1
|
Uusi-Oukari M, Korpi ER. GABAergic mechanisms in alcohol dependence. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 175:75-123. [PMID: 38555121 DOI: 10.1016/bs.irn.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The target of alcohol's effect on the central nervous system has been sought for more than 50 years in the brain's GABA system. The behavioral and emotional effects of alcohol in humans and rodents are very similar to those of barbiturates and benzodiazepines, and GABAA receptors have been shown to be one of the sites of alcohol action. The mechanisms of GABAergic inhibition have been a hotspot of research but have turned out to be complex and controversial. Genetics support the involvement of some GABAA receptor subunits in the development of alcohol dependence and in alcohol use disorders (AUD). Since the effect of alcohol on the GABAA system resembles that of a GABAergic positive modulator, it may be possible to develop GABAergic drug treatments that could substitute for alcohol. The adaptation mechanisms of the GABA system and the plasticity of the brain are a big challenge for drug development: the drugs that act on GABAA receptors developed so far also may cause adaptation and development of additional addiction. Human polymorphisms should be studied further to get insight about how they affect receptor function, expression or other factors to make reasonable predictions/hypotheses about what non-addictive interventions would help in alcohol dependence and AUD.
Collapse
Affiliation(s)
- Mikko Uusi-Oukari
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Dharavath RN, Pina-Leblanc C, Tang VM, Sloan ME, Nikolova YS, Pangarov P, Ruocco AC, Shield K, Voineskos D, Blumberger DM, Boileau I, Bozinoff N, Gerretsen P, Vieira E, Melamed OC, Sibille E, Quilty LC, Prevot TD. GABAergic signaling in alcohol use disorder and withdrawal: pathological involvement and therapeutic potential. Front Neural Circuits 2023; 17:1218737. [PMID: 37929054 PMCID: PMC10623140 DOI: 10.3389/fncir.2023.1218737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/04/2023] [Indexed: 11/07/2023] Open
Abstract
Alcohol is one of the most widely used substances. Alcohol use accounts for 5.1% of the global disease burden, contributes substantially to societal and economic costs, and leads to approximately 3 million global deaths yearly. Alcohol use disorder (AUD) includes various drinking behavior patterns that lead to short-term or long-lasting effects on health. Ethanol, the main psychoactive molecule acting in alcoholic beverages, directly impacts the GABAergic system, contributing to GABAergic dysregulations that vary depending on the intensity and duration of alcohol consumption. A small number of interventions have been developed that target the GABAergic system, but there are promising future therapeutic avenues to explore. This review provides an overview of the impact of alcohol on the GABAergic system, the current interventions available for AUD that target the GABAergic system, and the novel interventions being explored that in the future could be included among first-line therapies for the treatment of AUD.
Collapse
Affiliation(s)
| | - Celeste Pina-Leblanc
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Victor M. Tang
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Addiction Division, CAMH, Toronto, ON, Canada
- Division of Neurosciences and Clinical Translation, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Institute of Mental Health Policy Research, CAMH, Toronto, ON, Canada
| | - Matthew E. Sloan
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Addiction Division, CAMH, Toronto, ON, Canada
- Division of Neurosciences and Clinical Translation, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychological Clinical Science, University of Toronto Scarborough, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Institute of Mental Health Policy Research, CAMH, Toronto, ON, Canada
| | - Yuliya S. Nikolova
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Peter Pangarov
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
| | - Anthony C. Ruocco
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Therapeutic Brain Intervention, CAMH, Toronto, ON, Canada
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Kevin Shield
- Institute of Mental Health Policy Research, CAMH, Toronto, ON, Canada
| | - Daphne Voineskos
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Therapeutic Brain Intervention, CAMH, Toronto, ON, Canada
| | - Daniel M. Blumberger
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Therapeutic Brain Intervention, CAMH, Toronto, ON, Canada
| | - Isabelle Boileau
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, CAMH, Toronto, ON, Canada
| | - Nikki Bozinoff
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| | - Philip Gerretsen
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, CAMH, Toronto, ON, Canada
| | - Erica Vieira
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Osnat C. Melamed
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Lena C. Quilty
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Thomas D. Prevot
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Naylor DE. In the fast lane: Receptor trafficking during status epilepticus. Epilepsia Open 2023; 8 Suppl 1:S35-S65. [PMID: 36861477 PMCID: PMC10173858 DOI: 10.1002/epi4.12718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Status epilepticus (SE) remains a significant cause of morbidity and mortality and often is refractory to standard first-line treatments. A rapid loss of synaptic inhibition and development of pharmacoresistance to benzodiazepines (BZDs) occurs early during SE, while NMDA and AMPA receptor antagonists remain effective treatments after BZDs have failed. Multimodal and subunit-selective receptor trafficking within minutes to an hour of SE involves GABA-A, NMDA, and AMPA receptors and contributes to shifts in the number and subunit composition of surface receptors with differential impacts on the physiology, pharmacology, and strength of GABAergic and glutamatergic currents at synaptic and extrasynaptic sites. During the first hour of SE, synaptic GABA-A receptors containing γ2 subunits move to the cell interior while extrasynaptic GABA-A receptors with δ subunits are preserved. Conversely, NMDA receptors containing N2B subunits are increased at synaptic and extrasynaptic sites, and homomeric GluA1 ("GluA2-lacking") calcium permeant AMPA receptor surface expression also is increased. Molecular mechanisms, largely driven by NMDA receptor or calcium permeant AMPA receptor activation early during circuit hyperactivity, regulate subunit-specific interactions with proteins involved with synaptic scaffolding, adaptin-AP2/clathrin-dependent endocytosis, endoplasmic reticulum (ER) retention, and endosomal recycling. Reviewed here is how SE-induced shifts in receptor subunit composition and surface representation increase the excitatory to inhibitory imbalance that sustains seizures and fuels excitotoxicity contributing to chronic sequela such as "spontaneous recurrent seizures" (SRS). A role for early multimodal therapy is suggested both for treatment of SE and for prevention of long-term comorbidities.
Collapse
Affiliation(s)
- David E Naylor
- VA Greater Los Angeles Healthcare System, Department of Neurology, David Geffen School of Medicine at UCLA, and The Lundquist Institute at Harbor-UCLA Medical Center, Los Angeles, California, USA
| |
Collapse
|
4
|
Ornelas LC, Boero G, Van Voorhies K, O’Buckley TK, Besheer J, Morrow AL. Pharmacological administration of 3α,5α-THP into the nucleus accumbens core increases 3α,5α-THP expression and reduces alcohol self-administration. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:459-469. [PMID: 36587947 PMCID: PMC10234128 DOI: 10.1111/acer.15008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/16/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Alcohol affects multiple circuits in the brain, mainly disrupting the delicate balance between inhibitory γ-aminobutyric acid (GABA) transmission and excitatory glutamate signaling in brain areas involved in reward circuits. These include the amygdala, nucleus accumbens (Acb), and ventral tegmental area (VTA). This action impairs circuits that regulate behavioral control of craving and alcohol seeking and intake. Studies in both rodent models and postmortem human brain of patients with alcohol use disorder (AUD) have highlighted the association between the loss of GABAergic inhibition and the development of addiction. The neurosteroid (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP) is a potent positive modulator of GABAA receptors. Chronic alcohol consumption reduces 3α,5α-THP levels, resulting in decreased GABA inhibition. We previously demonstrated that enhancing neurosteroid biosynthesis by overexpression of the cholesterol side-chain cleavage enzyme P450scc decreased alcohol intake in male alcohol-preferring rats (P-rats). While most of the evidence of alcohol-induced alterations comes from studies in male subjects, some data show that females are more vulnerable to alcohol's effects than males. METHODS In this study, we investigated the ability of 3α,5α-THP direct infusions in two brain regions that contribute to alcohol reinforcement, the VTA and Acb core (AcbC), to regulate alcohol self-administration in female P-rats. RESULTS Administration of 3α,5α-THP into the AcbC increased 3α,5α-THP-positive cell expression in this area and reduced alcohol self-administration. By contrast, 3α,5α-THP infusion into the VTA did not significantly affect alcohol self-administration, though trends for a reduction were found. CONCLUSIONS Our results show that local increases in 3α,5α-THP in the AcbC may alter mesolimbic activity that drives a reduction in alcohol self-administration.
Collapse
Affiliation(s)
- Laura C. Ornelas
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Giorgia Boero
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kalynn Van Voorhies
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Todd K. O’Buckley
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
5
|
DiLeo A, Antonoudiou P, Ha S, Maguire JL. Sex Differences in the Alcohol-Mediated Modulation of BLA Network States. eNeuro 2022; 9:ENEURO.0010-22.2022. [PMID: 35788104 PMCID: PMC9275151 DOI: 10.1523/eneuro.0010-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/19/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022] Open
Abstract
Alcohol use, reported by 85% of adults in the United States, is highly comorbid with mood disorders, like generalized anxiety disorder and major depression. The basolateral amygdala (BLA) is an area of the brain that is heavily implicated in both mood disorders and alcohol use disorder. Importantly, the modulation of BLA network/oscillatory states via parvalbumin (PV)-positive GABAergic interneurons has been shown to control the behavioral expression of fear and anxiety. Further, PV interneurons express a high density of δ subunit-containing GABAA receptors (GABAARs), which are sensitive to low concentrations of alcohol. Therefore, we hypothesized that the effects of alcohol may modulate BLA network states that have been associated with fear and anxiety behaviors via δ-GABAARs on PV interneurons in the BLA. Given the impact of ovarian hormones on the expression of δ-GABAARs, we also examined the ability of alcohol to modulate local field potentials in the BLA from male and female C57BL/6J and Gabrd-/- mice after acute and repeated exposure to alcohol. Here, we demonstrate that acute and repeated alcohol can differentially modulate oscillatory states in male and female C57BL/6J mice, a process that involves δ-GABAARs. This is the first study to demonstrate that alcohol is capable of altering network states implicated in both anxiety and alcohol use disorders.
Collapse
Affiliation(s)
- Alyssa DiLeo
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts 02111
| | - Pantelis Antonoudiou
- Department of Neuroscience, Tufts School of Medicine, Tufts University, Boston, Massachusetts 02111
| | - Spencer Ha
- Department of Neuroscience, Tufts School of Medicine, Tufts University, Boston, Massachusetts 02111
| | - Jamie L Maguire
- Department of Neuroscience, Tufts School of Medicine, Tufts University, Boston, Massachusetts 02111
| |
Collapse
|
6
|
Larson EA, Accardi MV, Zhong Y, Paquette D, Authier S. Drug-Induced Seizures: Considerations for Underlying Molecular Mechanisms. Int J Toxicol 2021; 40:403-412. [PMID: 34514888 DOI: 10.1177/10915818211040483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A broad spectrum of chemical entities have been associated with drug-induced seizure (DIS), emphasizing the importance of this potential liability across various drug classes (e.g., antidepressants, antipsychotics, antibiotics, and analgesics among others). Despite its importance within drug safety testing, an understanding of the molecular mechanisms associated with DIS is often lacking. The etiology of DIS is understood to be a result of either a deficit in inhibitory (e.g., gamma aminobutyric acid) or an elevated excitatory (e.g., glutamate) signaling, leading to synchronous neuronal depolarization affecting various brain regions and impairing normal neurological functions. How this altered neuronal signaling occurs and how these changes interact with other non-brain receptor driven DIS-associated changes such as metabolic disturbances, electrolyte imbalances, altered drug metabolism, and withdrawal effects are poorly understood. Herein, we discuss important molecular mechanisms identified in DIS for several drugs and/or drug classes. With a better understanding of the molecular mechanisms associated with DIS, in vivo or in vitro models may be applied to characterize and mitigate DIS risk during drug development. Susceptibility stratification for DIS presents species differences in the following order beagle dogs > rodents and cynomolgus monkeys > Göttingen minipigs with a more than 2-fold difference between canines and minipigs, which is important to consider during non-clinical species selection. While clinical signs such as myoclonus, severe muscle jerks, or convulsions are often associated with abnormal epileptiform EEG activity, tremors are most of the time physiological and rarely observed with concurrent epileptiform EEG activity which need to be considered during DIS risk evaluation.
Collapse
Affiliation(s)
| | | | - Yifei Zhong
- Charles River Laboratories, Laval, Quebec, Canada
| | | | - Simon Authier
- Charles River Laboratories, Laval, Quebec, Canada.,Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| |
Collapse
|
7
|
Silva J, Yu X, Qi L, Davies DL, Liang J. Antialcohol Effects of Dihydromyricetin in Combination With Other Flavonoids. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20946250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Herbal remedies are consumed by approximately 50% of the population in the United States for health and wellness, including products promoted for liver health and alcohol (ethanol [EtOH]). Previously, we have shown that dihydromyricetin (DHM), a bioflavonoid, can counteract EtOH intoxication and withdrawal via GABAA receptor (GABAAR) activity. Through evaluation of GABAAR potentiation using DHM, resveratrol, genistein, daidzein, and turmeric, we found that the activity of DHM is unique. Furthermore, using the loss of right reflex induced by EtOH in rats, we discovered that DHM was superior in reducing EtOH intoxication and EtOH actions on GABAARs. However, the combination of DHM with turmeric, daidzein, or resveratrol diminished the DHM effects. Here, we report that combinations of DHM should be evaluated, as we have found that combining DHM with other flavonoids diminished efficacy. Collectively, these data support the utility of DHM as a unique antialcohol intoxication therapy.
Collapse
Affiliation(s)
- Joshua Silva
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Xin Yu
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Luqing Qi
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Daryl L. Davies
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Jing Liang
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Etemad L, Farkhari H, Alavi MS, Roohbakhsh A. The Effect of Dihydromyricetin, a Natural Flavonoid, on
Morphine-induced Conditioned Place Preference and Physical Dependence in
Mice. Drug Res (Stuttg) 2020; 70:410-416. [DOI: 10.1055/a-1206-6757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Objective Dihydromyricetin (DHM), a natural flavonoid, is used to reduce
alcohol hangover. It has a modulatory role on GABAA receptors with significant
effects on seizure and anxiety in animal models. We aimed to evaluate the effect
of DHM on morphine conditioned place preference (CPP) and withdrawal sings
following morphine dependence using animal models.
Methods The effect of DHM (1, 2 and 5 mg/kg,
intraperitoneal; ip) on the acquisition and expression of morphine-induced CPP
was evaluated in male mice. Administration of morphine for three consecutive
days induced physical dependence. The withdrawal signs such as jumping and
defecation were precipitated by administration of naloxone
(8 mg/kg, ip). The effect of DHM on the development of physical
dependence was assessed by injection of DHM before morphine administrations.
Results DHM, at the dose of 5 mg/kg, reduced expression
of morphine CPP with an increase in the locomotor activity. DHM, at the doses of
2 and 5 mg/kg, also reduced development of morphine CPP. DHM
alleviated development of morphine-induced physical dependence at the dose of 1,
2, and 5 mg/kg by decreasing jumping and defecation.
Conclusion These results indicated that DHM decreased acquisition and
expression of morphine CPP and inhibited development of morphine-induced
physical dependence.
Collapse
Affiliation(s)
- Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute,
Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Farkhari
- Department of Pharmacodynamics and Toxicology, School of Pharmacy,
Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of
Medical Sciences, Mashhad, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences
Research Center, Mashhad University of Medical Sciences, Mashhad,
Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute,
Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Silva J, Shao AS, Shen Y, Davies DL, Olsen RW, Holschneider DP, Shao XM, Liang J. Modulation of Hippocampal GABAergic Neurotransmission and Gephyrin Levels by Dihydromyricetin Improves Anxiety. Front Pharmacol 2020; 11:1008. [PMID: 32742262 PMCID: PMC7364153 DOI: 10.3389/fphar.2020.01008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Anxiety disorders are the most common mental illness in the U.S. and are estimated to consume one-third of the country’s mental health spending. Although anxiolytic therapies are available, many patients exhibit treatment-resistance, relapse, or substantial side effects. An urgent need exists to explore the underlying mechanisms of chronic anxiety and to develop alternative therapies. Presently, we identified dihydromyricetin (DHM), a flavonoid that has anxiolytic properties in a mouse model of isolation-induced anxiety. Socially isolated mice demonstrated increased anxiety levels and reduced exploratory behavior measured by elevated plus-maze and open-field tests. Socially isolated mice showed impaired GABAergic neurotransmission, including reduction in GABAA receptor-mediated extrasynaptic tonic currents, as well as amplitude and frequency of miniature inhibitory postsynaptic currents measured by whole-cell patch-clamp recordings from hippocampal slices. Furthermore, intracellular ATP levels and gephyrin expression decreased in anxious animals. DHM treatment restored ATP and gephyrin expression, GABAergic transmission and synaptic function, as well as decreased anxiety-like behavior. Our findings indicate broader roles for DHM in anxiolysis, GABAergic neurotransmission, and synaptic function. Collectively, our data suggest that reduction in intracellular ATP and gephyrin contribute to the development of anxiety, and represent novel treatment targets. DHM is a potential candidate for pharmacotherapy for anxiety disorders.
Collapse
Affiliation(s)
- Joshua Silva
- Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy, Los Angeles, CA, United States
| | - Amy S Shao
- Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Yi Shen
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Daryl L Davies
- Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy, Los Angeles, CA, United States
| | - Richard W Olsen
- Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Daniel P Holschneider
- Psychiatry and The Behavioral Sciences, University of Southern California, Los Angeles, CA, United States
| | - Xuesi M Shao
- Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Jing Liang
- Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy, Los Angeles, CA, United States
| |
Collapse
|
10
|
Nagumo Y, Ueta Y, Nakayama H, Osaki H, Takeuchi Y, Uesaka N, Kano M, Miyata M. Tonic GABAergic Inhibition Is Essential for Nerve Injury-Induced Afferent Remodeling in the Somatosensory Thalamus and Ectopic Sensations. Cell Rep 2020; 31:107797. [DOI: 10.1016/j.celrep.2020.107797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 03/10/2020] [Accepted: 06/01/2020] [Indexed: 11/16/2022] Open
|
11
|
Morrow AL, Boero G, Porcu P. A Rationale for Allopregnanolone Treatment of Alcohol Use Disorders: Basic and Clinical Studies. Alcohol Clin Exp Res 2020; 44:320-339. [PMID: 31782169 PMCID: PMC7018555 DOI: 10.1111/acer.14253] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022]
Abstract
For many years, research from around the world has suggested that the neuroactive steroid (3α,5α)-3-hydroxypregnan-20-one (allopregnanolone or 3α,5α-THP) may have therapeutic potential for treatment of various symptoms of alcohol use disorders (AUDs). In this critical review, we systematically address all the evidence that supports such a suggestion, delineate the etiologies of AUDs that are addressed by treatment with allopregnanolone or its precursor pregnenolone, and the rationale for treatment of various components of the disease based on basic science and clinical evidence. This review presents a theoretical framework for understanding how endogenous steroids that regulate the effects of stress, alcohol, and the innate immune system could play a key role in both the prevention and the treatment of AUDs. We further discuss cautions and limitations of allopregnanolone or pregnenolone therapy with suggestions regarding the management of risk and the potential for helping millions who suffer from AUDs.
Collapse
Affiliation(s)
- A. Leslie Morrow
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
| | - Giorgia Boero
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| |
Collapse
|
12
|
Abstract
BACKGROUND Alcohol withdrawal syndrome (AWS) is a distressing and life-threatening condition that usually affects people who are alcohol dependent when they discontinue or decrease their alcohol consumption. Baclofen shows potential for rapidly reducing symptoms of severe AWS in people with alcoholism. Treatment with baclofen is easy to manage and rarely produces euphoria or other pleasant effects, or craving for the drug. This is an updated version of the original Cochrane Review first published in 2011 and last updated in 2017. OBJECTIVES To assess the efficacy and safety of baclofen for people with AWS. SEARCH METHODS We updated our searches of the following databases to June 2019: the Cochrane Drugs and Alcohol Group Specialised Register, CENTRAL, PubMed, Embase, and CINAHL. We also searched registers of ongoing trials. We handsearched the references quoted in the identified trials, and sought information from researchers, pharmaceutical companies, and relevant trial authors about unpublished or uncompleted trials. We placed no restrictions on language. SELECTION CRITERIA We included all randomised controlled clinical trials (RCTs) evaluating baclofen versus placebo or any other treatment for people with AWS. We excluded uncontrolled, non-randomised, or quasi-randomised trials. We included both parallel group and cross-over studies. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. MAIN RESULTS We included four RCTs with 189 randomised participants (one RCT new for this update). None of the included studies reported the primary outcomes of alcohol withdrawal seizures, alcohol withdrawal delirium, or craving. For the comparison of baclofen and placebo (1 study, 31 participants), there was no evidence of a difference in Clinical Institute Withdrawal Assessment of Alcohol Scale, Revised (CIWA-Ar) scores in eight-hour periods from days one to five (very low-quality evidence). For the comparison of baclofen and diazepam (2 studies, 85 participants), there was no evidence of a difference in change from baseline to days 10 to 15 on CIWA-Ar scores (very low-quality evidence, meta-analysis was not performed due to insufficient data). In one study (37 participants), there was no evidence of a difference in participants with at least one adverse event (risk difference (RD) 0.00, 95% confidence interval (CI) -0.10 to 0.10; very low-quality evidence), dropouts (RD 0.00, 95% CI -0.10 to 0.10; very low-quality evidence), and dropouts due to adverse events (RD 0.00, 95% CI -0.10 to 0.10; very low-quality evidence). For the comparison of baclofen and chlordiazepoxide (1 study, 60 participants), there was no evidence of a difference in difference from baseline to nine-day decremental fixed-dose intervention: CIWA-Ar scores (mean difference (MD) 1.00, 95% CI 0.70 to 1.30; very low-quality evidence), global improvement (MD 0.10, 95% CI -0.03 to 0.23; very low-quality evidence), 14/60 participants with adverse events (RD 2.50, 95% CI 0.88 to 7.10; very low-quality of evidence), dropouts (RD 0.00, 95% CI -0.06 to 0.06; very low-quality evidence), and dropouts due to adverse events (RD 0.00, 95% CI -0.06 to 0.06; very low-quality evidence). None of the RCTs provided information on random sequence generation or allocation concealment, therefore, we assessed them at unclear risk of bias. Two RCTs were not of double-blind design and had a high risk of bias in blinding (Addolorato 2006; Girish 2016). One RCT had more than 5% dropouts with high risk of attrition bias (Lyon 2011). We could not assess reporting bias as none of the prepublished protocols were available. AUTHORS' CONCLUSIONS No conclusions can be drawn about the efficacy and safety of baclofen for the management of alcohol withdrawal because we found insufficient and very low-quality evidence.
Collapse
Affiliation(s)
- Jia Liu
- Xuanwu Hospital, Capital Medical UniversityDepartment of NeurologyChangchun Street 45BeijingChina100053
| | - Lu‐Ning Wang
- Chinese PLA General HospitalDepartment of Geriatric NeurologyFuxing Road 28Haidian DistrictBeijingChina100853
| | | |
Collapse
|
13
|
Roberts AJ, Khom S, Bajo M, Vlkolinsky R, Polis I, Cates-Gatto C, Roberto M, Gruol DL. Increased IL-6 expression in astrocytes is associated with emotionality, alterations in central amygdala GABAergic transmission, and excitability during alcohol withdrawal. Brain Behav Immun 2019; 82:188-202. [PMID: 31437534 PMCID: PMC6800653 DOI: 10.1016/j.bbi.2019.08.185] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 01/14/2023] Open
Abstract
Accumulating evidence from preclinical and clinical studies has implicated a role for the cytokine IL-6 in a variety of CNS diseases including anxiety-like and depressive-like behaviors, as well as alcohol use disorder. Here we use homozygous and heterozygous transgenic mice expressing elevated levels of IL-6 in the CNS due to increased astrocyte expression and non-transgenic littermates to examine a role for astrocyte-produced IL-6 in emotionality (response to novelty, anxiety-like, and depressive-like behaviors). Our results from homozygous IL-6 mice in a variety of behavioral tests (light/dark transfer, open field, digging, tail suspension, and forced swim tests) support a role for IL-6 in stress-coping behaviors. Ex vivo electrophysiological studies of neuronal excitability and inhibitory GABAergic synaptic transmission in the central nucleus of the amygdala (CeA) of the homozygous transgenic mice revealed increased inhibitory GABAergic signaling and increased excitability of CeA neurons, suggesting a role for astrocyte produced IL-6 in the amygdala in exploratory drive and depressive-like behavior. Furthermore, studies in the hippocampus of activation/expression of proteins associated with IL-6 signal transduction and inhibitory GABAergic mechanisms support a role for astrocyte produced IL-6 in depressive-like behaviors. Our studies indicate a complex and dose-dependent relationship between IL-6 and behavior and implicate IL-6 induced neuroadaptive changes in neuronal excitability and the inhibitory GABAergic system as important contributors to altered behavior associated with IL-6 expression in the CNS.
Collapse
Affiliation(s)
- Amanda J. Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA 92037 U.S.A
| | - Sophia Khom
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037 U.S.A
| | - Michal Bajo
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037 U.S.A
| | - Roman Vlkolinsky
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037 U.S.A
| | - Ilham Polis
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA 92037 U.S.A
| | - Chelsea Cates-Gatto
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA 92037 U.S.A
| | - Marisa Roberto
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037 U.S.A
| | - Donna L. Gruol
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037 U.S.A,Corresponding Author: Dr. Donna L. Gruol, Neuroscience Department, SP30-1522, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, Phone: (858) 784-7060, Fax: (858) 784-7393,
| |
Collapse
|
14
|
Chowdhury TG, Wable GS, Chen YW, Tateyama K, Yu I, Wang JY, Reyes AD, Aoki C. Voluntary Wheel Running Exercise Evoked by Food-Restriction Stress Exacerbates Weight Loss of Adolescent Female Rats But Also Promotes Resilience by Enhancing GABAergic Inhibition of Pyramidal Neurons in the Dorsal Hippocampus. Cereb Cortex 2019; 29:4035-4049. [PMID: 30462186 PMCID: PMC6931273 DOI: 10.1093/cercor/bhy283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 11/13/2022] Open
Abstract
Adolescence is marked by increased vulnerability to mental disorders and maladaptive behaviors, including anorexia nervosa. Food-restriction (FR) stress evokes foraging, which translates to increased wheel running exercise (EX) for caged rodents, a maladaptive behavior, since it does not improve food access and exacerbates weight loss. While almost all adolescent rodents increase EX following FR, some then become resilient by suppressing EX by the second-fourth FR day, which minimizes weight loss. We asked whether GABAergic plasticity in the hippocampus may underlie this gain in resilience. In vitro slice physiology revealed doubling of pyramidal neurons' GABA response in the dorsal hippocampus of food-restricted animals with wheel access (FR + EX for 4 days), but without increase of mIPSC amplitudes. mIPSC frequency increased by 46%, but electron microscopy revealed no increase in axosomatic GABAergic synapse number onto pyramidal cells and only a modest increase (26%) of GABAergic synapse lengths. These changes suggest increase of vesicular release probability and extrasynaptic GABAA receptors and unsilencing of GABAergic synapses. GABAergic synapse lengths correlated with individual's suppression of wheel running and weight loss. These analyses indicate that EX can have dual roles-exacerbate weight loss but also promote resilience to some by dampening hippocampal excitability.
Collapse
Affiliation(s)
| | | | - Yi-Wen Chen
- Center for Neural Science, NYU, New York, NY, USA
| | - Kei Tateyama
- Center for Neural Science, NYU, New York, NY, USA
| | - Irene Yu
- Center for Neural Science, NYU, New York, NY, USA
| | - Jia-Yi Wang
- Center for Neural Science, NYU, New York, NY, USA
| | - Alex D Reyes
- Center for Neural Science, NYU, New York, NY, USA
| | - Chiye Aoki
- Center for Neural Science, NYU, New York, NY, USA
- The Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA
| |
Collapse
|
15
|
Nipper MA, Jensen JP, Helms ML, Ford MM, Crabbe JC, Rossi DJ, Finn DA. Genotype Differences in Sensitivity to the Anticonvulsant Effect of the Synthetic Neurosteroid Ganaxolone during Chronic Ethanol Withdrawal. Neuroscience 2018; 397:127-137. [PMID: 30513375 DOI: 10.1016/j.neuroscience.2018.11.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 01/05/2023]
Abstract
Sensitivity to anticonvulsant effects of the γ-aminobutyric acidA receptor-active neurosteroid allopregnanolone (ALLO) during ethanol withdrawal varies across genotypes, with high sensitivity in genotypes with mild withdrawal and low sensitivity in genotypes with high withdrawal. The present studies determined whether the resistance to ALLO during withdrawal in mouse genotypes with high handling-induced convulsions (HICs) during withdrawal could be overcome with use of ganaxolone (GAN), the metabolically stable derivative of ALLO. In separate studies, male and female Withdrawal Seizure-Prone (WSP-1) and DBA/2J (D2) mice were exposed to air (controls) or 72-h ethanol vapor and then were scored for HICs during withdrawal (hourly for the first 12 h, then at hours 24 and 25). After the HIC scoring at hours 5 and 9, mice were injected with 10 mg/kg GAN or vehicle. Area under the HIC curve (AUC) for hours 5-12 was analyzed. In control WSP-1 mice, GAN significantly reduced AUC by 52% (males) and 63% (females), with effects that were absent or substantially reduced during withdrawal. In contrast, GAN significantly reduced AUC in both control and ethanol-withdrawing male and female D2 mice. AUC was decreased by 81% (males) and 70% (females) in controls and by 35% (males) and 21% (females) during withdrawal. The significant anticonvulsant effect of GAN during withdrawal in D2 but not WSP-1 mice suggests that different mechanisms may contribute to ALLO insensitivity during withdrawal in these two genotypes. Importantly, the results in D2 mice suggest that GAN may be a useful treatment for ethanol withdrawal-induced seizures.
Collapse
Affiliation(s)
- Michelle A Nipper
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States.
| | - Jeremiah P Jensen
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States
| | - Melinda L Helms
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States
| | - Matthew M Ford
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States; Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, United States
| | - John C Crabbe
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States; Portland Alcohol Research Center, VA Portland Health Care System, Portland, OR 97239, United States
| | - David J Rossi
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States; Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, United States
| | - Deborah A Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States; Portland Alcohol Research Center, VA Portland Health Care System, Portland, OR 97239, United States
| |
Collapse
|
16
|
Lagrange AH, Hu N, Macdonald RL. GABA beyond the synapse: defining the subtype-specific pharmacodynamics of non-synaptic GABA A receptors. J Physiol 2018; 596:4475-4495. [PMID: 30019335 PMCID: PMC6138284 DOI: 10.1113/jp276187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 07/12/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Physiologically relevant combinations of recombinant GABAA receptor (GABAR) subunits were expressed in HEK293 cells. Using whole-cell voltage clamp and rapid drug application, we measured the GABAR-subtype-specific properties to convey either synaptic or extrasynaptic signalling in a range of physiological contexts. α4βδ GABARs are optimally tuned to submicromolar tonic GABA and transient surges of micromolar GABA concentrations. α5β2γ2l GABARs are better suited to higher tonic GABA levels, but also convey robust responses to brief synaptic and perisynaptic GABA fluctuations. α1β2/3δ GABARs function well at prolonged, micromolar (>2 μm) GABA levels, but not to low tonic (<1 μm GABA) or synaptic/transient GABAergic signalling. These results help illuminate the context- and isoform-specific modes of GABAergic signalling in the brain. ABSTRACT GABAA receptors (GABARs) mediate a remarkable diversity of signalling modalities in vivo. Yet most published work characterizing responses to GABA has focused on the properties needed to convey fast, phasic synaptic inhibition. We therefore aimed to characterize the most prevalent (α4βδ, α5β3γ2L) and least prevalent (α1β2δ) non-synaptic GABAR currents, using whole-cell voltage clamp recordings of recombinant GABAR expressed in HEK293 cells and drug application protocols to recapitulate the GABA concentration profiles occurring during both fast synaptic and slow extrasynaptic signalling. We found that α4βδ GABARs were very sensitive to submicromolar GABA, with a rank order potency of α4β2δ ≥ α4β1δ ≈ α4β3δ GABARs. In comparison, the GABA EC50 was up to 20 times higher for α1β2γ2L GABARs, with α1β2δ and α5β3γ2L GABARs having intermediate GABA potency. Both α4βδ and α5β3γ2L GABAR currents exhibited slow, but substantial, desensitization as well as prolonged rates of deactivation. These GABAR current properties defined distinct 'dynamic ranges' of responsiveness to changing GABA for α4β2δ (0.1-1 μm), α5β3γ2L (0.5-7 μm) and α1β2γ2L (0.6-9 μm) GABARs. Finally, α1β2δ GABARs were notable for their relative lack of desensitization and extremely quick deactivation. In summary, our results help delineate the roles that specific GABARs may play in mediating non-synaptic GABA signals. Since ambient GABA levels may be altered during development as well as by drugs and disease states, these findings may help future efforts to understand disrupted inhibition underlying a variety of neurological illnesses, such as epilepsy.
Collapse
Affiliation(s)
- Andre H. Lagrange
- Departments of NeurologyVanderbilt University Medical CenterNashvilleTN37240‐7915USA
- PharmacologyVanderbilt University Medical CenterNashvilleTN37240‐7915USA
- Program in NeuroscienceVanderbilt University Medical CenterNashvilleTN37240‐7915USA
- Tennessee Valley Healthcare Systems Veterans AdministrationNashvilleTN37201USA
| | - NingNing Hu
- Departments of NeurologyVanderbilt University Medical CenterNashvilleTN37240‐7915USA
| | - Robert L. Macdonald
- Departments of NeurologyVanderbilt University Medical CenterNashvilleTN37240‐7915USA
- Molecular Physiology and BiophysicsVanderbilt University Medical CenterNashvilleTN37240‐7915USA
- PharmacologyVanderbilt University Medical CenterNashvilleTN37240‐7915USA
| |
Collapse
|
17
|
Gravielle MC. Regulation of GABAA receptors by prolonged exposure to endogenous and exogenous ligands. Neurochem Int 2018; 118:96-104. [DOI: 10.1016/j.neuint.2018.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/22/2018] [Accepted: 05/30/2018] [Indexed: 02/08/2023]
|
18
|
Histone deacetylases mediate GABA A receptor expression, physiology, and behavioral maladaptations in rat models of alcohol dependence. Neuropsychopharmacology 2018; 43. [PMID: 29520058 PMCID: PMC5983537 DOI: 10.1038/s41386-018-0034-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alcohol use disorders are chronic debilitating diseases characterized by severe withdrawal symptoms that contribute to morbidity and relapse. GABAA receptor (GABAAR) adaptations have long been implicated in the chronic effects of alcohol and contribute to many withdrawal symptoms associated with alcohol dependence. In rodents, GABAAR hypofunction results from decreases in Gabra1 expression, although the underlying mechanism controlling Gabra1 expression after chronic ethanol exposure is still unknown. We found that chronic ethanol exposure using either ethanol gavage or two-bottle choice voluntary access paradigms decreased Gabra1 expression and increased Hdac2 and Hdac3 expression. Administration of the HDAC inhibitor trichostatin A (TSA) after chronic ethanol exposure prevents the decrease in Gabra1 expression and function as well as the increase in Hdac2 and Hdac3 expression in both the cortex and the medial prefrontal cortex (mPFC). Chronic ethanol exposure and withdrawal, but not acute ethanol exposure or acute withdrawal, cause a selective upregulation of HDAC2 and HDAC3 associated with the Gabra1 promoter that accompanies a decrease in H3 acetylation of the Gabra1 promoter and the reduction in GABAAR α1 subunit expression. TSA administration prevented each of these molecular events as well as behavioral manifestations of ethanol dependence, including tolerance to zolpidem-induced loss of righting reflex, reduced open-arm time in the elevated plus maze, reduced center-time and locomotor activity in the open-field assay, and TSA reduced voluntary ethanol consumption. The results show how chronic ethanol exposure regulates the highly prominent GABAAR α1 subunit by an epigenetic mechanism that represents a potential treatment modality for alcohol dependence.
Collapse
|
19
|
Chen J, He Y, Wu Y, Zhou H, Su LD, Li WN, Olsen RW, Liang J, Zhou YD, Shen Y. Single Ethanol Withdrawal Regulates Extrasynaptic δ-GABA A Receptors Via PKCδ Activation. Front Mol Neurosci 2018; 11:141. [PMID: 29755316 PMCID: PMC5932167 DOI: 10.3389/fnmol.2018.00141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/09/2018] [Indexed: 11/23/2022] Open
Abstract
Alcohol (ethanol, EtOH) is one of the most widely abused drugs with profound effects on brain function and behavior. GABAA receptors (GABAARs) are one of the major targets for EtOH in the brain. Temporary plastic changes in GABAARs after withdrawal from a single EtOH exposure occur both in vivo and in vitro, which may be the basis for chronic EtOH addiction, tolerance and withdrawal symptoms. Extrasynaptic δ-GABAAR endocytosis is implicated in EtOH-induced GABAAR plasticity, but the mechanisms by which the relative abundance and localization of specific GABAARs are altered by EtOH exposure and withdrawal remain unclear. In this study, we investigated the mechanisms underlying rapid regulation of extrasynaptic δ-GABAAR by a single EtOH withdrawal in cultured rat hippocampal neurons. Thirty-minutes EtOH (60 mM) exposure increased extrasynaptic tonic current (Itonic) amplitude without affecting synaptic GABAAR function in neurons. In contrast, at 30 min after withdrawal, Itonic amplitude and responsiveness to acute EtOH were both reduced. Similar results occurred in neurons with okadaic acid (OA) or phorbol 12,13-dibutyrate (PDBu) exposure. Protein kinase C (PKC) inhibition prevented the reduction of Itonic amplitude and the tolerance to acute EtOH, as well as the reduction of GABAAR-δ subunit abundance induced by a single EtOH withdrawal. Moreover, EtOH withdrawal selectively increased PKCδ level, whereas PKCδ inhibition specifically rescued the EtOH-induced alterations in GABAAR-δ subunit level and δ-GABAAR function. Together, we provided strong evidence for the important roles of PKCδ in the rapid regulation of extrasynaptic δ-GABAAR induced by a single EtOH withdrawal.
Collapse
Affiliation(s)
- Juan Chen
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang He
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Wu
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Hang Zhou
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Li-Da Su
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wei-Nan Li
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Richard W Olsen
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jing Liang
- Titus Family Department of Clinical Pharmacy, USC School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Yu-Dong Zhou
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Shen
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Cuzon Carlson VC. GABA and Glutamate Synaptic Coadaptations to Chronic Ethanol in the Striatum. Handb Exp Pharmacol 2018; 248:79-112. [PMID: 29460153 DOI: 10.1007/164_2018_98] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Alcohol (ethanol) is a widely used and abused drug with approximately 90% of adults over the age of 18 consuming alcohol at some point in their lifetime. Alcohol exerts its actions through multiple neurotransmitter systems within the brain, most notably the GABAergic and glutamatergic systems. Alcohol's actions on GABAergic and glutamatergic neurotransmission have been suggested to underlie the acute behavioral effects of ethanol. The striatum is the primary input nucleus of the basal ganglia that plays a role in motor and reward systems. The effect of ethanol on GABAergic and glutamatergic neurotransmission within striatal circuitry has been thought to underlie ethanol taking, seeking, withdrawal and relapse. This chapter reviews the effects of ethanol on GABAergic and glutamatergic transmission, highlighting the dynamic changes in striatal circuitry from acute to chronic exposure and withdrawal.
Collapse
|
21
|
Bohnsack JP, Patel VK, Morrow AL. Ethanol Exposure Regulates Gabra1 Expression via Histone Deacetylation at the Promoter in Cultured Cortical Neurons. J Pharmacol Exp Ther 2017; 363:1-11. [PMID: 28798030 PMCID: PMC5596976 DOI: 10.1124/jpet.117.242446] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/08/2017] [Indexed: 12/23/2022] Open
Abstract
γ-Aminobutyric acid A receptors (GABAA-Rs) mediate the majority of inhibitory neurotransmission in the adult brain. The α1-containing GABAA-Rs are the most prominent subtype in the adult brain and are important in both homeostatic function and several disease pathologies including alcohol dependence, epilepsy, and stress. Ethanol exposure causes a decrease of α1 transcription and peptide expression both in vivo and in vitro, but the mechanism that controls the transcriptional regulation is unknown. Because ethanol is known to activate epigenetic regulation of gene expression, we tested the hypothesis that ethanol regulates α1 expression through histone modifications in cerebral cortical cultured neurons. We found that class I histone deacetylases (HDACs) regulate ethanol-induced changes in α1 gene and protein expression as pharmacologic inhibition or knockdown of HDAC1-3 prevents the effects of ethanol exposure. Targeted histone acetylation associated with the Gabra1 promoter using CRISPR (clustered regularly interspaced palindromic repeat) dCas9-P300 (a nuclease-null Cas9 fused with a histone acetyltransferase) increases histone acetylation and prevents the decrease of Gabra1 expression. In contrast, there was no effect of a mutant histone acetyltransferase or generic transcriptional activator or targeting P300 to a distant exon. Conversely, using a dCas9-KRAB construct that increases repressive methylation (H3K9me3) does not interfere with ethanol-induced histone deacetylation. Overall our results indicate that ethanol deacetylates histones associated with the Gabra1 promoter through class I HDACs and that pharmacologic, genetic, or epigenetic intervention prevents decreases in α1 expression in cultured cortical neurons.
Collapse
Affiliation(s)
- John Peyton Bohnsack
- Department of Pharmacology (J.P.B., A.L.M.), Department of Psychiatry (A.L.M.), and Bowles Center for Alcohol Studies (J.P.B., V.K.P., A.L.M.), University of North Carolina, Chapel Hill, North Carolina
| | - Vraj K Patel
- Department of Pharmacology (J.P.B., A.L.M.), Department of Psychiatry (A.L.M.), and Bowles Center for Alcohol Studies (J.P.B., V.K.P., A.L.M.), University of North Carolina, Chapel Hill, North Carolina
| | - A Leslie Morrow
- Department of Pharmacology (J.P.B., A.L.M.), Department of Psychiatry (A.L.M.), and Bowles Center for Alcohol Studies (J.P.B., V.K.P., A.L.M.), University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
22
|
Olsen RW, Liang J. Role of GABA A receptors in alcohol use disorders suggested by chronic intermittent ethanol (CIE) rodent model. Mol Brain 2017; 10:45. [PMID: 28931433 PMCID: PMC5605989 DOI: 10.1186/s13041-017-0325-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/05/2017] [Indexed: 11/10/2022] Open
Abstract
GABAergic inhibitory transmission is involved in the acute and chronic effects of ethanol on the brain and behavior. One-dose ethanol exposure induces transient plastic changes in GABAA receptor subunit levels, composition, and regional and subcellular localization. Rapid down-regulation of early responder δ subunit-containing GABAA receptor subtypes mediating ethanol-sensitive tonic inhibitory currents in critical neuronal circuits corresponds to rapid tolerance to ethanol's behavioral responses. Slightly slower, α1 subunit-containing GABAA receptor subtypes mediating ethanol-insensitive synaptic inhibition are down-regulated, corresponding to tolerance to additional ethanol behaviors plus cross-tolerance to other GABAergic drugs including benzodiazepines, anesthetics, and neurosteroids, especially sedative-hypnotic effects. Compensatory up-regulation of synaptically localized α4 and α2 subunit-containing GABAA receptor subtypes, mediating ethanol-sensitive synaptic inhibitory currents follow, but exhibit altered physio-pharmacology, seizure susceptibility, hyperexcitability, anxiety, and tolerance to GABAergic positive allosteric modulators, corresponding to heightened alcohol withdrawal syndrome. All these changes (behavioral, physiological, and biochemical) induced by ethanol administration are transient and return to normal in a few days. After chronic intermittent ethanol (CIE) treatment the same changes are observed but they become persistent after 30 or more doses, lasting for at least 120 days in the rat, and probably for life. We conclude that the ethanol-induced changes in GABAA receptors represent aberrant plasticity contributing critically to ethanol dependence and increased voluntary consumption. We suggest that the craving, drug-seeking, and increased consumption in the rat model are tied to ethanol-induced plastic changes in GABAA receptors, importantly the development of ethanol-sensitive synaptic GABAA receptor-mediating inhibitory currents that participate in maintained positive reward actions of ethanol on critical neuronal circuits. These probably disinhibit nerve endings of inhibitory GABAergic neurons on dopamine reward circuit cells, and limbic system circuits mediating anxiolysis in hippocampus and amygdala. We further suggest that the GABAA receptors contributing to alcohol dependence in the rat and presumably in human alcohol use disorders (AUD) are the ethanol-induced up-regulated subtypes containing α4 and most importantly α2 subunits. These mediate critical aspects of the positive reinforcement of ethanol in the dependent chronic user while alleviating heightened withdrawal symptoms experienced whenever ethanol is absent. The speculative conclusions based on firm observations are readily testable.
Collapse
Affiliation(s)
- Richard W. Olsen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 USA
| | - Jing Liang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 USA
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089 USA
| |
Collapse
|
23
|
Abstract
BACKGROUND Baclofen shows potential for rapidly reducing symptoms of severe alcohol withdrawal syndrome (AWS) in people with alcoholism. Treatment with baclofen is easy to manage and rarely produces euphoria or other pleasant effects, or craving for the drug. This is an updated version of the original Cochrane Review published in 2015, Issue 4. OBJECTIVES To assess the efficacy and safety of baclofen for people with AWS. SEARCH METHODS We updated our searches of the following databases to March 2017: the Cochrane Drugs and Alcohol Group Specialised Register, CENTRAL, PubMed, Embase, and CINAHL. We also searched registers of ongoing trials. We handsearched the references quoted in the identified trials, and sought information from researchers, pharmaceutical companies, and relevant trial authors about unpublished or uncompleted trials. We placed no restrictions on language. SELECTION CRITERIA We included all randomised controlled clinical trials (RCTs) evaluating baclofen versus placebo or any other treatment for people with AWS. We excluded uncontrolled, non-randomised, or quasi-randomised trials. We included both parallel group and cross-over studies. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. MAIN RESULTS We included three RCTs with 141 randomised participants. We did not perform meta-analyses due to the different control interventions. For the comparison of baclofen and placebo (1 study, 31 participants), there was no significant difference in Clinical Institute Withdrawal Assessment of Alcohol Scale, Revised (CIWA-Ar) scores (very low quality evidence). For the comparison of baclofen and diazepam (1 study, 37 participants), there was no significant difference in CIWA-Ar scores (very low quality evidence), adverse events (risk difference (RD) 0.00, 95% confidence interval (CI) -0.10 to 0.10; very low quality evidence), dropouts (RD 0.00, 95% CI -0.10 to 0.10; very low quality evidence), and dropouts due to adverse events (RD 0.00, 95% CI -0.10 to 0.10; very low quality evidence). For the comparison of baclofen and chlordiazepoxide (1 study, 60 participants), there was no significant difference in CIWA-Ar scores (mean difference (MD) 1.00, 95% CI 0.70 to 1.30; very low quality evidence), global improvement (MD 0.10, 95% CI -0.03 to 0.23; very low quality evidence), adverse events (RD 2.50, 95% CI 0.88 to 7.10; very low quality of evidence), dropouts (RD 0.00, 95% CI -0.06 to 0.06; very low quality evidence), and dropouts due to adverse events (RD 0.00, 95% CI -0.06 to 0.06; very low quality evidence). AUTHORS' CONCLUSIONS No conclusions can be drawn about the efficacy and safety of baclofen for the management of alcohol withdrawal because we found insufficient and very low quality evidence.
Collapse
Affiliation(s)
- Jia Liu
- Xuanwu Hospital, Capital Medical UniversityDepartment of NeurologyChangchun Street 45BeijingChina100053
| | - Lu‐Ning Wang
- Chinese PLA General HospitalDepartment of Geriatric NeurologyFuxing Road 28Haidian DistrictBeijingChina100853
| |
Collapse
|
24
|
Lindemeyer AK, Shen Y, Yazdani F, Shao XM, Spigelman I, Davies DL, Olsen RW, Liang J. α2 Subunit-Containing GABA A Receptor Subtypes Are Upregulated and Contribute to Alcohol-Induced Functional Plasticity in the Rat Hippocampus. Mol Pharmacol 2017; 92:101-112. [PMID: 28536106 PMCID: PMC5508196 DOI: 10.1124/mol.116.107797] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/05/2017] [Indexed: 12/20/2022] Open
Abstract
Alcohol (EtOH) intoxication causes changes in the rodent brain γ-aminobutyric acid receptor (GABAAR) subunit composition and function, playing a crucial role in EtOH withdrawal symptoms and dependence. Building evidence indicates that withdrawal from acute EtOH and chronic intermittent EtOH (CIE) results in decreased EtOH-enhanced GABAAR δ subunit-containing extrasynaptic and EtOH-insensitive α1βγ2 subtype synaptic GABAARs but increased synaptic α4βγ2 subtype, and increased EtOH sensitivity of GABAAR miniature postsynaptic currents (mIPSCs) correlated with EtOH dependence. Here we demonstrate that after acute EtOH intoxication and CIE, upregulation of hippocampal α4βγ2 subtypes, as well as increased cell-surface levels of GABAAR α2 and γ1 subunits, along with increased α2β1γ1 GABAAR pentamers in hippocampal slices using cell-surface cross-linking, followed by Western blot and coimmunoprecipitation. One-dose and two-dose acute EtOH treatments produced temporal plastic changes in EtOH-induced anxiolysis or withdrawal anxiety, and the presence or absence of EtOH-sensitive synaptic currents correlated with cell surface peptide levels of both α4 and γ1(new α2) subunits. CIE increased the abundance of novel mIPSC patterns differing in activation/deactivation kinetics, charge transfer, and sensitivity to EtOH. The different mIPSC patterns in CIE could be correlated with upregulated highly EtOH-sensitive α2βγ subtypes and EtOH-sensitive α4βγ2 subtypes. Naïve α4 subunit knockout mice express EtOH-sensitive mIPSCs in hippocampal slices, correlating with upregulated GABAAR α2 (and not α4) subunits. Consistent with α2, β1, and γ1 subunits genetically linked to alcoholism in humans, our findings indicate that these new α2-containing synaptic GABAARs could mediate the maintained anxiolytic response to EtOH in dependent individuals, rat or human, contributing to elevated EtOH consumption.
Collapse
Affiliation(s)
- A Kerstin Lindemeyer
- Department of Molecular and Medical Pharmacology (A.K.L., Y.S., F.Y., R.W.O., J.L.), and Department of Neurobiology (X.M.S.), David Geffen School of Medicine at University of California at Los Angeles, and Division of Oral Biology and Medicine, School of Dentistry (I.S.), University of California and Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy (D.L.D., J.L.), Los Angeles, California
| | - Yi Shen
- Department of Molecular and Medical Pharmacology (A.K.L., Y.S., F.Y., R.W.O., J.L.), and Department of Neurobiology (X.M.S.), David Geffen School of Medicine at University of California at Los Angeles, and Division of Oral Biology and Medicine, School of Dentistry (I.S.), University of California and Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy (D.L.D., J.L.), Los Angeles, California
| | - Ferin Yazdani
- Department of Molecular and Medical Pharmacology (A.K.L., Y.S., F.Y., R.W.O., J.L.), and Department of Neurobiology (X.M.S.), David Geffen School of Medicine at University of California at Los Angeles, and Division of Oral Biology and Medicine, School of Dentistry (I.S.), University of California and Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy (D.L.D., J.L.), Los Angeles, California
| | - Xuesi M Shao
- Department of Molecular and Medical Pharmacology (A.K.L., Y.S., F.Y., R.W.O., J.L.), and Department of Neurobiology (X.M.S.), David Geffen School of Medicine at University of California at Los Angeles, and Division of Oral Biology and Medicine, School of Dentistry (I.S.), University of California and Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy (D.L.D., J.L.), Los Angeles, California
| | - Igor Spigelman
- Department of Molecular and Medical Pharmacology (A.K.L., Y.S., F.Y., R.W.O., J.L.), and Department of Neurobiology (X.M.S.), David Geffen School of Medicine at University of California at Los Angeles, and Division of Oral Biology and Medicine, School of Dentistry (I.S.), University of California and Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy (D.L.D., J.L.), Los Angeles, California
| | - Daryl L Davies
- Department of Molecular and Medical Pharmacology (A.K.L., Y.S., F.Y., R.W.O., J.L.), and Department of Neurobiology (X.M.S.), David Geffen School of Medicine at University of California at Los Angeles, and Division of Oral Biology and Medicine, School of Dentistry (I.S.), University of California and Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy (D.L.D., J.L.), Los Angeles, California
| | - Richard W Olsen
- Department of Molecular and Medical Pharmacology (A.K.L., Y.S., F.Y., R.W.O., J.L.), and Department of Neurobiology (X.M.S.), David Geffen School of Medicine at University of California at Los Angeles, and Division of Oral Biology and Medicine, School of Dentistry (I.S.), University of California and Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy (D.L.D., J.L.), Los Angeles, California
| | - Jing Liang
- Department of Molecular and Medical Pharmacology (A.K.L., Y.S., F.Y., R.W.O., J.L.), and Department of Neurobiology (X.M.S.), David Geffen School of Medicine at University of California at Los Angeles, and Division of Oral Biology and Medicine, School of Dentistry (I.S.), University of California and Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy (D.L.D., J.L.), Los Angeles, California
| |
Collapse
|
25
|
Luessen DJ, Sun H, McGinnis MM, McCool BA, Chen R. Chronic intermittent ethanol exposure selectively alters the expression of Gα subunit isoforms and RGS subtypes in rat prefrontal cortex. Brain Res 2017; 1672:106-112. [PMID: 28736108 DOI: 10.1016/j.brainres.2017.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 10/19/2022]
Abstract
Chronic alcohol exposure induces pronounced changes in GPCR-mediated G-protein signaling. Recent microarray and RNA-seq analyses suggest associations between alcohol abuse and the expression of genes involved in G-protein signaling. The activity of G-proteins (e.g. Gαi/o and Gαq) is negatively modulated by regulator of G-protein signaling (RGS) proteins which are implicated in drugs of abuse including alcohol. The present study used 7days of chronic intermittent ethanol exposure followed by 24h withdrawal (CIE) to investigate changes in mRNA and protein levels of G-protein subunit isoforms and RGS protein subtypes in rat prefrontal cortex, a region associated with cognitive deficit attributed to excessive alcohol drinking. We found that this ethanol paradigm induced differential expression of Gα subunits and RGS subtypes. For example, there were increased mRNA and protein levels of Gαi1/3 subunits and no changes in the expression of Gαs and Gαq subunits in ethanol-treated animals. Moreover, CIE increased the mRNA but not the protein levels of Gαo. Additionally, a modest increase in Gαi2 mRNA level by CIE was accompanied by a pronounced increase in its protein level. Interestingly, we found that CIE increased mRNA and protein levels of RGS2, RGS4, RGS7 and RGS19 but had no effect on the expression of RGS5, RGS6, RGS8, RGS12 or RGS17. Changes in the expression of Gα subunits and RGS subtypes could contribute to the functional alterations of certain GPCRs following chronic ethanol exposure. The present study suggests that RGS proteins may be potential new targets for intervention of alcohol abuse via modification of Gα-mediated GPCR function.
Collapse
Affiliation(s)
- D J Luessen
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - H Sun
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - M M McGinnis
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - B A McCool
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - R Chen
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA.
| |
Collapse
|
26
|
Roberto M, Varodayan FP. Synaptic targets: Chronic alcohol actions. Neuropharmacology 2017; 122:85-99. [PMID: 28108359 DOI: 10.1016/j.neuropharm.2017.01.013] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/23/2016] [Accepted: 01/14/2017] [Indexed: 01/02/2023]
Abstract
Alcohol acts on numerous cellular and molecular targets to regulate neuronal communication within the brain. Chronic alcohol exposure and acute withdrawal generate prominent neuroadaptations at synapses, including compensatory effects on the expression, localization and function of synaptic proteins, channels and receptors. The present article reviews the literature describing the synaptic effects of chronic alcohol exposure and their relevance for synaptic transmission in the central nervous system. This review is not meant to be comprehensive, but rather to highlight the effects that have been observed most consistently and that are thought to contribute to the development of alcohol dependence and the negative aspects of withdrawal. Specifically, we will focus on the major excitatory and inhibitory neurotransmitters in the brain, glutamate and GABA, respectively, and how their neuroadaptations after chronic alcohol exposure contributes to alcohol reinforcement, dependence and withdrawal. This article is part of the Special Issue entitled "Alcoholism".
Collapse
|
27
|
Singla D, Mangla M. Incidence of Awareness with Recall under General Anesthesia in Rural India: An Observational Study. Anesth Essays Res 2017; 11:489-494. [PMID: 28663647 PMCID: PMC5490134 DOI: 10.4103/aer.aer_44_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Context: Awareness under anesthesia is a rare but extremely unpleasant phenomenon. There are very few studies in the developing world and none from rural areas where incidence of intraoperative awareness may be higher due to increased patient load, limited patient knowledge and lack of trained hospital staff, reliance on older, cheaper but less effective drugs, and lack of proper equipment both for providing anesthesia, as well as monitoring the patient. Aims: To assess the incidence of intraoperative awareness during general anesthesia among patients in rural India and any factors associated with the same. Settings and Design: Prospective, nonrandomized, observational study. Subjects and Methods: Patients undergoing elective surgical procedures in various specialties under general anesthesia from over a period of 1 year were considered for this study. Approximately, after 1 h of arrival in postanaesthesia care unit, anesthesiologist (not involved in administering anesthesia) assessed intraoperative awareness using a modified form of Brice questionnaire. Statistical Analysis Used: Data were collected on a Microsoft Excel® sheet and analyzed using Statistical Package for the Social Sciences® version 23 (SPSS Inc., Chicago, IL, USA) for windows. Results: A total of 896 patients completed the questionnaire. Postoperatively, in response to the questionnaire, seven patients reported to have remembered something under anesthesia. Out of these, three patients described events that were confirmed by operation theater staff to have occurred whereas they were under anesthesia. Conclusions: Incidence of definite awareness under anesthesia with postoperative recall was found to be 0.33% (three patients out of total 896) in our study.
Collapse
Affiliation(s)
- Deepak Singla
- Department of Anaesthesia, AIIMS, Rishikesh, Uttarakhand, India
| | - Mishu Mangla
- Department of Obstetrics and Gynaecology, Himalayan Hospital, Dehradun, Uttarakhand, India
| |
Collapse
|
28
|
Abstract
UNLABELLED Tonic GABA currents mediated by high-affinity extrasynaptic GABAA receptors, are increasingly recognized as important regulators of cell and neuronal network excitability. Dysfunctional GABAA receptor signaling that results in modified tonic GABA currents is associated with a number of neurological disorders. Consequently, developing compounds to selectively modulate the activity of extrasynaptic GABAA receptors underlying tonic inhibition is likely to prove therapeutically useful. Here, we examine the GABAA receptor subtype selectivity of the weak partial agonist, 5-(4-piperidyl)isoxazol-3-ol (4-PIOL), as a potential mechanism for modulating extrasynaptic GABAA receptor-mediated tonic currents. By using recombinant GABAA receptors expressed in HEK293 cells, and native GABAA receptors of cerebellar granule cells, hippocampal neurons, and thalamic relay neurons, 4-PIOL evidently displayed differential agonist and antagonist-type profiles, depending on the extrasynaptic GABAA receptor isoforms targeted. For neurons, this resulted in differential modulation of GABA tonic currents, depending on the cell type studied, their respective GABAA receptor subunit compositions, and critically, on the ambient GABA levels. Unexpectedly, 4-PIOL revealed a significant population of relatively low-affinity γ2 subunit-containing GABAA receptors in the thalamus, which can contribute to tonic inhibition under specific conditions when GABA levels are raised. Together, these data indicate that partial agonists, such as 4-PIOL, may be useful for modulating GABAA receptor-mediated tonic currents, but the direction and extent of this modulation is strongly dependent on relative expression levels of different extrasynaptic GABAA receptor subtypes, and on the ambient GABA levels. SIGNIFICANCE STATEMENT A background level of inhibition (tonic) is important in the brain for controlling neuronal excitability. Increased levels of tonic inhibition are associated with some neurological disorders but there are no specific ligands capable of selectively reducing tonic inhibition. Here we explore the use of a GABA partial agonist as a selective chemical tool in three different brain regions. We discover that the activity of a partial agonist is heavily dependent upon the GABAA receptor subunit composition underpinning tonic inhibition, and on the ambient levels of GABA in the brain.
Collapse
|
29
|
Van Skike CE, Maggio SE, Reynolds AR, Casey EM, Bardo MT, Dwoskin LP, Prendergast MA, Nixon K. Critical needs in drug discovery for cessation of alcohol and nicotine polysubstance abuse. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:269-87. [PMID: 26582145 PMCID: PMC4679525 DOI: 10.1016/j.pnpbp.2015.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 01/29/2023]
Abstract
Polysubstance abuse of alcohol and nicotine has been overlooked in our understanding of the neurobiology of addiction and especially in the development of novel therapeutics for its treatment. Estimates show that as many as 92% of people with alcohol use disorders also smoke tobacco. The health risks associated with both excessive alcohol consumption and tobacco smoking create an urgent biomedical need for the discovery of effective cessation treatments, as opposed to current approaches that attempt to independently treat each abused agent. The lack of treatment approaches for alcohol and nicotine abuse/dependence mirrors a similar lack of research in the neurobiology of polysubstance abuse. This review discusses three critical needs in medications development for alcohol and nicotine co-abuse: (1) the need for a better understanding of the clinical condition (i.e. alcohol and nicotine polysubstance abuse), (2) the need to better understand how these drugs interact in order to identify new targets for therapeutic development and (3) the need for animal models that better mimic this human condition. Current and emerging treatments available for the cessation of each drug and their mechanisms of action are discussed within this context followed by what is known about the pharmacological interactions of alcohol and nicotine. Much has been and will continue to be gained from studying comorbid alcohol and nicotine exposure.
Collapse
Affiliation(s)
- C E Van Skike
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, United States
| | - S E Maggio
- Department of Psychology, University of Kentucky, Lexington, KY 40536, United States
| | - A R Reynolds
- Department of Psychology, University of Kentucky, Lexington, KY 40536, United States
| | - E M Casey
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, United States
| | - M T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY 40536, United States; Center for Drug Abuse and Research Translation, University of Kentucky, Lexington, KY 40536, United States; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, United States
| | - L P Dwoskin
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, United States; Center for Drug Abuse and Research Translation, University of Kentucky, Lexington, KY 40536, United States
| | - M A Prendergast
- Department of Psychology, University of Kentucky, Lexington, KY 40536, United States; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, United States
| | - K Nixon
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, United States; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, United States.
| |
Collapse
|
30
|
Carlson SL, Bohnsack JP, Patel V, Morrow AL. Regulation of Extrasynaptic GABAA α4 Receptors by Ethanol-Induced Protein Kinase A, but Not Protein Kinase C Activation in Cultured Rat Cerebral Cortical Neurons. J Pharmacol Exp Ther 2016; 356:148-56. [PMID: 26483396 PMCID: PMC4702069 DOI: 10.1124/jpet.115.228056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/14/2015] [Indexed: 01/14/2023] Open
Abstract
Ethanol produces changes in GABAA receptor trafficking and function that contribute to ethanol dependence symptomatology. Extrasynaptic γ-aminobutyric acid A receptors (GABAA-R) mediate inhibitory tonic current and are of particular interest because they are potentiated by physiologically relevant doses of ethanol. Here, we isolate GABAA α4δ receptors by western blotting in subsynaptic fractions to investigate protein kinase A (PKA) and protein kinase C (PKC) modulation of ethanol-induced receptor trafficking, while extrasynaptic receptor function is determined by measurement of tonic inhibition and responses evoked by 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP). Rat cerebral cortical neurons were grown for 18 days in vitro and exposed to ethanol and/or PKA/PKC modulators. Ethanol exposure (1 hour) did not alter GABAA α4 receptor abundance, but it increased tonic current amplitude, an effect that was prevented by inhibiting PKA, but not PKC. Direct activation of PKA, but not PKC, increased the abundance and tonic current of extrasynaptic α4δ receptors. In contrast, prolonged ethanol exposure (4 hours) reduced α4δ receptor abundance as well as tonic current, and this effect was also PKA dependent. Finally, PKC activation by ethanol or phorbol-12,13-dibutyrate (PdBu) had no effect on extrasynaptic α4δ subunit abundance or activity. We conclude that ethanol alters extrasynaptic α4δ receptor function and expression in cortical neurons in a PKA-dependent manner, but ethanol activation of PKC does not influence these receptors. These results could have clinical relevance for therapeutic strategies to restore normal GABAergic functioning for the treatment of alcohol use disorders.
Collapse
Affiliation(s)
- Stephen L Carlson
- Bowles Center for Alcohol Studies and Departments of Psychiatry and Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - J Peyton Bohnsack
- Bowles Center for Alcohol Studies and Departments of Psychiatry and Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Vraj Patel
- Bowles Center for Alcohol Studies and Departments of Psychiatry and Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - A Leslie Morrow
- Bowles Center for Alcohol Studies and Departments of Psychiatry and Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
31
|
Staples MC, Mandyam CD. Thinking after Drinking: Impaired Hippocampal-Dependent Cognition in Human Alcoholics and Animal Models of Alcohol Dependence. Front Psychiatry 2016; 7:162. [PMID: 27746746 PMCID: PMC5043052 DOI: 10.3389/fpsyt.2016.00162] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/13/2016] [Indexed: 12/05/2022] Open
Abstract
Alcohol use disorder currently affects approximately 18 million Americans, with at least half of these individuals having significant cognitive impairments subsequent to their chronic alcohol use. This is most widely apparent as frontal cortex-dependent cognitive dysfunction, where executive function and decision-making are severely compromised, as well as hippocampus-dependent cognitive dysfunction, where contextual and temporal reasoning are negatively impacted. This review discusses the relevant clinical literature to support the theory that cognitive recovery in tasks dependent on the prefrontal cortex and hippocampus is temporally different across extended periods of abstinence from alcohol. Additional studies from preclinical models are discussed to support clinical findings. Finally, the unique cellular composition of the hippocampus and cognitive impairment dependent on the hippocampus is highlighted in the context of alcohol dependence.
Collapse
Affiliation(s)
- Miranda C Staples
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute , La Jolla, CA , USA
| | - Chitra D Mandyam
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute , La Jolla, CA , USA
| |
Collapse
|
32
|
Schmalbach B, Lepsveridze E, Djogo N, Papashvili G, Kuang F, Leshchyns'ka I, Sytnyk V, Nikonenko AG, Dityatev A, Jakovcevski I, Schachner M. Age-dependent loss of parvalbumin-expressing hippocampal interneurons in mice deficient in CHL1, a mental retardation and schizophrenia susceptibility gene. J Neurochem 2015; 135:830-44. [PMID: 26285062 DOI: 10.1111/jnc.13284] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 02/05/2023]
Abstract
In humans, deletions/mutations in the CHL1/CALL gene are associated with mental retardation and schizophrenia. Juvenile CHL1-deficient (CHL1(-/-) ) mice have been shown to display abnormally high numbers of parvalbumin-expressing (PV(+) ) hippocampal interneurons and, as adults, display behavioral traits observed in neuropsychiatric disorders. Here, we addressed the question whether inhibitory interneurons and synaptic plasticity in the CHL1(-/-) mouse are affected during brain maturation and in adulthood. We found that hippocampal, but not neocortical, PV(+) interneurons were reduced with age in CHL1(-/-) mice, from a surplus of +27% at 1 month to a deficit of -20% in adulthood compared with wild-type littermates. This loss occurred during brain maturation, correlating with microgliosis and enhanced interleukin-6 expression. In parallel with the loss of PV(+) interneurons, the inhibitory input to adult CA1 pyramidal cells was reduced and a deficit in short- and long-term potentiation developed at CA3-CA1 excitatory synapses between 2 and 9 months of age in CHL1(-/-) mice. This deficit could be abrogated by a GABAA receptor agonist. We propose that region-specific aberrant GABAergic synaptic connectivity resulting from the mutation and a subsequently enhanced synaptic elimination during brain maturation lead to microgliosis, increase in pro-inflammatory cytokine levels, loss of interneurons, and impaired synaptic plasticity. Close homolog of L1-deficient (CHL1(-/-) ) mice have abnormally high numbers of parvalbumin (PV)-expressing hippocampal interneurons in juvenile animals, but in adult animals a loss of these cells is observed. This loss correlates with an increased density of microglia (M), enhanced interleukin-6 (IL6) production and a deficit in short- and long-term potentiation at CA3-CA1 excitatory synapses. Furthermore, adult CHL1(-/-) mice display behavioral traits similar to those observed in neuropsychiatric disorders of humans.
Collapse
Affiliation(s)
- Barbara Schmalbach
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany
| | - Eka Lepsveridze
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany
- Ilia State University, Tbilisi, Georgia
| | - Nevena Djogo
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany
| | - Giorgi Papashvili
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany
| | - Fang Kuang
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany
| | - Iryna Leshchyns'ka
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Vladimir Sytnyk
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Alexander G Nikonenko
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany
- Department of Cytology, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - Alexander Dityatev
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Magdeburg, Germany
| | - Igor Jakovcevski
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany
- Experimental Neurophysiology, University Hospital Cologne, Köln, Germany
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Melitta Schachner
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, USA
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| |
Collapse
|
33
|
Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015; 67:872-1004. [PMID: 26403687 DOI: 10.1124/pr.115.010967] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Adaptation of the nervous system to different chemical and physiologic conditions is important for the homeostasis of brain processes and for learning and remembering appropriate responses to challenges. Although processes such as tolerance and dependence to various drugs of abuse have been known for a long time, it was recently discovered that even a single pharmacologically relevant dose of various drugs of abuse induces neuroplasticity in selected neuronal populations, such as the dopamine neurons of the ventral tegmental area, which persist long after the drug has been excreted. Prolonged (self-) administration of drugs induces gene expression, neurochemical, neurophysiological, and structural changes in many brain cell populations. These region-specific changes correlate with addiction, drug intake, and conditioned drugs effects, such as cue- or stress-induced reinstatement of drug seeking. In rodents, adolescent drug exposure often causes significantly more behavioral changes later in adulthood than a corresponding exposure in adults. Clinically the most impairing and devastating effects on the brain are produced by alcohol during fetal development. In adult recreational drug users or in medicated patients, it has been difficult to find persistent functional or behavioral changes, suggesting that heavy exposure to drugs of abuse is needed for neurotoxicity and for persistent emotional and cognitive alterations. This review describes recent advances in this important area of research, which harbors the aim of translating this knowledge to better treatments for addictions and related neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Bjørnar den Hollander
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Usman Farooq
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Elena Vashchinkina
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Ramamoorthy Rajkumar
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - David J Nutt
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Gavin S Dawe
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| |
Collapse
|
34
|
Wable GS, Chen YW, Rashid S, Aoki C. Exogenous progesterone exacerbates running response of adolescent female mice to repeated food restriction stress by changing α4-GABAA receptor activity of hippocampal pyramidal cells. Neuroscience 2015; 310:322-41. [PMID: 26383252 DOI: 10.1016/j.neuroscience.2015.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 01/03/2023]
Abstract
Adolescent females are particularly vulnerable to mental illnesses with co-morbidity of anxiety, such as anorexia nervosa (AN). We used an animal model of AN, called activity-based anorexia (ABA), to investigate the neurobiological basis of vulnerability to repeated, food restriction (FR) stress-evoked anxiety. Twenty-one of 23 adolescent female mice responded to the 1st FR with increased wheel-running activity (WRA), even during the limited period of food access, thereby capturing AN's symptoms of voluntary FR and over-exercise. Baseline WRA was an excellent predictor of FR-elicited WRA (severity of ABA, SOA), with high baseline runners responding to FR with minimal SOA (i.e., negative correlation). Nine gained resistance to ABA following the 1st FR. Even though allopregnanolone (3α-OH-5α-pregnan-20-one, THP), the metabolite of progesterone (P4), is a well-recognized anxiolytic agent, subcutaneous P4 to these ABA-resistant animals during the 2nd FR was exacerbative, evoking greater WRA than the counterpart resistant group that received oil vehicle, only. Moreover, P4 had no WRA-reducing effect on animals that remained ABA-vulnerable. To explain the sensitizing effect of P4 upon the resistant mice, we examined the relationship between P4 treatment and levels of the α4 subunit of GABAARs at spines of pyramidal cells of the hippocampal CA1, a parameter previously shown to correlate with resistance to ABA. α4 levels at spine membrane correlated strongly and negatively with SOA during the 1st ABA (prior to P4 injection), confirming previous findings. α4 levels were greater among P4-treated animals that had gained resistance than of vehicle-treated resistant animals or of the vulnerable animals with or without P4. We propose that α4-GABAARs play a protective role by counterbalancing the ABA-induced increase in excitability of CA1 pyramidal neurons, and although exogenous P4's metabolite, THP, enhances α4 expression, especially among those that can gain resistance, it also interferes with α4-GABAARs' protective role by desensitizing α4-GABAARs.
Collapse
Affiliation(s)
- G S Wable
- Center for Neural Science, New York University, 4 Washington Place, Room 809, New York, NY 10003, United States.
| | - Y-W Chen
- Center for Neural Science, New York University, 4 Washington Place, Room 809, New York, NY 10003, United States.
| | - S Rashid
- Center for Neural Science, New York University, 4 Washington Place, Room 809, New York, NY 10003, United States.
| | - C Aoki
- Center for Neural Science, New York University, 4 Washington Place, Room 809, New York, NY 10003, United States.
| |
Collapse
|
35
|
Bekdash RA, Harrison NL. Downregulation of Gabra4 expression during alcohol withdrawal is mediated by specific microRNAs in cultured mouse cortical neurons. Brain Behav 2015; 5:e00355. [PMID: 26357588 PMCID: PMC4559018 DOI: 10.1002/brb3.355] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/27/2015] [Accepted: 04/25/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Alcohol abuse and dependence are a serious public health problem. A large number of alcohol-regulated genes, (ARGs) are known to be influenced by alcohol use and withdrawal (AW), and recent evidence suggests that neuroadaptation to alcohol may be due in part to epigenetic changes in the expression of ARGs. Gabra4, which encodes the α4 subunit of GABAA receptors (GABAARs), is one of a number of ARGs that show remarkable plasticity in response to alcohol, being rapidly upregulated by acute alcohol exposure. This study addressed the effects of AW on changes in the expression of Gabra4 and related genes that encode other subunits of GABAARs, and the potential regulation of Gabra4 by microRNAs. METHODS We studied gene and microRNAs expression, using RT-PCR and microRNA microarray in cultured cortical neurons treated with alcohol, which was then removed in order to simulate AW in vitro. We also used microRNA mimics or inhibitors, and a promoter-reporter construct carrying the 3'UTR of Gabra4. RESULTS Eleven hours after removal of alcohol, Gabra4 was downregulated, with a modest increase in the expression of Gabrg2, but no change in the expression of Gabra1, Gabrd, or Gabrb2. microRNA profiling in neurons undergoing AW revealed upregulation in the expression of miR-155, miR-186, miR-24, and miR-375 after 8 h of AW. Transfection with molecular mimics of miR-186, miR-24, or miR-375 also downregulated Gabra4 expression, whereas transfection with the corresponding inhibitors of these microRNAs normalized Gabra4 expression in AW neurons to the level measured in control neurons. Promoter-reporter experiments supported the idea that miR-155, miR-186, miR-24, miR-27b, or miR-375 bind to the 3'UTR of Gabra4 and thereby inhibit protein production. CONCLUSIONS Our data suggest that AW decreases Gabra4 expression, and that this may be mediated in part by the induction of specific microRNAs in cortical neurons during AW.
Collapse
Affiliation(s)
- Rola A Bekdash
- Department of Anesthesiology, Columbia UniversityNew York, New York, 10032
| | - Neil L Harrison
- Department of Anesthesiology, Columbia UniversityNew York, New York, 10032
- Department of Pharmacology, Columbia UniversityNew York, New York, 10032
| |
Collapse
|
36
|
GABA Deficits Enhance the Psychotomimetic Effects of Δ9-THC. Neuropsychopharmacology 2015; 40:2047-56. [PMID: 25728472 PMCID: PMC4839528 DOI: 10.1038/npp.2015.58] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/09/2015] [Accepted: 02/18/2015] [Indexed: 11/08/2022]
|
37
|
Abstract
BACKGROUND The treatment baclofen shows potential for rapidly reducing symptoms of severe alcohol withdrawal syndrome (AWS) in people with alcoholism. Treatment with baclofen is easy to manage and rarely produces euphoria or other pleasant effects, or craving for the drug. This is an updated version of the original Cochrane review published in Issue 2, 2013. OBJECTIVES To assess the efficacy and safety of baclofen for people with AWS. SEARCH METHODS We searched the Cochrane Drugs and Alcohol Group Specialised Register (searched 13 January 2015), the Cochrane Central Register of Controlled Trials (CENTRAL; 2015, Issue 1), MEDLINE (1966 to January 2015), EMBASE (1980 to January 2015), and CINAHL (1982 to January 2015). We also searched registers of ongoing trials, including ClinicalTrials.gov, the ISRCTN registry, and the European Clinical Trials Database. At the same time, we handsearched the references quoted in the identified trials, and sought information from researchers, pharmaceutical companies, and relevant trial authors about unpublished or uncompleted trials. We placed no restrictions on language. SELECTION CRITERIA We included all randomised controlled clinical trials (RCTs) evaluating baclofen versus placebo or any other treatment for people with AWS. We excluded uncontrolled, non-randomised, or quasi-randomised trials. We included both parallel group and cross-over studies. DATA COLLECTION AND ANALYSIS Two review authors independently assessed references retrieved for possible inclusion. Any disagreements were resolved by an independent party. We contacted study authors for additional information where needed. We collected adverse effects information from the trials. MAIN RESULTS Two RCTs with a total of 81 participants were eligible according to the inclusion criteria. One study suggested that both baclofen and diazepam significantly decreased the Clinical Institute Withdrawal Assessment of Alcohol Scale, Revised (CIWA-Ar) score, without any significant difference between the two interventions. The other study showed no significant difference in CIWA-Ar score between baclofen and placebo, but a significantly decreased dependence on high-dose benzodiazepines with baclofen compared to placebo. Only one study reported on the safety of baclofen, without any side effects. AUTHORS' CONCLUSIONS The evidence for recommending baclofen for AWS is insufficient. We therefore need more well-designed RCTs to prove its efficacy and safety.
Collapse
Affiliation(s)
- Jia Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, China, 100053
| | | |
Collapse
|
38
|
Age- and sex-related characteristics of tonic GABA currents in the rat substantia nigra pars reticulata. Neurochem Res 2015; 40:747-57. [PMID: 25645446 DOI: 10.1007/s11064-015-1523-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 12/19/2022]
Abstract
Previous studies have shown that the pharmacologic effects of GABAergic drugs and the postsynaptic phasic GABAAergic inhibitory responses in the anterior part of the rat substantia nigra pars reticulata (SNRA) are age- and sex-specific. Here, we investigate whether there are age- and sex-related differences in the expression of the δ GABAA receptor (GABAAR) subunit and GABAAR mediated tonic currents. We have used δ-specific immunochemistry and whole cell patch clamp to study GABAAR mediated tonic currents in the SNRA of male and female postnatal day (PN) PN5-9, PN11-16, and PN25-32 rats. We observed age-related decline, but no sex-specific changes, in bicuculline (BIM) sensitive GABAAR tonic current density, which correlated with the decline in δ subunit in the SNRA between PN15 and 30. Furthermore, we show that the GABAAR tonic currents can be modified by muscimol (GABAAR agonist; partial GABACR agonist), THIP (4,5,6,7-tetrahydroisoxazolo (5,4-c)pyridin-3-ol: α4β3δ GABAARs agonist and GABACR antagonist), and zolpidem (α1-subunit selective GABAAR agonist) in age- and sex-dependent manner specific for each drug. We propose that the emergence of the GABAAR-sensitive anticonvulsant effects of the rat SNRA during development may depend upon the developmental decline in tonic GABAergic inhibition of the activity of rat SNRA neurons, although other sex-specific factors are also involved.
Collapse
|
39
|
Berdyyeva T, Otte S, Aluisio L, Ziv Y, Burns LD, Dugovic C, Yun S, Ghosh KK, Schnitzer MJ, Lovenberg T, Bonaventure P. Zolpidem reduces hippocampal neuronal activity in freely behaving mice: a large scale calcium imaging study with miniaturized fluorescence microscope. PLoS One 2014; 9:e112068. [PMID: 25372144 PMCID: PMC4221229 DOI: 10.1371/journal.pone.0112068] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/07/2014] [Indexed: 11/18/2022] Open
Abstract
Therapeutic drugs for cognitive and psychiatric disorders are often characterized by their molecular mechanism of action. Here we demonstrate a new approach to elucidate drug action on large-scale neuronal activity by tracking somatic calcium dynamics in hundreds of CA1 hippocampal neurons of pharmacologically manipulated behaving mice. We used an adeno-associated viral vector to express the calcium sensor GCaMP3 in CA1 pyramidal cells under control of the CaMKII promoter and a miniaturized microscope to observe cellular dynamics. We visualized these dynamics with and without a systemic administration of Zolpidem, a GABAA agonist that is the most commonly prescribed drug for the treatment of insomnia in the United States. Despite growing concerns about the potential adverse effects of Zolpidem on memory and cognition, it remained unclear whether Zolpidem alters neuronal activity in the hippocampus, a brain area critical for cognition and memory. Zolpidem, when delivered at a dose known to induce and prolong sleep, strongly suppressed CA1 calcium signaling. The rate of calcium transients after Zolpidem administration was significantly lower compared to vehicle treatment. To factor out the contribution of changes in locomotor or physiological conditions following Zolpidem treatment, we compared the cellular activity across comparable epochs matched by locomotor and physiological assessments. This analysis revealed significantly depressive effects of Zolpidem regardless of the animal's state. Individual hippocampal CA1 pyramidal cells differed in their responses to Zolpidem with the majority (∼ 65%) significantly decreasing the rate of calcium transients, and a small subset (3%) showing an unexpected and significant increase. By linking molecular mechanisms with the dynamics of neural circuitry and behavioral states, this approach has the potential to contribute substantially to the development of new therapeutics for the treatment of CNS disorders.
Collapse
Affiliation(s)
- Tamara Berdyyeva
- Janssen Research & Development, LLC, San Diego, California, United States of America
| | - Stephani Otte
- Inscopix, Palo Alto, California, United States of America
| | - Leah Aluisio
- Janssen Research & Development, LLC, San Diego, California, United States of America
| | - Yaniv Ziv
- Inscopix, Palo Alto, California, United States of America
| | | | - Christine Dugovic
- Janssen Research & Development, LLC, San Diego, California, United States of America
| | - Sujin Yun
- Janssen Research & Development, LLC, San Diego, California, United States of America
| | - Kunal K. Ghosh
- Inscopix, Palo Alto, California, United States of America
| | | | - Timothy Lovenberg
- Janssen Research & Development, LLC, San Diego, California, United States of America
| | - Pascal Bonaventure
- Janssen Research & Development, LLC, San Diego, California, United States of America
| |
Collapse
|
40
|
Snelling C, Tanchuck-Nipper MA, Ford MM, Jensen JP, Cozzoli DK, Ramaker MJ, Helms M, Crabbe JC, Rossi DJ, Finn DA. Quantification of ten neuroactive steroids in plasma in Withdrawal Seizure-Prone and -Resistant mice during chronic ethanol withdrawal. Psychopharmacology (Berl) 2014; 231:3401-14. [PMID: 24871700 PMCID: PMC4134998 DOI: 10.1007/s00213-014-3618-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 05/08/2014] [Indexed: 12/22/2022]
Abstract
RATIONALE The rapid membrane actions of neuroactive steroids, particularly via an enhancement of γ-aminobutyric acidA receptors (GABAARs), participate in the regulation of central nervous system excitability. Prior evidence suggests an inverse relationship between endogenous GABAergic neuroactive steroid levels and behavioral changes in excitability during ethanol withdrawal. OBJECTIVES Previously, we found that ethanol withdrawal significantly decreased plasma allopregnanolone (ALLO) levels, a potent GABAergic neuroactive steroid, and decreased GABAAR sensitivity to ALLO in Withdrawal Seizure-Prone (WSP) but not in Withdrawal Seizure-Resistant (WSR) mice. However, the effect of ethanol withdrawal on levels of other endogenous GABAAR-active steroids is not known. METHODS After validation of a gas chromatography-mass spectrometry method for the simultaneous quantification of ten neuroactive steroids, we analyzed plasma from control male WSP-1 and WSR-1 mice and during ethanol withdrawal. RESULTS We quantified levels of nine neuroactive steroids in WSP-1 and WSR-1 plasma; levels of pregnanolone were not detectable. Basal levels of five neuroactive steroids were higher in WSR-1 versus WSP-1 mice. Ethanol withdrawal significantly suppressed five neuroactive steroids in WSP-1 and WSR-1 mice, including ALLO. CONCLUSIONS Due to lower basal levels of some GABAAR-active steroids in WSP-1 mice, a withdrawal-induced decrease in WSP-1 mice may have a greater physiological consequence than a similar decrease in WSR-1 mice. Because WSP-1 mice also exhibit a reduction in GABAAR sensitivity to neuroactive steroids during withdrawal, it is possible that the combined decrease in neuroactive steroids and GABAAR sensitivity during ethanol withdrawal in WSP-1 mice represents a neurochemical substrate for severe ethanol withdrawal.
Collapse
Affiliation(s)
- Christopher Snelling
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
| | | | - Matthew M. Ford
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR
| | - Jeremiah P. Jensen
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
| | - Debra K. Cozzoli
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
| | - Marcia J. Ramaker
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
| | - Melinda Helms
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
| | - John C. Crabbe
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
- Portland Alcohol Research Center, Department of Veterans Affairs Medical Center, Portland OR
| | - David J. Rossi
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
| | - Deborah A. Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
- Portland Alcohol Research Center, Department of Veterans Affairs Medical Center, Portland OR
| |
Collapse
|
41
|
Altered expression of δGABAA receptors in health and disease. Neuropharmacology 2014; 88:24-35. [PMID: 25128850 DOI: 10.1016/j.neuropharm.2014.08.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 07/28/2014] [Accepted: 08/03/2014] [Indexed: 01/08/2023]
Abstract
γ-Aminobutyric acid type A receptors that contain the δ subunit (δGABAA receptors) are expressed in multiple types of neurons throughout the central nervous system, where they generate a tonic conductance that shapes neuronal excitability and synaptic plasticity. These receptors regulate a variety of important behavioral functions, including memory, nociception and anxiety, and may also modulate neurogenesis. Given their functional significance, δGABAA receptors are considered to be novel therapeutic targets for the treatment of memory dysfunction, pain, insomnia and mood disorders. These receptors are highly responsive to sedative-hypnotic drugs, general anesthetics and neuroactive steroids. A further remarkable feature of δGABAA receptors is that their expression levels are highly dynamic and fluctuate substantially during development and in response to physiological changes including stress and the reproductive cycle. Furthermore, the expression of these receptors varies in pathological conditions such as alcoholism, fragile X syndrome, epilepsy, depression, schizophrenia, mood disorders and traumatic brain injury. Such fluctuations in receptor expression have significant consequences for behavior and may alter responsiveness to therapeutic drugs. This review considers the alterations in the expression of δGABAA receptors associated with various states of health and disease and the implications of these changes.
Collapse
|
42
|
Liang J, Olsen RW. Alcohol use disorders and current pharmacological therapies: the role of GABA(A) receptors. Acta Pharmacol Sin 2014; 35:981-93. [PMID: 25066321 PMCID: PMC4125717 DOI: 10.1038/aps.2014.50] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/16/2014] [Indexed: 12/18/2022]
Abstract
Alcohol use disorders (AUD) are defined as alcohol abuse and alcohol dependence, which create large problems both for society and for the drinkers themselves. To date, no therapeutic can effectively solve these problems. Understanding the underlying mechanisms leading to AUD is critically important for developing effective and safe pharmacological therapies. Benzodiazepines (BZs) are used to reduce the symptoms of alcohol withdrawal syndrome. However, frequent use of BZs causes cross-tolerance, dependence, and cross-addiction to alcohol. The FDA-approved naltrexone and acamprosate have shown mixed results in clinical trials. Naltrexone is effective to treat alcohol dependence (decreased length and frequency of drinking bouts), but its severe side effects, including withdrawal symptoms, are difficult to overcome. Acamprosate showed efficacy for treating alcohol dependence in European trials, but two large US trials have failed to confirm the efficacy. Another FDA-approved medication, disulfiram, does not diminish craving, and it causes a peripheral neuropathy. Kudzu is the only natural medication mentioned by the National Institute on Alcohol Abuse and Alcoholism, but its mechanisms of action are not yet established. It has been recently shown that dihydromyricetin, a flavonoid purified from Hovenia, has unique effects on GABAA receptors and blocks ethanol intoxication and withdrawal in alcoholic animal models. In this article, we review the role of GABAA receptors in the treatment of AUD and currently available and potentially novel pharmacological agents.
Collapse
Affiliation(s)
- Jing Liang
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Richard W Olsen
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
43
|
Dihydromyricetin Ameliorates Behavioral Deficits and Reverses Neuropathology of Transgenic Mouse Models of Alzheimer’s Disease. Neurochem Res 2014; 39:1171-81. [DOI: 10.1007/s11064-014-1304-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 11/27/2022]
|
44
|
Dihydromyricetin prevents fetal alcohol exposure-induced behavioral and physiological deficits: the roles of GABAA receptors in adolescence. Neurochem Res 2014; 39:1147-61. [PMID: 24676702 DOI: 10.1007/s11064-014-1291-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
Abstract
Fetal alcohol exposure (FAE) can lead to a variety of behavioral and physiological disturbances later in life. Understanding how alcohol (ethanol, EtOH) affects fetal brain development is essential to guide the development of better therapeutics for FAE. One of EtOH's many pharmacological targets is the γ-aminobutyric acid type A receptor (GABAAR), which plays a prominent role in early brain development. Acute EtOH potentiates inhibitory currents carried by certain GABAAR subtypes, whereas chronic EtOH leads to persistent alterations in GABAAR subunit composition, localization and function. We recently introduced a flavonoid compound, dihydromyricetin (DHM), which selectively antagonizes EtOH's intoxicating effects in vivo and in vitro at enhancing GABAAR function as a candidate for alcohol abuse pharmacotherapy. Here, we studied the effect of FAE on physiology, behavior and GABAAR function of early adolescent rats and tested the utility of DHM as a preventative treatment for FAE-induced disturbances. Gavage administration of EtOH (1.5, 2.5, or 5.0 g/kg) to rat dams on day 5, 8, 10, 12, and 15 of pregnancy dose-dependently reduced female/male offspring ratios (largely through decreased numbers of female offspring) and offspring body weights. FAE (2.5 g/kg) rats tested on postnatal days (P) 25-32 also exhibited increased anxiety and reduced pentylenetetrazol (PTZ)-induced seizure threshold. Patch-clamp recordings from dentate gyrus granule cells (DGCs) in hippocampal slices from FAE (2.5 g/kg) rats at P25-35 revealed reduced sensitivity of GABAergic miniature inhibitory postsynaptic currents (mIPSCs) and tonic current (Itonic) to potentiation by zolpidem (0.3 μM). Interestingly, potentiation of mIPSCs by gaboxadol increased, while potentiation of Itonic decreased in DGCs from FAE rats. Co-administration of EtOH (1.5 or 2.5 g/kg) with DHM (1.0 mg/kg) in pregnant dams prevented all of the behavioral, physiological, and pharmacological alterations observed in FAE offspring. DHM administration alone in pregnant rats had no adverse effect on litter size, progeny weight, anxiety level, PTZ seizure threshold, or DGC GABAAR function. Our results indicate that FAE induces long-lasting alterations in physiology, behavior, and hippocampal GABAAR function and that these deficits are prevented by DHM co-treatment of EtOH-exposed dams. The absence of adverse side effects and the ability of DHM to prevent FAE consequences suggest that DHM is an attractive candidate for development as a treatment for prevention of fetal alcohol spectrum disorders.
Collapse
|
45
|
Abstract
Alcohol dependence encompasses a serious medical and societal problem that constitutes a major public health concern. A serious consequence of dependence is the emergence of symptoms associated with the alcohol withdrawal syndrome when drinking is abruptly terminated or substantially reduced. Clinical features of alcohol withdrawal include signs of central nervous system hyperexcitability, heightened autonomic nervous system activation, and a constellation of symptoms contributing to psychologic discomfort and negative affect. The development of alcohol dependence is a complex and dynamic process that ultimately reflects a maladaptive neurophysiologic state. Perturbations in a wide range of neurochemical systems, including glutamate, γ-aminobutyric acid, monoamines, a host of neuropeptide systems, and various ion channels produced by the chronic presence of alcohol ultimately compromise the functional integrity of the brain. These neuroadaptations not only underlie the emergence and expression of many alcohol withdrawal symptoms, but also contribute to enhanced relapse vulnerability as well as perpetuation of uncontrolled excessive drinking. This chapter highlights the hallmark features of the alcohol withdrawal syndrome, and describes neuroadaptations in a wide array of neurotransmitter and neuromodulator systems (amino acid and monoamine neurotransmitter, neuropeptide systems, and various ion channels) as they relate to the expression of various signs and symptoms of alcohol withdrawal, as well as their relationship to the significant clinical problem of relapse and uncontrolled dangerous drinking.
Collapse
|
46
|
Carlson SL, O'Buckley TK, Thomas R, Thiele TE, Morrow AL. Altered GABAA receptor expression and seizure threshold following acute ethanol challenge in mice lacking the RIIβ subunit of PKA. Neurochem Res 2013; 39:1079-87. [PMID: 24104609 DOI: 10.1007/s11064-013-1167-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 11/26/2022]
Abstract
Ethanol causes pathological changes in GABAA receptor trafficking and function. These changes are mediated in part by ethanol activation of protein kinase A (PKA). The current study investigated the expression of the GABAA α1 and α4 subunits and the kinase anchoring protein AKAP150, as well as bicuculline-induced seizure threshold, at baseline and following acute injection of ethanol (3.5 g/kg IP) in a mouse line lacking the regulatory RIIβ subunit of PKA. Whole cerebral cortices were harvested at baseline, 1 h, or 46 h following injection of ethanol or saline and subjected to fractionation and western blot analysis. Knockout (RIIβ-/-) mice had similar baseline levels of PKA RIIα and GABAA α1 and α4 subunits compared to wild type (RIIβ+/+) littermates, but had deficits in AKAP150. GABAA α1 subunit levels were decreased in the P2 fraction of RIIβ-/-, but not RIIβ+/+, mice following 1 h ethanol, an effect that was driven by decreased α1 expression in the synaptic fraction. GABAA α4 subunits in the P2 fraction were not affected by 1 h ethanol; however, synaptic α4 subunit expression was increased in RIIβ+/+, but not RIIβ-/- mice, while extrasynaptic α4 and δ subunit expression were decreased in RIIβ-/-, but not RIIβ+/+ mice. Finally, RIIβ knockout was protective against bicuculline-induced seizure susceptibility. Overall, the results suggest that PKA has differential roles in regulating GABAA receptor subunits. PKA may protect against ethanol-induced deficits in synaptic α1 and extrasynaptic α4 receptors, but may facilitate the increase of synaptic α4 receptors.
Collapse
Affiliation(s)
- Stephen L Carlson
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | |
Collapse
|
47
|
Lee V, Maguire J. Impact of inhibitory constraint of interneurons on neuronal excitability. J Neurophysiol 2013; 110:2520-35. [PMID: 24027099 DOI: 10.1152/jn.00047.2013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tonic inhibition is thought to dampen the excitability of principal neurons; however, little is known about the role of tonic GABAergic inhibition in interneurons and the impact on principal neuron excitability. In many brain regions, tonic GABAergic inhibition is mediated by extrasynaptic, δ-subunit-containing GABAA receptors (GABAARs). In the present study we demonstrate the importance of GABAAR δ-subunit-mediated tonic inhibition in interneurons. Selective elimination of the GABAAR δ-subunit from interneurons was achieved by crossing a novel floxed Gabrd mouse model with GAD65-Cre mice (Gabrd/Gad mice). Deficits in GABAAR δ-subunit expression in GAD65-positive neurons result in a decrease in tonic GABAergic inhibition and increased excitability of both molecular layer (ML) and stratum radiatum (SR) interneurons. Disinhibition of interneurons results in robust alterations in the neuronal excitability of principal neurons and decreased seizure susceptibility. Gabrd/Gad mice have enhanced tonic and phasic GABAergic inhibition in both CA1 pyramidal neurons and dentate gyrus granule cells (DGGCs). Consistent with alterations in hippocampal excitability, CA1 pyramidal neurons and DGGCs from Gabrd/Gad mice exhibit a shift in the input-output relationship toward decreased excitability compared with those from Cre(-/-) littermates. Furthermore, seizure susceptibility, in response to 20 mg/kg kainic acid, is significantly decreased in Gabrd/Gad mice compared with Cre(-/-) controls. These data demonstrate a critical role for GABAAR δ-subunit-mediated tonic GABAergic inhibition of interneurons on principal neuronal excitability and seizure susceptibility.
Collapse
Affiliation(s)
- Vallent Lee
- Medical Scientist Training Program and Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts; and
| | | |
Collapse
|
48
|
Long-lasting distortion of GABA signaling in MS/DB neurons after binge-like ethanol exposure during initial synaptogenesis. Brain Res 2013; 1520:36-50. [PMID: 23685190 DOI: 10.1016/j.brainres.2013.04.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/22/2013] [Accepted: 04/30/2013] [Indexed: 12/30/2022]
Abstract
Using a well-established model of binge-like ethanol treatment of rat pups on postnatal days (PD) 4-9, we found that maturation of GABAA receptor (GABAAR) miniature postsynaptic currents (mPSCs) was substantially blunted for medial septum/diagonal band (MS/DB) neurons in brain slices on PD 11-16. Ethanol reduced mPSC amplitude, frequency, and decay kinetics, while attenuating or exaggerating allosteric actions of zolpidem and allopregnanolone, respectively. The impact of ethanol in vivo was long lasting as most changes in MS/DB GABAAR mPSCs were still observed as late as PD 60-85. Maturing MS/DB neurons in naïve brain slices PD 4-16 showed increasing mPSC frequency, decay kinetics, and zolpidem sensitivity that were nearly identical to our earlier findings in cultured septal neurons (DuBois et al., 2004, 2006). These rapidly developing mPSC parameters continued to mature through the first month of life then stabilized throughout the remainder of the lifespan. Finally, equivalent ethanol-induced alterations in GABAAR mPSC signaling were present in MS/DB neurons from both male and female animals. Previously, we showed ethanol treatment of cultured embryonic day 20 septal neurons distorts the maturation of GABAAR mPSCs predicting that early stages of GABAergic transmission in MS/DB neurons are vulnerable to intoxication injury (DuBois et al., 2004, 2006). Since the overall character, timing, and magnitude of GABAergic mPSC developmental- and ethanol-induced changes in the in vivo model so closely mirror chronologically equivalent adaptations in cultured septal neurons, this suggests that such parallel models of ethanol impairment of GABAergic synaptic development in vivo and in vitro should be useful for translational studies exploring the efficacy and mechanism of action of potential therapeutic interventions from the cellular to whole animal level.
Collapse
|
49
|
Carlson SL, Kumar S, Werner DF, Comerford CE, Morrow AL. Ethanol activation of protein kinase A regulates GABAA α1 receptor function and trafficking in cultured cerebral cortical neurons. J Pharmacol Exp Ther 2013; 345:317-25. [PMID: 23408117 PMCID: PMC3629799 DOI: 10.1124/jpet.112.201954] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/12/2013] [Indexed: 12/24/2022] Open
Abstract
Ethanol exposure produces alterations in GABAergic signaling that are associated with dependence and withdrawal. Previously, we demonstrated that ethanol-induced protein kinase C (PKC) γ signaling selectively contributes to changes in GABAA α1 synaptic receptor activity and surface expression. Here, we demonstrate that protein kinase A (PKA) exerts opposing effects on GABAA receptor adaptations during brief ethanol exposure. Cerebral cortical neurons from day 0-1 rat pups were tested after 18 days in culture. Receptor trafficking was assessed by Western blot analysis, and functional changes were measured using whole-cell patch-clamp recordings of evoked and miniature inhibitory postsynaptic current (mIPSC) responses. One-hour ethanol exposure increased membrane-associated PKC and PKA, but steady-state GABAA α1 subunit levels were maintained. Activation of PKA by Sp-adenosine 3',5'-cyclic monophosphothioate triethylamine alone increased GABAA α1 subunit surface expression and zolpidem potentiation of GABA responses, whereas coexposure of ethanol with the PKA inhibitor Rp-adenosine 3',5'-cyclic monophosphothioate triethylamine decreased α1 subunit expression and zolpidem responses. Exposure to the PKC inhibitor calphostin-C with ethanol mimicked the effect of direct PKA activation. The effects of PKA modulation on mIPSC decay τ were consistent with its effects on GABA currents evoked in the presence of zolpidem. Overall, the results suggest that PKA acts in opposition to PKC on α1-containing GABAA receptors, mediating the GABAergic effects of ethanol exposure, and may provide an important target for the treatment of alcohol dependence/withdrawal.
Collapse
Affiliation(s)
- Stephen L Carlson
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
50
|
Chowdhury TG, Wable GS, Sabaliauskas NA, Aoki C. Adolescent female C57BL/6 mice with vulnerability to activity-based anorexia exhibit weak inhibitory input onto hippocampal CA1 pyramidal cells. Neuroscience 2013; 241:250-67. [PMID: 23523748 DOI: 10.1016/j.neuroscience.2013.03.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/01/2013] [Accepted: 03/02/2013] [Indexed: 01/10/2023]
Abstract
Anorexia nervosa (AN) is an eating disorder characterized by self-imposed severe starvation and often linked with excessive exercise. Activity-based anorexia (ABA) is an animal model that reproduces some of the behavioral phenotypes of AN, including the paradoxical increase in voluntary exercise following food restriction (FR). Although certain rodents have been used successfully in this animal model, C57BL/6 mice are reported to be less susceptible to ABA. We re-examined the possibility that female C57BL/6 mice might exhibit ABA vulnerability during adolescence, the developmental stage/sex among the human population with particularly high AN vulnerability. After introducing the running wheel to the cage for 3 days, ABA was induced by restricting food access to 1h per day (ABA1, N=13) or 2 h per day (ABA2, N=10). All 23 exhibited increased voluntary wheel running (p<0.005) and perturbed circadian rhythm within 2 days. Only one out of five survived ABA1 for 3 days, while 10 out of 10 survived ABA2 for 3 days and could subsequently restore their body weight and circadian rhythm. Exposure of recovered animals to a second ABA2 induction revealed a large range of vulnerability, even within littermates. To look for the cellular substrate of differences in vulnerability, we began by examining synaptic patterns in the hippocampus, a brain region that regulates anxiety as well as plasticity throughout life. Quantitative EM analysis revealed that CA1 pyramidal cells of animals vulnerable to the second ABA2 exhibit less GABAergic innervation on cell bodies and dendrites, relative to the animals resilient to the second ABA (p<0.001) or controls (p<0.05). These findings reveal that C57BL/6J adolescent females can be used to capture brain changes underlying ABA vulnerability, and that GABAergic innervation of hippocampal pyramidal neurons is one important cellular substrate to consider for understanding the progression of and resilience to AN.
Collapse
|