanisms responsible for the increased amounts of NO in inflammatory airway disease and discuss the apparent paradox of higher levels of NO as opposed to decreased amounts of S-nitrosothiols. We will furthermore give an overview of the regulation of NO production and biochemical events by which NO transduces signals into cellular responses, with a particular focus on modulation of inflammation by NO. Lastly, difficulties in studying NO signaling and possible therapeutic uses for NO will be highlighted.
Collapse
Affiliation(s)
- Niki L Reynaert
- Department of Pathology, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
27
|
Fischer A, Wussow A, Cryer A, Schmeck B, Noga O, Zweng M, Peiser C, Dinh QT, Heppt W, Groneberg DA. Neuronal Plasticity in Persistent Perennial Allergic Rhinitis. J Occup Environ Med 2005; 47:20-5. [PMID: 15643155 DOI: 10.1097/01.jom.0000150238.77663.49] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Persistent perennial allergic rhinitis belongs to the most frequent diseases in occupational and environmental medicine. Because the innervation may play a role in the pathogenesis of the disease, the present study analyzed nasal mucosal nerve profiles. METHODS Neuropeptide-containing nerve fibers were examined using immunohistochemistry and related to eosinophil and mast cell numbers. RESULTS In contrast to constant numbers of mast cells, there was a significant increase in the number of eosinophils. Immunohistochemistry for calcitonin gene-related peptide (CGRP), substance P (SP), vasoactive intestinal peptide (VIP), and neuropeptide tyrosine (NPY) revealed abundant staining of mucosal nerves. Semiquantitative assessment of nerve fiber neuropeptide density demonstrated a significant increase of VIP-positive fibers in rhinitis tissues. CONCLUSIONS The present data indicate a differential regulation of neuropeptide-containing nerve fibers with increased numbers of VIPergic fibers suggesting a modulatory role of the upper airway innervation in perennial allergic rhinitis.
Collapse
Affiliation(s)
- Axel Fischer
- Occupational and Environmental Medicine Research Unit, Division of Allergy Research, Otto-Heubner-Centre, Charité School of Medicine, Free University and Humboldt-University, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Groneberg DA, Chung KF. Models of chronic obstructive pulmonary disease. Respir Res 2004; 5:18. [PMID: 15522115 PMCID: PMC533858 DOI: 10.1186/1465-9921-5-18] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Accepted: 11/02/2004] [Indexed: 11/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major global health problem and is predicted to become the third most common cause of death by 2020. Apart from the important preventive steps of smoking cessation, there are no other specific treatments for COPD that are as effective in reversing the condition, and therefore there is a need to understand the pathophysiological mechanisms that could lead to new therapeutic strategies. The development of experimental models will help to dissect these mechanisms at the cellular and molecular level. COPD is a disease characterized by progressive airflow obstruction of the peripheral airways, associated with lung inflammation, emphysema and mucus hypersecretion. Different approaches to mimic COPD have been developed but are limited in comparison to models of allergic asthma. COPD models usually do not mimic the major features of human COPD and are commonly based on the induction of COPD-like lesions in the lungs and airways using noxious inhalants such as tobacco smoke, nitrogen dioxide, or sulfur dioxide. Depending on the duration and intensity of exposure, these noxious stimuli induce signs of chronic inflammation and airway remodelling. Emphysema can be achieved by combining such exposure with instillation of tissue-degrading enzymes. Other approaches are based on genetically-targeted mice which develop COPD-like lesions with emphysema, and such mice provide deep insights into pathophysiological mechanisms. Future approaches should aim to mimic irreversible airflow obstruction, associated with cough and sputum production, with the possibility of inducing exacerbations.
Collapse
Affiliation(s)
- David A Groneberg
- Pneumology and Immunology, Otto-Heubner-Centre, Charité School of Medicine, Free University and Humboldt-University, Berlin, Germany
| | - K Fan Chung
- Thoracic Medicine, National Heart & Lung Institute, Imperial College, London, UK
| |
Collapse
|
29
|
Abstract
Neurogenic inflammation encompasses the release of neuropeptides from airway nerves leading to inflammatory effects. This neurogenic inflammatory response of the airways can be initiated by exogenous irritants such as cigarette smoke or gases and is characterized by a bi-directional linkage between airway nerves and airway inflammation. The event of neurogenic inflammation may participate in the development and progression of chronic inflammatory airway diseases such as allergic asthma or chronic obstructive pulmonary disease (COPD). The molecular mechanisms underlying neurogenic inflammation are orchestrated by a large number of neuropeptides including tachykinins such as substance P and neurokinin A, or calcitonin gene-related peptide. Also, other biologically active peptides such as neuropeptide tyrosine, vasoactive intestinal polypeptide or endogenous opioids may modulate the inflammatory response and recently, novel tachykinins such as virokinin and hemokinins were identified. Whereas the different aspects of neurogenic inflammation have been studied in detail in laboratory animal models, only little is known about the role of airway neurogenic inflammation in human diseases. However, different functional properties of airway nerves may be used as targets for future therapeutic strategies and recent clinical data indicates that novel dual receptor antagonists may be relevant new drugs for bronchial asthma or COPD.
Collapse
Affiliation(s)
- D A Groneberg
- Otto-Heubner-Centre, Pneumology and Immunology, Charité School of Medicine, Free University Berlin and Humboldt-University Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
30
|
Groneberg DA, Witt H, Adcock IM, Hansen G, Springer J. Smads as intracellular mediators of airway inflammation. Exp Lung Res 2004; 30:223-50. [PMID: 15195555 DOI: 10.1080/01902140490276320] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transforming growth factor-beta (TGF-beta) plays an important role in the pathogenesis of allergic asthma and other airway diseases. Signals from the activated TGF-beta receptor complex are transduced to the nucleus of airway cells by Smad proteins, which represent a family of transcription factors that have recently been implicated to play a major role as intracellular mediators of inflammation. The Smad family consists of the receptor-regulated Smads, a common pathway Smad, and inhibitory Smads. Receptor-regulated Smads (R-Smads) are phosphorylated by the TGF-beta type Ireceptor. They include Smad2 and Smad3, which are recognized by TGF-beta and activin receptors, and Smads 1, 5, 8, and 9, which are recognized by bone morphogenetic protein (BMP) receptors. Smad4 is a common pathway Smad, which is also defined as cooperating Smad (co-Smad) and is not phosphorylated by the TGF-beta type I receptor. Inhibitory Smads(anti-Smads) include Smad6 and Smad7, which down-regulate TGF-beta signaling. To date, the Smads are the only TGF-beta receptor substrates with a demonstrated ability to propagate signals and with regard to the growing number of investigations of Smad-mediated effects in the airways, Smads may prove to be an important target for future development of new therapeutic strategies for asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- David A Groneberg
- Division of Allergy Research, Department of Pediatric Pneumology and Immunology, Charité Campus-Virchow, Humboldt-University, Berlin, Germany.
| | | | | | | | | |
Collapse
|
31
|
Garnica MR, Silva JS, de Andrade Junior HF. Stromal cell-derived factor-1 production by spleen cells is affected by nitric oxide in protective immunity against blood-stage Plasmodium chabaudi CR in C57BL/6j mice. Immunol Lett 2004; 89:133-42. [PMID: 14556970 DOI: 10.1016/j.imlet.2003.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Malaria, a major endemic tropical disease, is caused by the infection of blood cells by Plasmodium protozoa. Most patients control their parasitemia by a not fully understood spleen-dependent mechanism. SDF-1alpha is a chemokine produced by stromal cells such as reticular spleen cells. Nitric oxide (NO) has several immune functions, including killing of intracellular pathogens and its function in malaria is debated. We have previously shown that SDF-1alpha production peaks during the ascending parasitemia in Plasmodium chabaudi infection and its supplementation in lethal models could reduce the parasitemia. In the present study, we analyzed SDF-1 production by spleen cells as related to NO metabolism in the P. chabaudi rodent malaria model using IFN-gamma; TNFR and iNOS-knockout mice or iNOS-blocked, L-NAME- or aminoguanidine-treated mice. Parasitemia and production of SDF-1alpha and SDF-1beta were determined by RT-PCR. In vitro NO production by spleen adherent cells was also tested. The data showed that parasitemia was less intense in both iNOS(-/-) or NO-inhibited mice than in controls, with increased and long-lasting production of SDF-1alpha mRNA. In the absence of cytokines involved in the final regulation of NO production by effector cells, as is the case for TNFR(-/-) and GKO mice, the infection progressed in an uncontrolled manner regardless of SDF-1alpha production, suggesting that these cytokines must be involved in the control of parasitemia after the SDF-1alpha dependent process. The SDF-1beta isoform was constitutive in all experiments, with elevated levels only clearly seen in TNFR(-/-) mice. We conclude that SDF-1 is involved in the promotion of parasitemia control in malaria, and excessive NO could affect its production.
Collapse
Affiliation(s)
- Margoth Ramos Garnica
- Lab. Protozoologia, lnstituto de Medicina Tropical de São Paulo, Universidade de São Paulo, Av. Dr.E.C. Aguiar 470, 05403-000, SP, São Paulo, Brazil
| | | | | |
Collapse
|
32
|
Groneberg DA, Fischer A, Chung KF, Daniel H. Molecular mechanisms of pulmonary peptidomimetic drug and peptide transport. Am J Respir Cell Mol Biol 2004; 30:251-60. [PMID: 14969997 DOI: 10.1165/rcmb.2003-0315tr] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The aerosolic administration of peptidomimetic drugs could play a major role in the future treatment of various pulmonary and systemic diseases, because rational drug design offers the potential to specifically generate compounds that are transported efficiently into the epithelium by distinct carrier proteins such as the peptide transporters. From the two presently known peptide transporters, PEPT1 and PEPT2, which have been cloned from human tissues, the high-affinity transporter PEPT2 is expressed in the respiratory tract epithelium. The transporter is an integral membrane protein with 12 membrane-spanning domains and mediates electrogenic uphill peptide and peptidomimetic drug transport by coupling of substrate translocation to a transmembrane electrochemical proton gradient serving as driving force. In human airways, PEPT2 is localized to bronchial epithelium and alveolar type II pneumocytes, and transport studies revealed that both peptides and peptidomimetic drugs such as antibiotic, antiviral, and antineoplastic drugs are carried by the system. PEPT2 is also responsible for the transport of delta-aminolevulinic acid, which is used for photodynamic therapy and the diagnostics of pulmonary neoplasms. Based on the recent progress in understanding the structural requirements for substrate binding and transport, PEPT2 becomes a target for a rational drug design that may lead to a new generation of respiratory drugs and prodrugs that can be delivered to the airways via the peptide transporter.
Collapse
Affiliation(s)
- David A Groneberg
- Deptartment of Pediatric Pneumology and Immunology/Medicine, Charité School of Medicine, Humboldt-University; CVK OR-1 R.3.0073, Augustenburger Platz 1, D-13353 Berlin, Germany.
| | | | | | | |
Collapse
|
33
|
Laprise C, Sladek R, Ponton A, Bernier MC, Hudson TJ, Laviolette M. Functional classes of bronchial mucosa genes that are differentially expressed in asthma. BMC Genomics 2004; 5:21. [PMID: 15038835 PMCID: PMC400730 DOI: 10.1186/1471-2164-5-21] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Accepted: 03/23/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Asthma pathogenesis and susceptibility involves a complex interplay between genetic and environmental factors. Their interaction modulates the airway inflammation and remodelling processes that are present even in mild asthma and governs the appearance and severity of symptoms of airway hyperresponsiveness. While asthma is felt to develop as the result of interaction among many different genes and signalling pathways, only a few genes have been linked to an increased risk of developing this condition. RESULTS We report the results of expression microarray studies using tissue obtained from bronchial biopsies of healthy controls and of subjects with allergic asthma, both before and following inhaled corticotherapy. We identified 79 genes that show significant differences in expression (following Bonferroni cutoff using p < 6.6 x 10(-6) to correct for multiple testing) in asthmatics compared to controls at significance levels. These included 21 genes previously implicated in asthma, such as NOS2A and GPX3, as well as new potential candidates, such as ALOX15, CTSC and CX3CR1. The expression levels of one third of these transcripts were partially or completely corrected following inhaled corticosteroid therapy. CONCLUSION The study shows that bronchial biopsies obtained from healthy and asthmatic subjects display distinct expression profiles. These differences provide a global view of physiopathologic processes active in the asthmatic lung and may provide invaluable help to clarify the natural history of asthma.
Collapse
Affiliation(s)
- Catherine Laprise
- Université du Québec à Chicoutimi, Department of Fundamental Sciences, Chicoutimi, Canada
| | - Robert Sladek
- McGill University and Genome Quebec Innovation Centre, Montreal, Canada
- Departments of Medicine and Human Genetics, McGill University, Montreal, Canada
| | - André Ponton
- McGill University and Genome Quebec Innovation Centre, Montreal, Canada
| | - Marie-Claude Bernier
- Unité de recherche en pneumologie, Centre de recherche de l'Hôpital Laval, Institut universitaire de cardiologie et pneumologie de l'Université Laval, Québec, Canada
| | - Thomas J Hudson
- McGill University and Genome Quebec Innovation Centre, Montreal, Canada
- Departments of Medicine and Human Genetics, McGill University, Montreal, Canada
| | - Michel Laviolette
- Unité de recherche en pneumologie, Centre de recherche de l'Hôpital Laval, Institut universitaire de cardiologie et pneumologie de l'Université Laval, Québec, Canada
| |
Collapse
|
34
|
Hjoberg J, Shore S, Kobzik L, Okinaga S, Hallock A, Vallone J, Subramaniam V, De Sanctis GT, Elias JA, Drazen JM, Silverman ES. Expression of nitric oxide synthase-2 in the lungs decreases airway resistance and responsiveness. J Appl Physiol (1985) 2004; 97:249-59. [PMID: 15020581 DOI: 10.1152/japplphysiol.01389.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Individuals with asthma have increased levels of nitric oxide in their exhaled air. To explore its role, we have developed a regulatable transgenic mouse capable of overexpressing inducible nitric oxide synthase in a lung-specific fashion. The CC10-rtTA-NOS-2 mouse contains two transgenes, a reverse tetracycline transactivator under the control of the Clara cell protein promoter and the mouse nitric oxide synthase-2 (NOS-2) coding region under control of a tetracycline operator. Addition of doxycycline to the drinking water of CC10-rtTA-NOS-2 mice causes an increase in nitric oxide synthase-2 that is largely confined to the airway epithelium. The fraction of expired nitric oxide increases over the first 24 h from approximately 10 parts per billion to a plateau of approximately 20 parts per billion. There were no obvious differences between CC10-rtTA-NOS-2 mice, with or without doxycycline, and wild-type mice in lung histology, bronchoalveolar protein, total cell count, or count differentials. However, airway resistance was lower in CC10-rtTA-NOS-2 mice with doxycycline than in CC10-rtTA-NOS-2 mice without doxycycline or wild-type mice with doxycycline. Moreover, doxycycline-treated CC10-rtTA-NOS-2 mice were hyporesponsive to methacholine compared with other groups. These data suggest that increased nitric oxide in the airways has no proinflammatory effects per se and may have beneficial effects on pulmonary function.
Collapse
Affiliation(s)
- Josephine Hjoberg
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115-6021, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Martin JG, Ramos-Barbón D. Airway smooth muscle growth from the perspective of animal models. Respir Physiol Neurobiol 2003; 137:251-61. [PMID: 14516730 DOI: 10.1016/s1569-9048(03)00151-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Airway smooth muscle maintains airway tone and may assist in adjusting ventilation distribution within the normal lung. Alterations in the properties or the quantity of ASM are likely responsible for some instances of airways hyperresponsiveness to bronchoconstrictive stimuli that is a characteristic of diseases such as asthma. Morphometric studies have shown an increase in the mass of ASM in human asthmatic airways. Animal models have been developed that confirm that ASM can be induced to grow by allergic sensitization and challenge. Growth is in large part by hyperplasia as measured by incorporation of bromodeoxyuridine as a marker of the S-phase of the cell cycle. T cells, in particular CD4+ cells, may participate in the stimulation of growth of ASM by allergen challenge. The growth factors responsible for the increase in ASM are as yet unidentified but two mediators associated with allergic airway responses, cysteinyl leukotrienes and endothelin, have been implicated using specific receptor antagonists. The links between T cells and the biochemical mediators of growth have not been established.
Collapse
Affiliation(s)
- James G Martin
- Department of Medicine, Meakins-Christie Laboratories, McGill University, 3626 Urbain Street, Montreal, QC, Canada H2X 2P2.
| | | |
Collapse
|
36
|
Groneberg DA, Bielory L, Fischer A, Bonini S, Wahn U. Animal models of allergic and inflammatory conjunctivitis. Allergy 2003; 58:1101-13. [PMID: 14616119 DOI: 10.1046/j.1398-9995.2003.00326.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Allergic eye diseases are complex inflammatory conditions of the conjunctiva with an increasing prevalence and incidence. The diseases are often concomitant with other allergic diseases such as allergic rhinitis, atopic dermatitis and allergic asthma. Despite the disabling and prominent symptoms of ocular allergies, they are less well studied and further insights into the molecular basics are still required. To establish new therapeutic approaches and assess immunological mechanisms, animal models of ocular allergies have been developed in the past years. The major forms of allergic ocular diseases, seasonal and perennial allergic conjunctivitis, vernal and atopic keratoconjunctivitis and giant papillary conjunctivitis, each have different pathophysiological and immunological components. In contrast to these distinct entities, the current animal models are based on the sensitization against a small number of allergens such as ovalbumin, ragweed pollen or major cat allergens and consecutive challenge. Different animal species have been used so far. Starting with guinea-pig models of allergic conjunctivitis to assess pharmacological aspects, new models including rats and mice have been developed which mimic major features of ocular allergy. The presently preferred species for the investigation of the immunological basis of the disease is represented by murine models of allergic conjunctivitis. In the future, combined ocular, nasal and aerosolic challenges with allergens may provide a model of allergy that encompasses simultaneously the target organs eye, nose and airways with conjunctivitis, rhinitis and asthma.
Collapse
Affiliation(s)
- D A Groneberg
- Department of Pediatric Pneumology and Immunology, Charité Campus-Virchow, Humboldt-University Berlin, Germany
| | | | | | | | | |
Collapse
|
37
|
Abstract
Sensory neuropeptides have been proposed to play a key role in the pathogenesis of a number of respiratory diseases such as asthma, chronic obstructive pulmonary disease or chronic cough. Next to prominent neuropeptides such as tachykinins or vasoactive intestinal polypeptide (VIP), calcitonin gene-related peptide (CGRP) has long been suggested to participate in airway physiology and pathophysiology. CGRP is a 37 amino-acid peptide which is expressed by nerve fibers projecting to the airways and by pulmonary neuroendocrine cells. The most prominent effects of CGRP in the airways are vasodilatation and in a few instances bronchoconstriction. A further pulmonary effect of CGRP is the induction of eosinophil migration and the stimulation of beta-integrin-mediated T cell adhesion to fibronectin at the site of inflammation. By contrast, CGRP inhibits macrophage secretion and the capacity of macrophages to activate T-cells, indicating a potential anti-inflammatory effect. Due to the complex pulmonary effects of CGRP with bronchoconstriction and vasodilatation and diverse immunomodulatory actions, potential anti-asthma drugs based on this peptide have not been established so far. However, targeting the effects of CGRP may be of value for future strategies in nerve modulation.
Collapse
Affiliation(s)
- Jochen Springer
- Division of Allergy Research, Department of Pediatric Pneumology and Immunology, Charité Campus-Virchow, Humboldt-University Berlin, 13353 Berlin, Germany
| | | | | | | |
Collapse
|