1
|
Glueck M, Lucaciu A, Subburayalu J, Kestner RI, Pfeilschifter W, Vutukuri R, Pfeilschifter J. Atypical sphingosine-1-phosphate metabolites-biological implications of alkyl chain length. Pflugers Arch 2024; 476:1833-1843. [PMID: 39297971 PMCID: PMC11582160 DOI: 10.1007/s00424-024-03018-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/21/2024]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid signaling molecule with pleiotropic implications by both auto- and paracrine signaling. Signaling occurs by engaging five G protein-coupled receptors (S1P1-5) or intracellular pathways. While the extensively studied S1P with a chain length of 18 carbon atoms (d18:1 S1P) affects lymphocyte trafficking, immune cell survival and inflammatory responses, the biological implication of atypical S1Ps such as d16:1 or d20:1 remains elusive. As S1P lipids have far-reaching implications in health and disease states in mammalian organisms, the previous contrasting results may be attributed to differences in S1P's alkyl chain length. Current research is beginning to appreciate these less abundant atypical S1P moieties. This review provides an up-to-date foundation of recent findings on the biological implications of atypical S1P chain lengths and offers a perspective on future research endeavors on S1P alkyl chain length-influenced signaling and its implications for drug discovery.
Collapse
Affiliation(s)
- Melanie Glueck
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Goethe University Hospital, 60528, Frankfurt Am Main, Germany
| | - Alexandra Lucaciu
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany
- Department of Neurology, University Hospital Frankfurt, Frankfurt, Goethe University, Frankfurt am Main, 60528, Frankfurt, Germany
| | - Julien Subburayalu
- Department of Internal Medicine, University Hospital Carl Gustav Carus TU Dresden, Fetscherstraße 74, 01307, Dresden, Saxony, Germany
- Center of Regenerative Therapies Dresden, TU Dresden, Fetscherstraße 74, 01307, Dresden, Saxony, Germany
| | - Roxane Isabelle Kestner
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany
- Department of Neurology, University Hospital Frankfurt, Frankfurt, Goethe University, Frankfurt am Main, 60528, Frankfurt, Germany
| | - Waltraud Pfeilschifter
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany
- Department of Neurology and Clinical Neurophysiology, Städtisches Klinikum Lüneburg, 21339, Lüneburg, Germany
| | - Rajkumar Vutukuri
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany.
| | - Josef Pfeilschifter
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany.
| |
Collapse
|
2
|
Xie YX, Yao H, Peng JF, Ni D, Liu WT, Li CQ, Yi GH. Insight into modulators of sphingosine-1-phosphate receptor and implications for cardiovascular therapeutics. J Drug Target 2024; 32:300-310. [PMID: 38269855 DOI: 10.1080/1061186x.2024.2309577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/21/2023] [Indexed: 01/26/2024]
Abstract
Cardiovascular disease is the leading cause of death worldwide, and it's of great importance to understand its underlying mechanisms and find new treatments. Sphingosine 1-phosphate (S1P) is an active lipid that exerts its effects through S1P receptors on the cell surface or intracellular signal, and regulates many cellular processes such as cell growth, cell proliferation, cell migration, cell survival, and so on. S1PR modulators are a class of modulators that can interact with S1PR subtypes to activate receptors or block their activity, exerting either agonist or functional antagonist effects. Many studies have shown that S1P plays a protective role in the cardiovascular system and regulates cardiac physiological functions mainly through interaction with cell surface S1P receptors (S1PRs). Therefore, S1PR modulators may play a therapeutic role in cardiovascular diseases. Here, we review five S1PRs and their functions and the progress of S1PR modulators. In addition, we focus on the effects of S1PR modulators on atherosclerosis, myocardial infarction, myocardial ischaemia/reperfusion injury, diabetic cardiovascular diseases, and myocarditis, which may provide valuable insights into potential therapeutic strategies for cardiovascular disease.
Collapse
Affiliation(s)
- Yu-Xin Xie
- Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Hui Yao
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Jin-Fu Peng
- Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Dan Ni
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Wan-Ting Liu
- Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Chao-Quan Li
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Guang-Hui Yi
- Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| |
Collapse
|
3
|
Phan F, Bourron O, Foufelle F, Le Stunff H, Hajduch E. Sphingosine-1-phosphate signalling in the heart: exploring emerging perspectives in cardiopathology. FEBS Lett 2024; 598:2641-2655. [PMID: 38965662 DOI: 10.1002/1873-3468.14973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 07/06/2024]
Abstract
Cardiometabolic disorders contribute to the global burden of cardiovascular diseases. Emerging sphingolipid metabolites like sphingosine-1-phosphate (S1P) and its receptors, S1PRs, present a dynamic signalling axis significantly impacting cardiac homeostasis. S1P's intricate mechanisms extend to its transportation in the bloodstream by two specific carriers: high-density lipoprotein particles and albumin. This intricate transport system ensures the accessibility of S1P to distant target tissues, influencing several physiological processes critical for cardiovascular health. This review delves into the diverse functions of S1P and S1PRs in both physiological and pathophysiological conditions of the heart. Emphasis is placed on their diverse roles in modulating cardiac health, spanning from cardiac contractility, angiogenesis, inflammation, atherosclerosis and myocardial infarction. The intricate interplays involving S1P and its receptors are analysed concerning different cardiac cell types, shedding light on their respective roles in different heart diseases. We also review the therapeutic applications of targeting S1P/S1PRs in cardiac diseases, considering existing drugs like Fingolimod, as well as the prospects and challenges in developing novel therapies that selectively modulate S1PRs.
Collapse
Affiliation(s)
- Franck Phan
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Diabetology Department, Assistance Publique-Hôpitaux de Paris (APHP), La Pitié-Salpêtrière-Charles Foix University Hospital, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Olivier Bourron
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Diabetology Department, Assistance Publique-Hôpitaux de Paris (APHP), La Pitié-Salpêtrière-Charles Foix University Hospital, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Fabienne Foufelle
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Hervé Le Stunff
- Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Université Paris-Saclay, France
| | - Eric Hajduch
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| |
Collapse
|
4
|
Constantinescu V, Haase R, Akgün K, Ziemssen T. Long-term effects of siponimod on cardiovascular and autonomic nervous system in secondary progressive multiple sclerosis. Front Pharmacol 2024; 15:1431380. [PMID: 39364051 PMCID: PMC11447318 DOI: 10.3389/fphar.2024.1431380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Background Siponimod, a second-generation, selective sphingosine 1-phosphate receptor (S1PR) 1 and 5 modulator, represents an important therapeutic choice for active secondary progressive multiple sclerosis (SPMS). Besides the beneficial immunomodulatory effects, siponimod impacts cardiovascular function through S1PR1 modulation. Short-term vagomimetic effects on cardiac activity have proved to be mitigated by dose titration. However, long-term consequences are less known. Objectives This study aimed to investigate the long-term impact of siponimod on cardiac autonomic modulation in people with SPMS (pwSPMS). Methods Heart rate variability (HRV) and vascular hemodynamic parameters were evaluated using Multiple Trigonometric Regressive Spectral analysis in 47 pwSPMS before siponimod therapy and after one, three, six and 12 months of treatment. Autonomic activation tests (tilt test for the sympathetic and deep breathing test for the parasympathetic cardiac modulation) were performed at each examination. Results pwSPMS preserved regular cardiovascular modulation responses during the autonomic tests reflected in the variation of several HRV parameters, such as RMSSD, pNN50, total power of HRV, high-frequency and low-frequency bands of the spectral domain or hemodynamic vascular parameters (Cwk, Zao, TPR, MAP) and baroreflex sensitivity (BRS). In the long-term follow-up, RMSSD, pNN50, total power, BRS and CwK presented a significant decrease, underlining a reduction of the parasympathetic and a shift towards sympathetic predominance in cardiac autonomic modulation that tends to stabilise after 1 year of treatment. Conclusion Due to dose titration, the short-term effects of siponimod on cardiac autonomic modulation are mitigated. The long-term impact on cardiac autonomic modulation is similar to fingolimod. The autonomic activation tests showed normal cardiovascular responses during 1-year follow-up in pwSPMS, confirming the safety profile of siponimod. Further research on autonomic function could reveal whether the observed sympathetic activation is a compensatory response to S1P signaling intervention or a feature of the disease, while also shedding light on the role of S1PR modulation in MS.
Collapse
Affiliation(s)
- Victor Constantinescu
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden, Technical University of Dresden, Dresden, Germany
- Department of Neurology, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, Iasi, Romania
| | - Rocco Haase
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden, Technical University of Dresden, Dresden, Germany
| | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden, Technical University of Dresden, Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden, Technical University of Dresden, Dresden, Germany
| |
Collapse
|
5
|
Coyle PK, Freedman MS, Cohen BA, Cree BAC, Markowitz CE. Sphingosine 1-phosphate receptor modulators in multiple sclerosis treatment: A practical review. Ann Clin Transl Neurol 2024; 11:842-855. [PMID: 38366285 PMCID: PMC11021614 DOI: 10.1002/acn3.52017] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/18/2024] Open
Abstract
Four sphingosine 1-phosphate (S1P) receptor modulators (fingolimod, ozanimod, ponesimod, and siponimod) are approved by the US Food and Drug Administration for the treatment of multiple sclerosis. This review summarizes efficacy and safety data on these S1P receptor modulators, with an emphasis on similarities and differences. Efficacy data from the pivotal clinical trials are generally similar for the four agents. However, because no head-to-head clinical studies were conducted, direct efficacy comparisons cannot be made. Based on the adverse event profile of S1P receptor modulators, continued and regular monitoring of patients during treatment will be instructive. Notably, the authors recommend paying attention to the cardiac monitoring guidelines for these drugs, and when indicated screening for macular edema and cutaneous malignancies before starting treatment. To obtain the best outcome, clinicians should choose the drug based on disease type, history, and concomitant medications for each patient. Real-world data should help to determine whether there are meaningful differences in efficacy or side effects between these agents.
Collapse
Affiliation(s)
- Patricia K. Coyle
- Department of Neurology, Stony Brook Renaissance School of MedicineStony Brook UniversityStony BrookNew YorkUSA
| | - Mark S. Freedman
- University of OttawaDepartment of Medicine and the Ottawa Hospital Research InstituteOttawaOntarioCanada
| | - Bruce A. Cohen
- Department of NeurologyNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
| | - Bruce A. C. Cree
- Weill Institute for Neurosciences, Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Clyde E. Markowitz
- Department of Neurology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
6
|
Tilg H, Fumery M, Hedin CRH. Does cardiovascular risk matter in IBD patients? J Intern Med 2023; 294:708-720. [PMID: 37899299 DOI: 10.1111/joim.13735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Cardiovascular and thromboembolic risks are increasing in the population as a whole and therefore also in inflammatory bowel disease (IBD) patients. Obesity is a worldwide challenge also affecting the IBD population, and a causal association with Crohn's disease may exist. IBD itself, particularly when active, is also associated with a significant risk of thromboembolic and cardiovascular events such as myocardial infarction and stroke. Cardiovascular risk is also a significant consideration when using Janus kinase (JAK) inhibitors and sphingosine 1 phosphate (S1P) receptor modulators to treat IBD. JAK inhibitors - such as tofacitinib - are associated with several cardiovascular and venous thromboembolic risks, including hypertension and alterations in lipid profiles - specifically, increased LDL cholesterol and triglycerides - which may contribute to atherosclerosis and cardiovascular disease. S1P receptor modulators pose a slightly different set of cardiovascular risks. Initially, these drugs can cause transient bradycardia and atrioventricular (AV) block, leading to bradycardia. Moreover, they may induce QT interval prolongation, which increases the risk of life-threatening arrhythmias such as torsades de pointes. Some patients may also experience hypertension as a side effect. In this context, IBD healthcare providers need to be alert to the assessment of cardiovascular risk - particularly as cardiovascular events appear to be confined to specific patient groups with pre-existing risk factors. In addition, the potential for S1P modulator drug interactions requires a higher level of vigilance in patients with polypharmacy compared to biologics. Cardiovascular risk is not static, and updated assessment will need to become part of the routine in many IBD units.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Mathurin Fumery
- Gastroenterology Unit, Peritox UMR I-0I, Amiens University and Hospital, Université de Picardie Jules Verne, Amiens, France
| | - Charlotte R H Hedin
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Gastroenterology unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Sun G, Wang B, Zhu H, Ye J, Liu X. Role of sphingosine 1-phosphate (S1P) in sepsis-associated intestinal injury. Front Med (Lausanne) 2023; 10:1265398. [PMID: 37746079 PMCID: PMC10514503 DOI: 10.3389/fmed.2023.1265398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a widespread lipid signaling molecule that binds to five sphingosine-1-phosphate receptors (S1PRs) to regulate downstream signaling pathways. Sepsis can cause intestinal injury and intestinal injury can aggravate sepsis. Thus, intestinal injury and sepsis are mutually interdependent. S1P is more abundant in intestinal tissues as compared to other tissues, exerts anti-inflammatory effects, promotes immune cell trafficking, and protects the intestinal barrier. Despite the clinical importance of S1P in inflammation, with a very well-defined mechanism in inflammatory bowel disease, their role in sepsis-induced intestinal injury has been relatively unexplored. In addition to regulating lymphocyte exit, the S1P-S1PR pathway has been implicated in the gut microbiota, intestinal epithelial cells (IECs), and immune cells in the lamina propria. This review mainly elaborates on the physiological role of S1P in sepsis, focusing on intestinal injury. We introduce the generation and metabolism of S1P, emphasize the maintenance of intestinal barrier homeostasis in sepsis, and the protective effect of S1P in the intestine. We also review the link between sepsis-induced intestinal injury and S1P-S1PRs signaling, as well as the underlying mechanisms of action. Finally, we discuss how S1PRs affect intestinal function and become targets for future drug development to improve the translational capacity of preclinical studies to the clinic.
Collapse
Affiliation(s)
- Gehui Sun
- Gannan Medical University, Ganzhou, Jiangxi, China
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bin Wang
- Gannan Medical University, Ganzhou, Jiangxi, China
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hongquan Zhu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junming Ye
- Gannan Medical University, Ganzhou, Jiangxi, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Xiaofeng Liu
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
8
|
Cha E, Kim J, Gotina L, Kim J, Kim HJ, Seo SH, Park JE, Joo J, Kang M, Lee J, Hwang H, Kim HJ, Pae AN, Park KD, Park JH, Lim SM. Exploration of Tetrahydroisoquinoline- and Benzo[ c]azepine-Based Sphingosine 1-Phosphate Receptor 1 Agonists for the Treatment of Multiple Sclerosis. J Med Chem 2023; 66:10381-10412. [PMID: 37489798 DOI: 10.1021/acs.jmedchem.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Because of the wide use of Fingolimod for the treatment of multiple sclerosis (MS) and its cardiovascular side effects such as bradycardia, second-generation sphingosine 1-phosphate receptor 1 (S1P1) agonist drugs for MS have been developed and approved by FDA. The issue of bradycardia is still present with the new drugs, however, which necessitates further exploration of S1P1 agonists with improved safety profiles for next-generation MS drugs. Herein, we report a tetrahydroisoquinoline or a benzo[c]azepine core-based S1P1 agonists such as 32 and 60 after systematic examination of hydrophilic groups and cores. We investigated the binding modes of our representative compounds and their molecular interactions with S1P1 employing recent S1P1 cryo-EM structures. Also, favorable ADME properties of our compounds were shown. Furthermore, in vivo efficacy of our compounds was clearly demonstrated with PLC and EAE studies. Also, the preliminary in vitro cardiovascular safety of our compound was verified with human iPSC-derived cardiomyocytes.
Collapse
Affiliation(s)
- Eunji Cha
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jushin Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Lizaveta Gotina
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jaehwan Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hyeon Jeong Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Seon Hee Seo
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jeong-Eun Park
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Jeongmin Joo
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Minsik Kang
- Doping Control Center, Research Resources Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jaeick Lee
- Doping Control Center, Research Resources Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hayoung Hwang
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Hak Joong Kim
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ae Nim Pae
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Ki Duk Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jong-Hyun Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Sang Min Lim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
9
|
Ya'ar Bar S, Pintel N, Abd Alghne H, Khattib H, Avni D. The therapeutic potential of sphingolipids for cardiovascular diseases. Front Cardiovasc Med 2023; 10:1224743. [PMID: 37608809 PMCID: PMC10440740 DOI: 10.3389/fcvm.2023.1224743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/17/2023] [Indexed: 08/24/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide and Inflammation plays a critical role in the development of CVD. Despite considerable progress in understanding the underlying mechanisms and various treatment options available, significant gaps in therapy necessitate the identification of novel therapeutic targets. Sphingolipids are a family of lipids that have gained attention in recent years as important players in CVDs and the inflammatory processes that underlie their development. As preclinical studies have shown that targeting sphingolipids can modulate inflammation and ameliorate CVDs, targeting sphingolipids has emerged as a promising therapeutic strategy. This review discusses the current understanding of sphingolipids' involvement in inflammation and cardiovascular diseases, the existing therapeutic approaches and gaps in therapy, and explores the potential of sphingolipids-based drugs as a future avenue for CVD treatment.
Collapse
Affiliation(s)
- Sapir Ya'ar Bar
- Department of Natural Compound, Nutrition, and Health, MIGAL, Kiryat Shmona, Israel
| | - Noam Pintel
- Department of Natural Compound, Nutrition, and Health, MIGAL, Kiryat Shmona, Israel
| | - Hesen Abd Alghne
- Department of Natural Compound, Nutrition, and Health, MIGAL, Kiryat Shmona, Israel
- Tel-Hai College Department of Biotechnology, Kiryat Shmona, Israel
| | - Hamdan Khattib
- Department of Natural Compound, Nutrition, and Health, MIGAL, Kiryat Shmona, Israel
- Department of Gastroenterology and Hepatology, Tel Aviv University Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Dorit Avni
- Department of Natural Compound, Nutrition, and Health, MIGAL, Kiryat Shmona, Israel
- Tel-Hai College Department of Biotechnology, Kiryat Shmona, Israel
| |
Collapse
|
10
|
Hu G, Xie D, Chen C, Wang W, Li PL, Ritter JK, Li N. Renal Medullary Overexpression of Sphingosine-1-Phosphate Receptor 1 Transgene Attenuates Deoxycorticosterone Acetate (DOCA)-Salt Hypertension. Am J Hypertens 2023; 36:509-516. [PMID: 37171128 PMCID: PMC10403973 DOI: 10.1093/ajh/hpad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/15/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Our previous studies showed that renal medullary sphingosine-1-phosphate receptor 1 (S1PR1) mediated sodium excretion, high salt intake increased S1PR1 level, deoxycorticosterone acetate (DOCA) blocked high salt-induced S1PR1 in the renal medulla, and that conditional knockout of S1PR1 in the collecting duct aggravated DOCA-salt hypertension. The present study tested the hypothesis that overexpression of S1PR1 transgene in the renal medulla attenuates the sodium retention and hypertension in DOCA-salt mouse model. METHODS Male C57BL/6J mice received renal medullary transfection of control or S1PR1-expressing plasmids and then DOCA-salt treatment. Renal sodium excretion and arterial pressure were compared between control and S1PR1-overexpressed mice in response to high salt loading or pressure natriuresis. RESULTS S1PR1-transfected mice showed significantly enhanced urinary sodium excretion in response to acute sodium loading (0.93 ± 0.27 in control vs. 4.72 ± 1.12 µmol/min/gKW in S1PR1-overexpressed mice, P < 0.05) and the pressure natriuresis (3.58 ± 1.77 vs. 9.52 ± 1.38, P < 0.05), less positive sodium balance in response to chronic high-salt intake (3.05 ± 0.39 vs. 1.65 ± 0.39 mmol/72 hr, P < 0.05), and consequently, the attenuation of DOCA-salt hypertension (134.2 ± 6.79 vs. 109.8 ± 3.54 mm Hg, P < 0.05). The αENaC protein amount in the renal medulla was not changed, however, the βENaC was significantly decreased and the γENaC was significantly increased in S1PR1-overexpressed mice. The immunostaining showed apical membrane translocation of γENaC, while no change of αENaC and βENaC in control mice, and that the apical membrane translocation of γENaC was blocked in S1PR1-treasffected mice. CONCLUSIONS These results suggested that activation of S1PR1 in the renal medulla attenuates DOCA-induced sodium retention and salt-sensitive hypertension associated with inhibition of ENaC.
Collapse
Affiliation(s)
- Gaizun Hu
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Dengpiao Xie
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P. R. China
| | - Chaoling Chen
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Weili Wang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Ningjun Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| |
Collapse
|
11
|
Jayant G, Kuperberg S, Somnay K, Wadgaonkar R. The Role of Sphingolipids in Regulating Vascular Permeability in Idiopathic Pulmonary Fibrosis. Biomedicines 2023; 11:1728. [PMID: 37371823 DOI: 10.3390/biomedicines11061728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a disease that causes scarring and fibrotic transformation of the lung parenchyma, resulting in the progressive loss of respiratory function and, often, death. Current treatments that target profibrotic factors can slow the rate of progression but are unable to ultimately stop it. In the past decade, many studies have shown that increased vascular permeability may be both a predictive and perpetuating factor in fibrogenesis. Consequently, there is a search for therapeutic targets to try and modulate vascular permeability in fibrotic lungs. One such class of targets that show great promise is sphingolipids. Sphingolipids are common in cell membranes and are increasingly recognized as critical to many cell signaling pathways, including those that affect the integrity of the vascular endothelial barrier. In this focused review we look at sphingolipids, particularly the sphingosine-1-phosphate (S1P) axis and its effects on vascular permeability, and how those effects may affect the pathogenesis of IPF. We further examine existing S1P modulators and their potential efficacy as therapeutics for IPF.
Collapse
Affiliation(s)
- Girish Jayant
- SUNY Downstate College of Medicine, Brooklyn, NY 11203, USA
| | | | - Kaumudi Somnay
- NY Presbyterian Hospital Queens, New York, NY 11355, USA
| | - Raj Wadgaonkar
- SUNY Downstate College of Medicine, Brooklyn, NY 11203, USA
| |
Collapse
|
12
|
Kihara Y, Chun J. Molecular and neuroimmune pharmacology of S1P receptor modulators and other disease-modifying therapies for multiple sclerosis. Pharmacol Ther 2023; 246:108432. [PMID: 37149155 DOI: 10.1016/j.pharmthera.2023.108432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Multiple sclerosis (MS) is a neurological, immune-mediated demyelinating disease that affects people in the prime of life. Environmental, infectious, and genetic factors have been implicated in its etiology, although a definitive cause has yet to be determined. Nevertheless, multiple disease-modifying therapies (DMTs: including interferons, glatiramer acetate, fumarates, cladribine, teriflunomide, fingolimod, siponimod, ozanimod, ponesimod, and monoclonal antibodies targeting ITGA4, CD20, and CD52) have been developed and approved for the treatment of MS. All the DMTs approved to date target immunomodulation as their mechanism of action (MOA); however, the direct effects of some DMTs on the central nervous system (CNS), particularly sphingosine 1-phosphate (S1P) receptor (S1PR) modulators, implicate a parallel MOA that may also reduce neurodegenerative sequelae. This review summarizes the currently approved DMTs for the treatment of MS and provides details and recent advances in the molecular pharmacology, immunopharmacology, and neuropharmacology of S1PR modulators, with a special focus on the CNS-oriented, astrocyte-centric MOA of fingolimod.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, United States of America.
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, United States of America
| |
Collapse
|
13
|
Constantinescu V, Haase R, Akgün K, Ziemssen T. S1P receptor modulators and the cardiovascular autonomic nervous system in multiple sclerosis: a narrative review. Ther Adv Neurol Disord 2022; 15:17562864221133163. [PMID: 36437849 PMCID: PMC9685213 DOI: 10.1177/17562864221133163] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/29/2022] [Indexed: 01/21/2024] Open
Abstract
UNLABELLED Sphingosine 1-phosphate (S1P) receptor (S1PR) modulators have a complex mechanism of action, which are among the most efficient therapeutic options in multiple sclerosis (MS) and represent a promising approach for other immune-mediated diseases. The S1P signaling pathway involves the activation of five extracellular S1PR subtypes (S1PR1-S1PR5) that are ubiquitous and have a wide range of effects. Besides the immunomodulatory beneficial outcome in MS, S1P signaling regulates the cardiovascular function via S1PR1-S1PR3 subtypes, which reside on cardiac myocytes, endothelial, and vascular smooth muscle cells. In our review, we describe the mechanisms and clinical effects of S1PR modulators on the cardiovascular system. In the past, mostly short-term effects of S1PR modulators on the cardiovascular system have been studied, while data on long-term effects still need to be investigated. Immediate effects detected after treatment initiation are due to parasympathetic overactivation. In contrast, long-term effects may arise from a shift of the autonomic regulation toward sympathetic predominance along with S1PR1 downregulation. A mild increase in blood pressure has been reported in long-term studies, as well as decreased baroreflex sensitivity. In most studies, sustained hypertension was found to represent a significant adverse event related to treatment. The shift in the autonomic control and blood pressure values could not be just a consequence of disease progression but also related to S1PR modulation. Reduced cardiac autonomic activation and decreased heart rate variability during the long-term treatment with S1PR modulators may increase the risk for subsequent cardiac events. For second-generation S1PR modulators, this observation has to be confirmed in further studies with longer follow-ups. The periodic surveillance of cardiovascular function and detection of any cardiac autonomic dysfunction can help predict cardiac outcomes not only after the first dose but also throughout treatment. PLAIN LANGUAGE SUMMARY What is the cardiovascular effect of S1P receptor modulator therapy in multiple sclerosis? Sphingosine 1-phosphate (S1P) receptor (S1PR) modulators are among the most efficient therapies for multiple sclerosis. As small molecules, they are not only acting on the immune but on cardiovascular and nervous systems as well. Short-term effects of S1PR modulators on the cardiovascular system have already been extensively described, while long-term effects are less known. Our review describes the mechanisms of action and the short- and long-term effects of these therapeutic agents on the cardiovascular system in different clinical trials. We systematically reviewed the literature that had been published by January 2022. One hundred seven articles were initially identified by title and abstract using targeted keywords, and thirty-nine articles with relevance to cardiovascular effects of S1PR therapy in multiple sclerosis patients were thereafter considered, including their references for further accurate clarification. Studies on fingolimod, the first S1PR modulator approved for treating multiple sclerosis, primarily support the safety profile of this therapeutic class. The second-generation therapeutic agents along with a different treatment initiation approach helped mitigate several of the cardiovascular adverse effects that had previously been observed at the start of treatment. The heart rate may decrease when initiating S1PR modulators and, less commonly, the atrioventricular conduction may be prolonged, requiring cardiac monitoring for the first 6 h of medication. Continuous therapy with S1PR modulators can increase blood pressure values; therefore, the presence of arterial hypertension should be checked during long-term treatment. Periodic surveillance of the cardiovascular and autonomic functions can help predict cardiac outcomes and prevent possible adverse events in S1PR modulators treatment. Further studies with longer follow-ups are needed, especially for the second-generation of S1PR modulators, to confirm the safety profile of this therapeutic class.
Collapse
Affiliation(s)
- Victor Constantinescu
- Department of Neurology, Center of Clinical
Neuroscience, University Hospital Carl Gustav Carus, Dresden University of
Technology, Dresden, Germany
| | - Rocco Haase
- Department of Neurology, Center of Clinical
Neuroscience, University Hospital Carl Gustav Carus, Dresden University of
Technology, Dresden, Germany
| | - Katja Akgün
- Department of Neurology, Center of Clinical
Neuroscience, University Hospital Carl Gustav Carus, Dresden University of
Technology, Dresden, Germany
| | - Tjalf Ziemssen
- Department of Neurology, Center of Clinical
Neuroscience, University Hospital Carl Gustav Carus, Dresden University of
Technology, Fetscherstrasse 74, D-01307 Dresden, Germany
| |
Collapse
|
14
|
Katunaric B, SenthilKumar G, Schulz ME, De Oliveira N, Freed JK. S1P (Sphingosine-1-Phosphate)-Induced Vasodilation in Human Resistance Arterioles During Health and Disease. Hypertension 2022; 79:2250-2261. [PMID: 36070401 PMCID: PMC9473289 DOI: 10.1161/hypertensionaha.122.19862] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Preclinical studies suggest that S1P (sphingosine-1-phosphate) influences blood pressure regulation primarily through NO-induced vasodilation. Because microvascular tone significantly contributes to mean arterial pressure, the mechanism of S1P on human resistance arterioles was investigated. We hypothesized that S1P induces NO-mediated vasodilation in human arterioles from adults without coronary artery disease (non-coronary artery disease) through activation of 2 receptors, S1PR1 (S1P receptor 1) and S1PR3 (S1P receptor 3). Furthermore, we tested whether this mechanism is altered in vessels from patients diagnosed with coronary artery disease. METHODS Human arterioles (50-200 µm in luminal diameter) were dissected from otherwise discarded surgical adipose tissue, cannulated, and pressurized. Following equilibration, resistance vessels were preconstricted with ET-1 (endothelin-1) and changes in internal diameter to increasing concentrations of S1P (10-12 to 10-7 M) in the presence or absence of various inhibitors were measured. RESULTS S1P resulted in significant dilation that was abolished in vessels treated with S1PR1 and S1PR3 inhibitors and in vessels with reduced expression of each receptor. Dilation to S1P was significantly reduced in the presence of the NOS (NO synthase) inhibitor Nω-nitro-L-arginine methyl ester and the NO scavenger 2-4-(carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. Interestingly, dilation was also significantly impaired in the presence of PEG-catalase (polyethylene glycol-catalase), apocynin, and specific inhibitors of NOX (NADPH oxidases) 2 and 4. Dilation in vessels from patients diagnosed with coronary artery disease was dependent on H2O2 alone which was only dependent on S1PR3 activation. CONCLUSIONS These translational studies highlight the inter-species variation observed in vascular signaling and provide insight into the mechanism by which S1P regulates microvascular resistance and ultimately blood pressure in humans.
Collapse
Affiliation(s)
- Boran Katunaric
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
| | - Gopika SenthilKumar
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Mary E. Schulz
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
| | - Nilto De Oliveira
- Department of Surgery, Division of Adult Cardiothoracic Surgery, Medical College of Wisconsin, Milwaukee, WI
| | - Julie K. Freed
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
15
|
King DR, Sedovy MW, Eaton X, Dunaway LS, Good ME, Isakson BE, Johnstone SR. Cell-To-Cell Communication in the Resistance Vasculature. Compr Physiol 2022; 12:3833-3867. [PMID: 35959755 DOI: 10.1002/cphy.c210040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The arterial vasculature can be divided into large conduit arteries, intermediate contractile arteries, resistance arteries, arterioles, and capillaries. Resistance arteries and arterioles primarily function to control systemic blood pressure. The resistance arteries are composed of a layer of endothelial cells oriented parallel to the direction of blood flow, which are separated by a matrix layer termed the internal elastic lamina from several layers of smooth muscle cells oriented perpendicular to the direction of blood flow. Cells within the vessel walls communicate in a homocellular and heterocellular fashion to govern luminal diameter, arterial resistance, and blood pressure. At rest, potassium currents govern the basal state of endothelial and smooth muscle cells. Multiple stimuli can elicit rises in intracellular calcium levels in either endothelial cells or smooth muscle cells, sourced from intracellular stores such as the endoplasmic reticulum or the extracellular space. In general, activation of endothelial cells results in the production of a vasodilatory signal, usually in the form of nitric oxide or endothelial-derived hyperpolarization. Conversely, activation of smooth muscle cells results in a vasoconstriction response through smooth muscle cell contraction. © 2022 American Physiological Society. Compr Physiol 12: 1-35, 2022.
Collapse
Affiliation(s)
- D Ryan King
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA
| | - Meghan W Sedovy
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA.,Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, Virginia, USA
| | - Xinyan Eaton
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA
| | - Luke S Dunaway
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Miranda E Good
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Scott R Johnstone
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
16
|
Habek M, Junaković A, Karić A, Crnošija L, Barun B, Gabelić T, Adamec I, Krbot Skorić M. Short- and long-term effects of siponimod on autonomic nervous system in secondary progressive multiple sclerosis. Mult Scler Relat Disord 2022; 64:103966. [PMID: 35724530 DOI: 10.1016/j.msard.2022.103966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/13/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the short- and long-term effects of siponimod on autonomic nervous system (ANS) function, in people with secondary progressive multiple sclerosis (pwSPMS) METHODS: The following ANS tests were performed in 26 pwSPMS: a 10 min supine resting position, Valsalva maneuver, deep breathing test and a 10 min tilt-up table test. Heart rate variability (HRV) was performed for the 10 min in supine resting position (M0) and for a 3 h period after siponimod treatment initiation (M0s1-6). All ANS tests were repeated after at least 6 months of treatment with siponimod (M6). RESULTS In all 6 intervals after siponimod ingestion (M0s1-6), standard deviation of NN intervals (SDNN) was higher compared to M0. After 6 months of continuous treatment with siponimod, SDNN was significantly lower compared to M0. At M6, Valsalva ratio and respiratory sinus arrhythmia were lower compared to M0 values (1.510±0.338 vs 1.864±0.456, p=0.003 and 7.969±2.865 vs 13.091±4.687, p<0.001, respectively). Cardiovagal index was significantly higher at M6 compared to M0 (1 (range 0-2) vs 0 (range 0-1), p=0.008, respectively). Active Magnetic Resonance Imaging (MRI) one year prior to starting siponimod was a positive predictor of M6 SDNN and Adrenergic Index (AI) at M0 was a negative predictor of M6 SDNN. CONCLUSION This study has shown an inverse relationship in short- versus long-term effects of siponimod on ANS function. A shift towards parasympathetic predominance was observed during the first three hours after ingestion, while after 6 or more months of continuous treatment with siponimod, a shift towards sympathetic predominance was observed.
Collapse
Affiliation(s)
- Mario Habek
- Department of Neurology, University Hospital Center Zagreb, Kišpatićeva 12, Zagreb HR-10000, Croatia; School of Medicine, University of Zagreb, Zagreb, Croatia.
| | | | - Antea Karić
- Department of Neurology, University Hospital Center Zagreb, Kišpatićeva 12, Zagreb HR-10000, Croatia
| | - Luka Crnošija
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Barbara Barun
- Department of Neurology, University Hospital Center Zagreb, Kišpatićeva 12, Zagreb HR-10000, Croatia; School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Tereza Gabelić
- Department of Neurology, University Hospital Center Zagreb, Kišpatićeva 12, Zagreb HR-10000, Croatia; School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Adamec
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Magdalena Krbot Skorić
- School of Medicine, University of Zagreb, Zagreb, Croatia; Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
17
|
Spampinato SF, Sortino MA, Salomone S. Sphingosine-1-phosphate and Sphingosine-1-phosphate receptors in the cardiovascular system: pharmacology and clinical implications. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 94:95-139. [PMID: 35659378 DOI: 10.1016/bs.apha.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a lipid that binds and activates five distinct receptor subtypes, S1P1, S1P2, S1P3, S1P4, S1P5, widely expressed in different cells, tissues and organs. In the cardiovascular system these receptors have been extensively studied, but no drug acting on them has been approved so far for treating cardiovascular diseases. In contrast, a number of S1P receptor agonists are approved as immunomodulators, mainly for multiple sclerosis, because of their action on lymphocyte trafficking. This chapter summarizes the available information on S1P receptors in the cardiovascular system and discusses their potential for treating cardiovascular conditions and/or their role on the clinical pharmacology of drugs so far approved for non-cardiovascular conditions. Basic research has recently produced data useful to understand the molecular pharmacology of S1P and S1P receptors, regarding biased agonism, S1P storage, release and vehiculation and chaperoning by lipoproteins, paracrine actions, intracellular non-receptorial S1P actions. On the other hand, the approval of fingolimod and newer generation S1P receptor ligands as immunomodulators, provides information on a number of clinical observations on the impact of these drugs on cardiovascular system which need to be integrated with preclinical data. S1P receptors are potential targets for prevention and treatment of major cardiovascular conditions, including hypertension, myocardial infarction, heart failure and stroke.
Collapse
Affiliation(s)
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Science, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Science, University of Catania, Catania, Italy.
| |
Collapse
|
18
|
Sphingosine 1-phosphate modulation and immune cell trafficking in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2022; 19:351-366. [PMID: 35165437 DOI: 10.1038/s41575-021-00574-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 12/12/2022]
Abstract
Immune cell trafficking is a critical element of the intestinal immune response, both in homeostasis and in pathological conditions associated with inflammatory bowel disease (IBD). This process involves adhesion molecules, chemoattractants and receptors expressed on immune cell surfaces, blood vessels and stromal intestinal tissue as well as signalling pathways, including those modulated by sphingosine 1-phosphate (S1P). The complex biological processes of leukocyte recruitment, activation, adhesion and migration have been targeted by various monoclonal antibodies (vedolizumab, etrolizumab, ontamalimab). Promising preclinical and clinical data with several oral S1P modulators suggest that inhibition of lymphocyte egress from the lymph nodes to the bloodstream might be a safe and efficacious alternative mechanism for reducing inflammation in immune-mediated disorders, including Crohn's disease and ulcerative colitis. Although various questions remain, including the potential positioning of S1P modulators in treatment algorithms and their long-term safety, this novel class of compounds holds great promise. This Review summarizes the critical mediators and mechanisms involved in immune cell trafficking in IBD and the available evidence for efficacy, safety and pharmacokinetics of S1P receptor modulators in IBD and other immune-mediated disorders. Further, it discusses potential future approaches to incorporate S1P modulators into the treatment of IBD.
Collapse
|
19
|
Barbieri MA, Sorbara EE, Battaglia A, Cicala G, Rizzo V, Spina E, Cutroneo PM. Adverse Drug Reactions with Drugs Used in Multiple Sclerosis: An Analysis from the Italian Pharmacovigilance Database. Front Pharmacol 2022; 13:808370. [PMID: 35281926 PMCID: PMC8904918 DOI: 10.3389/fphar.2022.808370] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
Given the importance of inflammation at the onset of multiple sclerosis (MS), therapy is mainly based on the use of anti-inflammatory drugs including disease modifying therapies (DMTs). Considering the recent approval of some DMTs, pharmacovigilance becomes a fundamental tool for the acquisition of new safety data. The aim of the study was to analyze adverse drug reactions (ADRs) related to the use of drugs approved for MS. All national publicly-available aggregated ADR reports recorded from 2002 to 2020 into the Reports of Adverse Reactions of Medicines (RAM) system and all complete Sicilian data reported into the Italian spontaneous reporting system (SRS) database having as suspected drugs interferon β-1a (IFN β-1a), interferon β-1b (IFN β-1b), peginterferon β-1a (PEG-IFN β-1a), glatiramer acetate (GA), natalizumab (NTZ), fingolimod (FNG), teriflunomide (TRF), dimethyl fumarate (DMF), alemtuzumab (Alem), ocrelizumab (OCZ), or cladribine (Cladr), were collected. Descriptive analyses of national, publicly-available aggregated data and full-access regional data were performed to assess demographic characteristics and drug-related variables followed by a more in-depth analysis of all Sicilian ADRs with a case-by-case assessment and a disproportionality analysis of unexpected ADRs. A total of 13,880 national reports have been collected from 2002 to 2020: they were mainly not serious ADRs (67.9% vs. 26.1%) and related to females (71.7% vs. 26.3%) in the age group 18–65 years (76.5%). The most reported ADRs were general and administration site conditions (n = 6,565; 47.3%), followed by nervous (n = 3,090; 22.3%), skin (n = 2,763; 19.9%) and blood disorders (n = 2,180; 15.7%). Some unexpected Sicilian ADRs were shown, including dyslipidemia for FNG (n = 10; ROR 28.5, CI 14.3–59.6), NTZ (n = 5; 10.3, 4.1–25.8), and IFN β-1a (n = 4; 8.7, 3.1–24.1), abortion and alopecia for NTZ (n = 9; 208.1, 73.4–590.1; n = 3; 4.9, 1.5–15.7), and vitamin D deficiency for GA (n = 3; 121.2, 30.9–475.3). Moreover, breast cancer with DMF (n = 4, 62.8, 20.5–191.9) and hypothyroidism with Cladr (n = 3; 89.2, 25.9–307.5) were also unexpected. The reporting of drugs-related ADRs in MS were mostly reported in the literature, but some unknown ADRs were also found. However, further studies are necessary to increase the awareness about the safety profiles of new drugs on the market.
Collapse
Affiliation(s)
| | | | - Alessandro Battaglia
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giuseppe Cicala
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Vincenzo Rizzo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Edoardo Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Paola Maria Cutroneo
- Sicilian Regional Pharmacovigilance Centre, University Hospital of Messina, Messina, Italy
| |
Collapse
|
20
|
Pournajaf S, Dargahi L, Javan M, Pourgholami MH. Molecular Pharmacology and Novel Potential Therapeutic Applications of Fingolimod. Front Pharmacol 2022; 13:807639. [PMID: 35250559 PMCID: PMC8889014 DOI: 10.3389/fphar.2022.807639] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Fingolimod is a well-tolerated, highly effective disease-modifying therapy successfully utilized in the management of multiple sclerosis. The active metabolite, fingolimod-phosphate, acts on sphingosine-1-phosphate receptors (S1PRs) to bring about an array of pharmacological effects. While being initially recognized as a novel agent that can profoundly reduce T-cell numbers in circulation and the CNS, thereby suppressing inflammation and MS, there is now rapidly increasing knowledge on its previously unrecognized molecular and potential therapeutic effects in diverse pathological conditions. In addition to exerting inhibitory effects on sphingolipid pathway enzymes, fingolimod also inhibits histone deacetylases, transient receptor potential cation channel subfamily M member 7 (TRMP7), cytosolic phospholipase A2α (cPLA2α), reduces lysophosphatidic acid (LPA) plasma levels, and activates protein phosphatase 2A (PP2A). Furthermore, fingolimod induces apoptosis, autophagy, cell cycle arrest, epigenetic regulations, macrophages M1/M2 shift and enhances BDNF expression. According to recent evidence, fingolimod modulates a range of other molecular pathways deeply rooted in disease initiation or progression. Experimental reports have firmly associated the drug with potentially beneficial therapeutic effects in immunomodulatory diseases, CNS injuries, and diseases including Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, and even cancer. Attractive pharmacological effects, relative safety, favorable pharmacokinetics, and positive experimental data have collectively led to its testing in clinical trials. Based on the recent reports, fingolimod may soon find its way as an adjunct therapy in various disparate pathological conditions. This review summarizes the up-to-date knowledge about molecular pharmacology and potential therapeutic uses of fingolimod.
Collapse
Affiliation(s)
- Safura Pournajaf
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
21
|
Alatrag F, Amoni M, Kelly-Laubscher R, Gwanyanya A. Cardioprotective effect of fingolimod against calcium paradox-induced myocardial injury in the isolated rat heart. Can J Physiol Pharmacol 2022; 100:134-141. [PMID: 34559972 DOI: 10.1139/cjpp-2021-0381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fingolimod (FTY720) inhibits Ca2+-permeable, Mg2+-sensitive channels called transient receptor potential melastatin 7 (TRPM7), but its effects on Ca2+ paradox (CP) - induced myocardial damage has not been evaluated. We studied the effect of FTY720 on CP-induced myocardial damage and used other TRPM7 channel inhibitors nordihydroguaiaretic acid (NDGA) and Mg2+ to test if any effect of FTY720 was via TRPM7 inhibition. Langendorff-perfused Wistar rat hearts were treated with FTY720 or NDGA and subjected to a CP protocol consisting of Ca2+ depletion followed by Ca2+ repletion. Hearts of rats pre-treated with MgSO4 were also subjected to CP. Hemodynamic parameters were measured using an intraventricular balloon, and myocardial infarct size was quantified using triphenyltetrazolium chloride stain. TRPM7 proteins in ventricular tissue were detected using immunoblot analysis. FTY720, but not NDGA, decreased CP-induced infarct size. Both FTY720 and NDGA minimized the CP-induced elevation of left ventricular end-diastolic pressure, but only FTY720 ultimately improved ventricular developed pressure. Mg2+ pre-treatment had no effect on CP-induced infarct size, nor hemodynamic parameters during CP, nor the level of TRPM7 protein expression in ventricular tissue. Overall, FTY720 attenuated CP-induced myocardial damage, with potential therapeutic implications on Ca2+-mediated cardiotoxicity; however, the cardioprotective mechanism of FTY720 seems to be unrelated to TRPM7 channel modulation.
Collapse
Affiliation(s)
- Fatma Alatrag
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Matthew Amoni
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Roisin Kelly-Laubscher
- Department of Pharmacology and Therapeutics, The College of Medicine and Health, University College Cork, Ireland
- Department of Biological Sciences, Faculty of Science, University of Cape Town, Rondebosch 7700, Cape Town, South Africa
| | - Asfree Gwanyanya
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa
| |
Collapse
|
22
|
Park SJ, Yeon SK, Kim Y, Kim HJ, Kim S, Kim J, Choi JW, Kim B, Lee EH, Kim R, Seo SH, Lee J, Kim JW, Lee HY, Hwang H, Bahn YS, Cheong E, Park JH, Park KD. Discovery of Novel Sphingosine-1-Phosphate-1 Receptor Agonists for the Treatment of Multiple Sclerosis. J Med Chem 2022; 65:3539-3562. [PMID: 35077170 DOI: 10.1021/acs.jmedchem.1c01979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The sphingosine-1-phosphate-1 (S1P1) receptor agonists have great potential for the treatment of multiple sclerosis (MS) because they can inhibit lymphocyte egress through receptor internalization. We designed and synthesized triazole and isoxazoline derivatives to discover a novel S1P1 agonist for MS treatment. Of the two scaffolds, the isoxazoline derivative was determined to have excellent in vitro efficacy and drug-like properties. Among them, compound 21l was found to have superior drug-like properties as well as excellent in vitro efficacies (EC50 = 7.03 nM in β-arrestin recruitment and EC50 = 11.8 nM in internalization). We also confirmed that 21l effectively inhibited lymphocyte egress in the peripheral lymphocyte count test and significantly improved the clinical score in the experimental autoimmune encephalitis MS mouse model.
Collapse
Affiliation(s)
- Sun Jun Park
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea.,Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.,Cureverse Co., Ltd., KIST, 1st Floor, H2 Building, Seoul 02792, Republic of Korea
| | - Seul Ki Yeon
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
| | - Yoowon Kim
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyeon Jeong Kim
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Siwon Kim
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea.,Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Jushin Kim
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Ji Won Choi
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
| | - Byungeun Kim
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea.,Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Elijah Hwejin Lee
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea.,Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Rium Kim
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea.,Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Seon Hee Seo
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
| | - Jaeick Lee
- Doping Control Center, KIST, Seoul 02792, Republic of Korea
| | - Jun Woo Kim
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Ha-Yeon Lee
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Hayoung Hwang
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea.,Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea.,Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
23
|
Sabsabi S, Mikhael E, Jalkh G, Macaron G, Rensel M. Clinical Evaluation of Siponimod for the Treatment of Secondary Progressive Multiple Sclerosis: Pathophysiology, Efficacy, Safety, Patient Acceptability and Adherence. Patient Prefer Adherence 2022; 16:1307-1319. [PMID: 35637684 PMCID: PMC9148218 DOI: 10.2147/ppa.s221882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION A number of disease-modifying therapies have been approved for use in relapsing-remitting multiple sclerosis (MS) in the past two decades. However, only few treatment options are available for patients with secondary progressive multiple sclerosis (SPMS). Siponimod has recently been approved for use in patients with active forms of SPMS (who experience clinical relapses or new lesions on MRI superimposed on secondary progression independent of relapse activity). OBJECTIVE The aim of this article is to provide a comprehensive review on the mechanism of action, efficacy, safety, cost effectiveness and patient adherence with siponimod. METHODS We performed a PubMed search using the search terms: "siponimod", "secondary progressive multiple sclerosis", "sphingosine 1-phosphate modulators". Titles and abstract were screened and selected for relevance to the key section of this article. FINDINGS Siponimod is an oral sphingosine-1-phosphate receptor (S1PR) modulator with selectivity to S1PR-1 and 5. Modulation of this receptor on lymphocytes causes its internalization and degradation, preventing their egress from lymphoid tissues to the blood. In the pivotal Phase 3 randomized controlled trial EXPAND, siponimod was superior to placebo in reducing the risk of disability progression confirmed at 3 and 6 months, as well as the development of new MRI lesions and the rate of brain volume loss. Secondary analysis also showed a benefit on measures of cognitive functioning. The risk of lymphopenia and first-dose bradycardia appears to be lower with siponimod compared to non-selective S1P1R modulators. Different CYP2C9 genotypes affect the metabolism of siponimod; hence, genetic testing is required to adapt the titration and final dose accordingly. CONCLUSION Long-term extension and real-world studies will allow further evaluation of efficacy and safety in this population. Future research should focus on better defining SPMS, and identifying biomarkers of progression and outcome measures of treatment response in this category of patients.
Collapse
Affiliation(s)
- Sajida Sabsabi
- Department of Neurology, Hotel Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
| | - Elio Mikhael
- Department of Internal Medicine, Hotel Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
| | - Georges Jalkh
- Department of Neurology, Hotel Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
| | - Gabrielle Macaron
- Department of Neurology, Hotel Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, Cleveland, OH, USA
| | - Mary Rensel
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, Cleveland, OH, USA
- Correspondence: Mary Rensel, Email
| |
Collapse
|
24
|
Sasset L, Di Lorenzo A. Sphingolipid Metabolism and Signaling in Endothelial Cell Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:87-117. [PMID: 35503177 DOI: 10.1007/978-981-19-0394-6_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The endothelium, inner layer of blood vessels, constitutes a metabolically active paracrine, endocrine, and autocrine organ, able to sense the neighboring environment and exert a variety of biological functions important to preserve the health of vasculature, tissues, and organs. Sphingolipids are both fundamental structural components of the eukaryotic membranes and signaling molecules regulating a variety of biological functions. Ceramide and sphingosine-1-phosphate (S1P), bioactive sphingolipids, have emerged as important regulators of cardiovascular functions in health and disease. In this review we discuss recent insights into the role of ceramide and S1P biosynthesis and signaling in regulating endothelial cell functions, in health and diseases. We also highlight advances into the mechanisms regulating serine palmitoyltransferase, the first and rate-limiting enzyme of de novo sphingolipid biosynthesis, with an emphasis on its inhibitors, ORMDL and NOGO-B. Understanding the molecular mechanisms regulating the sphingolipid de novo biosynthesis may provide the foundation for therapeutic modulation of this pathway in a variety of conditions, including cardiovascular diseases, associated with derangement of this pathway.
Collapse
Affiliation(s)
- Linda Sasset
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Feil Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Annarita Di Lorenzo
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Feil Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
25
|
Olsson M, Hellman U, Wixner J, Anan I. Metabolomics analysis for diagnosis and biomarker discovery of transthyretin amyloidosis. Amyloid 2021; 28:234-242. [PMID: 34319177 DOI: 10.1080/13506129.2021.1958775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Untargeted metabolomics is a well-established technique and a powerful tool to find potential plasma biomarkers for early diagnosing hereditary transthyretin amyloidosis. Hereditary transthyretin amyloidosis (ATTRv) is a disabling and fatal disease with different clinical features such as polyneuropathy, cardiomyopathy, different gastrointestinal symptoms and renal failure. Plasma specimens collected from 27 patients with ATTRv (ATTRV30M), 26 asymptomatic TTRV30M carriers and 26 control individuals were subjected to gas chromatography (GC)- and liquid chromatography (LC)-mass spectrometry (MS)-based metabolomics analysis. Partial least squares discriminant and univariate analysis was used to analyse the data. The models constructed by Partial least squares-discriminant analysis (PLS-DA) could clearly discriminate ATTRV30M patients from controls and asymptomatic TTRV30M carriers. In total, 24 plasma metabolites (VIP > 1.0 and p < .05) were significantly altered in ATTRV30M patient group (6 increased and 18 decreased). Eleven of these distinguished the ATTRV30M group from both controls and TTRV30M carriers. Plasma metabolomics analysis revealed marked changes in several pathways in patients with ATTRV30M amyloidosis. Statistical analysis identified a panel of biomarkers that could effectively separate controls/TTRV30M carriers from ATTRV30M patients. These biomarkers can potentially be used to diagnose patients at an early stage of the disease.
Collapse
Affiliation(s)
- Malin Olsson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Urban Hellman
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Jonas Wixner
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Intissar Anan
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
26
|
Gray N, Limberg MM, Bräuer AU, Raap U. Novel functions of S1P in chronic itchy and inflammatory skin diseases. J Eur Acad Dermatol Venereol 2021; 36:365-372. [PMID: 34679239 DOI: 10.1111/jdv.17764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/12/2021] [Indexed: 12/18/2022]
Abstract
S1P is a pleotropic sphingolipid signalling molecule that acts through binding to five high-affinity G-protein coupled receptors. S1P-signaling affects cell fate in a multitude of ways, e.g. influencing cell differentiation, proliferation, and apoptosis, as well as playing an important role in immune cell trafficking. Though many effects of S1P-signaling in the human body have been discovered, the full range of functions is yet to be understood. For inflammatory skin diseases such as atopic dermatitis and psoriasis, evidence is emerging that dysfunction and imbalance of the S1P-axis is a contributing factor. Multiple studies investigating the efficacy of S1PR modulators in alleviating the severity and symptoms of skin conditions in various animal models and human clinical trials have shown promising results and validated the interest in the S1P-axis as a potential therapeutic target. Even though the involvement of S1P-signalling in inflammatory skin diseases still requires further clarification, the implications of the recent findings may prompt expansion of research to additional skin conditions and more S1P-axis modulatory pharmaceuticals.
Collapse
Affiliation(s)
- N Gray
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Division of Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - M M Limberg
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - A U Bräuer
- Division of Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - U Raap
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
27
|
Roy R, Alotaibi AA, Freedman MS. Sphingosine 1-Phosphate Receptor Modulators for Multiple Sclerosis. CNS Drugs 2021; 35:385-402. [PMID: 33797705 DOI: 10.1007/s40263-021-00798-w] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
Fingolimod (Gilenya) received regulatory approval from the US FDA in 2010 as the first-in-class sphingosine 1-phosphate (S1P) receptor (S1PR) modulator and was the first oral disease-modifying therapy (DMT) used for the treatment of the relapsing forms of multiple sclerosis (MS). Development of this new class of therapeutic compounds has continued to be a pharmacological goal of high interest in clinical trials for treatment of various autoimmune disorders, including MS. S1P is a physiologic signaling molecule that acts as a ligand for a group of cell surface receptors. S1PRs are expressed on various body tissues and regulate diverse physiological and pathological cellular responses involved in innate and adaptive immune, cardiovascular, and neurological functions. Subtype 1 of the S1PR (S1PR1) is expressed on the cell surface of lymphocytes, which are well known for their major role in MS pathogenesis and play an important regulatory role in the egress of lymphocytes from lymphoid organs to the lymphatic circulation. Thus, S1PR1-directed pharmacological interventions aim to modulate its role in immune cell trafficking through sequestration of autoreactive lymphocytes in the lymphoid organs to reduce their recirculation and subsequent infiltration into the central nervous system. Indeed, receptor subtype selectivity for S1PR1 is theoretically favored to minimize safety concerns related to interaction with other S1PR subtypes. Improved understanding of fingolimod's mechanism of action has provided strategies for the development of the more selective second-generation S1PR modulators. This selectivity serves to reduce the most important safety concern regarding cardiac-related side effects, such as bradycardia, which requires prolonged first-dose monitoring. It has led to the generation of smaller molecules with shorter half-lives, improved onset of action with no requirement for phosphorylation for activation, and preserved efficacy. The shorter half-lives of the second-generation agents allow for more rapid reversal of their pharmacological effects following treatment discontinuation. This may be beneficial in addressing further treatment-related complications in case of adverse events, managing serious or opportunistic infections such as progressive multifocal leukoencephalopathy, and eliminating the drug in pregnancies. In March 2019, a breakthrough in MS treatment was achieved with the FDA approval for the second S1PR modulator, siponimod (Mayzent), for both active secondary progressive MS and relapsing-remitting MS. This was the first oral DMT specifically approved for active forms of secondary progressive MS. Furthermore, ozanimod received FDA approval in March 2020 for treatment of relapsing forms of MS, followed by subsequent approvals from Health Canada and the European Commission. Other second-generation selective S1PR modulators that have been tested for MS, with statistically significant data from phase II and phase III clinical studies, include ponesimod (ACT-128800), ceralifimod (ONO-4641), and amiselimod (MT-1303). This review covers the available data about the mechanisms of action, pharmacodynamics and kinetics, efficacy, safety, and tolerability of the various S1PR modulators for patients with relapsing-remitting, secondary progressive, and, for fingolimod, primary progressive MS.
Collapse
Affiliation(s)
- Reshmi Roy
- Department of Medicine, The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada.
| | - Alaa A Alotaibi
- Department of Medicine, The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada
| | - Mark S Freedman
- Department of Medicine, The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada
| |
Collapse
|
28
|
Shioya H, Inagaki Y, Hiraizumi K, Hoshino T, Kurata H, Habashita H, Sato K, Nakade S. Preventive and Therapeutic Efficacy of ONO-4641, a Selective Agonist for Sphingosine 1-Phosphate Receptor 1 and 5, in Preclinical Models of Type 1 Diabetes Mellitus. Biol Pharm Bull 2021; 44:188-196. [PMID: 33518672 DOI: 10.1248/bpb.b20-00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ONO-4641, 1-({6-[(2-methoxy-4-propylbenzyl)oxy]-1-methyl-3,4-dihydronaphthalen-2-yl}methyl)azetidine-3-carboxylic acid (ceralifimod), is a second-generation sphingosine 1-phosphate receptor agonist selective for sphingosine 1-phosphate receptors 1 and 5, and has clinical effects in multiple sclerosis. The objective of the present study was to explore other potential indications for ONO-4641 based on its immunomodulatory effects. ONO-4641 was tested in non-obese diabetic (NOD) mice, an animal model of spontaneous type 1 diabetes mellitus, an autoimmune disease with unmet medical needs. ONO-4641 at a dose of 0.1 mg/kg prevented the onset of diabetes mellitus in NOD mice. Furthermore, ONO-4641 at doses of 0.03 and 0.1 mg/kg decreased diabetic prevalence in NOD mice after the onset of diabetes mellitus in a dose-dependent manner. Histopathological analysis demonstrated that insulin-positive areas in the islets of mice administered 0.03 and 0.1 mg/kg ONO-4641 showed a tendency of high values although they were not significantly different from the Control group, which was treated with vehicle. These observations suggest ONO-4641 may delay the onset and progression of type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Hiroki Shioya
- Discovery Research Laboratories, Ono Pharmaceutical Co., Ltd.,Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Yuichi Inagaki
- Discovery Research Laboratories, Ono Pharmaceutical Co., Ltd
| | - Kenji Hiraizumi
- Discovery Research Laboratories, Ono Pharmaceutical Co., Ltd
| | | | - Haruto Kurata
- Medicinal Chemistry Research Laboratories, Ono Pharmaceutical Co., Ltd
| | - Hiromu Habashita
- Medicinal Chemistry Research Laboratories, Ono Pharmaceutical Co., Ltd
| | - Kazutoyo Sato
- Discovery Research Laboratories, Ono Pharmaceutical Co., Ltd
| | - Shinji Nakade
- Discovery Research Laboratories, Ono Pharmaceutical Co., Ltd
| |
Collapse
|
29
|
Toyomoto M, Inoue A, Iida K, Denawa M, Kii I, Ngako Kadji FM, Kishi T, Im D, Shimamura T, Onogi H, Yoshida S, Iwata S, Aoki J, Hosoya T, Hagiwara M. S1PR3-G 12-biased agonist ALESIA targets cancer metabolism and promotes glucose starvation. Cell Chem Biol 2021; 28:1132-1144.e9. [PMID: 33561428 DOI: 10.1016/j.chembiol.2021.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/07/2020] [Accepted: 01/06/2021] [Indexed: 02/08/2023]
Abstract
Metabolic activities are altered in cancer cells compared with those in normal cells, and the cancer-specific pathway becomes a potential therapeutic target. Higher cellular glucose consumption, which leads to lower glucose levels, is a hallmark of cancer cells. In an objective screening for chemicals that induce cell death under low-glucose conditions, we discovered a compound, denoted as ALESIA (Anticancer Ligand Enhancing Starvation-induced Apoptosis). By our shedding assay of transforming growth factor α in HEK293A cells, ALESIA was determined to act as a sphingosine-1-phosphate receptor 3-G12-biased agonist that promotes nitric oxide production and oxidative stress. The oxidative stress triggered by ALESIA resulted in the exhaustion of glucose, cellular NADPH deficiency, and then cancer cell death. Intraperitoneal administration of ALESIA improved the survival of mice with peritoneally disseminated rhabdomyosarcoma, indicating its potential as a new type of anticancer drug for glucose starvation therapy.
Collapse
Affiliation(s)
- Masayasu Toyomoto
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Asuka Inoue
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi 980-8578, Japan
| | - Kei Iida
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Masatsugu Denawa
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Isao Kii
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Laboratory for Drug Target Research, Integrated Bioscience Division, Institute of Agriculture, Shinshu University, Nagano 399-4598, Japan
| | - Francois Marie Ngako Kadji
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi 980-8578, Japan
| | - Takayuki Kishi
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi 980-8578, Japan
| | - Dohyun Im
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Tatsuro Shimamura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroshi Onogi
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; KinoPharma, Inc., Tokyo 103-0023, Japan
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi 980-8578, Japan; Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
30
|
Drexler Y, Molina J, Mitrofanova A, Fornoni A, Merscher S. Sphingosine-1-Phosphate Metabolism and Signaling in Kidney Diseases. J Am Soc Nephrol 2021; 32:9-31. [PMID: 33376112 PMCID: PMC7894665 DOI: 10.1681/asn.2020050697] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the past few decades, sphingolipids and sphingolipid metabolites have gained attention because of their essential role in the pathogenesis and progression of kidney diseases. Studies in models of experimental and clinical nephropathies have described accumulation of sphingolipids and sphingolipid metabolites, and it has become clear that the intracellular sphingolipid composition of renal cells is an important determinant of renal function. Proper function of the glomerular filtration barrier depends heavily on the integrity of lipid rafts, which include sphingolipids as key components. In addition to contributing to the structural integrity of membranes, sphingolipid metabolites, such as sphingosine-1-phosphate (S1P), play important roles as second messengers regulating biologic processes, such as cell growth, differentiation, migration, and apoptosis. This review will focus on the role of S1P in renal cells and how aberrant extracellular and intracellular S1P signaling contributes to the pathogenesis and progression of kidney diseases.
Collapse
Affiliation(s)
- Yelena Drexler
- Katz Family Division of Nephrology and Hypertension/Peggy and Harold Katz Family Drug Discovery Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | | | | | | | | |
Collapse
|
31
|
Hodun K, Chabowski A, Baranowski M. Sphingosine-1-phosphate in acute exercise and training. Scand J Med Sci Sports 2020; 31:945-955. [PMID: 33345415 DOI: 10.1111/sms.13907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid found in all eukaryotic cells. Although it may function as an intracellular second messenger, most of its effects are induced extracellularly via activation of a family of five specific membrane receptors. Sphingosine-1-phosphate is enriched in plasma, where it is transported by high-density lipoprotein and albumin, as well as in erythrocytes and platelets which store and release large amounts of this sphingolipid. Sphingosine-1-phosphate regulates a host of cellular processes such as growth, proliferation, differentiation, migration, and apoptosis suppression. It was also shown to play an important role in skeletal muscle physiology and pathophysiology. In recent years, S1P metabolism in both muscle and blood was found to be modulated by exercise. In this review, we summarize the current knowledge on the effect of acute exercise and training on S1P metabolism, highlighting the role of this sphingolipid in skeletal muscle adaptation to physical effort.
Collapse
Affiliation(s)
- Katarzyna Hodun
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Marcin Baranowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
32
|
Sphingosine-1-Phosphate Receptor Modulators and Oligodendroglial Cells: Beyond Immunomodulation. Int J Mol Sci 2020; 21:ijms21207537. [PMID: 33066042 PMCID: PMC7588977 DOI: 10.3390/ijms21207537] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 12/23/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disease characterized by demyelination, axonal loss, and synaptic impairment in the central nervous system (CNS). The available therapies aim to reduce the severity of the pathology during the early inflammatory stages, but they are not effective in the chronic stage of the disease. In this phase, failure in endogenous remyelination is associated with the impairment of oligodendrocytes progenitor cells (OPCs) to migrate and differentiate into mature myelinating oligodendrocytes. Therefore, stimulating differentiation of OPCs into myelinating oligodendrocytes has become one of the main goals of new therapeutic approaches for MS. Different disease-modifying therapies targeting sphingosine-1-phosphate receptors (S1PRs) have been approved or are being developed to treat MS. Besides their immunomodulatory effects, growing evidence suggests that targeting S1PRs modulates mechanisms beyond immunomodulation, such as remyelination. In this context, this review focuses on the current understanding of S1PR modulators and their direct effect on OPCs and oligodendrocytes.
Collapse
|
33
|
Dhangadamajhi G, Singh S. Sphingosine 1-Phosphate in Malaria Pathogenesis and Its Implication in Therapeutic Opportunities. Front Cell Infect Microbiol 2020; 10:353. [PMID: 32923406 PMCID: PMC7456833 DOI: 10.3389/fcimb.2020.00353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/08/2020] [Indexed: 11/13/2022] Open
Abstract
Sphingosine 1-Phosphate (S1P) is a bioactive lipid intermediate in the sphingolipid metabolism, which exist in two pools, intracellular and extracellular, and each pool has a different function. The circulating extracellular pool, specifically the plasma S1P is shown to be important in regulating various physiological processes related to malaria pathogenesis in recent years. Although blood cells (red blood cells and platelets), vascular endothelial cells and hepatocytes are considered as the important sources of plasma S1P, their extent of contribution is still debated. The red blood cells (RBCs) and platelets serve as a major repository of intracellular S1P due to lack, or low activity of S1P degrading enzymes, however, contribution of platelets toward maintaining plasma S1P is shown negligible under normal condition. Substantial evidences suggest platelets loss during falciparum infection as a contributing factor for severe malaria. However, platelets function as a source for plasma S1P in malaria needs to be examined experimentally. RBC being the preferential site for parasite seclusion, and having the ability of trans-cellular S1P transportation to EC upon tight cell-cell contact, might play critical role in differential S1P distribution and parasite growth. In the present review, we have summarized the significance of both the S1P pools in the context of malaria, and how the RBC content of S1P can be channelized in better ways for its possible implication in therapeutic opportunities to control malaria.
Collapse
Affiliation(s)
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
34
|
Wafa D, Koch N, Kovács J, Kerék M, Proia RL, Tigyi GJ, Benyó Z, Miklós Z. Opposing Roles of S1P 3 Receptors in Myocardial Function. Cells 2020; 9:cells9081770. [PMID: 32722120 PMCID: PMC7466142 DOI: 10.3390/cells9081770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 07/22/2020] [Indexed: 01/09/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a lysophospholipid mediator with diverse biological function mediated by S1P1–5 receptors. Whereas S1P was shown to protect the heart against ischemia/reperfusion (I/R) injury, other studies highlighted its vasoconstrictor effects. We aimed to separate the beneficial and potentially deleterious cardiac effects of S1P during I/R and identify the signaling pathways involved. Wild type (WT), S1P2-KO and S1P3-KO Langendorff-perfused murine hearts were exposed to intravascular S1P, I/R, or both. S1P induced a 45% decrease of coronary flow (CF) in WT-hearts. The presence of S1P-chaperon albumin did not modify this effect. CF reduction diminished in S1P3-KO but not in S1P2-KO hearts, indicating that in our model S1P3 mediates coronary vasoconstriction. In I/R experiments, S1P3 deficiency had no influence on postischemic CF but diminished functional recovery and increased infarct size, indicating a cardioprotective effect of S1P3. Preischemic S1P exposure resulted in a substantial reduction of postischemic CF and cardiac performance and increased the infarcted area. Although S1P3 deficiency increased postischemic CF, this failed to improve cardiac performance. These results indicate a dual role of S1P3 involving a direct protective action on the myocardium and a cardiosuppressive effect due to coronary vasoconstriction. In acute coronary syndrome when S1P may be released abundantly, intravascular and myocardial S1P production might have competing influences on myocardial function via activation of S1P3 receptors.
Collapse
Affiliation(s)
- Dina Wafa
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (J.K.); (M.K.); (G.J.T.); (Z.B.)
- Correspondence: (D.W.); (Z.M.)
| | - Nóra Koch
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (J.K.); (M.K.); (G.J.T.); (Z.B.)
| | - Janka Kovács
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (J.K.); (M.K.); (G.J.T.); (Z.B.)
| | - Margit Kerék
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (J.K.); (M.K.); (G.J.T.); (Z.B.)
| | - Richard L. Proia
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institues of Health, Bethesda, MD 20892, USA;
| | - Gábor J. Tigyi
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (J.K.); (M.K.); (G.J.T.); (Z.B.)
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (J.K.); (M.K.); (G.J.T.); (Z.B.)
| | - Zsuzsanna Miklós
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (J.K.); (M.K.); (G.J.T.); (Z.B.)
- Correspondence: (D.W.); (Z.M.)
| |
Collapse
|
35
|
Cohan S, Lucassen E, Smoot K, Brink J, Chen C. Sphingosine-1-Phosphate: Its Pharmacological Regulation and the Treatment of Multiple Sclerosis: A Review Article. Biomedicines 2020; 8:biomedicines8070227. [PMID: 32708516 PMCID: PMC7400006 DOI: 10.3390/biomedicines8070227] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Sphingosine-1-phosphate (S1P), via its G-protein-coupled receptors, is a signaling molecule with important regulatory properties on numerous, widely varied cell types. Five S1P receptors (S1PR1-5) have been identified, each with effects determined by their unique G-protein-driven downstream pathways. The discovery that lymphocyte egress from peripheral lymphoid organs is promoted by S1P via S1PR-1 stimulation led to the development of pharmacological agents which are S1PR antagonists. These agents promote lymphocyte sequestration and reduce lymphocyte-driven inflammatory damage of the central nervous system (CNS) in animal models, encouraging their examination of efficacy in the treatment of multiple sclerosis (MS). Preclinical research has also demonstrated direct protective effects of S1PR antagonists within the CNS, by modulation of S1PRs, particularly S1PR-1 and S1PR-5, and possibly S1PR-2, independent of effects upon lymphocytes. Three of these agents, fingolimod, siponimod and ozanimod have been approved, and ponesimod has been submitted for regulatory approval. In patients with MS, these agents reduce relapse risk, sustained disability progression, magnetic resonance imaging markers of disease activity, and whole brain and/or cortical and deep gray matter atrophy. Future opportunities in the development of more selective and intracellular S1PR-driven downstream pathway modulators may expand the breadth of agents to treat MS.
Collapse
|
36
|
Langeslag M, Kress M. The ceramide-S1P pathway as a druggable target to alleviate peripheral neuropathic pain. Expert Opin Ther Targets 2020; 24:869-884. [PMID: 32589067 DOI: 10.1080/14728222.2020.1787989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Neuropathic pain disorders are diverse, and the currently available therapies are ineffective in the majority of cases. Therefore, there is a major need for gaining novel mechanistic insights and developing new treatment strategies for neuropathic pain. Areas covered: We performed an in-depth literature search on the molecular mechanisms and systemic importance of the ceramide-to-S1P rheostat regulating neuron function and neuroimmune interactions in the development of neuropathic pain. Expert opinion: The S1P receptor modulator FTY720 (fingolimod, Gilenya®), LPA receptor antagonists and several mechanistically related compounds in clinical development raise great expectations for treating neuropathic pain disorders. Research on S1P receptors, S1P receptor modulators or SPHK inhibitors with distinct selectivity, pharmacokinetics and safety must provide more mechanistic insight into whether they may qualify as useful treatment options for neuropathic pain disorders. The functional relevance of genetic variations within the ceramide-to-S1P rheostat should be explored for an enhanced understanding of neuropathic pain pathogenesis. The ceramide-to-S1P rheostat is emerging as a critically important regulator hub of neuroimmune interactions along the pain pathway, and improved mechanistic insight is required to develop more precise and effective drug treatment options for patients suffering from neuropathic pain disorders.
Collapse
Affiliation(s)
- Michiel Langeslag
- Institute of Physiology, DPMP, Medical University Innsbruck , Austria
| | - Michaela Kress
- Institute of Physiology, DPMP, Medical University Innsbruck , Austria
| |
Collapse
|
37
|
Singhal S, Girgis IG, Xie J, Dutta S, Shevell DE, Throup J. The safety and pharmacokinetics of a novel, selective S1P1R modulator in healthy participants. Expert Opin Investig Drugs 2020; 29:411-422. [DOI: 10.1080/13543784.2020.1742322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Shalabh Singhal
- Immunology and Fibrosis, Bristol Myers Squibb, Princeton, NJ, USA
| | - Ihab G. Girgis
- Research and Animal Development, Bristol MyersSquibb, Princeton, NJ, USA
| | - Jenny Xie
- Discovery Biology, Bristol MyersSquibb, Princeton, NJ, USA
| | - Santanu Dutta
- Global Biostatistics, Bristol MyersSquibb, Princeton, NJ, USA
| | - Diane E. Shevell
- Precision Medicine and Companion Diagnostics, Bristol MyersSquibb, Princeton, NJ, USA
| | - John Throup
- Immunology and Fibrosis, Bristol MyersSquibb, Princeton, NJ, USA
| |
Collapse
|
38
|
Jozefczuk E, Guzik TJ, Siedlinski M. Significance of sphingosine-1-phosphate in cardiovascular physiology and pathology. Pharmacol Res 2020; 156:104793. [PMID: 32278039 DOI: 10.1016/j.phrs.2020.104793] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a signaling lipid, synthetized by sphingosine kinases (SPHK1 and SPHK2), that affects cardiovascular function in various ways. S1P signaling is complex, particularly since its molecular action is reliant on the differential expression of its receptors (S1PR1, S1PR2, S1PR3, S1PR4, S1PR5) within various tissues. Significance of this sphingolipid is manifested early in vertebrate development as certain defects in S1P signaling result in embryonic lethality due to defective vasculo- or cardiogenesis. Similar in the mature organism, S1P orchestrates both physiological and pathological processes occurring in the heart and vasculature of higher eukaryotes. S1P regulates cell fate, vascular tone, endothelial function and integrity as well as lymphocyte trafficking, thus disbalance in its production and signaling has been linked with development of such pathologies as arterial hypertension, atherosclerosis, endothelial dysfunction and aberrant angiogenesis. Number of signaling mechanisms are critical - from endothelial nitric oxide synthase through STAT3, MAPK and Akt pathways to HDL particles involved in redox and inflammatory balance. Moreover, S1P controls both acute cardiac responses (cardiac inotropy and chronotropy), as well as chronic processes (such as apoptosis and hypertrophy), hence numerous studies demonstrate significance of S1P in the pathogenesis of hypertrophic/fibrotic heart disease, myocardial infarction and heart failure. This review presents current knowledge concerning the role of S1P in the cardiovascular system, as well as potential therapeutic approaches to target S1P signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- E Jozefczuk
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - T J Guzik
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland; Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - M Siedlinski
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland; Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.
| |
Collapse
|
39
|
Argollo M, Furfaro F, Gilardi D, Roda G, Allocca M, Peyrin-Biroulet L, Danese S. Modulation of sphingosine-1-phosphate in ulcerative colitis. Expert Opin Biol Ther 2020; 20:413-420. [PMID: 32093531 DOI: 10.1080/14712598.2020.1732919] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Sphingosine-1-phosphate (S1P) is a membrane-derived lysophospholipid signaling molecule implicated in various physiological and pathological processes, such as regulation of the immune, cardiovascular, pulmonary, and nervous systems and theoretical cancer-related risks, through extracellular activation of S1P1-5 receptors.Areas covered: S1P receptor agonism is a novel strategy for the treatment of UC targeting lymphocyte recirculation, through blockade of lymphocyte egress from lymph nodes. We conducted an extensive literature review on PUBMED on currently available data on molecular aspects of S1P modulation, the mechanisms of action of S1PR agonists (fingolimod, ozanimod, etrasimod, and KRP-203), and their potential efficacy and safety for the treatment of patients with ulcerative colitis.Expert opinion: Selective S1P modulators have emerged to enlarge the efficacy and safety profile of this class of agents. Phase 3 programs should add the potential body of evidence to prove their benefit for the management of UC patients.
Collapse
Affiliation(s)
- Marjorie Argollo
- Department of Gastroenterology, Universidade Federal de São Paulo, São Paulo, Brazil.,IBD Centre, Humanitas Clinical and Research Centre, Milan, Italy
| | - Federica Furfaro
- IBD Centre, Humanitas Clinical and Research Centre, Milan, Italy
| | - Daniela Gilardi
- IBD Centre, Humanitas Clinical and Research Centre, Milan, Italy
| | - Giulia Roda
- IBD Centre, Humanitas Clinical and Research Centre, Milan, Italy
| | - Mariangela Allocca
- IBD Centre, Humanitas Clinical and Research Centre, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology and Inserm U954, Nancy University Hospital, Lorraine University, Vandoeuvre, France
| | - Silvio Danese
- IBD Centre, Humanitas Clinical and Research Centre, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
40
|
Jin J, Xue N, Liu Y, Fu R, Wang M, Ji M, Lai F, Hu J, Wang X, Xiao Q, Zhang X, Yin D, Bai L, Chen X, Rao S. A novel S1P1 modulator IMMH002 ameliorates psoriasis in multiple animal models. Acta Pharm Sin B 2020; 10:276-288. [PMID: 32082973 PMCID: PMC7016294 DOI: 10.1016/j.apsb.2019.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 01/12/2023] Open
Abstract
Psoriasis is characterized by abnormal proliferation of keratinocytes, as well as infiltration of immune cells into the dermis and epidermis, causing itchy, scaly and erythematous plaques of skin. The understanding of this chronic inflammatory skin disease remains unclear and all available treatments have their limitations currently. Here, we showed that IMMH002, a novel orally active S1P1 modulator, desensitized peripheral pathogenic lymphocytes to egress signal from secondary lymphoid organs and thymus. Using different psoriasis animal models, we demonstrated that IMMH002 could significantly relieve skin damage as revealed by PASI score and pathological injure evaluation. Mechanistically, IMMH002 regulated CD3+ T lymphocytes re-distribution by inducing lymphocytes’ homing, thus decreased T lymphocytes allocation in the peripheral blood and skin but increased in the thymus. Our results suggest that the novel S1P1 agonist, IMMH002, exert extraordinary capacity to rapidly modulate T lymphocytes distribution, representing a promising drug candidate for psoriasis treatment.
Collapse
|
41
|
Bordet R, Camu W, De Seze J, Laplaud DA, Ouallet JC, Thouvenot E. Mechanism of action of s1p receptor modulators in multiple sclerosis: The double requirement. Rev Neurol (Paris) 2020; 176:100-112. [DOI: 10.1016/j.neurol.2019.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 01/31/2019] [Accepted: 02/20/2019] [Indexed: 01/22/2023]
|
42
|
Camp SM, Marciniak A, Chiang ET, Garcia AN, Bittman R, Polt R, Perez RG, Dudek SM, Garcia JGN. Sphingosine-1-phosphate receptor-independent lung endothelial cell barrier disruption induced by FTY720 regioisomers. Pulm Circ 2020; 10:10.1177_2045894020905521. [PMID: 32095229 PMCID: PMC7011338 DOI: 10.1177/2045894020905521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/16/2020] [Indexed: 12/27/2022] Open
Abstract
RATIONALE Vascular permeability is a hallmark of acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury pathobiology; however, the mechanisms underlying this vascular dysregulation remain unclear, thereby impairing the development of desperately needed effective therapeutics. We have shown that sphingosine-1-phosphate (S1P) and 2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol (FTY720) analogues are useful tools for exploring vascular barrier regulation mechanisms. OBJECTIVE To experimentally define the effects of FTY720 regioisomers on lung endothelial cell barrier regulation. METHODS Specific barrier-regulatory receptor and kinase inhibitors were utilized to probe signaling mechanisms involved in FTY720 regioisomer-mediated human lung endothelial cell barrier responses (trans-endothelial electrical resistance, TER). Docking simulations with the S1P1 receptor were performed to further evaluate FTY720 regioisomer signaling. RESULTS FTY720 regioisomers produced potent endothelial cell barrier disruption reflected by declines in TER alterations. Pharmacologic inhibition of Gi-coupled S1P receptors (S1P1, S1P2, S1P3) failed to alter FTY720 regioisomer-mediated barrier disruption; findings that were corroborated by docking simulations demonstrating FTY720 regiosomers were repelled from S1P1 docking, in contrast to strong S1P1 binding elicited by S1P. Inhibition of either the barrier-disrupting PAR-1 receptor, the VEGF receptor, Rho-kinase, MAPK, NFkB, or PI3K failed to alter FTY720 regioisomer-induced endothelial cell barrier disruption. While FTY720 regioisomers significantly increased protein phosphatase 2 (PP2A) activity, PP2A inhibitors failed to alter FTY720 regioisomer-induced endothelial cell barrier disruption. CONCLUSIONS Together, these results imply a vexing model of pulmonary vascular barrier dysregulation in response to FTY720-related compounds and highlight the need for further insights into mechanisms of vascular integrity required to promote the development of novel therapeutic tools to prevent or reverse the pulmonary vascular leak central to ARDS outcomes.
Collapse
Affiliation(s)
- Sara M. Camp
- Department of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Alexander Marciniak
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, USA
| | - Eddie T. Chiang
- Department of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Alexander N. Garcia
- Department of Radiation Oncology, The University of Arizona, Tucson, AZ, USA
| | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, Flushing, NY, USA
| | - Robin Polt
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, USA
| | - Ruth G. Perez
- Department of Molecular and Translational Medicine, Graduate School of Biomedical Sciences, Center of Emphasis in Neuroscience, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Steven M. Dudek
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Joe G. N. Garcia
- Department of Medicine, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
43
|
Shimano K, Maeda Y, Kataoka H, Murase M, Mochizuki S, Utsumi H, Oshita K, Sugahara K. Amiselimod (MT-1303), a novel sphingosine 1-phosphate receptor-1 functional antagonist, inhibits progress of chronic colitis induced by transfer of CD4+CD45RBhigh T cells. PLoS One 2019; 14:e0226154. [PMID: 31805144 PMCID: PMC6894856 DOI: 10.1371/journal.pone.0226154] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
Amiselimod (MT-1303) is a novel sphingosine 1-phosphate receptor-1 (S1P1 receptor) modulator with a more favorable cardiac safety profile than other S1P1 receptor modulators. MT-1303 phosphate (MT-1303-P), an active metabolite of MT-1303, exhibits S1P1 receptor agonism at a lower EC50 value than other S1P1 receptor modulators currently being developed. We aimed to evaluate the efficacy of MT-1303 and its mode of action in chronic colitis using an inflammatory bowel disease (IBD) model. Oral administration of MT-1303 (0.3 mg/kg) once daily for 3 days to mice almost completely abolished S1P1 receptor expression on CD4+ T cells from mesenteric lymph nodes, which corresponded to a marked decrease in CD4+ T cell count in peripheral blood, indicating that MT-1303-P acts as a functional antagonist of the S1P1 receptor. The potential benefit of MT-1303 for IBD was assessed using immunodeficient SCID mice with chronic colitis induced by adoptive transfer of CD4+CD45RBhigh T cells from BALB/c mice. An oral dose of 0.1 and 0.3 mg/kg MT-1303 administered daily one week after the cell transfer inhibited the development of chronic colitis with an efficacy comparable to that of an anti-mTNF-α mAb (250 μg/mouse). In addition, MT-1303 administration significantly reduced the number of infiltrating Th1 and Th17 cells into the lamina propria of the colon in colitis mice. Our results suggest that MT-1303 acts as a functional antagonist of the S1P1 receptor on lymphocytes, regulates lymphocyte trafficking, and inhibits infiltration of colitogenic Th1 and Th17 cells into the colon to inhibit the development of chronic colitis.
Collapse
Affiliation(s)
- Kyoko Shimano
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Yasuhiro Maeda
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Hirotoshi Kataoka
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Mikako Murase
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Sachiko Mochizuki
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Hiroyuki Utsumi
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Koichi Oshita
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Kunio Sugahara
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
- * E-mail:
| |
Collapse
|
44
|
Fingolimod retains cytolytic T cells and limits T follicular helper cell infection in lymphoid sites of SIV persistence. PLoS Pathog 2019; 15:e1008081. [PMID: 31626660 PMCID: PMC6834281 DOI: 10.1371/journal.ppat.1008081] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 11/06/2019] [Accepted: 09/13/2019] [Indexed: 01/29/2023] Open
Abstract
Lymph nodes (LN) and their resident T follicular helper CD4+ T cells (Tfh) are a critical site for HIV replication and persistence. Therefore, optimizing antiviral activity in lymphoid tissues will be needed to reduce or eliminate the HIV reservoir. In this study, we retained effector immune cells in LN of cART-suppressed, SIV-infected rhesus macaques by treatment with the lysophospholipid sphingosine-1 phosphate receptor modulator FTY720 (fingolimod). FTY720 was remarkably effective in reducing circulating CD4+ and CD8+ T cells, including those with cytolytic potential, and in increasing the number of these T cells retained in LN, as determined directly in situ by histocytometry and immunohistochemistry. The FTY720-induced inhibition of T cell egress from LN resulted in a measurable decrease of SIV-DNA content in blood as well as in LN Tfh cells in most treated animals. In conclusion, FTY720 administration has the potential to limit viral persistence, including in the critical Tfh cellular reservoir. These findings provide rationale for strategies designed to retain antiviral T cells in lymphoid tissues to target HIV remission. FTY720 (fingolimod), a drug approved by the FDA for treatment of multiple sclerosis, blocks the egress of lymphocytes from the lymph node (LN). To determine whether FTY720 retention activity could improve cytolytic responses in the LN and affect SIV persistence, we studied for the first time tolerability and biological activity of two doses of FTY720 in cART-suppressed, SIV-infected rhesus macaques. FTY720 was remarkably effective in reducing circulating CD4+ and CD8+ T cells, including those with cytolytic potential, and in increasing the number of cytolytic T cells in LN. FTY720 administration reduced SIV-DNA content in blood as well as in LN Tfh cells in most of the animals. These results suggest that FTY720 limits viral persistence, including Tfh cellular reservoir, by increasing the number of cytolytic cells in the LN, critical site for HIV/SIV replication and persistence.
Collapse
|
45
|
Jin J, Ji M, Fu R, Wang M, Xue N, Xiao Q, Hu J, Wang X, Lai F, Yin D, Chen X. Sphingosine-1-Phosphate Receptor Subtype 1 (S1P1) Modulator IMMH001 Regulates Adjuvant- and Collagen-Induced Arthritis. Front Pharmacol 2019; 10:1085. [PMID: 31607926 PMCID: PMC6761374 DOI: 10.3389/fphar.2019.01085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/26/2019] [Indexed: 01/06/2023] Open
Abstract
Sphingosine-1-phosphate receptor subtype 1 (S1P1) is essential for lymphocyte egress from lymphoid organs into systemic circulation and provides a well-defined drug target for autoimmune disorders. IMMH001, also called SYL930, is a specific S1P1/S1P4/S1P5 modulator. Here, we investigated the potential therapeutic effect of IMMH001 on rheumatoid arthritis (RA). IMMH001 rendered periphery blood lymphocytes insensitive to the egress signal from secondary lymphoid organs. Importantly, in both rat adjuvant-induced arthritis and collagen-induced arthritis models, IMMH001 treatment significantly inhibited the progression of RA and RA-associated histological changes in the joints of Sprague-Dawley rats, including hind paw swelling and arthritic index, and thus reduced the pathological score. Furthermore, IMMH001 markedly decreased proinflammatory cytokine and chemokine release from the damaged joints. These data demonstrated that IMMH001 is a promising drug candidate for RA treatment.
Collapse
Affiliation(s)
- Jing Jin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Ji
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rong Fu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingjin Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nina Xue
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiong Xiao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingpin Hu
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaojian Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangfang Lai
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dali Yin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
46
|
Okimoto A, Yamamoto R, Hirose J, Shimatani K, Koshika T, Maeda M, Hattori K, Morokata T. ASP1126, a Novel Sphingosine-1-Phosphate-Selective Agonist With a Favorable Safety Profile, Prolongs Allograft Survival in Rats and Nonhuman Primates in Combination With Tacrolimus With a Broad Safety Margin for Bradycardia. Transplant Proc 2019; 51:2081-2098. [PMID: 31399186 DOI: 10.1016/j.transproceed.2019.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/07/2019] [Indexed: 11/28/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a biologically active sphingolipid that acts through the members of a family of 5 G protein-coupled receptors (S1P1 to S1P5). Among these, S1P1 is a major regulator of lymphocyte trafficking. Fingolimod, whose active metabolite, fingolimod phosphate, acts as a nonselective S1P-receptor agonist, exerts its immunomodulatory effect, at least in part, by regulating lymphocyte trafficking via downregulation of S1P1 expression on lymphocytes. Here, we describe the pharmacologic profile of a novel S1P1 agonist, ASP1126. ASP1126 preferentially activated S1P1 compared to S1P3 in rat and human guanosine-5'-(γ-thio)-triphosphate (GTPγS) assays. Oral single administration of ASP1126 decreased the number of peripheral lymphocytes and repeated dosing showed a cumulative effect on lymphopenia in both rats and monkeys. ASP1126 prolonged allograft survival in a rat heterotopic heart transplantation model in combination with a subtherapeutic dose of tacrolimus that was independent of drug-drug interactions. In addition, in nonhuman primate (NHP) renal transplantation, pretreatment with ASP1126 reduced not only the number of naive T cells and central memory T cells but also effector memory T cells in the peripheral blood, all of which could contribute to acute graft rejection and prolonged allograft survival in combination with tacrolimus. Further, we confirmed that ASP1126 has a broad ranging safety margin with respect to its effect on lung weight in rats and bradycardia in NHPs, which were the adverse events found in clinical studies of fingolimod. ASP1126 with improved safety profile has the potential to be an adjunct therapy in combination with tacrolimus in clinical transplantation.
Collapse
Affiliation(s)
- Akira Okimoto
- Drug Discovery Research, Astellas Pharma Inc, Ibaraki, Japan.
| | - Rie Yamamoto
- Drug Discovery Research, Astellas Pharma Inc, Ibaraki, Japan
| | - Jun Hirose
- Drug Discovery Research, Astellas Pharma Inc, Ibaraki, Japan
| | | | | | - Masashi Maeda
- Drug Discovery Research, Astellas Pharma Inc, Ibaraki, Japan
| | | | | |
Collapse
|
47
|
Intapad S. Sphingosine-1-phosphate signaling in blood pressure regulation. Am J Physiol Renal Physiol 2019; 317:F638-F640. [PMID: 31390266 DOI: 10.1152/ajprenal.00572.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sphingolipids were originally believed to play a role only as a backbone of mammalian cell membranes. However, sphingolipid metabolites, especially sphingosine-1-phosphate (S1P), are now recognized as new bioactive signaling molecules that are critically involved in numerous cellular functions of multiple systems including the immune system, central nervous system, and cardiovascular system. S1P research has accelerated in the last decade as new therapeutic drugs have emerged that target the S1P signaling axis to treat diseases of the immune and central nervous systems. There is limited knowledge of the specific effects on cardiovascular disease. This review discusses the current state of knowledge regarding the role of S1P on the regulation of blood pressure, vascular tone, and renal functions.
Collapse
Affiliation(s)
- Suttira Intapad
- Department of Pharmacology Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
48
|
Volpi C, Orabona C, Macchiarulo A, Bianchi R, Puccetti P, Grohmann U. Preclinical discovery and development of fingolimod for the treatment of multiple sclerosis. Expert Opin Drug Discov 2019; 14:1199-1212. [PMID: 31389262 DOI: 10.1080/17460441.2019.1646244] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Introduction: Fingolimod, the first oral disease-modifying treatment (DMT) in multiple sclerosis (MS), is a sphingosine 1-phosphate receptor (S1PR) ligand. Approved in 2010, fingolimod has been extensively studied and has been credited with several mechanisms of actions that contribute to its efficacy in MS, among which is the regulation of lymphocyte circulation between the central nervous system and the periphery. Concerns about toxicity, off-target effects, and real-life performance have been raised over time in post-marketing studies of such that next-generation sphingosine-1 phosphate receptor ligands are now being developed. Areas covered: Herein, the authors expand upon previous systematic reviews obtained via PubMed and through their expert opinion on fingolimod use in clinical practice. Long-term data including long-term efficacy, safety, tolerability, and management especially within growing DMT options and pre-treatment constellation in MS patients are discussed, together with the results of an increased understanding of the chemistry underlying the structure-activity relationship. Expert opinion: Despite the limitations illustrated in this article, fingolimod still constitutes a paradigm shift in MS treatment. However, although immunomodulation via S1PRs on lymphocytes has represented a major breakthrough in the clinical management of MS, modifying the evolution of progressive MS will likely require the development of approaches other than merely targeting S1PRs.
Collapse
Affiliation(s)
- Claudia Volpi
- Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Ciriana Orabona
- Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia , Perugia , Italy
| | - Roberta Bianchi
- Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Paolo Puccetti
- Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Ursula Grohmann
- Department of Experimental Medicine, University of Perugia , Perugia , Italy
| |
Collapse
|
49
|
Al-Shamma H, Lehmann-Bruinsma K, Carroll C, Solomon M, Komori HK, Peyrin-Biroulet L, Adams J. The Selective Sphingosine 1-Phosphate Receptor Modulator Etrasimod Regulates Lymphocyte Trafficking and Alleviates Experimental Colitis. J Pharmacol Exp Ther 2019; 369:311-317. [PMID: 30872391 DOI: 10.1124/jpet.118.254268] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/05/2019] [Indexed: 03/08/2025] Open
Abstract
Lymphocyte trafficking out of secondary lymphoid organs is regulated by concentration gradient-dependent interactions between the membrane-derived lysophospholipid signaling molecule sphingosine 1-phosphate (S1P) and the G-protein-coupled receptor, S1P1 Etrasimod is a novel, next-generation, small-molecule, oral S1P receptor modulator in clinical development for the treatment of immune-mediated inflammatory disorders, including ulcerative colitis. In preclinical pharmacology studies, etrasimod was a full agonist of recombinant human (6.1 nM EC50), mouse (3.65 nM EC50), dog (4.19 nM EC50), and monkey (8.7 nM EC50) S1P1 receptors, and a partial agonist of human S1P4 (147 nM EC50) and S1P5 (24.4 nM EC50), with relative efficacies of 63% and 73% of S1P response, respectively; whereas neither agonist nor antagonist activity was observed for human S1P2 or S1P3 A dose-dependent relationship was observed for etrasimod plasma concentration and lymphocyte count in mice, and chronic treatment with etrasimod resulted in attenuation of inflammation in a CD4+CD45RBhigh T-cell transfer mouse model of colitis.
Collapse
Affiliation(s)
- Hussien Al-Shamma
- Beacon Discovery Inc., San Diego, California (H.A.-S., K.L.-B., C.C.); Crown Bioscience, Inc., San Diego, California (M.S.); Arena Pharmaceuticals, Inc., San Diego, California (H.K.K., J.A.); and Institut National de la Santé et de la Recherche Médicale U954 and Department of Gastroenterology, Nancy University Hospital, Lorraine University, Nancy, France (L.P.-B.)
| | - Karin Lehmann-Bruinsma
- Beacon Discovery Inc., San Diego, California (H.A.-S., K.L.-B., C.C.); Crown Bioscience, Inc., San Diego, California (M.S.); Arena Pharmaceuticals, Inc., San Diego, California (H.K.K., J.A.); and Institut National de la Santé et de la Recherche Médicale U954 and Department of Gastroenterology, Nancy University Hospital, Lorraine University, Nancy, France (L.P.-B.)
| | - Chris Carroll
- Beacon Discovery Inc., San Diego, California (H.A.-S., K.L.-B., C.C.); Crown Bioscience, Inc., San Diego, California (M.S.); Arena Pharmaceuticals, Inc., San Diego, California (H.K.K., J.A.); and Institut National de la Santé et de la Recherche Médicale U954 and Department of Gastroenterology, Nancy University Hospital, Lorraine University, Nancy, France (L.P.-B.)
| | - Michelle Solomon
- Beacon Discovery Inc., San Diego, California (H.A.-S., K.L.-B., C.C.); Crown Bioscience, Inc., San Diego, California (M.S.); Arena Pharmaceuticals, Inc., San Diego, California (H.K.K., J.A.); and Institut National de la Santé et de la Recherche Médicale U954 and Department of Gastroenterology, Nancy University Hospital, Lorraine University, Nancy, France (L.P.-B.)
| | - H Kiyomi Komori
- Beacon Discovery Inc., San Diego, California (H.A.-S., K.L.-B., C.C.); Crown Bioscience, Inc., San Diego, California (M.S.); Arena Pharmaceuticals, Inc., San Diego, California (H.K.K., J.A.); and Institut National de la Santé et de la Recherche Médicale U954 and Department of Gastroenterology, Nancy University Hospital, Lorraine University, Nancy, France (L.P.-B.)
| | - Laurent Peyrin-Biroulet
- Beacon Discovery Inc., San Diego, California (H.A.-S., K.L.-B., C.C.); Crown Bioscience, Inc., San Diego, California (M.S.); Arena Pharmaceuticals, Inc., San Diego, California (H.K.K., J.A.); and Institut National de la Santé et de la Recherche Médicale U954 and Department of Gastroenterology, Nancy University Hospital, Lorraine University, Nancy, France (L.P.-B.)
| | - John Adams
- Beacon Discovery Inc., San Diego, California (H.A.-S., K.L.-B., C.C.); Crown Bioscience, Inc., San Diego, California (M.S.); Arena Pharmaceuticals, Inc., San Diego, California (H.K.K., J.A.); and Institut National de la Santé et de la Recherche Médicale U954 and Department of Gastroenterology, Nancy University Hospital, Lorraine University, Nancy, France (L.P.-B.)
| |
Collapse
|
50
|
Behrangi N, Fischbach F, Kipp M. Mechanism of Siponimod: Anti-Inflammatory and Neuroprotective Mode of Action. Cells 2019; 8:cells8010024. [PMID: 30621015 PMCID: PMC6356776 DOI: 10.3390/cells8010024] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disorder of the central nervous system (CNS), and represents one of the main causes of disability in young adults. On the histopathological level, the disease is characterized by inflammatory demyelination and diffuse neurodegeneration. Although on the surface the development of new inflammatory CNS lesions in MS may appear consistent with a primary recruitment of peripheral immune cells, questions have been raised as to whether lymphocyte and/or monocyte invasion into the brain are really at the root of inflammatory lesion development. In this review article, we discuss a less appreciated inflammation-neurodegeneration interplay, that is: Neurodegeneration can trigger the formation of new, focal inflammatory lesions. We summarize old and recent findings suggesting that new inflammatory lesions develop at sites of focal or diffuse degenerative processes within the CNS. Such a concept is discussed in the context of the EXPAND trial, showing that siponimod exerts anti-inflammatory and neuroprotective activities in secondary progressive MS patients. The verification or rejection of such a concept is vital for the development of new therapeutic strategies for progressive MS.
Collapse
Affiliation(s)
- Newshan Behrangi
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany.
- Department of Anatomy, University Medical Center, 39071 Rostock, Germany.
| | - Felix Fischbach
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany.
| | - Markus Kipp
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany.
- Department of Anatomy, University Medical Center, 39071 Rostock, Germany.
| |
Collapse
|