1
|
Verma AK, Sharma A, Subramaniyam N, Gandhi CR. Augmenter of liver regeneration: Mitochondrial function and steatohepatitis. J Hepatol 2022; 77:1410-1421. [PMID: 35777586 DOI: 10.1016/j.jhep.2022.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/24/2022] [Accepted: 06/09/2022] [Indexed: 12/15/2022]
Abstract
Augmenter of liver regeneration (ALR), a ubiquitous fundamental life protein, is expressed more abundantly in the liver than other organs. Expression of ALR is highest in hepatocytes, which also constitutively secrete it. ALR gene transcription is regulated by NRF2, FOXA2, SP1, HNF4α, EGR-1 and AP1/AP4. ALR's FAD-linked sulfhydryl oxidase activity is essential for protein folding in the mitochondrial intermembrane space. ALR's functions also include cytochrome c reductase and protein Fe/S maturation activities. ALR depletion from hepatocytes leads to increased oxidative stress, impaired ATP synthesis and apoptosis/necrosis. Loss of ALR's functions due to homozygous mutation causes severe mitochondrial defects and congenital progressive multiorgan failure, suggesting that individuals with one functional ALR allele might be susceptible to disorders involving compromised mitochondrial function. Genetic ablation of ALR from hepatocytes induces structural and functional mitochondrial abnormalities, dysregulation of lipid homeostasis and development of steatohepatitis. High-fat diet-fed ALR-deficient mice develop non-alcoholic steatohepatitis (NASH) and fibrosis, while hepatic and serum levels of ALR are lower than normal in human NASH and NASH-cirrhosis. Thus, ALR deficiency may be a critical predisposing factor in the pathogenesis and progression of NASH.
Collapse
Affiliation(s)
- Alok Kumar Verma
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Cincinnati VA Medical Center, Cincinnati, Ohio, USA
| | - Akanksha Sharma
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Cincinnati VA Medical Center, Cincinnati, Ohio, USA
| | - Nithyananthan Subramaniyam
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Chandrashekhar R Gandhi
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Cincinnati VA Medical Center, Cincinnati, Ohio, USA; Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA.
| |
Collapse
|
2
|
Park ES, Dezhbord M, Lee AR, Park BB, Kim KH. Dysregulation of Liver Regeneration by Hepatitis B Virus Infection: Impact on Development of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14153566. [PMID: 35892823 PMCID: PMC9329784 DOI: 10.3390/cancers14153566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
The liver is unique in its ability to regenerate in response to damage. The complex process of liver regeneration consists of multiple interactive pathways. About 2 billion people worldwide have been infected with hepatitis B virus (HBV), and HBV causes 686,000 deaths each year due to its complications. Long-term infection with HBV, which causes chronic inflammation, leads to serious liver-related diseases, including cirrhosis and hepatocellular carcinoma. HBV infection has been reported to interfere with the critical mechanisms required for liver regeneration. In this review, the studies on liver tissue characteristics and liver regeneration mechanisms are summarized. Moreover, the inhibitory mechanisms of HBV infection in liver regeneration are investigated. Finally, the association between interrupted liver regeneration and hepatocarcinogenesis, which are both triggered by HBV infection, is outlined. Understanding the fundamental and complex liver regeneration process is expected to provide significant therapeutic advantages for HBV-associated hepatocellular carcinoma.
Collapse
Affiliation(s)
- Eun-Sook Park
- Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul 05029, Korea; (E.-S.P.); (B.B.P.)
| | - Mehrangiz Dezhbord
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (M.D.); (A.R.L.)
| | - Ah Ram Lee
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (M.D.); (A.R.L.)
| | - Bo Bae Park
- Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul 05029, Korea; (E.-S.P.); (B.B.P.)
| | - Kyun-Hwan Kim
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (M.D.); (A.R.L.)
- Correspondence: ; Tel.: +82-31-299-6126
| |
Collapse
|
3
|
Augmenter of Liver Regeneration (ALR) regulates bile acid synthesis and attenuates bile acid-induced apoptosis via glycogen synthase kinase-3β (GSK-3β) inhibition. Exp Cell Res 2020; 397:112343. [PMID: 33132196 DOI: 10.1016/j.yexcr.2020.112343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 11/23/2022]
Abstract
Bile acid synthesis is restricted to hepatocytes and is rate-limited by CYP7A1 (cholesterol 7α hydroxylase). CYP7A1 expression undergoes tight regulation and is repressed after partial hepatectomy to prevent the accumulation of toxic bile acids. Augmenter of Liver Regeneration (ALR) is a hepatotrophic factor shown to support liver regeneration by augmenting cell proliferation and reducing apoptosis. Nevertheless, less is known about ALR's role in protecting hepatocytes from bile acid accumulation and bile acid-induced apoptosis. Therefore, HepG2 and Huh-7 cells were incubated with recombinant human ALR (rALR) and the expression of CYP7A1, bile acid-induced apoptosis as well as potential molecular mechanisms were analyzed. We found that rALR reduces CYP7A1 expression by increasing nuclear NFκB levels. Moreover, rALR reduced glycochenodeoxycholate (GCDC)-induced-apoptosis by decreased expression of pro-apoptotic Bax and enhanced expression of anti-apoptotic Mcl-1, which is regulated by phosphatidylinositol-3-kinase (PI3K)/Akt activation and glycogen synthase kinase-3β (GSK3β) phosphorylation. Inhibitors for PI3K/Akt (GSK690693) and GSK3β (SB415286) confirmed the specificity of rALR treatment for this pathway. In addition, rALR reduces pro-death signaling by decreasing GCDC-induced JNK phosphorylation. Taken all together, rALR might contribute to protecting hepatocytes from toxic concentrations of bile acids by down-regulating their denovo synthesis, attenuating apoptosis by activation of PI3K/Akt - GSK3β pathway and inhibition of JNK signaling. Thereby this suggests a new role of ALR in augmenting the process of liver regeneration.
Collapse
|
4
|
Weiss TS, Lupke M, Dayoub R, Geissler EK, Schlitt HJ, Melter M, Eggenhofer E. Augmenter of Liver Regeneration Reduces Ischemia Reperfusion Injury by Less Chemokine Expression, Gr-1 Infiltration and Oxidative Stress. Cells 2019; 8:cells8111421. [PMID: 31718093 PMCID: PMC6912457 DOI: 10.3390/cells8111421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatic ischemia reperfusion injury (IRI) is a major complication in liver resection and transplantation. Here, we analyzed the impact of recombinant human augmenter of liver regeneration (rALR), an anti-oxidative and anti-apoptotic protein, on the deleterious process induced by ischemia reperfusion (IR). Application of rALR reduced tissue damage (necrosis), levels of lipid peroxidation (oxidative stress) and expression of anti-oxidative genes in a mouse IRI model. Damage associated molecule pattern (DAMP) and inflammatory cytokines such as HMGB1 and TNFα, were not affected by rALR. Furthermore, we evaluated infiltration of inflammatory cells into liver tissue after IRI and found no change in CD3 or γδTCR positive cells, or expression of IL17/IFNγ by γδTCR cells. The quantity of Gr-1 positive cells (neutrophils), and therefore, myeloperoxidase activity, was lower in rALR-treated mice. Moreover, we found under hypoxic conditions attenuated ROS levels after ALR treatment in RAW264.7 cells and in primary mouse hepatocytes. Application of rALR also led to reduced expression of chemo-attractants like CXCL1, CXCL2 and CCl2 in hepatocytes. In addition, ALR expression was increased in IR mouse livers after 3 h and in biopsies from human liver transplants with minimal signs of tissue damage. Therefore, ALR attenuates IRI through reduced neutrophil tissue infiltration mediated by lower expression of key hepatic chemokines and reduction of ROS generation.
Collapse
Affiliation(s)
- Thomas S. Weiss
- University Children Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany; (M.L.); (R.D.); (M.M.)
- Center for Liver Cell Research, University Hospital Regensburg, 93053 Regensburg, Germany
- Correspondence: ; Tel.: +49-9419442195
| | - Madeleine Lupke
- University Children Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany; (M.L.); (R.D.); (M.M.)
| | - Rania Dayoub
- University Children Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany; (M.L.); (R.D.); (M.M.)
| | - Edward K. Geissler
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (E.K.G.); (H.J.S.); (E.E.)
| | - Hans J. Schlitt
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (E.K.G.); (H.J.S.); (E.E.)
| | - Michael Melter
- University Children Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany; (M.L.); (R.D.); (M.M.)
| | - Elke Eggenhofer
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (E.K.G.); (H.J.S.); (E.E.)
| |
Collapse
|
5
|
Han W, Ding M, Liu S, Chen Y, Duan Z. Evaluation of 3D re-cellularized tissue engineering: a drug-induced hepatotoxicity model for hepatoprotectant research. Toxicol Mech Methods 2019; 29:654-664. [PMID: 31345115 DOI: 10.1080/15376516.2019.1646371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/14/2019] [Accepted: 07/14/2019] [Indexed: 12/11/2022]
Abstract
Background: Application of hepatoprotectants, such as drugs or cytokines, can reduce drug-induced hepatotoxicity (DIH). Due to species-specific differences and abnormal cell polarity and drug-metabolizing enzymes (DMEs), in vivo animal models and in vitro 2D plastic dishes are not good DIH models. The aim of this study was to evaluate whether 3D re-cellularized liver is a sensitive, accurate and efficient DIH model for evaluation of hepatoprotectants. Methods: 2D plastic dishes and 3D decellular liver scaffolds were perfused with HepG2 cells or augmenter of liver regeneration (ALR)-HepG2 cells. These two cell lines were exposed to 4 μM troglitazone (TRO) or 20 μM diclofenac sodium (DIC) on day 8. DME-related genes were analyzed by quantitative reverse transcription polymerase chain reaction; morphological images were revealed by immunohistochemistry, scanning electron microscopy, transmission electron microscopy, and hematoxylin and eosin staining. Results: DME activity and cell polarity were retained and lower doses of TRO and DIC led to DIH in 3D re-cellularized liver. This DIH model reflected the protective effects and mechanism of ALR, which is one of the hepatoprotectants. ALR reduced mitochondrial damage, decreased transaminase level, and alleviated inflammation in TRO-DIH and DIC-DIH. Our re-cellularized liver lobe also showed the effect of ALR in suppressing expression of DMEs. Conclusions: Drug-induced 3D re-cellularized tissue engineering is a sensitive, accurate, and efficient DIH model for evaluation of hepatoprotectants.
Collapse
Affiliation(s)
- Weijia Han
- Difficult and Complicated Liver Diseases and Artificial Liver Center, Beijing Youan Hospital, Capital Medical University , Beijing , China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Capital Medical University , Beijing , China
| | - Mei Ding
- Difficult and Complicated Liver Diseases and Artificial Liver Center, Beijing Youan Hospital, Capital Medical University , Beijing , China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Capital Medical University , Beijing , China
| | - Shuang Liu
- Difficult and Complicated Liver Diseases and Artificial Liver Center, Beijing Youan Hospital, Capital Medical University , Beijing , China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Capital Medical University , Beijing , China
| | - Yu Chen
- Difficult and Complicated Liver Diseases and Artificial Liver Center, Beijing Youan Hospital, Capital Medical University , Beijing , China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Capital Medical University , Beijing , China
| | - Zhongping Duan
- Difficult and Complicated Liver Diseases and Artificial Liver Center, Beijing Youan Hospital, Capital Medical University , Beijing , China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Capital Medical University , Beijing , China
| |
Collapse
|
6
|
Ibrahim S, Dayoub R, Krautbauer S, Liebisch G, Wege AK, Melter M, Weiss TS. Bile acid-induced apoptosis and bile acid synthesis are reduced by over-expression of Augmenter of Liver Regeneration (ALR) in a STAT3-dependent mechanism. Exp Cell Res 2019; 374:189-197. [DOI: 10.1016/j.yexcr.2018.11.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/31/2018] [Accepted: 11/25/2018] [Indexed: 11/24/2022]
|
7
|
Augmenter of liver regeneration: Essential for growth and beyond. Cytokine Growth Factor Rev 2018; 45:65-80. [PMID: 30579845 DOI: 10.1016/j.cytogfr.2018.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022]
Abstract
Liver regeneration is a well-orchestrated process that is triggered by tissue loss due to trauma or surgical resection and by hepatocellular death induced by toxins or viral infections. Due to the central role of the liver for body homeostasis, intensive research was conducted to identify factors that might contribute to hepatic growth and regeneration. Using a model of partial hepatectomy several factors including cytokines and growth factors that regulate this process were discovered. Among them, a protein was identified to specifically support liver regeneration and therefore was named ALR (Augmenter of Liver Regeneration). ALR protein is encoded by GFER (growth factor erv1-like) gene and can be regulated by various stimuli. ALR is expressed in different tissues in three isoforms which are associated with multiple functions: The long forms of ALR were found in the inner-mitochondrial space (IMS) and the cytosol. Mitochondrial ALR (23 kDa) was shown to cooperate with Mia40 to insure adequate protein folding during import into IMS. On the other hand short form ALR, located mainly in the cytosol, was attributed with anti-apoptotic and anti-oxidative properties as well as its inflammation and metabolism modulating effects. Although a considerable amount of work has been devoted to summarizing the knowledge on ALR, an investigation of ALR expression in different organs (location, subcellular localization) as well as delineation between the isoforms and function of ALR is still missing. This review provides a comprehensive evaluation of ALR structure and expression of different ALR isoforms. Furthermore, we highlight the functional role of endogenously expressed and exogenously applied ALR, as well as an analysis of the clinical importance of ALR, with emphasis on liver disease and in vivo models, as well as the consequences of mutations in the GFER gene.
Collapse
|
8
|
Dayoub R, Buerger L, Ibrahim S, Melter M, Weiss TS. Augmenter of liver regeneration (ALR) exhibits a dual signaling impact on hepatic acute-phase response. Exp Mol Pathol 2017; 102:428-433. [DOI: 10.1016/j.yexmp.2017.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 12/17/2022]
|
9
|
Zhang X, Lu J, He B, Tang L, Liu X, Zhu D, Cao H, Wang Y, Li L. A tryptophan derivative, ITE, enhances liver cell metabolic functions in vitro. Int J Mol Med 2017; 39:101-112. [PMID: 27959388 PMCID: PMC5179183 DOI: 10.3892/ijmm.2016.2825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/05/2016] [Indexed: 01/01/2023] Open
Abstract
Cell encapsulation provides a three-dimensional support by incorporating isolated cells into microcapsules with the goal of simultaneously maintaining cell survival and function, as well as providing active transport for a bioreactor in vitro similarly to that observed in vivo. However, the biotra-nsformation and metabolic functions of the encapsulated cells are not satisfactory for clinical applications. For this purpose, in this study, hepatoma-derived Huh7 cells/C3A cells were treated with 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), an endogenous non-toxic ligand for aryl hydrocarbon receptor, in monolayer cultures and on microspheres. The mRNA and protein levels, as well as the metabolic activities of drug metabolizing enzymes, albumin secretion and urea synthesis were determined. When the Huh7 and C3A cells cultured in a monolayer on two‑dimensional surfaces, ITE enhanced the protein levels and the metabolic activities of the major cytochrome P450 (CYP450) enzymes, CYP1A1, CYP1A2, CYP3A4 and CYP1B1, and slightly increased albumin secretion and urea synthesis. Moreover, when cultured on microspheres, ITE also substantially increased the protein levels and metabolic activities of CYP1A1, CYP1A2, CYP3A4 and CYP1B1 in both liver cell lines. On the whole, our findings indicate that ITE enhances the enzymatic activities of major CYP450 enzymes and the metabolic functions of liver cells cultured in monolayer or on microspheres, indicating that it may be utilized to improve the functions of hepatocytes. Thus, it may be used in the future for the treatment of liver diseases.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University
| | - Bin He
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang 310003, P.R. China
| | - Lingling Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University
| | - Xiaoli Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University
| | - Yingjie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University
| |
Collapse
|
10
|
Wu X, Liu G, Mu M, Peng Y, Li X, Deng L, Zhang Z, Chen M, You S, Kong X. Augmenter of Liver Regeneration Gene Therapy Using a Novel Minicircle DNA Vector Alleviates Liver Fibrosis in Rats. Hum Gene Ther 2016; 27:880-891. [PMID: 27136973 DOI: 10.1089/hum.2016.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Xin Wu
- Institute of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Guangze Liu
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Mao Mu
- Institute of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Yuting Peng
- Institute of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Xiumei Li
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Lisi Deng
- The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Zhenwei Zhang
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Meijuan Chen
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Song You
- Institute of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiangping Kong
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| |
Collapse
|
11
|
Abstract
ALR is a mystic protein. It has a so called "long" 22 kDa and a "short" 15 kDa forms. It has been described after partial hepatectomy and it has just been considered as a key protein of liver regeneration. At the beginning of the 21st century it has been revealed that the "long" form is localized in the mitochondrial intermembrane space and it is an element of the mitochondrial protein import and disulphide relay system. Several proteins of the substrates of the mitochondrial disulphide relay system are necessary for the proper function of the mitochondria, thus any mutation of the ALR gene leads to mitochondrial diseases. The "short" form of ALR functions as a secreted extracellular growth factor and it promotes the protection, regeneration and proliferation of hepatocytes. The results gained on the recently generated conditional ALR mutant mice suggest that ALR can play an important role in the pathogenesis of alcoholic and non-alcoholic steatosis. Since the serum level of ALR is modified in several liver diseases it can be a promising marker molecule in laboratory diagnostics.
Collapse
Affiliation(s)
- Tibor Balogh
- Budapesti Műszaki és Gazdaságtudományi Egyetem, Vegyészmérnöki és Biomérnöki Kar Alkalmazott Biotechnológia és Élelmiszer-tudományi Tanszék, Biokémiai és Molekuláris Biológiai Laboratórium Budapest
| | - András Szarka
- Budapesti Műszaki és Gazdaságtudományi Egyetem, Vegyészmérnöki és Biomérnöki Kar Alkalmazott Biotechnológia és Élelmiszer-tudományi Tanszék, Biokémiai és Molekuláris Biológiai Laboratórium Budapest Semmelweis Egyetem, Általános Orvostudományi Kar Orvosi Vegytani Molekuláris Biológiai és Patobiokémiai Intézet Budapest Pf. 260 1444
| |
Collapse
|
12
|
Yang H, Wang H. Signaling control of the constitutive androstane receptor (CAR). Protein Cell 2014; 5:113-23. [PMID: 24474196 PMCID: PMC3956974 DOI: 10.1007/s13238-013-0013-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 12/07/2013] [Indexed: 01/30/2023] Open
Abstract
The constitutive androstane receptor (CAR, NR1I3) plays a crucial role in the regulation of drug metabolism, energy homeostasis, and cancer development through modulating the transcription of its numerous target genes. Different from prototypical nuclear receptors, CAR can be activated by either direct ligand binding or ligand-independent (indirect) mechanisms both initiated with nuclear translocation of CAR from the cytoplasm. In comparison to the well-defined ligand-based activation, indirect activation of CAR appears to be exclusively involved in the nuclear translocation through mechanisms yet to be fully understood. Accumulating evidence reveals that without activation, CAR forms a protein complex in the cytoplasm where it can be functionally affected by multiple signaling pathways. In this review, we discuss recent progresses in our understanding of the signaling regulation of CAR nuclear accumulation and activation. We expect that this review will also provide greater insight into the similarity and difference between the mechanisms of direct vs. indirect human CAR activation.
Collapse
Affiliation(s)
- Hui Yang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD, 21201, USA
| | | |
Collapse
|
13
|
Vodovotz Y, Prelich J, Lagoa C, Barclay D, Zamora R, Murase N, Gandhi CR. Augmenter of liver regeneration (ALR) is a novel biomarker of hepatocellular stress/inflammation: in vitro, in vivo and in silico studies. Mol Med 2013; 18:1421-9. [PMID: 23073658 PMCID: PMC3563711 DOI: 10.2119/molmed.2012.00183] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 10/09/2012] [Indexed: 12/15/2022] Open
Abstract
The liver is a central organ involved in inflammatory processes, including the elaboration of acute-phase proteins. Augmenter of liver regeneration (ALR) protein, expressed and secreted by hepatocytes, promotes liver regeneration and maintains viability of hepatocytes. ALR also stimulates secretion of inflammatory cytokines (tumor necrosis factor [TNF]-α and interleukin [IL]-6) and nitric oxide from Kupffer cells. We hypothesized that ALR may be involved in modulating inflammation induced by various stimuli. We found that hepatic ALR levels are elevated at 24 h, before or about the same time as an increase in the mRNA expression of TNF-α and IL-6, after portacaval shunt surgery in rats. Serum ALR also increased, but significantly only on d 4 when pathological changes in the liver become apparent. In rats, serum ALR was elevated after intraperitoneal administration of lipopolysaccharide alone and in a model of gram-negative sepsis. Serum ALR increased before alanine aminotransferase (ALT) in endotoxemia and in the same general time frame as TNF-α and IL-6 in the bacterial sepsis model. Furthermore, mathematical prediction of tissue damage correlated strongly with alterations in serum ALR in a mouse model of hemorrhagic shock. In vitro, monomethyl sulfonate, TNF-α, actinomycin D and lipopolysaccharide all caused increased release of ALR from rat hepatocytes, which preceded the loss of cell viability and/or inhibition of DNA synthesis. ALR may thus serve as a potential diagnostic marker of hepatocellular stress and/or acute inflammatory conditions.
Collapse
Affiliation(s)
- Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, United States of America
| | - John Prelich
- VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States of America
| | - Claudio Lagoa
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Derek Barclay
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Noriko Murase
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Chandrashekhar R Gandhi
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
14
|
Gandhi CR. Augmenter of liver regeneration. FIBROGENESIS & TISSUE REPAIR 2012; 5:10. [PMID: 22776437 PMCID: PMC3519801 DOI: 10.1186/1755-1536-5-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/26/2012] [Indexed: 11/10/2022]
Abstract
'Augmenter of liver regeneration' (ALR) (also known as hepatic stimulatory substance or hepatopoietin) was originally found to promote growth of hepatocytes in the regenerating or injured liver. ALR is expressed ubiquitously in all organs, and exclusively in hepatocytes in the liver. ALR, a survival factor for hepatocytes, exhibits significant homology with ERV1 (essential for respiration and viability) protein that is essential for the survival of the yeast, Saccharomyces cerevisiae. ALR comprises 198 to 205 amino acids (approximately 22 kDa), but is post-translationally modified to three high molecular weight species (approximately 38 to 42 kDa) found in hepatocytes. ALR is present in mitochondria, cytosol, endoplasmic reticulum, and nucleus. Mitochondrial ALR may be involved in oxidative phosphorylation, but also functions as sulfhydryl oxidase and cytochrome c reductase, and causes Fe/S maturation of proteins. ALR, secreted by hepatocytes, stimulates synthesis of TNF-α, IL-6, and nitric oxide in Kupffer cells via a G-protein coupled receptor. While the 22 kDa rat recombinant ALR does not stimulate DNA synthesis in hepatocytes, the short form (15 kDa) of human recombinant ALR was reported to be equipotent as or even stronger than TGF-α or HGF as a mitogen for hepatocytes. Altered serum ALR levels in certain pathological conditions suggest that it may be a diagnostic marker for liver injury/disease. Although ALR appears to have multiple functions, the knowledge of its role in various organs, including the liver, is extremely inadequate, and it is not known whether different ALR species have distinct functions. Future research should provide better understanding of the expression and functions of this enigmatic molecule.
Collapse
|
15
|
Dayoub R, Wagner H, Bataille F, Stöltzing O, Spruss T, Buechler C, Schlitt HJ, Weiss TS. Liver regeneration associated protein (ALR) exhibits antimetastatic potential in hepatocellular carcinoma. Mol Med 2010; 17:221-8. [PMID: 21152698 DOI: 10.2119/molmed.2010.00117] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 12/02/2010] [Indexed: 01/17/2023] Open
Abstract
Augmenter of liver regeneration (ALR), which is critically important in liver regeneration and hepatocyte proliferation, is highly expressed in cirrhotic livers and hepatocellular carcinomas (HCC). In the current study, the functional role of ALR in hepatocancerogenesis was analyzed in more detail. HepG2 cells, in which the cytosolic 15 kDa ALR isoform was reexpressed stably, (HepG2-ALR) were used in migration and invasion assays using modified Boyden chambers. Epithelial-mesenchymal transition (EMT) markers were determined in HepG2-ALR cells in vitro and in HepG2-ALR tumors grown in nude mice. ALR protein was quantified in HCC and nontumorous tissues by immunohistochemistry. HepG2-ALR, compared with HepG2 cells, demonstrated reduced cell motility and increased expression of the epithelial cell markers E-cadherin and Zona occludens-1 (ZO-1), whereas SNAIL, a negative regulator of E-cadherin, was diminished. Matrix metalloproteinase MMP1 and MMP3 mRNA expression and activity were reduced. HepG2-ALR cell-derived subcutaneously grown tumors displayed fewer necrotic areas, more epithelial-like cell growth and fewer polymorphisms and atypical mitotic figures than tumors derived from HepG2 cells. Analysis of tumor tissues of 53 patients with HCC demonstrated an inverse correlation of ALR protein with histological angioinvasion and grading. The 15 kDa ALR isoform was found mainly in HCC tissues without histological angioinvasion 0. In summary the present data indicate that cytosolic ALR reduces hepatoma cell migration, augments epithelial growth and, therefore, may act as an antimetastatic and EMT reversing protein.
Collapse
Affiliation(s)
- Rania Dayoub
- Center for Liver Cell Research, University Medical Center Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Diegelmann J, Beigel F, Zitzmann K, Kaul A, Göke B, Auernhammer CJ, Bartenschlager R, Diepolder HM, Brand S. Comparative analysis of the lambda-interferons IL-28A and IL-29 regarding their transcriptome and their antiviral properties against hepatitis C virus. PLoS One 2010; 5:e15200. [PMID: 21170333 PMCID: PMC2999541 DOI: 10.1371/journal.pone.0015200] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 10/31/2010] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Specific differences in signaling and antiviral properties between the different Lambda-interferons, a novel group of interferons composed of IL-28A, IL-28B and IL-29, are currently unknown. This is the first study comparatively investigating the transcriptome and the antiviral properties of the Lambda-interferons IL-28A and IL-29. METHODOLOGY/PRINCIPAL FINDINGS Expression studies were performed by microarray analysis, quantitative PCR (qPCR), reporter gene assays and immunoluminometric assays. Signaling was analyzed by Western blot. HCV replication was measured in Huh-7 cells expressing subgenomic HCV replicon. All hepatic cell lines investigated as well as primary hepatocytes expressed both IFN-λ receptor subunits IL-10R2 and IFN-λR1. Both, IL-28A and IL-29 activated STAT1 signaling. As revealed by microarray analysis, similar genes were induced by both cytokines in Huh-7 cells (IL-28A: 117 genes; IL-29: 111 genes), many of them playing a role in antiviral immunity. However, only IL-28A was able to significantly down-regulate gene expression (n = 272 down-regulated genes). Both cytokines significantly decreased HCV replication in Huh-7 cells. In comparison to liver biopsies of patients with non-viral liver disease, liver biopsies of patients with HCV showed significantly increased mRNA expression of IL-28A and IL-29. Moreover, IL-28A serum protein levels were elevated in HCV patients. In a murine model of viral hepatitis, IL-28 expression was significantly increased. CONCLUSIONS/SIGNIFICANCE IL-28A and IL-29 are up-regulated in HCV patients and are similarly effective in inducing antiviral genes and inhibiting HCV replication. In contrast to IL-29, IL-28A is a potent gene repressor. Both IFN-λs may have therapeutic potential in the treatment of chronic HCV.
Collapse
Affiliation(s)
- Julia Diegelmann
- Department of Medicine II, University Hospital Munich-Grosshadern, University of Munich, Munich, Germany
| | - Florian Beigel
- Department of Medicine II, University Hospital Munich-Grosshadern, University of Munich, Munich, Germany
| | - Kathrin Zitzmann
- Department of Medicine II, University Hospital Munich-Grosshadern, University of Munich, Munich, Germany
| | - Artur Kaul
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Burkhard Göke
- Department of Medicine II, University Hospital Munich-Grosshadern, University of Munich, Munich, Germany
| | - Christoph J. Auernhammer
- Department of Medicine II, University Hospital Munich-Grosshadern, University of Munich, Munich, Germany
| | - Ralf Bartenschlager
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Helmut M. Diepolder
- Department of Medicine II, University Hospital Munich-Grosshadern, University of Munich, Munich, Germany
| | - Stephan Brand
- Department of Medicine II, University Hospital Munich-Grosshadern, University of Munich, Munich, Germany
| |
Collapse
|
17
|
Schaedler S, Krause J, Himmelsbach K, Carvajal-Yepes M, Lieder F, Klingel K, Nassal M, Weiss TS, Werner S, Hildt E. Hepatitis B virus induces expression of antioxidant response element-regulated genes by activation of Nrf2. J Biol Chem 2010; 285:41074-86. [PMID: 20956535 DOI: 10.1074/jbc.m110.145862] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The expression of a variety of cytoprotective genes is regulated by short cis-acting elements in their promoters, called antioxidant response elements (AREs). A central regulator of ARE-mediated gene expression is the NF-E2-related factor 2 (Nrf2). Human hepatitis B virus (HBV) induces a strong activation of Nrf2/ARE-regulated genes in vitro and in vivo. This is triggered by the HBV-regulatory proteins (HBx and LHBs) via c-Raf and MEK. The Nrf2/ARE-mediated induction of cytoprotective genes by HBV results in a better protection of HBV-positive cells against oxidative damage as compared with control cells. Furthermore, there is a significantly increased expression of the Nrf2/ARE-regulated proteasomal subunit PSMB5 in HBV-positive cells that is associated with a decreased level of the immunoproteasome subunit PSMB5i. In accordance with this finding, HBV-positive cells display a higher constitutive proteasome activity and a decreased activity of the immunoproteasome as compared with control cells even after interferon α/γ treatment. The HBV-dependent induction of Nrf2/ARE-regulated genes might ensure survival of the infected cell, shape the immune response to HBV, and thereby promote establishment of the infection.
Collapse
Affiliation(s)
- Stephanie Schaedler
- Institute of Infection Medicine, Molecular Medical Virology, University of Kiel, D-24105 Kiel, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pondugula SR, Tong AA, Wu J, Cui J, Chen T. Protein phosphatase 2Cbetal regulates human pregnane X receptor-mediated CYP3A4 gene expression in HepG2 liver carcinoma cells. Drug Metab Dispos 2010; 38:1411-6. [PMID: 20538721 PMCID: PMC2939471 DOI: 10.1124/dmd.110.032128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 06/09/2010] [Indexed: 01/18/2023] Open
Abstract
The human pregnane X receptor (hPXR) regulates the expression of CYP3A4, which plays a vital role in hepatic drug metabolism and has considerably reduced expression levels in proliferating hepatocytes. We have recently shown that cyclin-dependent kinase 2 (CDK2) negatively regulates hPXR-mediated CYP3A4 gene expression. CDK2 can be dephosphorylated and inactivated by protein phosphatase type 2C beta isoform long (PP2Cbetal), a unique phosphatase that was originally cloned from human liver. In this study, we sought to determine whether PP2Cbetal is involved in regulating hPXR's transactivation activity and whether PP2Cbetal affects CDK2 regulation of this activity in HepG2 liver carcinoma cells. In transactivation assays, transiently coexpressed PP2Cbetal significantly enhanced the hPXR-mediated CYP3A4 promoter activity and decreased the inhibitory effect of CDK2 on hPXR transactivation activity. In addition, shRNA-mediated down-regulation of endogenous PP2Cbetal promoted cell proliferation, inhibited the interaction of hPXR with steroid receptor coactivator-1, and attenuated the hPXR transcriptional activity. The levels of PP2Cbetal did not affect hPXR expression. Our results show for the first time that PP2Cbetal is essential for hPXR activity and can positively regulate this activity by counteracting the inhibitory effect of CDK2. Our results implicate a novel and important role for PP2Cbetal in regulating hPXR activity and CYP3A4 expression by inhibiting or desensitizing signaling pathways that negatively regulate the function of pregnane X receptor in liver cells and are consistent with the notion that both the activity of hPXR and the expression of CYP3A4 are regulated in a cell cycle-dependent and cell proliferation-dependent manner.
Collapse
Affiliation(s)
- Satyanarayana R Pondugula
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | | | | | | | |
Collapse
|
19
|
Dayoub R, Groitl P, Dobner T, Bosserhoff AK, Schlitt HJ, Weiss TS. Foxa2 (HNF-3beta) regulates expression of hepatotrophic factor ALR in liver cells. Biochem Biophys Res Commun 2010; 395:465-70. [PMID: 20382118 DOI: 10.1016/j.bbrc.2010.04.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 04/03/2010] [Indexed: 12/11/2022]
Abstract
Liver regeneration is a multistep and well-orchestrated process which is initiated by injuries such as tissue loss, infectious or toxic insults. Augmenter of liver regeneration (ALR) is a hepatotrophic growth factor which has been shown to stimulate hepatic regeneration after partial hepatectomy and therefore seems to be regulated during the regenerative process in the liver. Our aim was to analyze how ALR is regulated in hepatic tissues and which transcription factors might regulate its tissue-specific expression. Promoter studies of ALR (-733/+527 bp) revealed potential regulatory elements for various transcription factors like Foxa2, IL-6 RE-BP and C/EBPbeta. Analysis of the promoter activity by performing luciferase assays revealed that co-transfection with Foxa2 significantly induced the activity of ALR promoter in HepG2 cells. EMSA and Supershift analysis using anti-Foxa2 antibody confirmed the specific binding of Foxa2 to ALR promoter and this binding was inducible when the cells were simultaneously stimulated with IL-6. The increased binding after activation with IL-6 and/or Foxa2 was confirmed by elevated ALR protein levels using Western blot technique. In addition, we could not detect any binding of C/EBPbeta and IL-6 RE-BP to the promoter of ALR. In conclusion, these results indicate that ALR is regulated by Foxa2, and this regulation may be amplified by IL-6.
Collapse
Affiliation(s)
- Rania Dayoub
- Center for Liver Cell Research, University Medical Center Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Augmenter of liver regeneration causes different kinetics of ERK1/2 and Akt/PKB phosphorylation than EGF and induces hepatocyte proliferation in an EGF receptor independent and liver specific manner. Biochem Biophys Res Commun 2010; 394:915-20. [PMID: 20230786 DOI: 10.1016/j.bbrc.2010.03.074] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 01/20/2023]
|
21
|
Wu Y, Zhang J, Dong L, Li W, Jia J, An W. Hepatic stimulator substance mitigates hepatic cell injury through suppression of the mitochondrial permeability transition. FEBS J 2010; 277:1297-309. [DOI: 10.1111/j.1742-4658.2010.07560.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Sugatani J, Osabe M, Kurosawa M, Kitamura N, Ikari A, Miwa M. Induction of UGT1A1 and CYP2B6 by an antimitogenic factor in HepG2 cells is mediated through suppression of cyclin-dependent kinase 2 activity: cell cycle-dependent expression. Drug Metab Dispos 2010; 38:177-86. [PMID: 19797611 DOI: 10.1124/dmd.109.029785] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hepatocyte growth factor (HGF), an antimitogenic factor for HepG2 cells, increased mRNA and protein levels of UGT1A1 and CYP2B6, as well as the endogenous cyclin-dependent kinase (CDK) inhibitors p16, p21, and p27 in HepG2 cells but not in HuH6, Caco2, or MCF7 cells. Treatment with 1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene (U0126) (an extracellular signal-regulated kinase inhibitor) suppressed the HGF-induced expression of UGT1A1 and CYP2B6, as well as p16, p21, and p27 in HepG2 cells. The CDK inhibitor roscovitine also enhanced the expression of UGT1A1, CYP2B6, and CYP3A4. Transfection of anti-CDK2 siRNA led to elevated levels of UGT1A1, CYP2B6, and CYP3A4 in HepG2 and SW480 cells, whereas anti-CDK4 small interfering RNA (siRNA) did not significantly enhance the expression of these enzymes. In fact, CDK2 activity was decreased in HGF-treated HepG2 cells. In cells arrested in S phase by a thymidine block and then released into a synchronous cell cycle, there was a clear dissociation among the activation of CDK2 and the expression of UGT1A1, CYP2B6, and CYP3A4. Furthermore, the induction of CYP3A4 but not UGT1A1 or CYP2B6 mRNA expression by roscovitine was repressed in pregnane X receptor (PXR) siRNA-transfected HepG2 cells. Transfection with constitutive androstane receptor siRNA or PXR siRNA in HepG2 cells did not repress the HGF-stimulated expression of UGT1A1 mRNA. Taken together, our results show that the expression of UGT1A1 and CYP2B6 is negatively regulated through a CDK2 signaling pathway linked to cell cycle progression in HepG2 and SW480 cells, the mechanism of which may differ from that of CYP3A4 expression through PXR phosphorylated by CDK2.
Collapse
Affiliation(s)
- Junko Sugatani
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Hackl C, Mori A, Moser C, Lang SA, Dayoub R, Weiss TS, Schlitt HJ, Geissler EK, Hellerbrand C, Stoeltzing O. Effect of heat-shock protein-90 (HSP90) inhibition on human hepatocytes and on liver regeneration in experimental models. Surgery 2009; 147:704-12. [PMID: 20015528 DOI: 10.1016/j.surg.2009.10.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 10/22/2009] [Indexed: 01/31/2023]
Abstract
BACKGROUND Targeting heat shock protein 90 (HSP90) has gained great interest for cancer therapy. However, in view of novel multimodality therapy approaches for treating hepatic metastases, concerns have raised regarding the impact of targeted therapies on liver regeneration and repair. In this study, we investigated the impact of HSP90 inhibition on liver regeneration in murine models. METHODS Effects of HSP90 inhibition on the activation of signaling intermediates, expression of vascular endothelial growth factor (VEGF), and hepatocyte growth factor (HGF) were investigated in primary human hepatocytes (PHHs) in vitro. Effects of HSP90 inhibition on liver regeneration and repair were determined in a murine hepatectomy model and in a model with acute carbon tetrachloride (CCl(4))-induced liver damage. RESULTS Inhibition of HSP90 effectively diminished the constitutive phosphorylation of Akt, Erk, and STAT3 in PHHs. Conversely, inhibition of HSP90 significantly increased the expression of both VEGF and HGF mRNA, and induced HSP70 protein in PHH cultures in vitro. In vivo, HSP90 inhibition significantly upregulated constitutive VEGF mRNA and HSP70 in murine livers and did not impair liver re-growth after 70% hepatectomy. Furthermore, BrdUrd-staining and histological quantification of necrotic areas revealed that HSP90 inhibition did not impair liver regeneration following partial hepatectomy, or liver repair that occurs after toxic liver injury with CCl(4). CONCLUSION Targeting HSP90 does not negatively affect the multifactorial process of liver regeneration and repair in vivo. Hence, the use of inhibitors to HSP90 appears to be a valid option for neoadjuvant therapy of liver metastases when subsequent surgery is intended.
Collapse
Affiliation(s)
- Christina Hackl
- Department of Surgery, University of Regensburg Medical Center, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Pondugula SR, Dong H, Chen T. Phosphorylation and protein-protein interactions in PXR-mediated CYP3A repression. Expert Opin Drug Metab Toxicol 2009; 5:861-73. [PMID: 19505191 PMCID: PMC2719259 DOI: 10.1517/17425250903012360] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The expression of drug-metabolizing enzymes CYPs is controlled by pregnane X receptor (PXR), and, therefore, understanding how PXR modulates CYP expression is important to minimize adverse drug interactions, one type of preventable adverse drug reaction. OBJECTIVE We review the mechanisms of PXR-mediated repression of CYP expression. METHODS We discuss the clinical implications of CYP repression and the role of signal cross-talks, including protein-protein interactions and phosphorylation of PXR and coregulators, in inhibiting PXR and repressing CYP expression. RESULTS/CONCLUSION Kinases such as cyclin-dependent kinase 2, protein kinase A, PKC and 70 kDa form of ribosomal protein S6 kinase repress CYP expression by phosphorylating and inhibiting PXR. Growth factor signaling represses CYP expression by phosphorylating and inhibiting forkhead in rhabdomyosarcoma, a co-activator of PXR. During inflammation, NF-kappaB represses both PXR and CYP expression through protein-protein interactions with the PXR pathway.
Collapse
Affiliation(s)
- Satyanarayana R Pondugula
- St. Jude Children's Research Hospital, Department of Chemical Biology and Therapeutics, 262 Danny Thomas Place, Mail Stop 1000, Memphis, TN 38105, USA
| | | | | |
Collapse
|
25
|
di Masi A, De Marinis E, Ascenzi P, Marino M. Nuclear receptors CAR and PXR: Molecular, functional, and biomedical aspects. Mol Aspects Med 2009; 30:297-343. [PMID: 19427329 DOI: 10.1016/j.mam.2009.04.002] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 04/28/2009] [Indexed: 12/31/2022]
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors sharing a common evolutionary history and having similar sequence features at the protein level. Selective ligand(s) for some NRs is not known, therefore these NRs have been named "orphan receptors". Whenever ligands have been recognized for any of the orphan receptor, it has been categorized and grouped as "adopted" orphan receptor. This group includes the constitutive androstane receptor (CAR) and the pregnane X receptor (PXR). They function as sensors of toxic byproducts derived from endogenous metabolites and of exogenous chemicals, in order to enhance their elimination. This unique function of CAR and PXR sets them apart from the steroid hormone receptors. The broad response profile has established that CAR and PXR are xenobiotic sensors that coordinately regulate xenobiotic clearance in the liver and intestine via induction of genes involved in drug and xenobiotic metabolism. In the past few years, research has revealed new and mostly unsuspected roles for CAR and PXR in modulating hormone, lipid, and energy homeostasis as well as cancer and liver steatosis. The purpose of this review is to highlight the structural and molecular bases of CAR and PXR impact on human health, providing information on mechanisms through which diet, chemical exposure, and environment ultimately impact health and disease.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Biology, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | | | | | | |
Collapse
|
26
|
Abstract
The molecular genetics of nicotine metabolism involves multiple polymorphic catalytic enzymes. Variation in metabolic pathways results in nicotine disposition kinetics that differ between individuals and ethnic groups. Twin studies indicate that a large part of this variance is genetic in origin, although environmental influences also contribute. The primary aim of this chapter is to review the current knowledge regarding the genetic variability in the enzymes that metabolize nicotine in humans. The focus is on describing the genetic polymorphisms that exist in cytochromes P450 (CYPs), aldehyde oxidase 1 (AOX1), UDP-glucuronosyltransferases (UGTs), and flavin-containing monooxygenase 3 (FMO3). Genetic studies have demonstrated that polymorphisms in CYP2A6, the primary enzyme responsible for nicotine breakdown, make a sizable contribution to the wide range of nicotine metabolic capacity observed in humans. Thus, special attention will be given to CYP2A6, because slower nicotine metabolism requires less frequent self-administration, and accordingly influences smoking behaviors. In addition, the molecular genetics of nicotine metabolism in nonhuman primates, mice, and rats will be reviewed briefly.
Collapse
Affiliation(s)
- Jill C Mwenifumbo
- Centre for Addiction & Mental Health and Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
27
|
Lin W, Wu J, Dong H, Bouck D, Zeng FY, Chen T. Cyclin-dependent kinase 2 negatively regulates human pregnane X receptor-mediated CYP3A4 gene expression in HepG2 liver carcinoma cells. J Biol Chem 2008; 283:30650-7. [PMID: 18784074 DOI: 10.1074/jbc.m806132200] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The human pregnane X receptor (hPXR) regulates the expression of critical drug metabolism enzymes. One of such enzymes, cytochrome P450 3A4 (CYP3A4), plays critical roles in drug metabolism in hepatocytes that are either quiescent or passing through the cell cycle. It has been well established that the expression of P450, such as CYP3A4, is markedly reduced during liver development or regeneration. Numerous studies have implicated cellular signaling pathways in modulating the functions of nuclear receptors, including hPXR. Here we report that inhibition of cyclin-dependent kinases (Cdks) by kenpaullone and roscovitine (two small molecule inhibitors of Cdks that we identified in a screen for compounds that activate hPXR) leads to activation of hPXR-mediated CYP3A4 gene expression in HepG2 human liver carcinoma cells. Consistent with this finding, activation of Cdk2 attenuates the activation of CYP3A4 gene expression. In vitro kinase assays revealed that Cdk2 directly phosphorylates hPXR. A phosphomimetic mutation of a putative Cdk phosphorylation site, Ser(350), significantly impairs the function of hPXR, whereas a phosphorylation-deficient mutation confers resistance to Cdk2. Using HepG2 that has been stably transfected with hPXR and the CYP3A4-luciferase reporter, enriched in different phases of the cell cycle, we found that hPXR-mediated CYP3A4 expression is greatly reduced in the S phase. Our results indicate for the first time that Cdk2 negatively regulates the activity of hPXR, and suggest an important role for Cdk2 in regulating hPXR activity and CYP3A4 expression in hepatocytes passing through the cell cycle, such as those in fetal or regenerating adult liver.
Collapse
Affiliation(s)
- Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | |
Collapse
|
28
|
Jeschke MG, Klein D, Thasler WE, Bolder U, Schlitt HJ, Jauch KW, Weiss TS. Insulin decreases inflammatory signal transcription factor expression in primary human liver cells after LPS challenge. Mol Med 2008; 14:11-9. [PMID: 18037968 DOI: 10.2119/2007-00062.jeschke] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 11/08/2007] [Indexed: 12/22/2022] Open
Abstract
Hepatic homeostasis is essential for survival in critically ill and burned patients. Insulin administration improves survival and decreases infections in these patients. To determine the molecular mechanisms, the aim of the present study was to establish a stress model using primary human hepatocytes (PHHs) and to study the effects of insulin on the hepatic inflammatory signaling cascade. Liver tissue was obtained from general surgical patients, and PHHs were isolated and maintained in culture. Primary hepatocyte cultures were challenged with various doses of lipopolysaccharide (LPS), and the inflammatory signal transcription cascade was determined by real-time PCR. In subsequent experiments, primary hepatocyte cultures were challenged with LPS and insulin was added in various doses. Glucose was determined by colorimetric assays. PHHs treated with 100 microg/mL LPS showed a profound inflammatory reaction with increased expression of interleukin (IL)-6, IL-10, IL-1beta, tumor necrosis factor (TNF), and signal transducer and activator of transcription 5 (STAT-5). Insulin at 10 IU/mL significantly decreased IL-6, TNF, and IL-1beta at pretranslational levels, an effect associated with decreased STAT-5 mRNA expression (P < 0.05). Glucose concentration and cellular metabolic activity were not different between controls and insulin-treated cells. Based on our results, we suggest that primary hepatocyte cultures can be used to study the effect of LPS on the inflammatory cascade. Insulin decreases hepatic cytokine expression, which is associated with decreased STAT-5 expression.
Collapse
Affiliation(s)
- Marc G Jeschke
- Shriners Hospitals for Children, Galveston Burns Unit, Galveston, TX 77550, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Dambacher J, Beigel F, Zitzmann K, Heeg MHJ, Göke B, Diepolder HM, Auernhammer CJ, Brand S. The role of interleukin-22 in hepatitis C virus infection. Cytokine 2008; 41:209-16. [PMID: 18191408 DOI: 10.1016/j.cyto.2007.11.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 11/01/2007] [Accepted: 11/17/2007] [Indexed: 12/25/2022]
Abstract
In this study, we analyzed if IL-22 displays, similar to other IL-10 like cytokines such as IL-28A, antiviral properties in hepatic cells. Using RT-PCR and immunoblotting, we demonstrated that hepatic cell lines and primary hepatocytes express the functional IL-22 receptor complex consisting of IL-22R1 and IL-10R2. Hepatic IL-22 mRNA expression as measured by quantitative PCR was up-regulated in autoimmune and viral hepatitis compared to cholestatic liver diseases, while IL-22 serum levels did not differ significantly between patients with viral hepatitis and normal controls. IL-22 did not significantly change the expression levels of IFN-alpha/-beta and of the antiviral proteins MxA and 2',5'-OAS. Consequently, it had in comparison to IFN-alpha no relevant antiviral activity in in vitro models of HCV replication and infection. Taken together, hepatic IL-22 expression is up-regulated in viral hepatitis but IL-22 does not directly regulate antiviral proteins and has, in contrast to IFN-alpha, no effect on HCV replication.
Collapse
Affiliation(s)
- Julia Dambacher
- Department of Medicine II, University-Hospital Munich-Grosshadern, University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Beaune PH. La pharmacogénétique : de la recherche fondamentale aux applications cliniques. ANNALES PHARMACEUTIQUES FRANÇAISES 2007; 65:365-70. [DOI: 10.1016/s0003-4509(07)74195-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Ito T, Asakura K, Tougou K, Fukuda T, Kubota R, Nonen S, Fujio Y, Azuma J. Regulation of cytochrome P450 2E1 under hypertonic environment through TonEBP in human hepatocytes. Mol Pharmacol 2007; 72:173-81. [PMID: 17440116 DOI: 10.1124/mol.106.033480] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whereas the liver as well as the other organs are continually exposed to the change of osmotic status, it has never been investigated whether activities and gene expressions of drug-metabolizing enzymes, including cytochromes P450, are dependent on osmotic change in the liver. In the present study, we determined that CYP2E1 is induced under hypertonic environments at a transcriptional level in human primary hepatocytes, as assessed by cDNA microarray and real time-reverse transcription-polymerase chain reaction analyses. Both a protein level and the catalytic activity of CYP2E1 were consistently increased in response to hypertonic conditions. In promoter-reporter assay, it was demonstrated that -586 to -566 in the CYP2E1 5'-flanking region was necessary for 2E1 promoter activation by hypertonic stimulation. It is noteworthy that tonicity-response element (TonE) consensus sequence was found at -578 to -568 in human CYP2E1 5'-flanking region, and electrophoretic mobility shift assay demonstrated the interaction of TonE binding protein (TonEBP) with TonE motif of CYP2E1 promoter. Furthermore, cotransfection of a CYP2E1 promoter construct with wild-type TonEBP expression vector enhanced promoter activity under both isotonic and hypertonic conditions, whereas dominant-negative TonEBP suppressed an induction of CYP2E1 promoter activity. These results indicate that the level of CYP2E1 is induced by hypertonic condition via TonEBP transactivation. The present study suggests that osmotic status may influence individual responses to the substrate of CYP2E1.
Collapse
Affiliation(s)
- Takashi Ito
- Department of Clinical Pharmacology and Pharmacogenomics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The xenobiotic receptors CAR and PXR constitute two important members of the NR1I nuclear receptor family. They function as sensors of toxic byproducts derived from endogenous metabolism and of exogenous chemicals, in order to enhance their elimination. This unique function of CAR and PXR sets them apart from the steroid hormone receptors. In contrast, the steroid receptors, exemplified by the estrogen receptor (ER) and glucocorticoid receptor (GR), are the sensors that tightly monitor and respond to changes in circulating steroid hormone levels to maintain body homeostasis. This divergence of the chemical- and steroid-sensing functions has evolved to ensure the fidelity of the steroid hormone endocrine regulation while allowing development of metabolic elimination pathways for xenobiotics. The development of the xenobiotic receptors CAR and PXR also reflect the increasing complexity of metabolism in higher organisms, which necessitate novel mechanisms for handling and eliminating metabolic by-products and foreign compounds from the body. The purpose of this review is to discuss similarities and differences between the xenobiotic receptors CAR and PXR with the prototypical steroid hormone receptors ER and GR. Interesting differences in structure explain in part the divergence in function and activation mechanisms of CAR/PXR from ER/GR. In addition, the physiological roles of CAR and PXR will be reviewed, with discussion of interactions of CAR and PXR with endocrine signaling pathways.
Collapse
Affiliation(s)
- Yoav E. Timsit
- Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, Tel: (919) 541-2942, Fax: (919) 541-0696
| | - Masahiko Negishi
- Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, Tel: (919) 541-2942, Fax: (919) 541-0696
| |
Collapse
|
33
|
Walbrun P, Hellerbrand C, Weiss TS, Netter S, Neumaier D, Gaebele E, Wiest R, Schoelmerich J, Froh M. Characterization of rat and human Kupffer cells after cryopreservation. Cryobiology 2007; 54:164-72. [PMID: 17303105 DOI: 10.1016/j.cryobiol.2006.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 12/12/2006] [Accepted: 12/12/2006] [Indexed: 10/23/2022]
Abstract
Kupffer cells (KC) are the resident macrophages of the liver and represent about 80% of the total fixed macrophage population. They are involved in disease states such as endotoxin shock, alcoholic liver diseases and other toxic-induced liver injury. They release physiologically active substances such as eicosanoids and inflammatory cytokines (IL-1, IL-6, TNFalpha), and produce free radical species. Thus, KC are attractive targets for anti-inflammatory therapies and potential candidates responsible for differences in inflammation in liver disease seen between different individuals. However, to perform parallel in vitro experiments with KC from different donors a suitable method for conservation of KC would be necessary. Therefore, the present study evaluated, whether rat and human KC can be frozen, stored and recovered without losing their functional integrity. Rat and human KC were isolated and either cultured under standard conditions (fresh KC) or cryopreserved in special freezing medium (cryopreserved KC). At least 24 h later, cryopreserved KC were thawed, brought into suspension and seeded in the same density as fresh cells for subsequent experiments. Viability of cultured KC was analyzed by trypan blue exclusion. LPS (or PBS as control) stimulation was performed at different time points and cytokine release was analyzed with IL-6 and TNFalpha ELISAs, respectively. Phagocytic capacity was investigated by using a specific phagocytosis assay and FACS analysis. The recovery rate after thawing was around 57% for rat and around 65% for human cryopreserved KC. The results indicate, that KC can successfully be cryopreserved with an adequate recovery rate of viable cells. The properties of fresh and frozen KC can also be compared after thawing. Freshly isolated and cryopreserved cultured KC showed near-normal morphology and did not differ in the cultivation profiles over a period of 72 h. One to three days after seeding, frozen rat or human KC also retained inducible functions such as the production of TNFalpha or IL-6 after LPS challenge. Finally, regardless if they were cryopreserved or not, no differences in the phagocytic activities of the cells were obtained. Taken together, it is concluded that cryopreservation of KC does not change the physiological characteristics of the cells in vitro. Therefore, the method used here for cryopreservation of especially human KC allows the accumulation of KC from several donors for parallel in vitro experiments.
Collapse
Affiliation(s)
- Peter Walbrun
- Department of Internal Medicine I, University of Regensburg, 93042 Regensburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Dayoub R, Thasler WE, Bosserhoff AK, Singer T, Jauch KW, Schlitt HJ, Weiss TS. Regulation of polyamine synthesis in human hepatocytes by hepatotrophic factor augmenter of liver regeneration. Biochem Biophys Res Commun 2006; 345:181-7. [PMID: 16677602 DOI: 10.1016/j.bbrc.2006.04.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 04/10/2006] [Indexed: 11/30/2022]
Abstract
Different stages of liver regeneration are regulated by a variety of factors such as the liver growth associated protein ALR, augmenter of liver regeneration. Furthermore, small molecules like polyamines were proven to be essential for hepatic growth and regeneration. Therefore, using primary human hepatocytes in vitro we investigated the effect of ALR on the biosynthesis of polyamines. We demonstrated by HPLC analysis that recombinant ALR enhanced intracellular hepatic putrescine, spermidine, and spermine levels within 9-12h. The activation of polyamine biosynthesis was dose dependent with putrescine showing the strongest increase. Additionally, ALR treatment induced mRNA expression of ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase, both key enzymes of polyamine biosynthesis. Further, ALR induced c-myc mRNA expression, a regulator of ODC expression, and therefore we assume that ALR exerts its liver regeneration augmenting effects through stimulation of its signalling pathway leading in part to enhanced polyamine synthesis.
Collapse
Affiliation(s)
- Rania Dayoub
- Department of Surgery, University of Regensburg Hospital, Germany; Center for Liver Cell Research, University of Regensburg Hospital, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Pawlowski R, Jura J. ALR and Liver Regeneration. Mol Cell Biochem 2006; 288:159-69. [PMID: 16691313 DOI: 10.1007/s11010-006-9133-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 01/10/2006] [Indexed: 12/18/2022]
Abstract
Liver possesses the capacity to restore its tissue mass and attain optimal volume in response to physical, infectious and toxic injury. The extraordinary ability of liver to regenerate is the effect of cross-talk between growth factors, cytokines, matrix components and many other factors. In this review we present recent findings and existing information about mechanisms that regulate liver growth, paying attention to augmenter of liver regeneration.
Collapse
Affiliation(s)
- Rafał Pawlowski
- Department of Cell Biochemistry, Faculty of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | | |
Collapse
|