1
|
Effects of Coffee on the Gastro-Intestinal Tract: A Narrative Review and Literature Update. Nutrients 2022; 14:nu14020399. [PMID: 35057580 PMCID: PMC8778943 DOI: 10.3390/nu14020399] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 02/05/2023] Open
Abstract
The objective of the present research was to review the state of the art on the consequences of drinking coffee at the different levels of the gastrointestinal tract. At some steps of the digestive process, the effects of coffee consumption seem rather clear. This is the case for the stimulation of gastric acid secretion, the stimulation of biliary and pancreatic secretion, the reduction of gallstone risk, the stimulation of colic motility, and changes in the composition of gut microbiota. Other aspects are still controversial, such as the possibility for coffee to affect gastro-esophageal reflux, peptic ulcers, and intestinal inflammatory diseases. This review also includes a brief summary on the lack of association between coffee consumption and cancer of the different digestive organs, and points to the powerful protective effect of coffee against the risk of hepatocellular carcinoma. This review reports the available evidence on different topics and identifies the areas that would most benefit from additional studies.
Collapse
|
2
|
Singh H, Mittal BR, Sood A, Bollampally N, Gorla AKR, Dasagrandhi V, Parmar M. Association of use of proton pump inhibitors and H 2 antagonists with stomach wall uptake in 99mTc-methoxy-isobutyl-isonitrile (MIBI) myocardial perfusion imaging. J Nucl Cardiol 2020; 27:1611-1619. [PMID: 31087263 DOI: 10.1007/s12350-019-01733-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Stomach wall uptake (SWU) of tracer in 99mTc-MIBI myocardial perfusion imaging (MPI) occasionally leads to imaging artifacts, thereby lowering the diagnostic accuracy. It is less-studied phenomenon for possible link with proton pump inhibitors (PPIs) intake. This prospective work looked for association of SWU with PPI intake and compared its incidence with H2 antagonists (H2A) users and patients not on either gastroprotective medication. METHODS One hundred fifty-six patients undergoing one day stress/rest 99mTc-MIBI SPECT-MPI were distributed into four groups: control group (n = 48, not on any gastroprotective medication), PPI group (n = 47, on PPI treatment), H2A group (n = 19, on H2A therapy), and intervention group (N = 42, PPI discontinued for 3 days before MPI). Poststress planar images were analyzed for clinically relevant SWU. RESULTS Clinically relevant SWU was seen in 36% of PPI group patients compared to 8% in the control group, 10.5% in the H2A group, and 9.5% in the intervention group, respectively, with statistically significant difference. Only 1/40 patients undergoing exercise stress showed clinically relevant SWU compared to 26/116 patients undergoing adenosine stress (P = .020). CONCLUSION Patients on PPIs scheduled for vasodilator stress MPI may discontinue PPIs for 3 days, or replace with H2A to reduce the incidence of clinically relevant SWU associated with PPI therapy.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Sector - 12, Chandigarh, India
| | - Bhagwant Rai Mittal
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Sector - 12, Chandigarh, India
| | - Ashwani Sood
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Sector - 12, Chandigarh, India.
| | - Neeraja Bollampally
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Sector - 12, Chandigarh, India
| | - Arun Kumar Reddy Gorla
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Sector - 12, Chandigarh, India
| | - Vaishnavi Dasagrandhi
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Sector - 12, Chandigarh, India
| | - Madan Parmar
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Sector - 12, Chandigarh, India
| |
Collapse
|
3
|
Arin RM, Gorostidi A, Navarro-Imaz H, Rueda Y, Fresnedo O, Ochoa B. Adenosine: Direct and Indirect Actions on Gastric Acid Secretion. Front Physiol 2017; 8:737. [PMID: 29018360 PMCID: PMC5614973 DOI: 10.3389/fphys.2017.00737] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
Composed by a molecule of adenine and a molecule of ribose, adenosine is a paradigm of recyclable nucleoside with a multiplicity of functions that occupies a privileged position in the metabolic and regulatory contexts. Adenosine is formed continuously in intracellular and extracellular locations of all tissues. Extracellular adenosine is a signaling molecule, able to modulate a vast range of physiologic responses in many cells and organs, including digestive organs. The adenosine A1, A2A, A2B, and A3 receptors are P1 purinergic receptors, G protein-coupled proteins implicated in tissue protection. This review is focused on gastric acid secretion, a process centered on the parietal cell of the stomach, which contains large amounts of H+/K+-ATPase, the proton pump responsible for proton extrusion during acid secretion. Gastric acid secretion is regulated by an extensive collection of neural stimuli and endocrine and paracrine agents, which act either directly at membrane receptors of the parietal cell or indirectly through other regulatory cells of the gastric mucosa, as well as mechanic and chemic stimuli. In this review, after briefly introducing these points, we condense the current body of knowledge about the modulating action of adenosine on the pathophysiology of gastric acid secretion and update its significance based on recent findings in gastric mucosa and parietal cells in humans and animal models.
Collapse
Affiliation(s)
- Rosa M Arin
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU)Leioa, Spain
| | - Adriana Gorostidi
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU)Leioa, Spain
| | - Hiart Navarro-Imaz
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU)Leioa, Spain
| | - Yuri Rueda
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU)Leioa, Spain
| | - Olatz Fresnedo
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU)Leioa, Spain
| | - Begoña Ochoa
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU)Leioa, Spain
| |
Collapse
|
4
|
Expression of Adenosine A 2B Receptor and Adenosine Deaminase in Rabbit Gastric Mucosa ECL Cells. Molecules 2017; 22:molecules22040625. [PMID: 28417934 PMCID: PMC6154537 DOI: 10.3390/molecules22040625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 12/28/2022] Open
Abstract
Adenosine is readily available to the glandular epithelium of the stomach. Formed continuously in intracellular and extracellular locations, it is notably produced from ATP released in enteric cotransmission. Adenosine analogs modulate chloride secretion in gastric glands and activate acid secretion in isolated parietal cells through A2B adenosine receptor (A2BR) binding. A functional link between surface A2BR and adenosine deaminase (ADA) was found in parietal cells, but whether this connection is a general feature of gastric mucosa cells is unknown. Here we examine whether A2BR is expressed at the membrane of histamine-producing enterochromaffin-like (ECL) cells, the major endocrine cell type in the oxyntic mucosa, and if so, whether it has a vicinity relationship with ADA. We used a highly homogeneous population of rabbit ECL cells (size 7.5–10 µm) after purification by elutriation centrifugation. The surface expression of A2BR and ADA proteins was assessed by flow cytometry and confocal microscopy. Our findings demonstrate that A2BR and ADA are partially coexpressed at the gastric ECL cell surface and that A2BR is functional, with regard to binding of adenosine analogs and adenylate cyclase activation. The physiological relevance of A2BR and ADA association in regulating histamine release is yet to be explained.
Collapse
|
5
|
Rodrigues L, Miranda IM, Andrade GM, Mota M, Cortes L, Rodrigues AG, Cunha RA, Gonçalves T. Blunted dynamics of adenosine A2A receptors is associated with increased susceptibility to Candida albicans infection in the elderly. Oncotarget 2016; 7:62862-62872. [PMID: 27590517 PMCID: PMC5325332 DOI: 10.18632/oncotarget.11760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/26/2016] [Indexed: 11/25/2022] Open
Abstract
Opportunistic gut infections and chronic inflammation, in particular due to overgrowth of Candida albicans present in the gut microbiota, are increasingly reported in the elder population. In aged, adult and young mice, we now compared the relative intestinal over-colonization by ingested C. albicans and their translocation to other organs, focusing on the role of adenosine A2A receptors that are a main stop signal of inflammation. We report that elderly mice are more prone to over-colonization by C. albicans than adult and young mice. This fungal over-growth seems to be related with higher growth rate in intestinal lumen, independent of gut tissues invasion, but resulting in higher GI tract inflammation. We observed a particularly high colonization of the stomach, with increased rate of yeast-to-hypha transition in aged mice. We found a correlation between A2A receptor density and tissue damage due to yeast infection: comparing with young and adults, aged mice have a lower gut A2A receptor density and C. albicans infection failed to increase it. In conclusion, this study shows that aged mice have a lower ability to cope with inflammation due to C. albicans over-colonization, associated with an inability to adaptively adjust adenosine A2A receptors density.
Collapse
Affiliation(s)
- Lisa Rodrigues
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Isabel M. Miranda
- Department of Microbiology, Cardiovascular Research & Development Unit, CINTESIS-Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Geanne M. Andrade
- Department of Physiology and Pharmacology, Federal University of Ceará, Ceará, Brazil
| | - Marta Mota
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Luísa Cortes
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Acácio G. Rodrigues
- Department of Microbiology, Cardiovascular Research & Development Unit, CINTESIS-Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rodrigo A. Cunha
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Teresa Gonçalves
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
6
|
Arin RM, Vallejo AI, Rueda Y, Fresnedo O, Ochoa B. Stimulation of gastric acid secretion by rabbit parietal cell A2B adenosine receptor activation. Am J Physiol Cell Physiol 2015; 309:C823-34. [DOI: 10.1152/ajpcell.00224.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/08/2015] [Indexed: 11/22/2022]
Abstract
Adenosine modulates different functional activities in many cells of the gastrointestinal tract; some of them are believed to be mediated by interaction with its four G protein-coupled receptors. The renewed interest in the adenosine A2B receptor (A2BR) subtype can be traced by studies in which the introduction of new genetic and chemical tools has widened the pharmacological and structural knowledge of this receptor as well as its potential therapeutic use in cancer and inflammation- or hypoxia-related pathologies. In the acid-secreting parietal cells of the gastric mucosa, the use of various radioligands for adenosine receptors suggested the presence of the A2 adenosine receptor subtype(s) on the cell surface. Recently, we confirmed A2BR expression in native, nontransformed parietal cells at rest by using flow cytometry and confocal microscopy. In this study, we show that A2BR is functional in primary rabbit gastric parietal cells, as indicated by the fact that agonist binding to A2BR increased adenylate cyclase activity and acid production. In addition, both acid production and radioligand binding of adenosine analogs to isolated cell membranes were potently blocked by selective A2BR antagonists, whereas ligands for A1, A2A, and A3 adenosine receptors failed to abolish activation. We conclude that rabbit gastric parietal cells possess functional A2BR proteins that are coupled to Gs and stimulate HCl production upon activation. Whether adenosine- and A2BR-mediated functional responses play a role in human gastric pathophysiology is yet to be elucidated.
Collapse
Affiliation(s)
- Rosa María Arin
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Ana Isabel Vallejo
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Yuri Rueda
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Olatz Fresnedo
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Begoña Ochoa
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain
| |
Collapse
|
7
|
Arin RM, Vallejo AI, Rueda Y, Fresnedo O, Ochoa B. The A2B adenosine receptor colocalizes with adenosine deaminase in resting parietal cells from gastric mucosa. BIOCHEMISTRY (MOSCOW) 2015; 80:120-5. [PMID: 25754047 DOI: 10.1134/s0006297915010149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The A2B adenosine receptor (A2BR) mediates biological responses to extracellular adenosine in a wide variety of cell types. Adenosine deaminase (ADA) can degrade adenosine and bind extracellularly to adenosine receptors. Adenosine modulates chloride secretion in gastric glands and gastric mucosa parietal cells. A close functional link between surface A2BR and ADA has been found on cells of the immune system, but whether this occurs in the gastrointestinal tract is unknown. The goal of this study was to determine whether A2BR and ADA are coexpressed at the plasma membrane of the acid-secreting gastric mucosa parietal cells. We used isolated gastric parietal cells after purification by centrifugal elutriation. The membrane fraction was obtained by sucrose gradient centrifugation. A2BR mRNA expression was analyzed by RT-PCR. The surface expression of A2BR and ADA proteins was evaluated by Western blotting, flow cytometry and confocal microscopy. Our findings demonstrate that A2BR and ADA are expressed in cell membranes isolated from gastric parietal cells. They show a high degree of colocalization that is particularly evident in the surface of contact between parietal cells. The confocal microscopy data together with flow cytometry analysis suggest a tight association between A2BR and ADA that might be specifically linked to glandular secretory function.
Collapse
Affiliation(s)
- R M Arin
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Sarriena s/n, Leioa, 48940, Spain.
| | | | | | | | | |
Collapse
|
8
|
Influence of proton-pump inhibitors on stomach wall uptake of 99mTc-tetrofosmin in cadmium–zinc–telluride SPECT myocardial perfusion imaging. Nucl Med Commun 2015; 36:143-7. [DOI: 10.1097/mnm.0000000000000222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Burnstock G. Purinergic signalling in the gastrointestinal tract and related organs in health and disease. Purinergic Signal 2014; 10:3-50. [PMID: 24307520 PMCID: PMC3944042 DOI: 10.1007/s11302-013-9397-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 01/04/2023] Open
Abstract
Purinergic signalling plays major roles in the physiology and pathophysiology of digestive organs. Adenosine 5'-triphosphate (ATP), together with nitric oxide and vasoactive intestinal peptide, is a cotransmitter in non-adrenergic, non-cholinergic inhibitory neuromuscular transmission. P2X and P2Y receptors are widely expressed in myenteric and submucous enteric plexuses and participate in sympathetic transmission and neuromodulation involved in enteric reflex activities, as well as influencing gastric and intestinal epithelial secretion and vascular activities. Involvement of purinergic signalling has been identified in a variety of diseases, including inflammatory bowel disease, ischaemia, diabetes and cancer. Purinergic mechanosensory transduction forms the basis of enteric nociception, where ATP released from mucosal epithelial cells by distension activates nociceptive subepithelial primary afferent sensory fibres expressing P2X3 receptors to send messages to the pain centres in the central nervous system via interneurons in the spinal cord. Purinergic signalling is also involved in salivary gland and bile duct secretion.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
10
|
Yang GK, Fredholm BB, Kieffer TJ, Kwok YN. Improved blood glucose disposal and altered insulin secretion patterns in adenosine A(1) receptor knockout mice. Am J Physiol Endocrinol Metab 2012; 303:E180-90. [PMID: 22550063 DOI: 10.1152/ajpendo.00050.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by the inability of the pancreatic β-cells to secrete enough insulin to meet the demands of the body. Therefore, research of potential therapeutic approaches to treat T2DM has focused on increasing insulin output from β-cells or improving systemic sensitivity to circulating insulin. In this study, we examined the role of the A(1) receptor in glucose homeostasis with the use of A(1) receptor knockout mice (A(1)R(-/-)). A(1)R(-/-) mice exhibited superior glucose tolerance compared with wild-type controls. However, glucose-stimulated insulin release, insulin sensitivity, weight gain, and food intake were comparable between the two genotypes. Following a glucose challenge, plasma glucagon levels in wild-type controls decreased, but this was not observed in A(1)R(-/-) mice. In addition, pancreas perfusion with oscillatory glucose levels of 10-min intervals produced a regular pattern of pulsatile insulin release with a 10-min cycling period in wild-type controls and 5 min in A(1)R(-/-) mice. When the mice were fed a high-fat diet (HFD), both genotypes exhibited impaired glucose tolerance and insulin resistance. Increased insulin release was observed in HFD-fed mice in both genotypes, but increased glucagon release was observed only in HFD-fed A(1)R(-/-) mice. In addition, the regular patterns of insulin release following oscillatory glucose perfusion were abolished in HFD-fed mice in both genotypes. In conclusion, A(1) receptors in the pancreas are involved in regulating the temporal patterns of insulin release, which could have implications in the development of glucose intolerance seen in T2DM.
Collapse
Affiliation(s)
- Gary K Yang
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
11
|
Yang GK, Yip L, Fredholm BB, Kieffer TJ, Kwok YN. Involvement of adenosine signaling in controlling the release of ghrelin from the mouse stomach. J Pharmacol Exp Ther 2011; 336:77-86. [PMID: 20876230 DOI: 10.1124/jpet.110.171280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ghrelin, a potent orexigenic hormone released from the stomach, is important in regulating energy metabolism. Abnormal ghrelin levels are associated with eating disorders and metabolic diseases. However, factors involved in the regulation of ghrelin release remain unclear. Here, we examined the involvement of adenosine signaling in the control of ghrelin release from the perfused mouse stomach. Adenosine stimulated ghrelin release concentration-dependently, and the A(2A) receptor-selective antagonists 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) and 2-(2-furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine (SCH 58261) abolished the increased release. The A(2A) receptor-selective agonist 2-p-(2-carboxyethyl)phenethylamino-5-N-ethylcarboxamidoadenosine hydrochloride (CGS 21680) augmented ghrelin release concentration-dependently, whereas the A(1) receptor-selective agonist 2-chloro-N(6)-cyclopentyladenosine inhibited ghrelin release. In A(2A) receptor knockout mice, adenosine inhibited ghrelin release, and the A(1) receptor-selective antagonist 8-cyclopentyl-1,3-dipropylxanthine blocked this inhibition. The adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine hydrochloride increased ghrelin release in wild-type and A(1) receptor knockout mice but not in A(2A) receptor knockout mice. Colocalization of ghrelin immunoreactivity with A(1) and A(2A) receptor immunoreactivities in the gastric nerve fibers were observed. Colocalization was also detected for ghrelin and A(1) receptor immunoreactivities in the gastric mucosa. Blockade of neural activities with tetrodotoxin abolished the stimulatory effect of adenosine on ghrelin release. In conclusion, adenosine exerts predominantly a tonic A(2A) receptor-mediated stimulatory action on gastric ghrelin release, whereas an A(1) receptor-mediated inhibitory action is also apparent when the tonic excitatory effect was removed.
Collapse
Affiliation(s)
- Gary K Yang
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3
| | | | | | | | | |
Collapse
|
12
|
D’Alimonte I, D’Auro M, Citraro R, Biagioni F, Jiang S, Nargi E, Buccella S, Di Iorio P, Giuliani P, Ballerini P, Caciagli F, Russo E, De Sarro G, Ciccarelli R. Altered distribution and function of A2Aadenosine receptors in the brain of WAG/Rij rats with genetic absence epilepsy, before and after appearance of the disease. Eur J Neurosci 2009; 30:1023-35. [DOI: 10.1111/j.1460-9568.2009.06897.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Redzic ZB, Hasan FA, Al-Sarraf H. Effects of omeprazole treatment on nucleoside transporter expression and adenosine uptake in rat gastric mucosa. Can J Physiol Pharmacol 2009; 87:402-10. [PMID: 19448739 DOI: 10.1139/y09-016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Increased adenosine concentration inhibits gastric acid secretion in rat via adenosine A1 and A2A receptors, whereas achlorhydria suppresses A1 and A2A receptor gene expression. This study aimed to examine the effects of omeprazole-induced achlorhydria on the expression and functional activity of nucleoside transporters in rat gastric mucosa. Wistar rats were treated for either 1 or 3 days with 0.4 mmol/kg omeprazole via gavage; controls were treated with vehicle. The expression of nucleoside transporters at the transcript level was explored by quantitative real-time polymerase chain reaction assays; the functional activity of nucleoside transporters in gastric mucosa was explored by observing [3H]adenosine uptake in vitro. Gastric mucosa expressed rat equilibrative nucleoside transporter (rENT) 1 and 2, and rat concentrative nucleoside transporter (rCNT) 1, 2, and 3 at the transcript level, and the estimated values for the threshold cycles for target amplification (Ct) were 31.5 +/- 2, 28.5 +/- 2.1, 32.9 +/- 2.2, 29.1 +/- 2, and 28.9 +/- 2.5, respectively (n = 3 or 4). The Ct value for rat beta-actin was 21.9 +/- 1.8 (n = 4). In vitro uptake of [3H]adenosine by gastric mucosa samples consisted of Na+-dependent and Na+-independent components. One-day omeprazole treatment caused no change in nucleoside transporter mRNA levels or in [3H]adenosine uptake. Three-day omeprazole treatments, however, led to a 12-fold and 17-fold increase in rENT2 and rCNT1 mRNA levels, respectively. Samples taken after 3 days of treatment also took up significantly more [3H]adenosine than did samples from the corresponding control. In conclusion, the possible modification of nucleoside transport activities by changes in intraluminal acidity may have significance as part of a purinergic regulatory feedback mechanism in the control of gastric acid secretion.
Collapse
Affiliation(s)
- Zoran B Redzic
- Department of Physiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110 Kuwait.
| | | | | |
Collapse
|
14
|
Yang GK, Chen JF, Kieffer TJ, Kwok YN. Regulation of somatostatin release by adenosine in the mouse stomach. J Pharmacol Exp Ther 2009; 329:729-37. [PMID: 19208896 DOI: 10.1124/jpet.108.146050] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Adenosine inhibits gastric acid secretion, either directly by acting on acid-secreting parietal cells or indirectly by stimulating the release of the acid inhibitor, somatostatin. The present study examined the role of adenosine on somatostatin release in an isolated vascularly perfused mouse stomach model. Concentrations of exogenous adenosine >or= 1.0 microM stimulated gastric release of somatostatin-like immunoreactivity (SLI), and this effect was blocked by the A(2A) receptor antagonist ZM 241385 [4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol]. The A(2A) receptor agonist CGS 21680 [2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride] augmented SLI release in a concentration-dependent manner, suggesting that A(2A) receptor activation is involved in the stimulatory effect of adenosine on SLI release. Conversely, SLI release was inhibited by the A(1) receptor agonists N(6)-cyclopentyladenosine and 2-chloro-N(6)-cyclopentyladenosine and lower concentration of adenosine (0.01 microM). The involvement of specific adenosine receptors in controlling the release of gastric SLI was also examined using A(2A) receptor knockout (A(2A)R-KO) mice. In these mice, adenosine (10 microM) inhibited SLI release, and the effect was abolished by the selective A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine, suggesting a link between the selective A(1) activation and inhibition of SLI release. The adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine hydrochloride augmented SLI release in wild-type controls but not in the presence of ZM 241385 or in A(2A)R-KO mice. We conclude that adenosine has dual actions on regulating mouse gastric SLI release: stimulatory at higher concentrations through the A(2A) receptor and inhibitory at lower concentrations through the A(1) receptor, whereas A(2B) and A(3) receptors have a minimal role.
Collapse
Affiliation(s)
- Gary K Yang
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
15
|
Terashima S, Nishio H, Ogura M, Honda M, Takeuchi K. Involvement of prostacyclin/IP receptors in decreased acid response of damaged stomachs — Mediation by somatostatin/SST2 receptors. Life Sci 2009; 84:172-80. [DOI: 10.1016/j.lfs.2008.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 10/31/2008] [Accepted: 11/17/2008] [Indexed: 10/21/2022]
|
16
|
Purinergic receptors and gastrointestinal secretomotor function. Purinergic Signal 2008; 4:213-36. [PMID: 18604596 DOI: 10.1007/s11302-008-9104-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Accepted: 04/07/2008] [Indexed: 02/06/2023] Open
Abstract
Secretomotor reflexes in the gastrointestinal (GI) tract are important in the lubrication and movement of digested products, absorption of nutrients, or the diarrhea that occurs in diseases to flush out unwanted microbes. Mechanical or chemical stimulation of mucosal sensory enterochromaffin (EC) cells triggers release of serotonin (5-HT) (among other mediators) and initiates local reflexes by activating intrinsic primary afferent neurons of the submucous plexus. Signals are conveyed to interneurons or secretomotor neurons to stimulate chloride and fluid secretion. Inputs from myenteric neurons modulate secretory rates and reflexes, and special neural circuits exist to coordinate secretion with motility. Cellular components of secretomotor reflexes variably express purinergic receptors for adenosine (A1, A2a, A2b, or A3 receptors) or the nucleotides adenosine 5'-triphosphate (ATP), adenosine diphosphate (ADP), uridine 5'-triphosphate (UTP), or uridine diphosphate (UDP) (P2X(1-7), P2Y(2), P2Y(4), P2Y(6), P2Y(12) receptors). This review focuses on the emerging concepts in our understanding of purinergic regulation at these receptors, and in particular of mechanosensory reflexes. Purinergic inhibitory (A(1), A(3), P2Y(12)) or excitatory (A(2), P2Y(1)) receptors modulate mechanosensitive 5-HT release. Excitatory (P2Y(1), other P2Y, P2X) or inhibitory (A(1), A(3)) receptors are involved in mechanically evoked secretory reflexes or "neurogenic diarrhea." Distinct neural (pre- or postsynaptic) and non-neural distribution profiles of P2X(2), P2X(3), P2X(5), P2Y(1), P2Y(2), P2Y(4), P2Y(6), or P2Y(12) receptors, and for some their effects on neurotransmission, suggests their role in GI secretomotor function. Luminal A(2b), P2Y(2), P2Y(4), and P2Y(6) receptors are involved in fluid and Cl(-), HCO(3) (-), K(+), or mucin secretion. Abnormal receptor expression in GI diseases may be of clinical relevance. Adenosine A(2a) or A(3) receptors are emerging as therapeutic targets in inflammatory bowel diseases (IBD) and gastroprotection; they can also prevent purinergic receptor abnormalities and diarrhea. Purines are emerging as fundamental regulators of enteric secretomotor reflexes in health and disease.
Collapse
|
17
|
Vlajkovic SM, Abi S, Wang CJH, Housley GD, Thorne PR. Differential distribution of adenosine receptors in rat cochlea. Cell Tissue Res 2007; 328:461-71. [PMID: 17285327 DOI: 10.1007/s00441-006-0374-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 12/22/2006] [Indexed: 12/21/2022]
Abstract
Adenosine is a constitutive cell metabolite that can be released from cells via specific bi-directional transporters and is an end-point for nucleotide hydrolysis. In the extracellular space, adenosine becomes a signalling molecule for P1 (adenosine) receptors that modulate physiological responses in a wide range of mammalian tissues. Whereas adenosine signalling has been implicated in the regulation of cochlear blood flow and in cochlear protection from oxidative damage, the potential roles for adenosine signalling in the modulation of sound transduction and auditory neurotransmission have not been established. We have characterised the expression and distribution of adenosine receptors in the rat cochlea. mRNA transcripts for all four subtypes of adenosine receptors (A(1), A(2A), A(2B) and A(3)) were detected in dissected cochlear tissue by using reverse transcription/polymerase chain reaction analysis. The protein distribution for the A(1), A(2A) and A(3) receptor subtypes was identified by immunoperoxidase histochemistry and confocal immunofluorescence labelling. These receptors were differentially expressed in the organ of Corti, spiral ganglion neurones, lateral wall tissues and cochlear blood vessels. The distribution of adenosine receptors in sensory and neural tissues and in the vasculature coincided with other elements of purinergic signalling (P2X and P2Y receptors, ectonucleotidases), consistent with the integrative regulation of many physiological processes in the cochlea by extracellular nucleotides and nucleosides. Our study provides a framework for further investigation of adenosine signalling in the inner ear, including putative roles in oxidative stress responses.
Collapse
MESH Headings
- Animals
- Antibody Specificity
- Cochlea/metabolism
- Gene Expression Regulation
- Male
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptor, Adenosine A1/genetics
- Receptor, Adenosine A1/metabolism
- Receptor, Adenosine A2A/genetics
- Receptor, Adenosine A2A/metabolism
- Receptor, Adenosine A3/genetics
- Receptor, Adenosine A3/metabolism
- Receptors, Purinergic P1/genetics
- Receptors, Purinergic P1/metabolism
- Tissue Distribution
Collapse
Affiliation(s)
- Srdjan M Vlajkovic
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
18
|
Vázquez-Ramírez R, Olguín-Martínez M, Kubli-Garfias C, Hernández-Muñoz R. Reversing gastric mucosal alterations during ethanol-induced chronic gastritis in rats by oral administration of Opuntia ficus-indica mucilage. World J Gastroenterol 2006; 12:4318-24. [PMID: 16865772 PMCID: PMC4087741 DOI: 10.3748/wjg.v12.i27.4318] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the effect of mucilage obtained from cladodes of Opuntia ficus-indica (Cactaceae) on the healing of ethanol-induced gastritis in rats.
METHODS: Chronic gastric mucosa injury was treated with mucilage (5 mg/kg per day) after it was induced by ethanol. Lipid composition, activity of 5’-nucleotidase (a membrane-associated ectoenzyme) and cytosolic activities of lactate and alcohol dehydrogenases in the plasma membrane of gastric mucosa were determined. Histological studies of gastric samples from the experimental groups were included.
RESULTS: Ethanol elicited the histological profile of gastritis characterized by loss of the surface epithelium and infiltration of polymorphonuclear leukocytes. Phosphatidylcholine (PC) decreased and cholesterol content increased in plasma membranes of the gastric mucosa. In addition, cytosolic activity increased while the activity of alcohol dehydrogenases decreased. The administration of mucilage promptly corrected these enzymatic changes. In fact, mucilage readily accelerated restoration of the ethanol-induced histological alterations and the disturbances in plasma membranes of gastric mucosa, showing a univocal anti-inflammatory effect. The activity of 5’-nucleotidase correlated with the changes in lipid composition and the fluidity of gastric mucosal plasma membranes.
CONCLUSION: The beneficial action of mucilage seems correlated with stabilization of plasma membranes of damaged gastric mucosa. Molecular interactions between mucilage monosaccharides and membrane phospholipids, mainly PC and phosphatidylethanolamine (PE), may be the relevant features responsible for changing activities of membrane-attached proteins during the healing process after chronic gastric mucosal damage.
Collapse
Affiliation(s)
- Ricardo Vázquez-Ramírez
- Departamento de Biologia Celular y Fisiologia Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de Mexico. Apdo. Postal 70-243. Mexico D.F. 04510, Mexico
| | | | | | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the pertinent literature published in the past year regarding the regulation of gastric exocrine and endocrine secretion. RECENT FINDINGS Gastric acid aids protein digestion; facilitates the absorption of iron, calcium, and vitamin B12; thwarts enteric infection; and prevents bacterial overgrowth. When levels of acid and proteolytic enzymes overwhelm the mucosal defense mechanisms, ulcers occur. To avoid damage under these harsh conditions, gastric acid must be finely regulated by overlapping neural (e.g. orexin, pituitary adenylate cyclase-activating polypeptide, nitric oxide, and galanin), hormonal (e.g. gastrin, cholecystokinin, and ghrelin), paracrine (e.g. histamine and somatostatin), and autocrine (e.g. transforming growth factor-alpha) pathways. The precise mechanisms whereby Helicobacter pylori induces perturbations in acid secretion are not known, but they seem to involve changes in somatostatin and perhaps ghrelin secretion. Acid secretion by parietal cells involves intracellular elevation of calcium and/or cyclic AMP, followed by a cascade that triggers translocation of the proton pump, HK-adenosine triphosphatase, from cytoplasmic tubulovesicles to the secretory canaliculi. SUMMARY An improved understanding of the pathways and mechanisms regulating gastric acid secretion may lead to the development of new strategies to prevent and treat acid peptic disorders as well as circumvent the adverse effects of currently prescribed antisecretory medications.
Collapse
|
20
|
Yip L, Leung HCH, Kwok YN. Effect of omeprazole on gastric adenosine A1 and A2A receptor gene expression and function. J Pharmacol Exp Ther 2004; 311:180-9. [PMID: 15155771 DOI: 10.1124/jpet.104.069708] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adenosine has been shown to inhibit immunoreactive gastrin (IRG) release and to stimulate somatostatin-like immunoreactivity (SLI) release by activating adenosine A(1) and A(2A) receptors, respectively. Since the synthesis and release of gastrin and somatostatin are regulated by the acid secretory state of the stomach, the effect of achlorhydria on A(1) and A(2A) receptor gene expression and function was examined. Omeprazole-induced achlorhydria was shown to suppress A(1) and A(2A) receptor gene expression in the antrum and corporeal mucosa, but not in the corporeal muscle. Omeprazole treatment produced reciprocal changes in A(1) receptor and gastrin gene expression, and parallel changes in A(2A) receptor and somatostatin gene expression. The localization of A(1) and A(2A) receptors on gastrinsecreting G-cells and somatostatin-secreting D-cells, respectively, suggests that changes in adenosine receptor expression may modulate the synthesis and release of gastrin and somatostatin. Thus, the effect of omeprazole on adenosine receptor-mediated changes in IRG and SLI release was also examined in the vascularly perfused rat stomach. After omeprazole treatment, the A(1) receptor-mediated inhibition of IRG and SLI release induced by N(6)-cyclopentyladenosine (A(1) receptor-selective agonist) was not altered, but the A(2A) receptor-mediated augmentation of SLI release induced by 2-p-(2-carboxyethyl-)phenethylamino-5'-N-ethylcarboxamidoadenosine (A(2A)-selective agonist) was significantly attenuated. These findings agree well with the corresponding omeprazole-induced decrease in antral A(2A) receptor mRNA expression. Overall, the present study suggests that adenosine receptor gene expression and function may be altered by omeprazole treatment. Acid-dependent changes in adenosine receptor expression may represent a novel purinergic regulatory feedback mechanism in controlling gastric acid secretion.
Collapse
Affiliation(s)
- Linda Yip
- Department of Physiology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | |
Collapse
|
21
|
Yip L, Leung HCH, Kwok YN. Role of adenosine A1 receptor in the regulation of gastrin release. J Pharmacol Exp Ther 2004; 310:477-87. [PMID: 15044554 DOI: 10.1124/jpet.104.066654] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adenosine has been demonstrated to inhibit gastric acid secretion. In the rat stomach, this inhibitory effect may be mediated indirectly by the inhibition of gastrin release. Results show that the A(1) receptor agonist N(6)-cyclopentyladenosine (CPA) suppressed immunoreactive gastrin (IRG) release in a concentration-dependent manner. CPA significantly inhibited IRG release at 0.001 microM and maximally inhibited IRG release at 1 microM. At concentrations of 0.001 to 0.1 microM, the A(2A) receptor-selective agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine and A(3) receptor-selective agonist 1-deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-beta-d-ribofuranuronamide, had no effect on IRG release, suggesting the involvement of A(1) receptors. In agreement, the A(1) receptor-selective antagonist 8-cyclopentyl-1,3-dipropylxanthine abolished adenosine-induced inhibition of IRG release. Results of immunohistochemistry experiments reveal the presence of A(1) receptor immunoreactivity on mucosal G-cells and D-cells, and the gastric plexi, but not parietal cells, suggesting that adenosine may act directly on G-cells or indirectly on the gastric plexi to modulate IRG release. The structure of the mucosal A(1) receptor was found to be identical to that in the rat brain. Alternative splicing within the coding region of this receptor did not occur. A real-time reverse transcription-polymerase chain reaction assay was developed to measure gastric A(1) receptor gene expression. The highest level of gastric A(1) receptor mRNA was found in the corporeal muscle. However, this level was significantly lower in comparison with the striatum. In conclusion, this study shows that adenosine may suppress IRG release, at least in part, by activating A(1) receptors localized on G-cells and may consequently result in an inhibition of gastric acid secretion.
Collapse
Affiliation(s)
- Linda Yip
- Department of Physiology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | |
Collapse
|