1
|
Wang Y, Tu MJ, Yu AM. Efflux ABC transporters in drug disposition and their posttranscriptional gene regulation by microRNAs. Front Pharmacol 2024; 15:1423416. [PMID: 39114355 PMCID: PMC11303158 DOI: 10.3389/fphar.2024.1423416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
ATP-binding cassette (ABC) transporters are transmembrane proteins expressed commonly in metabolic and excretory organs to control xenobiotic or endobiotic disposition and maintain their homeostasis. Changes in ABC transporter expression may directly affect the pharmacokinetics of relevant drugs involving absorption, distribution, metabolism, and excretion (ADME) processes. Indeed, overexpression of efflux ABC transporters in cancer cells or bacteria limits drug exposure and causes therapeutic failure that is known as multidrug resistance (MDR). With the discovery of functional noncoding microRNAs (miRNAs) produced from the genome, many miRNAs have been revealed to govern posttranscriptional gene regulation of ABC transporters, which shall improve our understanding of complex mechanism behind the overexpression of ABC transporters linked to MDR. In this article, we first overview the expression and localization of important ABC transporters in human tissues and their clinical importance regarding ADME as well as MDR. Further, we summarize miRNA-controlled posttranscriptional gene regulation of ABC transporters and effects on ADME and MDR. Additionally, we discuss the development and utilization of novel bioengineered miRNA agents to modulate ABC transporter gene expression and subsequent influence on cellular drug accumulation and chemosensitivity. Findings on posttranscriptional gene regulation of ABC transporters shall not only improve our understanding of mechanisms behind variable ADME but also provide insight into developing new means towards rational and more effective pharmacotherapies.
Collapse
Affiliation(s)
| | | | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA, United States
| |
Collapse
|
2
|
Roghani AK, Garcia RI, Roghani A, Reddy A, Khemka S, Reddy RP, Pattoor V, Jacob M, Reddy PH, Sehar U. Treating Alzheimer's disease using nanoparticle-mediated drug delivery strategies/systems. Ageing Res Rev 2024; 97:102291. [PMID: 38614367 DOI: 10.1016/j.arr.2024.102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
The administration of promising medications for the treatment of neurodegenerative disorders (NDDs), such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) is significantly hampered by the blood-brain barrier (BBB). Nanotechnology has recently come to light as a viable strategy for overcoming this obstacle and improving drug delivery to the brain. With a focus on current developments and prospects, this review article examines the use of nanoparticles to overcome the BBB constraints to improve drug therapy for AD The potential for several nanoparticle-based approaches, such as those utilizing lipid-based, polymeric, and inorganic nanoparticles, to enhance drug transport across the BBB are highlighted. To shed insight on their involvement in aiding effective drug transport to the brain, methods of nanoparticle-mediated drug delivery, such as surface modifications, functionalization, and particular targeting ligands, are also investigated. The article also discusses the most recent findings on innovative medication formulations encapsulated within nanoparticles and the therapeutic effects they have shown in both preclinical and clinical testing. This sector has difficulties and restrictions, such as the need for increased safety, scalability, and translation to clinical applications. However, the major emphasis of this review aims to provide insight and contribute to the knowledge of how nanotechnology can potentially revolutionize the worldwide treatment of NDDs, particularly AD, to enhance clinical outcomes.
Collapse
Affiliation(s)
- Aryan Kia Roghani
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Frenship High School, Lubbock, TX 79382, USA.
| | - Ricardo Isaiah Garcia
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ali Roghani
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Aananya Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Lubbock High School, Lubbock, TX 79401, USA.
| | - Sachi Khemka
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ruhananhad P Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Lubbock High School, Lubbock, TX 79401, USA.
| | - Vasanthkumar Pattoor
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; University of South Florida, Tampa, FL 33620, USA.
| | - Michael Jacob
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Services, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
3
|
Loeffler DA. Enhancing of cerebral Abeta clearance by modulation of ABC transporter expression: a review of experimental approaches. Front Aging Neurosci 2024; 16:1368200. [PMID: 38872626 PMCID: PMC11170721 DOI: 10.3389/fnagi.2024.1368200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Clearance of amyloid-beta (Aβ) from the brain is impaired in both early-onset and late-onset Alzheimer's disease (AD). Mechanisms for clearing cerebral Aβ include proteolytic degradation, antibody-mediated clearance, blood brain barrier and blood cerebrospinal fluid barrier efflux, glymphatic drainage, and perivascular drainage. ATP-binding cassette (ABC) transporters are membrane efflux pumps driven by ATP hydrolysis. Their functions include maintenance of brain homeostasis by removing toxic peptides and compounds, and transport of bioactive molecules including cholesterol. Some ABC transporters contribute to lowering of cerebral Aβ. Mechanisms suggested for ABC transporter-mediated lowering of brain Aβ, in addition to exporting of Aβ across the blood brain and blood cerebrospinal fluid barriers, include apolipoprotein E lipidation, microglial activation, decreased amyloidogenic processing of amyloid precursor protein, and restricting the entrance of Aβ into the brain. The ABC transporter superfamily in humans includes 49 proteins, eight of which have been suggested to reduce cerebral Aβ levels. This review discusses experimental approaches for increasing the expression of these ABC transporters, clinical applications of these approaches, changes in the expression and/or activity of these transporters in AD and transgenic mouse models of AD, and findings in the few clinical trials which have examined the effects of these approaches in patients with AD or mild cognitive impairment. The possibility that therapeutic upregulation of ABC transporters which promote clearance of cerebral Aβ may slow the clinical progression of AD merits further consideration.
Collapse
Affiliation(s)
- David A. Loeffler
- Department of Neurology, Beaumont Research Institute, Corewell Health, Royal Oak, MI, United States
| |
Collapse
|
4
|
Zhang W, Oh JH, Zhang W, Rathi S, Le J, Talele S, Sarkaria JN, Elmquist WF. How Much is Enough? Impact of Efflux Transporters on Drug delivery Leading to Efficacy in the Treatment of Brain Tumors. Pharm Res 2023; 40:2731-2746. [PMID: 37589827 PMCID: PMC10841221 DOI: 10.1007/s11095-023-03574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023]
Abstract
The lack of effective chemotherapeutic agents for the treatment of brain tumors is a serious unmet medical need. This can be attributed, in part, to inadequate delivery through the blood-brain barrier (BBB) and the tumor-cell barrier, both of which have active efflux transporters that can restrict the transport of many potentially effective agents for both primary and metastatic brain tumors. This review briefly summarizes the components and function of the normal BBB with respect to drug penetration into the brain and the alterations in the BBB due to brain tumor that could influence drug delivery. Depending on what is rate-limiting a compound's distribution, the limited permeability across the BBB and the subsequent delivery into the tumor cell can be greatly influenced by efflux transporters and these are discussed in some detail. Given these complexities, it is necessary to quantify the extent of brain distribution of the active (unbound) drug to compare across compounds and to inform potential for use against brain tumors. In this regard, the metric, Kp,uu, a brain-to-plasma unbound partition coefficient, is examined and its current use is discussed. However, the extent of active drug delivery is not the only determinant of effective therapy. In addition to Kp,uu, drug potency is an important parameter that should be considered alongside drug delivery in drug discovery and development processes. In other words, to answer the question - How much is enough? - one must consider how much can be delivered with how much needs to be delivered.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Ju-Hee Oh
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Wenqiu Zhang
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Sneha Rathi
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Jiayan Le
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Surabhi Talele
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
5
|
Blood-Brain Barrier Transporters: Opportunities for Therapeutic Development in Ischemic Stroke. Int J Mol Sci 2022; 23:ijms23031898. [PMID: 35163820 PMCID: PMC8836701 DOI: 10.3390/ijms23031898] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/20/2022] Open
Abstract
Globally, stroke is a leading cause of death and long-term disability. Over the past decades, several efforts have attempted to discover new drugs or repurpose existing therapeutics to promote post-stroke neurological recovery. Preclinical stroke studies have reported successes in identifying novel neuroprotective agents; however, none of these compounds have advanced beyond a phase III clinical trial. One reason for these failures is the lack of consideration of blood-brain barrier (BBB) transport mechanisms that can enable these drugs to achieve efficacious concentrations in ischemic brain tissue. Despite the knowledge that drugs with neuroprotective properties (i.e., statins, memantine, metformin) are substrates for endogenous BBB transporters, preclinical stroke research has not extensively studied the role of transporters in central nervous system (CNS) drug delivery. Here, we review current knowledge on specific BBB uptake transporters (i.e., organic anion transporting polypeptides (OATPs in humans; Oatps in rodents); organic cation transporters (OCTs in humans; Octs in rodents) that can be targeted for improved neuroprotective drug delivery. Additionally, we provide state-of-the-art perspectives on how transporter pharmacology can be integrated into preclinical stroke research. Specifically, we discuss the utility of in vivo stroke models to transporter studies and considerations (i.e., species selection, co-morbid conditions) that will optimize the translational success of stroke pharmacotherapeutic experiments.
Collapse
|
6
|
Hanssen KM, Haber M, Fletcher JI. Targeting multidrug resistance-associated protein 1 (MRP1)-expressing cancers: Beyond pharmacological inhibition. Drug Resist Updat 2021; 59:100795. [PMID: 34983733 DOI: 10.1016/j.drup.2021.100795] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 12/30/2022]
Abstract
Resistance to chemotherapy remains one of the most significant obstacles to successful cancer treatment. While inhibiting drug efflux mediated by ATP-binding cassette (ABC) transporters is a seemingly attractive and logical approach to combat multidrug resistance (MDR), small molecule inhibition of ABC transporters has so far failed to confer clinical benefit, despite considerable efforts by medicinal chemists, biologists, and clinicians. The long-sought treatment to eradicate cancers displaying ABC transporter overexpression may therefore lie within alternative targeting strategies. When aberrantly expressed, the ABC transporter multidrug resistance-associated protein 1 (MRP1, ABCC1) confers MDR, but can also shift cellular redox balance, leaving the cell vulnerable to select agents. Here, we explore the physiological roles of MRP1, the rational for targeting this transporter in cancer, the development of small molecule MRP1 inhibitors, and the most recent developments in alternative therapeutic approaches for targeting cancers with MRP1 overexpression. We discuss approaches that extend beyond simple MRP1 inhibition by exploiting the collateral sensitivity to glutathione depletion and ferroptosis, the rationale for targeting the shared transcriptional regulators of both MRP1 and glutathione biosynthesis, advances in gene silencing, and new molecules that modulate transporter activity to the detriment of the cancer cell. These strategies illustrate promising new approaches to address multidrug resistant disease that extend beyond the simple reversal of MDR and offer exciting routes for further research.
Collapse
Affiliation(s)
- Kimberley M Hanssen
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Changes in Gene Expression Profiling and Phenotype in Aged Multidrug Resistance Protein 4-Deficient Mouse Retinas. Antioxidants (Basel) 2021; 10:antiox10030455. [PMID: 33804096 PMCID: PMC7999859 DOI: 10.3390/antiox10030455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/20/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Multidrug resistance protein 4 (MRP4) is an energy-dependent membrane transporter responsible for cellular efflux of a broad range of xenobiotics and physiological substrates. In this trial, we aimed to investigate the coeffects of aging and MRP4 deficiency using gene expression microarray and morphological and electrophysiological analyses of mouse retinas. Mrp4-knockout (null) mice and wild-type (WT) mice were reared in the same conditions to 8–12 weeks (young) or 45–55 weeks (aged). Microarray analysis identified 186 differently expressed genes from the retinas of aged Mrp4-null mice as compared to aged WT mice, and subsequent gene ontology and KEGG pathway analyses showed that differently expressed genes were related to lens, eye development, vision and transcellular barrier functions that are involved in metabolic pathways or viral infection pathways. No significant change in thickness was observed for each retinal layer among young/aged WT mice and young/aged Mrp4-null mice. Moreover, immunohistochemical analyses of retinal cell type did not exhibit an overt change in the cellular morphology or distribution among the four age/genotype groups, and the electroretinogram responses showed no significant differences in the amplitude or the latency between aged WT mice and aged Mrp4-null mice. Aging would be an insufficient stress to cause some damage to the retina in the presence of MRP4 deficiency.
Collapse
|
8
|
Goldeman C, Andersen M, Al-Robai A, Buchholtz T, Svane N, Ozgür B, Holst B, Shusta E, Hall VJ, Saaby L, Hyttel P, Brodin B. Human induced pluripotent stem cells (BIONi010-C) generate tight cell monolayers with blood-brain barrier traits and functional expression of large neutral amino acid transporter 1 (SLC7A5). Eur J Pharm Sci 2020; 156:105577. [PMID: 33011235 DOI: 10.1016/j.ejps.2020.105577] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/02/2020] [Accepted: 09/22/2020] [Indexed: 12/25/2022]
Abstract
The barrier properties of the brain capillary endothelium, the blood-brain barrier (BBB) restricts uptake of most small and all large molecule drug compounds to the CNS. There is a need for predictive human in vitro models of the BBB to enable studies of brain drug delivery. Here, we investigated whether human induced pluripotent stem cell (hiPSC) line (BIONi010-C) could be differentiated to brain capillary endothelial- like cells (BCEC) and evaluated their potential use in drug delivery studies. BIONi010-C hIPSCs were differentiated according to established protocols. BCEC monolayers displayed transendothelial electrical resistance (TEER) values of 5,829±354 Ω∙cm2, a Papp,mannitol of 1.09±0.15 ∙ 10-6 cm∙s-1 and a Papp,diazepam of 85.7 ± 5.9 ∙ 10-6 cm ∙s-1. The Pdiazepam/Pmannitol ratio of ~80, indicated a large dynamic passive permeability range. Monolayers maintained their integrity after medium exchange. Claudin-5, Occludin, Zonulae Occludens 1 and VE-Cadherin were expressed at the cell-cell contact zones. Efflux transporters were present at the mRNA level, but functional efflux of substrates was not detected. Transferrin-receptor (TFR), Low density lipoprotein receptor-related protein 1 (LRP1) and Basigin receptors were expressed at the mRNA-level. The presence and localization of TFR and LRP1 were verified at the protein level. A wide range of BBB-expressed solute carriers (SLC's) were detected at the mRNA level. The presence and localization of SLC transporters GLUT1 and LAT1 was verified at the protein level. Functional studies revealed transport of the LAT1 substrate [3H]-L-Leucine and the LRP1 substrate angiopep-2. In conclusion, we have demonstrated that BIONi010-C-derived BCEC monolayers exhibited, BBB properties including barrier tightness and integrity, a high dynamic range, expression of some of the BBB receptor and transporter expression, as well as functional transport of LAT1 and LRP1 substrates. This suggests that BIONi010-C-derived BCEC monolayers may be useful for studying the roles of LAT-1 and LRP1 in brain drug delivery.
Collapse
Affiliation(s)
- C Goldeman
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M Andersen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - A Al-Robai
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - T Buchholtz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - N Svane
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - B Ozgür
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - B Holst
- Bioneer A/S, Hørsholm, Denmark
| | - E Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - V J Hall
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - L Saaby
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Bioneer A/S, Hørsholm, Denmark
| | - P Hyttel
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - B Brodin
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Joshi BS, Zuhorn IS. Heparan sulfate proteoglycan-mediated dynamin-dependent transport of neural stem cell exosomes in an in vitro blood-brain barrier model. Eur J Neurosci 2020; 53:706-719. [PMID: 32939863 PMCID: PMC7891616 DOI: 10.1111/ejn.14974] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/10/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Drug delivery to the brain is greatly hampered by the presence of the blood–brain barrier (BBB) which tightly regulates the passage of molecules from blood to brain and vice versa. Nanocarriers, in which drugs can be encapsulated, can move across the blood–brain barrier (BBB) via the process of transcytosis, thus showing promise to improve drug delivery to the brain. Here, we demonstrate the use of natural nanovesicles, that is, exosomes, derived from C17.2 neural stem cells (NSCs) to efficiently carry a protein cargo across an in vitro BBB model consisting of human brain microvascular endothelial cells. We show that the exosomes are primarily taken up in brain endothelial cells via endocytosis, while heparan sulfate proteoglycans (HSPGs) act as receptors. Taken together, our data support the view that NSC exosomes may act as biological nanocarriers for efficient passage across the BBB. Nanomedicines that target HSPGs may improve their binding to brain endothelial cells and, possibly, show subsequent transcytosis across the BBB.
Collapse
Affiliation(s)
- Bhagyashree S Joshi
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Inge S Zuhorn
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
10
|
Azarmi M, Maleki H, Nikkam N, Malekinejad H. Transcellular brain drug delivery: A review on recent advancements. Int J Pharm 2020; 586:119582. [DOI: 10.1016/j.ijpharm.2020.119582] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/08/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
|
11
|
Guan X, Morris ME. In Vitro and In Vivo Efficacy of AZD3965 and Alpha-Cyano-4-Hydroxycinnamic Acid in the Murine 4T1 Breast Tumor Model. AAPS JOURNAL 2020; 22:84. [PMID: 32529599 DOI: 10.1208/s12248-020-00466-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/19/2020] [Indexed: 01/11/2023]
Abstract
Monocarboxylate transporter 1 (MCT1) represents a potential therapeutic target in cancer. The objective of this study was to determine the efficacy of AZD3965 (a specific inhibitor of MCT1) and α-cyano-4-hydroxycinnamic acid (CHC, a nonspecific inhibitor of MCTs) in the murine 4T1 tumor model of triple-negative breast cancer (TNBC). Expression of MCT1 and MCT4 in 4T1 and mouse mammary epithelial cells were determined by Western blot. Inhibition of MCT1-mediated L-lactate uptake and cellular proliferation by AZD3965 and CHC was determined. Mice bearing 4T1 breast tumors were treated with AZD3965 100 mg/kg i.p. twice-daily or CHC 200 mg/kg i.p. once-daily. Tumor growth, metastasis, intra-tumor lactate concentration, immune function, tumor MCT expression, and concentration-effect relationships were determined. AZD3965 and CHC inhibited cell growth and L-lactate uptake in 4T1 cells. AZD3965 treatment resulted in trough plasma and tumor concentrations of 29.1 ± 13.9 and 1670 ± 946 nM, respectively. AZD3965 decreased the tumor proliferation biomarker Ki67 expression, increased intra-tumor lactate concentration, and decreased tumor volume, although tumor weight was not different from untreated controls. CHC had no effect on tumor volume and weight, or intra-tumor lactate concentration. AZD3965 treatment reduced the blood leukocyte count and spleen weight and increased lung metastasis, while CHC did not. These findings indicate AZD3965 is a potent MCT1 inhibitor that accumulates to high concentrations in 4T1 xenograft tumors, where it increases tumor lactate concentrations and produces beneficial effects on markers of TNBC; however, overall effects on tumor growth were minimal and lung metastases increased.
Collapse
Affiliation(s)
- Xiaowen Guan
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 304 Pharmacy Building, Buffalo, New York, 14214, USA.,Department of Clinical Pharmacology and Pharmacometrics, AbbVie Inc., Redwood City, California, 94063, USA
| | - Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 304 Pharmacy Building, Buffalo, New York, 14214, USA.
| |
Collapse
|
12
|
Zoufal V, Mairinger S, Krohn M, Wanek T, Filip T, Sauberer M, Stanek J, Kuntner C, Pahnke J, Langer O. Measurement of cerebral ABCC1 transport activity in wild-type and APP/PS1-21 mice with positron emission tomography. J Cereb Blood Flow Metab 2020; 40:954-965. [PMID: 31195936 PMCID: PMC7181082 DOI: 10.1177/0271678x19854541] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/17/2019] [Accepted: 05/05/2019] [Indexed: 12/11/2022]
Abstract
Previous data suggest a possible link between multidrug resistance-associated protein 1 (ABCC1) and brain clearance of beta-amyloid (Aβ). We used PET with 6-bromo-7-[11C]methylpurine ([11C]BMP) to measure cerebral ABCC1 transport activity in a beta-amyloidosis mouse model (APP/PS1-21) and in wild-type mice aged 50 and 170 days, without and with pretreatment with the ABCC1 inhibitor MK571. One hundred seventy days-old-animals additionally underwent [11C]PiB PET scans to measure Aβ load. While baseline [11C]BMP PET scans detected no differences in the elimination slope of radioactivity washout from the brain (kelim) between APP/PS1-21 and wild-type mice of both age groups, PET scans after MK571 pretreatment revealed significantly higher kelim values in APP/PS1-21 mice than in wild-type mice aged 170 days, suggesting increased ABCC1 activity. The observed increase in kelim occurred across all investigated brain regions and was independent of the presence of Aβ plaques measured with [11C]PiB. Western blot analysis revealed a trend towards increased whole brain ABCC1 levels in 170 days-old-APP/PS1-21 mice versus wild-type mice and a significant positive correlation between ABCC1 levels and kelim. Our data point to an upregulation of ABCC1 in APP/PS1-21 mice, which may be related to an induction of ABCC1 in astrocytes as a protective mechanism against oxidative stress.
Collapse
Affiliation(s)
- Viktoria Zoufal
- Preclinical Molecular Imaging, AIT
Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Severin Mairinger
- Preclinical Molecular Imaging, AIT
Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Markus Krohn
- Department of Neuro/Pathology,
University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
- University of Lübeck Institute for
Experimental und Clinical Pharmacology and Toxicology Center of Brain, Behavior and
Metabolism (CBBM), Lübeck, Germany
| | - Thomas Wanek
- Preclinical Molecular Imaging, AIT
Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Thomas Filip
- Preclinical Molecular Imaging, AIT
Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Michael Sauberer
- Preclinical Molecular Imaging, AIT
Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Johann Stanek
- Preclinical Molecular Imaging, AIT
Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Claudia Kuntner
- Preclinical Molecular Imaging, AIT
Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Jens Pahnke
- Department of Neuro/Pathology,
University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
- LIED, University of Lübeck,
Germany
- Leibniz-Institute of Plant Biochemistry,
Halle, Germany
- Medical Faculty, Department of
Pharmacology, University of Latvia, Rīga, Latvia
| | - Oliver Langer
- Preclinical Molecular Imaging, AIT
Austrian Institute of Technology GmbH, Seibersdorf, Austria
- Department of Clinical Pharmacology,
Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging und
Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna,
Vienna, Austria
| |
Collapse
|
13
|
Wang D, Wang C, Wang L, Chen Y. A comprehensive review in improving delivery of small-molecule chemotherapeutic agents overcoming the blood-brain/brain tumor barriers for glioblastoma treatment. Drug Deliv 2020; 26:551-565. [PMID: 31928355 PMCID: PMC6534214 DOI: 10.1080/10717544.2019.1616235] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and lethal primary brain tumor which is highly resistant to conventional radiotherapy and chemotherapy, and cannot be effectively controlled by surgical resection. Due to inevitable recurrence of GBM, it remains essentially incurable with a median overall survival of less than 18 months after diagnosis. A great challenge in current therapies lies in the abrogated delivery of most of the chemotherapeutic agents to the tumor location in the presence of blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB). These protective barriers serve as a selectively permeable hurdle reducing the efficacy of anti-tumor drugs in GBM therapy. This work systematically gives a comprehensive review on: (i) the characteristics of the BBB and the BBTB, (ii) the influence of BBB/BBTB on drug delivery and the screening strategy of small-molecule chemotherapeutic agents with promising BBB/BBTB-permeable potential, (iii) the strategies to overcome the BBB/BBTB as well as the techniques which can lead to transient BBB/BBTB opening or disruption allowing for improving BBB/BBTB-penetration of drugs. It is hoped that this review provide practical guidance for the future development of small BBB/BBTB-permeable agents against GBM as well as approaches enhancing drug delivery across the BBB/BBTB to GBM.
Collapse
Affiliation(s)
- Da Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Chao Wang
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Liang Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yue Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
14
|
Helms HCC, Kristensen M, Saaby L, Fricker G, Brodin B. Drug Delivery Strategies to Overcome the Blood-Brain Barrier (BBB). Handb Exp Pharmacol 2020; 273:151-183. [PMID: 33367937 DOI: 10.1007/164_2020_403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The brain capillary endothelium serves both as an exchange site for gases and solutes between blood and brain and as a protective fence against neurotoxic compounds from the blood. While this "blood-brain barrier" (BBB) function protects the fragile environment in the brain, it also poses a tremendous challenge for the delivery of drug compounds to the brain parenchyma. Paracellular brain uptake of drug compounds is limited by the physical tightness of the endothelium, which is tightly sealed with junction complexes. Transcellular uptake of lipophilic drug compounds is limited by the activity of active efflux pumps in the luminal membrane. As a result, the majority of registered CNS drug compounds are small lipophilic compounds which are not efflux transporter substrates. Small molecule CNS drug development therefore focuses on identifying compounds with CNS target affinity and modifies these in order to optimize lipophilicity and decrease efflux pump interactions. Since efflux pump activity is limiting drug uptake, it has been investigated whether coadministration of drug compounds with efflux pump inhibitors could increase drug uptake. While the concept works to some extent, a lot of challenges have been encountered in terms of obtaining efficient inhibition while avoiding adverse effects.Some CNS drug compounds enter the brain via nutrient transport proteins, an example is the levodopa, a prodrug of Dopamine, which crosses the BBB via the large neutral amino acid transporter LAT1. While carrier-mediated transport of drug compounds may seem attractive, the development of drugs targeting transporters is very challenging, since the compounds should have a good fit to the binding site, while still maintaining their CNS target affinity.Receptor-mediated transport of drug compounds, especially biotherapeutics, conjugated to a receptor-binding ligand has shown some promise, although the amounts transported are rather low. This also holds true for drug-conjugation to cell-penetrating peptides. Due to the low uptake of biotherapeutics, barrier-breaching approaches such as mannitol injections and focused ultrasound have been employed with some success to patient groups with no other treatment options.
Collapse
Affiliation(s)
| | - Mie Kristensen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Saaby
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Bioneer-Farma, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Birger Brodin
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
15
|
Erdő F, Krajcsi P. Age-Related Functional and Expressional Changes in Efflux Pathways at the Blood-Brain Barrier. Front Aging Neurosci 2019; 11:196. [PMID: 31417399 PMCID: PMC6682691 DOI: 10.3389/fnagi.2019.00196] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022] Open
Abstract
During the last decade, several articles have reported a relationship between advanced age and changes in the integrity of the blood-brain barrier (BBB). These changes were manifested not only in the morphology and structure of the cerebral microvessels but also in the expression and function of the transporter proteins in the luminal and basolateral surfaces of the capillary endothelial cells. Age-associated downregulation of the efflux pumps ATP-binding cassette transporters (ABC transporters) resulted in increased permeability and greater brain exposure to different xenobiotics and their possible toxicity. In age-related neurodegenerative pathologies like Alzheimer's disease (AD), the amyloid-β (Aβ) clearance decreased due to P-glycoprotein (P-gp) dysfunction, leading to higher brain exposure. In stroke, however, an enhanced P-gp function was reported in the cerebral capillaries, making it even more difficult to perform effective neuroprotective therapy in the infarcted brain area. This mini-review article focuses on the efflux functions of the transporters and receptors of the BBB in age-related brain pathologies and also in healthy aging.
Collapse
Affiliation(s)
- Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Péter Krajcsi
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.,Solvo Biotechnology, A Charles River Company, Budapest, Hungary.,Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
16
|
Fei Z, Hu M, Baum L, Kwan P, Hong T, Zhang C. The potential role of human multidrug resistance protein 1 (MDR1) and multidrug resistance-associated protein 2 (MRP2) in the transport of Huperzine A in vitro. Xenobiotica 2019; 50:354-362. [PMID: 31132291 DOI: 10.1080/00498254.2019.1623935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Ziyan Fei
- School of Pharmacy, Nanchang University, Nanchang, PR China
- Provincial Key Laboratory for Drug Targeting and Drug Screening Research, Nanchang, PR China
| | - Mengyun Hu
- School of Pharmacy, Nanchang University, Nanchang, PR China
- Provincial Key Laboratory for Drug Targeting and Drug Screening Research, Nanchang, PR China
| | - Larry Baum
- The State Key Laboratory of Brain and Cognitive Sciences, University of Hong Kong, Pokfulam, Hong Kong, PR China
- Centre for Genomic Sciences, University of Hong Kong, Pokfulam, Hong Kong, PR China
| | - Patrick Kwan
- Department of Neuroscience, Alfred Hospital, Monash University, Melbourne, Australia
- Departments of Medicine and Neurology, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Chunbo Zhang
- School of Pharmacy, Nanchang University, Nanchang, PR China
- Provincial Key Laboratory for Drug Targeting and Drug Screening Research, Nanchang, PR China
| |
Collapse
|
17
|
Sato K. [Consideration for future in vitro BBB models - technical development to investigate the drug delivery to the CNS]. Nihon Yakurigaku Zasshi 2019; 152:287-294. [PMID: 30531099 DOI: 10.1254/fpj.152.287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Blood vessels in the central nervous system (CNS) limit the material exchange between blood and parenchyma by blood brain barrier (BBB). At present, no appropriate in vitro BBB models are available for the investigation whether or not the candidate compounds for new drugs could be delivered to the CNS. This causes huge difficulties of the development of CNS drugs and prediction of CNS adverse effects. In this review, I first outline the structures and functions of BBB, together with the parameters used for the quantification of BBB functions. I also introduce the history of in vitro BBB models used in the drug development so far, i.e., the transition from non-cell models to the models using primary culture of rodent cells, porcine, bovine, cell lines, etc. More recently, the application of human cells differentiated from human induced pluripotent stem cells and microfluidic engineering have already started. BBB is essential for the maintenance of brain homeostasis and the mechanisms of the BBB development will be clarified by reproducing functional BBB on the dish. The new in vitro models and the data may provide accurate prediction of drug delivery to the CNS and the improvement of the evaluation system for toxicity and safety, thereby leading to successful launch of new drugs on the market.
Collapse
|
18
|
Zoufal V, Mairinger S, Krohn M, Wanek T, Filip T, Sauberer M, Stanek J, Traxl A, Schuetz JD, Kuntner C, Pahnke J, Langer O. Influence of Multidrug Resistance-Associated Proteins on the Excretion of the ABCC1 Imaging Probe 6-Bromo-7-[ 11C]Methylpurine in Mice. Mol Imaging Biol 2019; 21:306-316. [PMID: 29942989 PMCID: PMC6449286 DOI: 10.1007/s11307-018-1230-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Multidrug resistance-associated proteins (MRPs) mediate the hepatobiliary and renal excretion of many drugs and drug conjugates. The positron emission tomography (PET) tracer 6-bromo-7-[11C]methylpurine is rapidly converted in tissues by glutathione-S-transferases into its glutathione conjugate, and has been used to measure the activity of Abcc1 in the brain and the lungs of mice. Aim of this work was to investigate if the activity of MRPs in excretory organs can be measured with 6-bromo-7-[11C]methylpurine. PROCEDURES We performed PET scans with 6-bromo-7-[11C]methylpurine in groups of wild-type, Abcc4(-/-) and Abcc1(-/-) mice, with and without pre-treatment with the prototypical MRP inhibitor MK571. RESULTS 6-Bromo-7-[11C]methylpurine-derived radioactivity predominantly underwent renal excretion. In blood, MK571 treatment led to a significant increase in the AUC and a decrease in the elimination rate constant of radioactivity (kelimination,blood). In the kidneys, there were significant decreases in the rate constant for radioactivity uptake from the blood (kuptake,kidney), kelimination,kidney, and the rate constant for tubular secretion of radioactivity (kurine). Experiments in Abcc4(-/-) mice indicated that Abcc4 contributed to renal excretion of 6-bromo-7-[11C]methylpurine-derived radioactivity. CONCLUSIONS Our data suggest that 6-bromo-7-[11C]methylpurine may be useful to assess the activity of MRPs in the kidneys as well as in other organs (brain, lungs), although further work is needed to identify the MRP subtypes involved in the disposition of 6-bromo-7-[11C]methylpurine-derived radioactivity.
Collapse
Affiliation(s)
- Viktoria Zoufal
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Severin Mairinger
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Markus Krohn
- Department of Neuro-/Pathology, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
| | - Thomas Wanek
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Thomas Filip
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Michael Sauberer
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Johann Stanek
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Alexander Traxl
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Claudia Kuntner
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Jens Pahnke
- Department of Neuro-/Pathology, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
- LIED, University of Lübeck, Lübeck, Germany
- Leibniz-Institute of Plant Biochemistry, Halle, Germany
| | - Oliver Langer
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria.
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
19
|
Logan S, Arzua T, Canfield SG, Seminary ER, Sison SL, Ebert AD, Bai X. Studying Human Neurological Disorders Using Induced Pluripotent Stem Cells: From 2D Monolayer to 3D Organoid and Blood Brain Barrier Models. Compr Physiol 2019; 9:565-611. [PMID: 30873582 PMCID: PMC6705133 DOI: 10.1002/cphy.c180025] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurological disorders have emerged as a predominant healthcare concern in recent years due to their severe consequences on quality of life and prevalence throughout the world. Understanding the underlying mechanisms of these diseases and the interactions between different brain cell types is essential for the development of new therapeutics. Induced pluripotent stem cells (iPSCs) are invaluable tools for neurological disease modeling, as they have unlimited self-renewal and differentiation capacity. Mounting evidence shows: (i) various brain cells can be generated from iPSCs in two-dimensional (2D) monolayer cultures; and (ii) further advances in 3D culture systems have led to the differentiation of iPSCs into organoids with multiple brain cell types and specific brain regions. These 3D organoids have gained widespread attention as in vitro tools to recapitulate complex features of the brain, and (iii) complex interactions between iPSC-derived brain cell types can recapitulate physiological and pathological conditions of blood-brain barrier (BBB). As iPSCs can be generated from diverse patient populations, researchers have effectively applied 2D, 3D, and BBB models to recapitulate genetically complex neurological disorders and reveal novel insights into molecular and genetic mechanisms of neurological disorders. In this review, we describe recent progress in the generation of 2D, 3D, and BBB models from iPSCs and further discuss their limitations, advantages, and future ventures. This review also covers the current status of applications of 2D, 3D, and BBB models in drug screening, precision medicine, and modeling a wide range of neurological diseases (e.g., neurodegenerative diseases, neurodevelopmental disorders, brain injury, and neuropsychiatric disorders). © 2019 American Physiological Society. Compr Physiol 9:565-611, 2019.
Collapse
Affiliation(s)
- Sarah Logan
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Thiago Arzua
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Scott G. Canfield
- Department of Cellular & Integrative Physiology, IU School of Medicine-Terre Haute, Terre Haute, IN, USA
| | - Emily R. Seminary
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Samantha L. Sison
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
20
|
Liu L, Liu X. Contributions of Drug Transporters to Blood-Brain Barriers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:407-466. [PMID: 31571171 DOI: 10.1007/978-981-13-7647-4_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Blood-brain interfaces comprise the cerebral microvessel endothelium forming the blood-brain barrier (BBB) and the epithelium of the choroid plexuses forming the blood-cerebrospinal fluid barrier (BCSFB). Their main functions are to impede free diffusion between brain fluids and blood; to provide transport processes for essential nutrients, ions, and metabolic waste products; and to regulate the homeostasis of central nervous system (CNS), all of which are attributed to absent fenestrations, high expression of tight junction proteins at cell-cell contacts, and expression of multiple transporters, receptors, and enzymes. Existence of BBB is an important reason that systemic drug administration is not suitable for the treatment of CNS diseases. Some diseases, such epilepsy, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and diabetes, alter BBB function via affecting tight junction proteins or altering expression and function of these transporters. This chapter will illustrate function of BBB, expression of transporters, as well as their alterations under disease status.
Collapse
Affiliation(s)
- Li Liu
- China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
21
|
Guan X, Bryniarski MA, Morris ME. In Vitro and In Vivo Efficacy of the Monocarboxylate Transporter 1 Inhibitor AR-C155858 in the Murine 4T1 Breast Cancer Tumor Model. AAPS JOURNAL 2018; 21:3. [PMID: 30397860 DOI: 10.1208/s12248-018-0261-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/30/2018] [Indexed: 02/07/2023]
Abstract
Monocarboxylate transporter 1 (MCT1), also known as a L-lactate transporter, is a potential therapeutic target in cancer. The objectives of this study were to evaluate efficacy and assess concentration-effect relationships of AR-C155858 (a selective and potent MCT1 inhibitor) in murine 4T1 breast cancer cells and in the 4T1 tumor xenograft model. Western blotting of 4T1 cells demonstrated triple negative breast cancer (TNBC) characteristics and overexpression of MCT1 and CD147 (a MCT1 accessory protein), but absence of MCT4 expression. AR-C155858 inhibited the cellular L-lactate uptake and cellular proliferation at low nanomolar potencies (IC50 values of 25.0 ± 4.2 and 20.2 ± 0.2 nM, respectively). In the xenograft 4T1 mouse model of immunocompetent animals, AR-C155858 (10 mg/kg i.p. once daily) had no effect on tumor volume and weight. Treatment with AR-C155858 resulted in slightly increased tumor lactate concentrations; however, the changes were not statistically significant. AR-C155858 was well tolerated, as demonstrated by the unchanged body weight and blood lactate concentrations. Average blood and tumor AR-C155858 concentrations (110 ± 22 and 574 ± 245 nM, respectively), 24 h after the last dose, were well above the IC50 values. These data indicate that AR-C155858 penetrated 4T1 xenograft tumors and was present at high concentrations but was ineffective in decreasing tumor growth. Evaluations of AR-C155858 in other preclinical models of breast cancer are needed to further assess its efficacy.
Collapse
Affiliation(s)
- Xiaowen Guan
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 352 Kapoor Hall, Buffalo, New York, 14214, USA
| | - Mark A Bryniarski
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 352 Kapoor Hall, Buffalo, New York, 14214, USA
| | - Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 352 Kapoor Hall, Buffalo, New York, 14214, USA.
| |
Collapse
|
22
|
Modulation of Opioid Transport at the Blood-Brain Barrier by Altered ATP-Binding Cassette (ABC) Transporter Expression and Activity. Pharmaceutics 2018; 10:pharmaceutics10040192. [PMID: 30340346 PMCID: PMC6321372 DOI: 10.3390/pharmaceutics10040192] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 12/23/2022] Open
Abstract
Opioids are highly effective analgesics that have a serious potential for adverse drug reactions and for development of addiction and tolerance. Since the use of opioids has escalated in recent years, it is increasingly important to understand biological mechanisms that can increase the probability of opioid-associated adverse events occurring in patient populations. This is emphasized by the current opioid epidemic in the United States where opioid analgesics are frequently abused and misused. It has been established that the effectiveness of opioids is maximized when these drugs readily access opioid receptors in the central nervous system (CNS). Indeed, opioid delivery to the brain is significantly influenced by the blood-brain barrier (BBB). In particular, ATP-binding cassette (ABC) transporters that are endogenously expressed at the BBB are critical determinants of CNS opioid penetration. In this review, we will discuss current knowledge on the transport of opioid analgesic drugs by ABC transporters at the BBB. We will also examine how expression and trafficking of ABC transporters can be modified by pain and/or opioid pharmacotherapy, a novel mechanism that can promote opioid-associated adverse drug events and development of addiction and tolerance.
Collapse
|
23
|
Nakamura Y, Nakanishi T, Tamai I. Membrane Transporters Contributing to PGE 2 Distribution in Central Nervous System. Biol Pharm Bull 2018; 41:1337-1347. [DOI: 10.1248/bpb.b18-00169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yoshinobu Nakamura
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Takeo Nakanishi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| |
Collapse
|
24
|
Grube M, Hagen P, Jedlitschky G. Neurosteroid Transport in the Brain: Role of ABC and SLC Transporters. Front Pharmacol 2018; 9:354. [PMID: 29695968 PMCID: PMC5904994 DOI: 10.3389/fphar.2018.00354] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/27/2018] [Indexed: 12/17/2022] Open
Abstract
Neurosteroids, comprising pregnane, androstane, and sulfated steroids can alter neuronal excitability through interaction with ligand-gated ion channels and other receptors and have therefore a therapeutic potential in several brain disorders. They can be formed in brain cells or are synthesized by an endocrine gland and reach the brain by penetrating the blood–brain barrier (BBB). Especially sulfated steroids such as pregnenolone sulfate (PregS) and dehydroepiandrosterone sulfate (DHEAS) depend on transporter proteins to cross membranes. In this review, we discuss the involvement of ATP-binding cassette (ABC)- and solute carrier (SLC)-type membrane proteins in the transport of these compounds at the BBB and in the choroid plexus (CP), but also in the secretion from neurons and glial cells. Among the ABC transporters, especially BCRP (ABCG2) and several MRP/ABCC subfamily members (MRP1, MRP4, MRP8) are expressed in the brain and known to efflux conjugated steroids. Furthermore, several SLC transporters have been shown to mediate cellular uptake of steroid sulfates. These include members of the OATP/SLCO subfamily, namely OATP1A2 and OATP2B1, as well as OAT3 (SLC22A3), which have been reported to be expressed at the BBB, in the CP and in part in neurons. Furthermore, a role of the organic solute transporter OSTα-OSTβ (SLC51A/B) in brain DHEAS/PregS homeostasis has been proposed. This transporter was reported to be localized especially in steroidogenic cells of the cerebellum and hippocampus. To date, the impact of transporters on neurosteroid homeostasis is still poorly understood. Further insights are desirable also with regard to the therapeutic potential of these compounds.
Collapse
Affiliation(s)
- Markus Grube
- Department of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany
| | - Paul Hagen
- Department of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany
| | - Gabriele Jedlitschky
- Department of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
25
|
Pereira CD, Martins F, Wiltfang J, da Cruz e Silva OA, Rebelo S. ABC Transporters Are Key Players in Alzheimer’s Disease. J Alzheimers Dis 2017; 61:463-485. [DOI: 10.3233/jad-170639] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Cátia D. Pereira
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Filipa Martins
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Jens Wiltfang
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Odete A.B. da Cruz e Silva
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Sandra Rebelo
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
26
|
Morris ME, Rodriguez-Cruz V, Felmlee MA. SLC and ABC Transporters: Expression, Localization, and Species Differences at the Blood-Brain and the Blood-Cerebrospinal Fluid Barriers. AAPS JOURNAL 2017; 19:1317-1331. [PMID: 28664465 DOI: 10.1208/s12248-017-0110-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/05/2017] [Indexed: 12/11/2022]
Abstract
The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) separate the brain and cerebrospinal fluid (CSF) from the systemic circulation and represent a barrier to the uptake of both endogenous compounds and xenobiotics into the brain. For compounds whose passive diffusion is limited due to their ionization or hydrophilicity, membrane transporters can facilitate their uptake across the BBB or BCSFB. Members of the solute carrier (SLC) and ATP-binding case (ABC) families are present on these barriers. Differences exist in the localization and expression of transport proteins between the BBB and BCSFB, resulting in functional differences in transport properties. This review focuses on the expression, membrane localization, and different isoforms present at each barrier. Diseases that affect the central nervous system including brain tumors, HIV, Alzheimer's disease, Parkinson's disease, and stroke affect the integrity and expression of transporters at the BBB and BCSFB and will be briefly reviewed.
Collapse
Affiliation(s)
- Marilyn E Morris
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, New York, 14214-8033, USA.
| | - Vivian Rodriguez-Cruz
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, New York, 14214-8033, USA
| | - Melanie A Felmlee
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, 3601 Pacific Ave, Stockton, California, 95211, USA
| |
Collapse
|
27
|
Flores K, Manautou JE, Renfro JL. Gender-specific expression of ATP-binding cassette (Abc) transporters and cytoprotective genes in mouse choroid plexus. Toxicology 2017; 386:84-92. [PMID: 28587784 DOI: 10.1016/j.tox.2017.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/23/2017] [Accepted: 05/30/2017] [Indexed: 11/18/2022]
Abstract
The choroid plexus (CP) and blood-brain barrier (BBB) control the movement of several drugs and endogenous compounds between the brain and systemic circulation. The multidrug resistance associated protein (Mrp) efflux transporters form part of these barriers. Several Mrp transporters are positively regulated by the transcription factor nuclear factor erythroid-2-related factor (Nrf2) in liver. The Mrps, Nrf2 and Nrf2-dependent genes are cytoprotective and our aim was to examine basal gender differences in expression of Mrp transporters, Nrf2 and Nrf2-dependent genes (Nqo1 and Ho-1) in the brain-barriers. Previous studies have shown higher expression of Mrp1, Mrp2 and Mrp4 in female mouse liver and kidney. We hypothesized that similar renal/hepatic gender-specific patterns are present in the brain-barrier epithelia interfaces. qPCR and immunoblot analyses showed that Mrp4, Ho-1 and Nqo1 expression was higher in female CP. Mrp1, Mrp2 and Nrf2 expression in the CP had no gender pattern. Female Mrp1, Mrp2 and Mrp4 mouse brain expressions in remaining brain areas, excluding CP, were higher than male. Functional analysis of Mrp4 in CP revealed active accumulation of the Mrp4 model substrate fluo-cAMP. WT female CP had 10-fold higher accumulation in the vascular spaces than males and 60% higher than Mrp4-/- females. Probenecid blocked all transport. Methotrexate did as well except in Mrp4-/- females where it had no effect, suggesting compensatory induction of transport occurred in Mrp4-/-. Collectively, our findings indicate significant gender differences in expression of Mrp transporters and cytoprotective genes in the CP and BBB.
Collapse
Affiliation(s)
- Katiria Flores
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - José E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - J Larry Renfro
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
28
|
Review: The blood-brain barrier; protecting the developing fetal brain. Placenta 2017; 54:111-116. [DOI: 10.1016/j.placenta.2016.12.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 11/18/2022]
|
29
|
Saidijam M, Karimi Dermani F, Sohrabi S, Patching SG. Efflux proteins at the blood-brain barrier: review and bioinformatics analysis. Xenobiotica 2017; 48:506-532. [PMID: 28481715 DOI: 10.1080/00498254.2017.1328148] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
1. Efflux proteins at the blood-brain barrier provide a mechanism for export of waste products of normal metabolism from the brain and help to maintain brain homeostasis. They also prevent entry into the brain of a wide range of potentially harmful compounds such as drugs and xenobiotics. 2. Conversely, efflux proteins also hinder delivery of therapeutic drugs to the brain and central nervous system used to treat brain tumours and neurological disorders. For bypassing efflux proteins, a comprehensive understanding of their structures, functions and molecular mechanisms is necessary, along with new strategies and technologies for delivery of drugs across the blood-brain barrier. 3. We review efflux proteins at the blood-brain barrier, classified as either ATP-binding cassette (ABC) transporters (P-gp, BCRP, MRPs) or solute carrier (SLC) transporters (OATP1A2, OATP1A4, OATP1C1, OATP2B1, OAT3, EAATs, PMAT/hENT4 and MATE1). 4. This includes information about substrate and inhibitor specificity, structural organisation and mechanism, membrane localisation, regulation of expression and activity, effects of diseases and conditions and the principal technique used for in vivo analysis of efflux protein activity: positron emission tomography (PET). 5. We also performed analyses of evolutionary relationships, membrane topologies and amino acid compositions of the proteins, and linked these to structure and function.
Collapse
Affiliation(s)
- Massoud Saidijam
- a Department of Molecular Medicine and Genetics , Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran and
| | - Fatemeh Karimi Dermani
- a Department of Molecular Medicine and Genetics , Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran and
| | - Sareh Sohrabi
- a Department of Molecular Medicine and Genetics , Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran and
| | - Simon G Patching
- b School of BioMedical Sciences and the Astbury Centre for Structural Molecular Biology, University of Leeds , Leeds , UK
| |
Collapse
|
30
|
Ibbotson K, Yell J, Ronaldson PT. Nrf2 signaling increases expression of ATP-binding cassette subfamily C mRNA transcripts at the blood-brain barrier following hypoxia-reoxygenation stress. Fluids Barriers CNS 2017; 14:6. [PMID: 28298215 PMCID: PMC5353788 DOI: 10.1186/s12987-017-0055-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/16/2017] [Indexed: 12/11/2022] Open
Abstract
Background Strategies to maintain BBB integrity in diseases with a hypoxia/reoxygenation (H/R) component involve preventing glutathione (GSH) loss from endothelial cells. GSH efflux transporters include multidrug resistance proteins (Mrps). Therefore, characterization of Mrp regulation at the BBB during H/R is required to advance these transporters as therapeutic targets. Our goal was to investigate, in vivo, regulation of Abcc1, Abcc2, and Abcc4 mRNA expression (i.e., genes encoding Mrp isoforms that transport GSH) by nuclear factor E2-related factor (Nrf2) using a well-established H/R model. Methods Female Sprague–Dawley rats (200–250 g) were subjected to normoxia (Nx, 21% O2, 60 min), hypoxia (Hx, 6% O2, 60 min) or H/R (6% O2, 60 min followed by 21% O2, 10 min, 30 min, or 1 h) or were treated with the Nrf2 activator sulforaphane (25 mg/kg, i.p.) for 3 h. Abcc mRNA expression in brain microvessels was determined using quantitative real-time PCR. Nrf2 signaling activation was examined using an electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) respectively. Data were expressed as mean ± SD and analyzed via ANOVA followed by the post hoc Bonferroni t test. Results We observed increased microvascular expression of Abcc1, Abcc2, and Abcc4 mRNA following H/R treatment with reoxygenation times of 10 min, 30 min, and 1 h and in animals treated with sulforaphane. Using a biotinylated Nrf2 probe, we observed an upward band shift in brain microvessels isolated from H/R animals or animals administered sulforaphane. ChIP studies showed increased Nrf2 binding to antioxidant response elements on Abcc1, Abcc2, and Abcc4 promoters following H/R or sulforaphane treatment, suggesting a role for Nrf2 signaling in Abcc gene regulation. Conclusions Our data show increased Abcc1, Abcc2, and Abcc4 mRNA expression at the BBB in response to H/R stress and that Abcc gene expression is regulated by Nrf2 signaling. Since these Mrp isoforms transport GSH, these results may point to endogenous transporters that can be targeted for BBB protection during H/R stress. Experiments are ongoing to examine functional implications of Nrf2-mediated increases in Abcc transcript expression. Such studies will determine utility of targeting Mrp isoforms for BBB protection in diseases with an H/R component.
Collapse
Affiliation(s)
- Kathryn Ibbotson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1295 N. Martin Avenue, P.O. Box 210202, Tucson, 85721, AZ, USA
| | - Joshua Yell
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 N. Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 N. Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA.
| |
Collapse
|
31
|
Molino Y, David M, Varini K, Jabès F, Gaudin N, Fortoul A, Bakloul K, Masse M, Bernard A, Drobecq L, Lécorché P, Temsamani J, Jacquot G, Khrestchatisky M. Use of LDL receptor-targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier. FASEB J 2017; 31:1807-1827. [PMID: 28108572 DOI: 10.1096/fj.201600827r] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 01/03/2017] [Indexed: 01/16/2023]
Abstract
The blood-brain barrier (BBB) prevents the entry of many drugs into the brain and, thus, is a major obstacle in the treatment of CNS diseases. There is some evidence that the LDL receptor (LDLR) is expressed at the BBB and may participate in the transport of endogenous ligands from blood to brain, a process referred to as receptor-mediated transcytosis. We previously described a family of peptide vectors that were developed to target the LDLR. In the present study, in vitro BBB models that were derived from wild-type and LDLR-knockout animals (ldlr-/- ) were used to validate the specific LDLR-dependent transcytosis of LDL via a nondegradative route. We next showed that LDLR-targeting peptide vectors, whether in fusion or chemically conjugated to an Ab Fc fragment, promote binding to apical LDLR and transendothelial transfer of the Fc fragment across BBB monolayers via the same route as LDL. Finally, we demonstrated in vivo that LDLR significantly contributes to the brain uptake of vectorized Fc. We thus provide further evidence that LDLR is a relevant receptor for CNS drug delivery via receptor-mediated transcytosis and that the peptide vectors we developed have the potential to transport drugs, including proteins or Ab based, across the BBB.-Molino, Y., David, M., Varini, K., Jabès, F., Gaudin, N., Fortoul, A., Bakloul, K., Masse, M., Bernard, A., Drobecq, L., Lécorché, P., Temsamani, J., Jacquot, G., Khrestchatisky, M. Use of LDL receptor-targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier.
Collapse
Affiliation(s)
- Yves Molino
- Vect-Horus S.A.S., Faculté de Médecine, Marseille, France; and
| | - Marion David
- Vect-Horus S.A.S., Faculté de Médecine, Marseille, France; and
| | - Karine Varini
- Aix Marseille Université, Centre National de la Recherche Scientifique, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, Marseille, France
| | - Françoise Jabès
- Vect-Horus S.A.S., Faculté de Médecine, Marseille, France; and
| | - Nicolas Gaudin
- Aix Marseille Université, Centre National de la Recherche Scientifique, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, Marseille, France
| | - Aude Fortoul
- Vect-Horus S.A.S., Faculté de Médecine, Marseille, France; and
| | - Karima Bakloul
- Vect-Horus S.A.S., Faculté de Médecine, Marseille, France; and
| | - Maxime Masse
- Vect-Horus S.A.S., Faculté de Médecine, Marseille, France; and
| | - Anne Bernard
- Aix Marseille Université, Centre National de la Recherche Scientifique, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, Marseille, France
| | - Lucile Drobecq
- Vect-Horus S.A.S., Faculté de Médecine, Marseille, France; and
| | | | - Jamal Temsamani
- Vect-Horus S.A.S., Faculté de Médecine, Marseille, France; and
| | | | - Michel Khrestchatisky
- Aix Marseille Université, Centre National de la Recherche Scientifique, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, Marseille, France
| |
Collapse
|
32
|
Ibarra M, Vázquez M, Fagiolino P. Sex Effect on Average Bioequivalence. Clin Ther 2016; 39:23-33. [PMID: 28034518 DOI: 10.1016/j.clinthera.2016.11.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/25/2016] [Accepted: 11/30/2016] [Indexed: 01/10/2023]
Abstract
PURPOSE Generic formulations are by far the most prescribed drugs. This scenario is highly beneficial for society because medication expenses are significantly reduced after expiration of the exclusivity period conceded to the branded name drug. Correspondingly, these formulations must be adequately evaluated to avoid drug inefficacy and toxicity in the overall patient population. Bioequivalence studies are the only in vivo evaluation that a generic drug must overcome to reach the market. These clinical trials have not been exempt from underrepresentation of female subjects and a lack of sex-based analysis. Frequently, conclusions obtained in men are extrapolated to women. Furthermore, the obtained results are not analyzed to determine sex differences. The aim of this study was to discuss the effect that male and female differences in gastrointestinal physiology can have on bioequivalence conclusions and to show why a sex-based analysis must be conducted in these studies to improve the evaluation of generic drugs. METHODS This discussion was based on observed sex differences in product bioavailability discrimination (sex-by-formulation interaction) and on residual variability through an analysis of average bioequivalence data previously reported by other researchers and data collected by our center. Bioequivalence studies of oral formulations, with a 2-period, 2-sequence, 2-treatment random crossover design performed in healthy subjects with at least 6 subjects of each sex, were included. In addition, the bioequivalence conclusion that would have been reached in each study if performed with only 1 sex was estimated. FINDINGS The data reveal that differences in both product bioavailability discrimination and residual variability occur with a significant incidence in bioequivalence studies. In either Cmax or AUC, a significant sex-by-formulation interaction was present in 1 of 3 reviewed studies, whereas differences in residual variability between sexes were significant for >50% of studies. Moreover, the performed estimations suggest that the reported bioequivalence conclusions were not verified in at least 1 sex for 1 of 3 studies and were not verified in men and in women for 1 of 6 studies. IMPLICATIONS This research shows that extrapolation of bioequivalence results from the male population to the female population is not always valid. Bioequivalence studies must therefore be performed with both male and female subjects in similar proportions. Sex-based analysis in bioequivalence can improve study design, enhance the representativeness of conclusions, and provide important information regarding formulation performance, thereby promoting the efficacy and safety of generic drugs.
Collapse
Affiliation(s)
- Manuel Ibarra
- Bioavailability and Bioequivalence Center for Medicine Evaluation, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| | - Marta Vázquez
- Bioavailability and Bioequivalence Center for Medicine Evaluation, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| | - Pietro Fagiolino
- Bioavailability and Bioequivalence Center for Medicine Evaluation, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
33
|
Alam C, Whyte-Allman SK, Omeragic A, Bendayan R. Role and modulation of drug transporters in HIV-1 therapy. Adv Drug Deliv Rev 2016; 103:121-143. [PMID: 27181050 DOI: 10.1016/j.addr.2016.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 12/15/2022]
Abstract
Current treatment of human immunodeficiency virus type-1 (HIV-1) infection involves a combination of antiretroviral drugs (ARVs) that target different stages of the HIV-1 life cycle. This strategy is commonly referred to as highly active antiretroviral therapy (HAART) or combined antiretroviral therapy (cART). Membrane-associated drug transporters expressed ubiquitously in mammalian systems play a crucial role in modulating ARV disposition during HIV-1 infection. Members of the ATP-binding cassette (ABC) and solute carrier (SLC) transporter superfamilies have been shown to interact with ARVs, including those that are used as part of first-line treatment regimens. As a result, the functional expression of drug transporters can influence the distribution of ARVs at specific sites of infection. In addition, pathological factors related to HIV-1 infection and/or ARV therapy itself can alter transporter expression and activity, thus further contributing to changes in ARV disposition and the effectiveness of HAART. This review summarizes current knowledge on the role of drug transporters in regulating ARV transport in the context of HIV-1 infection.
Collapse
Affiliation(s)
- Camille Alam
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Sana-Kay Whyte-Allman
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Amila Omeragic
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada.
| |
Collapse
|
34
|
Helms HC, Abbott NJ, Burek M, Cecchelli R, Couraud PO, Deli MA, Förster C, Galla HJ, Romero IA, Shusta EV, Stebbins MJ, Vandenhaute E, Weksler B, Brodin B. In vitro models of the blood-brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab 2016; 36:862-90. [PMID: 26868179 PMCID: PMC4853841 DOI: 10.1177/0271678x16630991] [Citation(s) in RCA: 548] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/05/2016] [Indexed: 12/12/2022]
Abstract
The endothelial cells lining the brain capillaries separate the blood from the brain parenchyma. The endothelial monolayer of the brain capillaries serves both as a crucial interface for exchange of nutrients, gases, and metabolites between blood and brain, and as a barrier for neurotoxic components of plasma and xenobiotics. This "blood-brain barrier" function is a major hindrance for drug uptake into the brain parenchyma. Cell culture models, based on either primary cells or immortalized brain endothelial cell lines, have been developed, in order to facilitate in vitro studies of drug transport to the brain and studies of endothelial cell biology and pathophysiology. In this review, we aim to give an overview of established in vitro blood-brain barrier models with a focus on their validation regarding a set of well-established blood-brain barrier characteristics. As an ideal cell culture model of the blood-brain barrier is yet to be developed, we also aim to give an overview of the advantages and drawbacks of the different models described.
Collapse
Affiliation(s)
- Hans C Helms
- Department of Pharmacy, University of Copenhagen, Denmark
| | - N Joan Abbott
- Institute of Pharmaceutical Science, King's College London, UK
| | - Malgorzata Burek
- Klinik und Poliklinik für Anästhesiologie, University of Wurzburg, Germany
| | | | - Pierre-Olivier Couraud
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maria A Deli
- Institute of Biophysics, Biological Research Centre, HAS, Szeged, Hungary
| | - Carola Förster
- Klinik und Poliklinik für Anästhesiologie, University of Wurzburg, Germany
| | - Hans J Galla
- Institute of Biochemistry, University of Muenster, Germany
| | - Ignacio A Romero
- Department of Biological Sciences, The Open University, Walton Hall, Milton Keynes, UK
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, WI, USA
| | - Matthew J Stebbins
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, WI, USA
| | | | - Babette Weksler
- Division of Hematology and Medical Oncology, Weill Cornell Medical College, NY, USA
| | - Birger Brodin
- Department of Pharmacy, University of Copenhagen, Denmark
| |
Collapse
|
35
|
Biodistribution of negatively charged iron oxide nanoparticles (IONPs) in mice and enhanced brain delivery using lysophosphatidic acid (LPA). NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1775-1784. [PMID: 27125435 DOI: 10.1016/j.nano.2016.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 12/14/2022]
Abstract
Effective treatment of brain disorders requires a focus on improving drug permeability across the blood-brain barrier (BBB). Herein, we examined the pharmacokinetic properties of negatively charged iron oxide nanoparticles (IONPs) and the capability of using lysophosphatidic acid (LPA) to transiently disrupt the tight junctions and allow IONPs to enter the brain. Under normal conditions, IONPs had a plasma half-life of six minutes, with the liver and spleen being the major organs of deposition. Treatment with LPA enhanced accumulation of IONPs in the brain and spleen (approximately 4-fold vs. control). LPA and IONP treated mice revealed no sign of peripheral immune cell infiltration in the brain and no significant activation of microglia or astrocytes. These studies show improved delivery efficiency of IONPs following LPA administration. Our findings suggest transient disruption of the BBB may be a safe and effective method for increasing IONP delivery to the brain.
Collapse
|
36
|
Abstract
INTRODUCTION The blood-brain barrier (BBB) possesses an outstanding ability to protect the brain against xenobiotics and potentially poisonous metabolites. Owing to this, ATP binding cassette (ABC) export proteins have garnered significant interest in the research community. These transport proteins are predominantly localized to the luminal membrane of brain microvessels, where they recognize a wide range of different substrates and transport them back into the blood circulation. AREAS COVERED This review summarizes recent findings on these transport proteins, including their expression in the endothelial cell membrane and their substrate recognition. Signaling cascades underlying the expression and function of these proteins will be discussed as well as their role in diseases such as Alzheimer's disease, epilepsy, amyotrophic lateral sclerosis and brain tumors. EXPERT OPINION ABC transporters represent an integral part of the human transportome and are of particular interest at the blood-brain barrier they as they significantly contribute to brain homeostasis. In addition, they appear to be involved in myriad CNS diseases. Therefore studying their mechanisms of action as well as their signaling cascades and responses to internal and external stimuli will help us understand the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Anne Mahringer
- a Institute of Pharmacy and Molecular Biotechnology , Ruprecht-Karls University , Heidelberg , Germany
| | - Gert Fricker
- a Institute of Pharmacy and Molecular Biotechnology , Ruprecht-Karls University , Heidelberg , Germany
| |
Collapse
|
37
|
On NH, Yathindranath V, Sun Z, Miller DW. Pathways for Drug Delivery to the Central Nervous System. Drug Deliv 2016. [DOI: 10.1002/9781118833322.ch16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
38
|
Worzfeld T, Schwaninger M. Apicobasal polarity of brain endothelial cells. J Cereb Blood Flow Metab 2016; 36:340-62. [PMID: 26661193 PMCID: PMC4759676 DOI: 10.1177/0271678x15608644] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/07/2015] [Indexed: 01/24/2023]
Abstract
Normal brain homeostasis depends on the integrity of the blood-brain barrier that controls the access of nutrients, humoral factors, and immune cells to the CNS. The blood-brain barrier is composed mainly of brain endothelial cells. Forming the interface between two compartments, they are highly polarized. Apical/luminal and basolateral/abluminal membranes differ in their lipid and (glyco-)protein composition, allowing brain endothelial cells to secrete or transport soluble factors in a polarized manner and to maintain blood flow. Here, we summarize the basic concepts of apicobasal cell polarity in brain endothelial cells. To address potential molecular mechanisms underlying apicobasal polarity in brain endothelial cells, we draw on investigations in epithelial cells and discuss how polarity may go awry in neurological diseases.
Collapse
Affiliation(s)
- Thomas Worzfeld
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), University of Marburg, Marburg, Germany Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany German Research Centre for Cardiovascular Research, DZHK, Lübeck, Germany
| |
Collapse
|
39
|
Wang GY, Wang N, Liao HN. Effects of Muscone on the Expression of P-gp, MMP-9 on Blood-Brain Barrier Model In Vitro. Cell Mol Neurobiol 2015; 35:1105-15. [PMID: 25976179 PMCID: PMC11488062 DOI: 10.1007/s10571-015-0204-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/05/2015] [Indexed: 11/26/2022]
Abstract
Muscone is the main chemical ingredient in Musk which is main crude drug in Tongqiaohuoxue decoction (TQHXD), and TQHXD has a protective effect on damaged neurons, so we hypothesize that muscone can alter blood-brain barrier (BBB) permeability via the modulation of P-glycoprotein (P-gp) and matrix metalloproteinase-9 (MMP-9) expression. In this study, astrocytes (AC) and human umbilical vein endothelial cells (ECV304) were co-cultured to simulate the BBB model in vitro. Leak testing, transmembrane resistance experiments, and BBB-specific enzyme testing were used to test whether the model was successful. Different concentrations of muscone permeating the BBB were detected by gas chromatography (GC). The change of the transendothelial electrical resistance (TEER) on the BBB in vitro after treating with muscone was detected by Millicell-ERS. The protein expression of P-gp, MMP-9 in normal, and oxygen/glucose deprivation (OGD) BBB model was determined by western blotting to inquire that the mechanism of muscone penetrates the BBB model in vitro. The results show that muscone was detected in the lower medium of the BBB model by GC; the values of TEER were no significant difference before and after muscone (8 μM) was added to the BBB model; the expression of P-gp significantly decreased after the BBB model treatment with muscone (4, 8, and 16 μM) for 24 h; the expression of P-gp and MMP-9 in different concentrations of muscone groups had different degrees of reduction compared with the BBB in the state of OGD. In conclusion, muscone could permeate the BBB model, and it was associated with the inhibition of P-gp and MMP-9 expression. An understanding of the mechanisms of muscone across the BBB is crucial to the development of therapeutic modalities for cerebral vascular diseases.
Collapse
Affiliation(s)
- Guang-Yun Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road, Hefei, 230012, China.
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Chinese Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China.
| | - Ning Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road, Hefei, 230012, China.
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Chinese Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China.
- Department of Pharmacy, Anhui University of Chinese Medicine, Xiang Shan Road, Hefei, China.
| | - Hua-Ning Liao
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road, Hefei, 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
- Chinese Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
| |
Collapse
|
40
|
Jansen RS, Mahakena S, de Haas M, Borst P, van de Wetering K. ATP-binding Cassette Subfamily C Member 5 (ABCC5) Functions as an Efflux Transporter of Glutamate Conjugates and Analogs. J Biol Chem 2015; 290:30429-40. [PMID: 26515061 DOI: 10.1074/jbc.m115.692103] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Indexed: 01/12/2023] Open
Abstract
The ubiquitous efflux transporter ABCC5 (ATP-binding cassette subfamily C member 5) is present at high levels in the blood-brain barrier, neurons, and glia, but its in vivo substrates and function are not known. Using untargeted metabolomic screens, we show that Abcc5(-/-) mice accumulate endogenous glutamate conjugates in several tissues, but brain in particular. The abundant neurotransmitter N-acetylaspartylglutamate was 2.4-fold higher in Abcc5(-/-) brain. The metabolites that accumulated in Abcc5(-/-) tissues were depleted in cultured cells that overexpressed human ABCC5. In a vesicular membrane transport assay, ABCC5 also transported exogenous glutamate analogs, like the classic excitotoxic neurotoxins kainic acid, domoic acid, and NMDA; the therapeutic glutamate analog ZJ43; and, as previously shown, the anti-cancer drug methotrexate. Glutamate conjugates and analogs are of physiological relevance because they can affect the function of glutamate, the principal excitatory neurotransmitter in the brain. After CO2 asphyxiation, several immediate early genes were expressed at lower levels in Abcc5(-/-) brains than in wild type brains, suggesting altered glutamate signaling. Our results show that ABCC5 is a general glutamate conjugate and analog transporter that affects the disposition of endogenous metabolites, toxins, and drugs.
Collapse
Affiliation(s)
- Robert S Jansen
- From the Division of Molecular Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Sunny Mahakena
- From the Division of Molecular Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Marcel de Haas
- From the Division of Molecular Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Piet Borst
- From the Division of Molecular Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Koen van de Wetering
- From the Division of Molecular Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
41
|
Wu KC, Lu YH, Peng YH, Hsu LC, Lin CJ. Effects of lipopolysaccharide on the expression of plasma membrane monoamine transporter (PMAT) at the blood-brain barrier and its implications to the transport of neurotoxins. J Neurochem 2015; 135:1178-88. [DOI: 10.1111/jnc.13363] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 08/26/2015] [Accepted: 08/28/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Kuo-Chen Wu
- School of Pharmacy; College of Medicine; National Taiwan University; Taipei Taiwan
| | - Ya-Hsuan Lu
- School of Pharmacy; College of Medicine; National Taiwan University; Taipei Taiwan
| | - Yi-Hsuan Peng
- School of Pharmacy; College of Medicine; National Taiwan University; Taipei Taiwan
| | - Lih-Ching Hsu
- School of Pharmacy; College of Medicine; National Taiwan University; Taipei Taiwan
| | - Chun-Jung Lin
- School of Pharmacy; College of Medicine; National Taiwan University; Taipei Taiwan
| |
Collapse
|
42
|
Wong CT, Wais J, Crawford DA. Prenatal exposure to common environmental factors affects brain lipids and increases risk of developing autism spectrum disorders. Eur J Neurosci 2015. [DOI: 10.1111/ejn.13028] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Christine T. Wong
- School of Kinesiology and Health Science; York University; Toronto ON Canada M3J 1P3
- Neuroscience Graduate Diploma Program; York University; Toronto ON Canada M3J 1P3
| | - Joshua Wais
- School of Kinesiology and Health Science; York University; Toronto ON Canada M3J 1P3
| | - Dorota A. Crawford
- School of Kinesiology and Health Science; York University; Toronto ON Canada M3J 1P3
- Neuroscience Graduate Diploma Program; York University; Toronto ON Canada M3J 1P3
- Department of Biology; York University; Toronto ON Canada M3J 1P3
| |
Collapse
|
43
|
Jablonski M, Miller DS, Pasinelli P, Trotti D. ABC transporter-driven pharmacoresistance in Amyotrophic Lateral Sclerosis. Brain Res 2015; 1607:1-14. [PMID: 25175835 PMCID: PMC4344920 DOI: 10.1016/j.brainres.2014.08.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/19/2014] [Indexed: 12/12/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a slowly progressing neurodegenerative disease that affects motor neurons of the nervous system. Despite the identification of many potential therapeutics targeting pathogenic mechanisms in in vitro models, there has been limited progress in translating them into a successful pharmacotherapy in the animal model of ALS. Further, efforts to translate any promising results from preclinical trials to effective pharmacotherapies for patients have been unsuccessful, with the exception of riluzole, the only FDA-approved medication, which only modestly extends survival both in the animal model and in patients. Thus, it is essential to reconsider the strategies for developing ALS pharmacotherapies. Growing evidence suggests that problems identifying highly effective ALS treatments may result from an underestimated issue of drug bioavailability and disease-driven pharmacoresistance, mediated by the ATP-binding cassette (ABC) drug efflux transporters. ABC transporters are predominately localized to the lumen of endothelial cells of the blood-brain and blood-spinal cord barriers (BBB, BSCB) where they limit the entry into the central nervous system (CNS) of a wide range of neurotoxicants and xenobiotics, but also therapeutics. In ALS, expression and function of ABC transporters is increased at the BBB/BSCB and their expression has been detected on neurons and glia in the CNS parenchyma, which may further reduce therapeutic action in target cells. Understanding and accounting for the contribution of these transporters to ALS pharmacoresistance could both improve the modest effects of riluzole and set in motion a re-evaluation of previous ALS drug disappointments. In addition, identifying pathogenic mechanisms regulating ABC transporter expression and function in ALS may lead to the development of new therapeutic strategies. It is likely that novel pharmacological approaches require counteracting pharmacoresistance to improve therapeutic efficacy. This article is part of a Special Issue entitled ALS complex pathogenesis.
Collapse
Affiliation(s)
- Michael Jablonski
- Weinberg Unit for ALS Research, Farber Institute for Neurosciences, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19004, USA.
| | - David S Miller
- Laboratory of Toxicology and Pharmacology, NIH/NIEHS, Research Triangle Park, NC 27709, USA
| | - Piera Pasinelli
- Weinberg Unit for ALS Research, Farber Institute for Neurosciences, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19004, USA
| | - Davide Trotti
- Weinberg Unit for ALS Research, Farber Institute for Neurosciences, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19004, USA.
| |
Collapse
|
44
|
Targeting transporters: promoting blood-brain barrier repair in response to oxidative stress injury. Brain Res 2015; 1623:39-52. [PMID: 25796436 DOI: 10.1016/j.brainres.2015.03.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 01/06/2023]
Abstract
The blood-brain barrier (BBB) is a physical and biochemical barrier that precisely regulates the ability of endogenous and exogenous substances to accumulate within brain tissue. It possesses structural and biochemical features (i.e., tight junction and adherens junction protein complexes, influx and efflux transporters) that work in concert to control solute permeation. Oxidative stress, a critical component of several diseases including cerebral hypoxia/ischemia and peripheral inflammatory pain, can cause considerable injury to the BBB and lead to significant CNS pathology. This suggests a critical need for novel therapeutic approaches that can protect the BBB in diseases with an oxidative stress component. Recent studies have identified molecular targets (i.e., putative membrane transporters, intracellular signaling systems) that can be exploited for optimization of endothelial drug delivery or for control of transport of endogenous substrates such as the antioxidant glutathione (GSH). In particular, targeting transporters offers a unique approach to protect BBB integrity by promoting repair of cell-cell interactions at the level of the brain microvascular endothelium. This review summarizes current knowledge in this area and emphasizes those targets that present considerable opportunity for providing BBB protection and/or promoting BBB repair in the setting of oxidative stress. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
|
45
|
van Tellingen O, Yetkin-Arik B, de Gooijer M, Wesseling P, Wurdinger T, de Vries H. Overcoming the blood–brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat 2015; 19:1-12. [DOI: 10.1016/j.drup.2015.02.002] [Citation(s) in RCA: 662] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/23/2015] [Accepted: 02/25/2015] [Indexed: 12/23/2022]
|
46
|
Clinical Relevance of Multidrug-Resistance-Proteins (MRPs) for Anticancer Drug Resistance and Prognosis. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-3-319-09801-2_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Molino Y, Jabès F, Lacassagne E, Gaudin N, Khrestchatisky M. Setting-up an in vitro model of rat blood-brain barrier (BBB): a focus on BBB impermeability and receptor-mediated transport. J Vis Exp 2014:e51278. [PMID: 24998179 PMCID: PMC4208856 DOI: 10.3791/51278] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Collapse
|
48
|
Sun Z, Worden M, Wroczynskyj Y, Yathindranath V, van Lierop J, Hegmann T, Miller DW. Magnetic field enhanced convective diffusion of iron oxide nanoparticles in an osmotically disrupted cell culture model of the blood-brain barrier. Int J Nanomedicine 2014; 9:3013-26. [PMID: 25018630 PMCID: PMC4073976 DOI: 10.2147/ijn.s62260] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PURPOSE The present study examines the use of an external magnetic field in combination with the disruption of tight junctions to enhance the permeability of iron oxide nanoparticles (IONPs) across an in vitro model of the blood-brain barrier (BBB). The feasibility of such an approach, termed magnetic field enhanced convective diffusion (MFECD), along with the effect of IONP surface charge on permeability, was examined. METHODS The effect of magnetic field on the permeability of positively (aminosilane-coated [AmS]-IONPs) and negatively (N-(trimethoxysilylpropyl)ethylenediaminetriacetate [EDT]-IONPs) charged IONPs was evaluated in confluent monolayers of mouse brain endothelial cells under normal and osmotically disrupted conditions. RESULTS Neither IONP formulation was permeable across an intact cell monolayer. However, when tight junctions were disrupted using D-mannitol, flux of EDT-IONPs across the bEnd.3 monolayers was 28%, increasing to 44% when a magnetic field was present. In contrast, the permeability of AmS-IONPs after osmotic disruption was less than 5%. The cellular uptake profile of both IONPs was not altered by the presence of mannitol. CONCLUSIONS MFECD improved the permeability of EDT-IONPs through the paracellular route. The MFECD approach favors negatively charged IONPs that have low affinity for the brain endothelial cells and high colloidal stability. This suggests that MFECD may improve IONP-based drug delivery to the brain.
Collapse
Affiliation(s)
- Zhizhi Sun
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Matthew Worden
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, USA
| | - Yaroslav Wroczynskyj
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Johan van Lierop
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Torsten Hegmann
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada ; Department of Chemistry and Biochemistry, Kent State University, Kent, OH, USA ; Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada ; Chemical Physics Interdisciplinary Program, Liquid Crystal Institute, Kent State University, Kent, OH, USA
| | - Donald W Miller
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
49
|
GUIZANI TAISSIREL, GUIBERT CLOTILDE, TRIKI SAÏDA, ST-PIERRE BENOIT, DUCOS ERIC. Identification of a human ABCC10 orthologue in Catharanthus roseus reveals a U12-type intron determinant for the N-terminal domain feature. J Genet 2014; 93:21-33. [DOI: 10.1007/s12041-014-0327-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Abstract
Multidrug resistance presents one of the most important causes of cancer treatment failure. Numerous in vitro and in vivo data have made it clear that multidrug resistance is frequently caused by enhanced expression of ATP-binding cassette (ABC) transporters. ABC transporters are membrane-bound proteins involved in cellular defense mechanisms, namely, in outward transport of xenobiotics and physiological substrates. Their function thus prevents toxicity as carcinogenesis on one hand but may contribute to the resistance of tumor cells to a number of drugs including chemotherapeutics on the other. Within 48 members of the human ABC superfamily there are several multidrug resistance-associated transporters. Due to the well documented susceptibility of numerous drugs to efflux via ABC transporters it is highly desirable to assess the status of ABC transporters for individualization of treatment by their substrates. The multidrug resistance associated protein 1 (MRP1) encoded by ABCC1 gene is one of the most studied ABC transporters. Despite the fact that its structure and functions have already been explored in detail, there are significant gaps in knowledge which preclude clinical applications. Tissue-specific patterns of expression and broad genetic variability make ABCC1/MRP1 an optimal candidate for use as a marker or member of multi-marker panel for prediction of chemotherapy resistance. The purpose of this review was to summarize investigations about associations of gene and protein expression and genetic variability with prognosis and therapy outcome of major cancers. Major advances in the knowledge have been identified and future research directions are highlighted.
Collapse
Affiliation(s)
- Tereza Kunická
- Department of Toxicogenomics, National Institute of Public Health , Prague , Czech Republic
| | | |
Collapse
|