1
|
Lin WR, Liu KH, Ling TC, Wang MC, Lin WH. Role of antidiabetic agents in type 2 diabetes patients with chronic kidney disease. World J Diabetes 2023; 14:352-363. [PMID: 37122432 PMCID: PMC10130897 DOI: 10.4239/wjd.v14.i4.352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/10/2023] [Accepted: 04/04/2023] [Indexed: 04/12/2023] Open
Abstract
Insulin resistance is a condition in which the target tissues have a decreased response to insulin signaling, resulting in glucose uptake defect, and an increased blood sugar level. Pancreatic beta cells thus enhance insulin production to compensate. This situation may cause further beta cell dysfunction and failure, which can lead diabetes mellitus (DM). Insulin resistance is thus an important cause of the development of type 2 DM. Insulin resistance has also been found to have a strong relationship with cardiovascular disease and is common in chronic kidney disease (CKD) patients. The mechanisms of insulin resistance in CKD are complex and multifactorial. They include physical inactivity, inflammation and oxidative stress, metabolic acidosis, vitamin D deficiency, adipose tissue dysfunction, uremic toxins, and renin-angiotensin-aldosterone system activation. Currently, available anti-diabetic agents, such as biguanides, sulfonylureas, thiazolidinediones, alfa-glucosidase inhibitors, glucagon-like peptide-1-based agents, and sodium-glucose co-transporter-2 inhibitors, have different effects on insulin resistance. In this short review, we describe the potential mechanisms of insulin resistance in CKD patients. We also review the interaction of currently available anti-diabetic medications with insulin resistance.
Collapse
Affiliation(s)
- Wei-Ren Lin
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Kuan-Hung Liu
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Tsai-Chieh Ling
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Ming-Cheng Wang
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Wei-Hung Lin
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan
| |
Collapse
|
2
|
Kumar L, Vizgaudis W, Klein-Seetharaman J. Structure-based survey of ligand binding in the human insulin receptor. Br J Pharmacol 2021; 179:3512-3528. [PMID: 34907529 DOI: 10.1111/bph.15777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 11/27/2022] Open
Abstract
The insulin receptor is a membrane protein responsible for regulation of nutrient balance and therefore an attractive target in the treatment of diabetes and metabolic syndrome. Pharmacology of the insulin receptor involves two distinct mechanisms, (1) activation of the receptor by insulin mimetics that bind in the extracellular domain and (2) inhibition of the receptor tyrosine kinase enzymatic activity in the cytoplasmic domain. While a complete structural picture of the full-length receptor comprising the entire sequence covering extracellular, transmembrane, juxtamembrane and cytoplasmic domains is still elusive, recent progress through cryoelectron microscopy has made it possible to describe the initial insulin ligand binding events at atomistic detail. We utilize this opportunity to obtain structural insights into the pharmacology of the insulin receptor. To this end, we conducted a comprehensive docking study of known ligands to the new structures of the receptor. Through this approach, we provide an in-depth, structure-based review of human insulin receptor pharmacology in light of the new structures.
Collapse
Affiliation(s)
- Lokender Kumar
- Department of Physics, Colorado School of Mines, Golden, CO
| | | | - Judith Klein-Seetharaman
- Department of Chemistry, Colorado School of Mines, Golden, CO.,School of Molecular Sciences & College of Health Solutions, Arizona State University, Phoenix, AZ
| |
Collapse
|
3
|
Ashraf A, Palakkott A, Ayoub MA. Anti-Insulin Receptor Antibodies in the Pathology and Therapy of Diabetes Mellitus. Curr Diabetes Rev 2021; 17:198-206. [PMID: 32496987 DOI: 10.2174/1573399816666200604122345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/12/2020] [Accepted: 05/24/2020] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus (DM) is recognized as the most common and the world's fastest-growing chronic disease with severe complications leading to increased mortality. Many strategies exist for the management of DM and its control, including treatment with insulin and insulin analogs, oral hypoglycemic therapy such as insulin secretion stimulators and insulin sensitizers, and diet and physical training. Over the years, many types of drugs and molecules with an interesting pharmacological diversity have been developed and proposed for their anti-diabetic potential. Such molecules target diverse key receptors, enzymes, and regulatory/signaling proteins known to be directly or indirectly involved in the pathophysiology of DM. Among them, insulin receptor (IR) is undoubtedly the target of choice for its central role in insulin-mediated glucose homeostasis and its utilization by the major insulin-sensitive tissues such as skeletal muscles, adipose tissue, and the liver. In this review, we focus on the implication of antibodies targeting IR in the pathology of DM as well as the recent advances in the development of IR antibodies as promising anti-diabetic drugs. The challenge still entails development of more powerful, highly selective, and safer anti-diabetic drugs.
Collapse
Affiliation(s)
- Arshida Ashraf
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates
| | - Abdulrasheed Palakkott
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
4
|
Chen X, Daniels NA, Cottrill D, Cao Y, Wang X, Li Y, Shriwas P, Qian Y, Archer MW, Whitticar NB, Jahan I, Nunemaker CS, Guo A. Natural Compound α-PGG and Its Synthetic Derivative 6Cl-TGQ Alter Insulin Secretion: Evidence for Diminishing Glucose Uptake as a Mechanism. Diabetes Metab Syndr Obes 2021; 14:759-772. [PMID: 33658814 PMCID: PMC7917315 DOI: 10.2147/dmso.s284295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Previously we showed that natural compound α-penta-galloyl-glucose (α-PGG) and its synthetic derivative 6-chloro-6-deoxy-1,2,3,4-tetra-O-galloyl-α-D-glucopyranose (6Cl-TGQ) act to improve insulin signaling in adipocytes by increasing glucose transport. In this study, we investigated the mechanism of actions of α-PGG and 6Cl-TGQ on insulin secretion. METHODS Mouse islets and/or INS-1832/13 beta-cells were used to test the effects of our compounds on glucose-stimulated insulin secretion (GSIS), intracellular calcium [Ca2+]i using fura-2AM, glucose transport activity via a radioactive glucose uptake assay, intracellular ATP/ADP, and extracellular acidification (ECAR) and mitochondrial oxygen consumption rates (OCAR) using Seahorse metabolic analysis. RESULTS Both compounds reduced GSIS in beta-cells without negatively affecting cell viability. The compounds primarily diminished glucose uptake into islets and beta-cells. Despite insulin-like effects in the peripheral tissues, these compounds do not act through the insulin receptor in islets. Further interrogation of the stimulus-secretion pathway showed that all the key metabolic factors involved in GSIS including ECAR, OCAR, ATP/ADP ratios, and [Ca2+]i of INS-1832/13 cells were diminished after the compound treatment. CONCLUSION The compounds suppress glucose uptake of the beta-cells, which consequently slows down the rates of glycolysis and ATP synthesis, leading to decrease in [Ca2+]i and GSIS. The difference between adipocytes and beta-cells in effects on glucose uptake is of great interest. Further structural and functional modifications could produce new compounds with optimized therapeutic potentials for different target cells. The higher potency of synthetic 6Cl-TGQ in enhancing insulin signaling in adipocytes but lower potency in reducing glucose uptake in beta-cells compared to α-PGG suggests the feasibility of such an approach.
Collapse
Affiliation(s)
- Xiaozhuo Chen
- The Diabetes Institute at Ohio University, Athens, OH, 45701, USA
- The Edison Biotechnology Institute, Athens, OH, 45701, USA
- Department of Biological Sciences, Athens, OH, 45701, USA
- Department of Biomedical Sciences, Athens, OH, 45701, USA
- Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, Athens, OH, 45701, USA
- Department of Chemistry and Biochemistry, Athens, OH, 45701, USA
| | - Nigel A Daniels
- The Diabetes Institute at Ohio University, Athens, OH, 45701, USA
- Department of Biomedical Sciences, Athens, OH, 45701, USA
- Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA
- Department of Specialty Medicine, Athens, OH, 45701, USA
| | - David Cottrill
- The Edison Biotechnology Institute, Athens, OH, 45701, USA
- Department of Biological Sciences, Athens, OH, 45701, USA
| | - Yanyang Cao
- The Edison Biotechnology Institute, Athens, OH, 45701, USA
- Department of Biological Sciences, Athens, OH, 45701, USA
| | - Xuan Wang
- The Edison Biotechnology Institute, Athens, OH, 45701, USA
- Department of Biological Sciences, Athens, OH, 45701, USA
| | - Yunsheng Li
- The Edison Biotechnology Institute, Athens, OH, 45701, USA
| | - Pratik Shriwas
- The Edison Biotechnology Institute, Athens, OH, 45701, USA
- Department of Biological Sciences, Athens, OH, 45701, USA
| | - Yanrong Qian
- The Edison Biotechnology Institute, Athens, OH, 45701, USA
| | - Michael W Archer
- The Diabetes Institute at Ohio University, Athens, OH, 45701, USA
- Department of Biomedical Sciences, Athens, OH, 45701, USA
| | - Nicholas B Whitticar
- Department of Biomedical Sciences, Athens, OH, 45701, USA
- Translational Biomedical Sciences Program, Ohio University, Athens, OH, 45701, USA
| | - Ishrat Jahan
- The Diabetes Institute at Ohio University, Athens, OH, 45701, USA
- Department of Biomedical Sciences, Athens, OH, 45701, USA
| | - Craig S Nunemaker
- The Diabetes Institute at Ohio University, Athens, OH, 45701, USA
- Department of Biological Sciences, Athens, OH, 45701, USA
- Department of Biomedical Sciences, Athens, OH, 45701, USA
- Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA
- Craig S Nunemaker Department of Biomedical Sciences, 1 Ohio University, Athens, OH, 45701, USATel +1 740-593-2387Fax +1 740-593-4795 Email
| | - Aili Guo
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of California at Davis (UC Davis) School of Medicine, UC Davis Health Science, Sacramento, CA, 95817, USA
- Correspondence: Aili Guo Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of California at Davis (UC Davis) School of Medicine, UC Davis Health Science, PSSB, G400, 4150 V St., Sacramento, CA, 95817, USATel +1 916-734-3730Fax +1 916-734-2292 Email
| |
Collapse
|
5
|
Lan ZJ, Lei Z, Yiannikouris A, Yerramreddy TR, Li X, Kincaid H, Eastridge K, Gadberry H, Power C, Xiao R, Lei L, Seale O, Dawson K, Power R. Non-peptidyl small molecule, adenosine, 5'-Se-methyl-5'-seleno-, 2',3'-diacetate, activates insulin receptor and attenuates hyperglycemia in type 2 diabetic Lepr db/db mice. Cell Mol Life Sci 2020; 77:1623-1643. [PMID: 31378829 PMCID: PMC7162833 DOI: 10.1007/s00018-019-03249-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/05/2019] [Accepted: 07/23/2019] [Indexed: 12/29/2022]
Abstract
The pathophysiology of type 2 diabetes mellitus (T2D) is characterized by reduced or absent insulin receptor (INSR) responsiveness to its ligand, elevated hepatic glucose output and impaired glucose uptake in peripheral tissues, particularly skeletal muscle. Treatments to reduce hyperglycemia and reestablish normal insulin signaling are much sought after. Any agent which could be orally administered to restore INSR function, in an insulin-independent manner, would have major implications for the management of this global disease. We have discovered a non-peptidyl small molecule, adenosine, 5'-Se-methyl-5'-seleno-, 2',3'-diacetate [referred to as non-peptidyl compound #43 (NPC43)], which restores INSR signaling in the complete absence of insulin. Initial screening of numerous compounds in human HepG2 liver cells revealed that NPC43 significantly inhibited glucose production. The compound was potently anti-hyperglycemic and anti-hyperinsulinemic in vivo, in insulin-resistant T2D Leprdb/db mice, following either acute or chronic treatment by oral gavage and intraperitoneal injection, respectively. The compound acted at the level of INSR and activated it in both liver and skeletal muscle of Leprdb/db mice. In cell culture, the compound activated INSR in both liver and skeletal muscle cells; furthermore, it cooperated with insulin to depress glucose-6-phosphatase catalytic subunit (G6pc) expression and stimulate glucose uptake, respectively. Our results indicated that the compound directly interacted with INSRα, triggering appropriate phosphorylation and activation of the receptor and its downstream targets. Unlike insulin, NPC43 did not activate insulin-like growth factor 1 receptor in either liver or skeletal muscle. We believe this compound represents a potential oral and/or injectable insulin replacement therapy for diabetes and diseases associated with insulin resistance.
Collapse
Affiliation(s)
- Zi-Jian Lan
- Division of Life Sciences, Alltech, Inc, 3031 Catnip Hill Road, Nicholasville, KY, 40356, USA.
| | - Zhenmin Lei
- Department of OB/GYN, University of Louisville School of Medicine, MDR Building/Room 121, 511 South Floyd St., Louisville, KY, 40202, USA
| | | | | | - Xian Li
- Department of OB/GYN, University of Louisville School of Medicine, MDR Building/Room 121, 511 South Floyd St., Louisville, KY, 40202, USA
| | - Hayley Kincaid
- Division of Life Sciences, Alltech, Inc, 3031 Catnip Hill Road, Nicholasville, KY, 40356, USA
| | - Katie Eastridge
- Division of Life Sciences, Alltech, Inc, 3031 Catnip Hill Road, Nicholasville, KY, 40356, USA
| | - Hannah Gadberry
- Division of Life Sciences, Alltech, Inc, 3031 Catnip Hill Road, Nicholasville, KY, 40356, USA
| | - Chloe Power
- Division of Life Sciences, Alltech, Inc, 3031 Catnip Hill Road, Nicholasville, KY, 40356, USA
| | - Rijin Xiao
- Division of Life Sciences, Alltech, Inc, 3031 Catnip Hill Road, Nicholasville, KY, 40356, USA
| | - Lei Lei
- Department of OB/GYN, University of Louisville School of Medicine, MDR Building/Room 121, 511 South Floyd St., Louisville, KY, 40202, USA
| | - Olivia Seale
- Division of Life Sciences, Alltech, Inc, 3031 Catnip Hill Road, Nicholasville, KY, 40356, USA
| | - Karl Dawson
- Division of Life Sciences, Alltech, Inc, 3031 Catnip Hill Road, Nicholasville, KY, 40356, USA
- Chemistry Department, Alltech, Inc, Nicholasville, KY, 40356, USA
| | - Ronan Power
- Division of Life Sciences, Alltech, Inc, 3031 Catnip Hill Road, Nicholasville, KY, 40356, USA.
| |
Collapse
|
6
|
Chan CB, Ahuja P, Ye K. Developing Insulin and BDNF Mimetics for Diabetes Therapy. Curr Top Med Chem 2019; 19:2188-2204. [PMID: 31660832 DOI: 10.2174/1568026619666191010160643] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/29/2019] [Accepted: 09/05/2019] [Indexed: 01/06/2023]
Abstract
Diabetes is a global public health concern nowadays. The majority of diabetes mellitus (DM) patients belong to type 2 diabetes mellitus (T2DM), which is highly associated with obesity. The general principle of current therapeutic strategies for patients with T2DM mainly focuses on restoring cellular insulin response by potentiating the insulin-induced signaling pathway. In late-stage T2DM, impaired insulin production requires the patients to receive insulin replacement therapy for maintaining their glucose homeostasis. T2DM patients also demonstrate a drop of brain-derived neurotrophic factor (BDNF) in their circulation, which suggests that replenishing BDNF or enhancing its downstream signaling pathway may be beneficial. Because of their protein nature, recombinant insulin or BDNF possess several limitations that hinder their clinical application in T2DM treatment. Thus, developing orally active "insulin pill" or "BDNF pill" is essential to provide a more convenient and effective therapy. This article reviews the current development of non-peptidyl chemicals that mimic insulin or BDNF and their potential as anti-diabetic agents.
Collapse
Affiliation(s)
- Chi Bun Chan
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Palak Ahuja
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University of School of Medicine, Atlanta, GA, United States
| |
Collapse
|
7
|
Action of Phytochemicals on Insulin Signaling Pathways Accelerating Glucose Transporter (GLUT4) Protein Translocation. Molecules 2018; 23:molecules23020258. [PMID: 29382104 PMCID: PMC6017132 DOI: 10.3390/molecules23020258] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/15/2018] [Accepted: 01/23/2018] [Indexed: 11/17/2022] Open
Abstract
Diabetes is associated with obesity, generally accompanied by a chronic state of oxidative stress and redox imbalances which are implicated in the progression of micro- and macro-complications like heart disease, stroke, dementia, cancer, kidney failure and blindness. All these complications rise primarily due to consistent high blood glucose levels. Insulin and glucagon help to maintain the homeostasis of glucose and lipids through signaling cascades. Pancreatic hormones stimulate translocation of the glucose transporter isoform 4 (GLUT4) from an intracellular location to the cell surface and facilitate the rapid insulin-dependent storage of glucose in muscle and fat cells. Malfunction in glucose uptake mechanisms, primarily contribute to insulin resistance in type 2 diabetes. Plant secondary metabolites, commonly known as phytochemicals, are reported to have great benefits in the management of type 2 diabetes. The role of phytochemicals and their action on insulin signaling pathways through stimulation of GLUT4 translocation is crucial to understand the pathogenesis of this disease in the management process. This review will summarize the effects of phytochemicals and their action on insulin signaling pathways accelerating GLUT4 translocation based on the current literature.
Collapse
|
8
|
Mukherjee S, Chattopadhyay M, Bhattacharya S, Dasgupta S, Hussain S, Bharadwaj SK, Talukdar D, Usmani A, Pradhan BS, Majumdar SS, Chattopadhyay P, Mukhopadhyay S, Maity TK, Chaudhuri MK, Bhattacharya S. A Small Insulinomimetic Molecule Also Improves Insulin Sensitivity in Diabetic Mice. PLoS One 2017; 12:e0169809. [PMID: 28072841 PMCID: PMC5224995 DOI: 10.1371/journal.pone.0169809] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/21/2016] [Indexed: 12/18/2022] Open
Abstract
Dramatic increase of diabetes over the globe is in tandem with the increase in insulin requirement. This is because destruction and dysfunction of pancreatic β-cells are of common occurrence in both Type1 diabetes and Type2 diabetes, and insulin injection becomes a compulsion. Because of several problems associated with insulin injection, orally active insulin mimetic compounds would be ideal substitute. Here we report a small molecule, a peroxyvanadate compound i.e. DmpzH[VO(O2)2(dmpz)], henceforth referred as dmp, which specifically binds to insulin receptor with considerable affinity (KD-1.17μM) thus activating insulin receptor tyrosine kinase and its downstream signaling molecules resulting increased uptake of [14C] 2 Deoxy-glucose. Oral administration of dmp to streptozotocin treated BALB/c mice lowers blood glucose level and markedly stimulates glucose and fatty acid uptake by skeletal muscle and adipose tissue respectively. In db/db mice, it greatly improves insulin sensitivity through excess expression of PPARγ and its target genes i.e. adiponectin, CD36 and aP2. Study on the underlying mechanism demonstrated that excess expression of Wnt3a decreased PPARγ whereas dmp suppression of Wnt3a gene increased PPARγ expression which subsequently augmented adiponectin. Increased production of adiponectin in db/db mice due to dmp effected lowering of circulatory TG and FFA levels, activates AMPK in skeletal muscle and this stimulates mitochondrial biogenesis and bioenergetics. Decrease of lipid load along with increased mitochondrial activity greatly improves energy homeostasis which has been found to be correlated with the increased insulin sensitivity. The results obtained with dmp, therefore, strongly indicate that dmp could be a potential candidate for insulin replacement therapy.
Collapse
Affiliation(s)
- Sandip Mukherjee
- Cellular and Molecular Endocrinology Laboratory, Centre for Advanced Studies in Zoology, School of Life Science, Visva-Bharati (A Central University), Santiniketan, West Bengal, India
| | - Mrittika Chattopadhyay
- Cellular and Molecular Endocrinology Laboratory, Centre for Advanced Studies in Zoology, School of Life Science, Visva-Bharati (A Central University), Santiniketan, West Bengal, India
| | | | - Suman Dasgupta
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Sahid Hussain
- Department of Chemical Sciences, Tezpur University, Assam, India
| | | | | | - Abul Usmani
- Division of Cellular Endocrinology, National Institute of Immunology, New Delhi, India
| | - Bhola S Pradhan
- Division of Cellular Endocrinology, National Institute of Immunology, New Delhi, India
| | - Subeer S Majumdar
- Division of Cellular Endocrinology, National Institute of Immunology, New Delhi, India
| | | | - Satinath Mukhopadhyay
- Department of Endocrinology & Metabolism, Institute of Post-Graduate Medical Education & Research-Seth Sukhlal Karnani Memorial (IPGME&R−SSKM) Hospital, Kolkata, West Bengal, India
| | | | - Mihir K. Chaudhuri
- Department of Chemical Sciences, Tezpur University, Assam, India
- * E-mail: (SB); (MKC)
| | - Samir Bhattacharya
- Cellular and Molecular Endocrinology Laboratory, Centre for Advanced Studies in Zoology, School of Life Science, Visva-Bharati (A Central University), Santiniketan, West Bengal, India
- * E-mail: (SB); (MKC)
| |
Collapse
|
9
|
Wu M, Dai G, Yao J, Hoyt S, Wang L, Mu J. Potentiation of insulin-mediated glucose lowering without elevated hypoglycemia risk by a small molecule insulin receptor modulator. PLoS One 2015; 10:e0122012. [PMID: 25799496 PMCID: PMC4370409 DOI: 10.1371/journal.pone.0122012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/10/2015] [Indexed: 12/30/2022] Open
Abstract
Insulin resistance is the key feature of type 2 diabetes and is manifested as attenuated insulin receptor (IR) signaling in response to same levels of insulin binding. Several small molecule IR activators have been identified and reported to exhibit insulin sensitization properties. One of these molecules, TLK19781 (Cmpd1), was investigated to examine its IR sensitizing action in vivo. Our data demonstrate that Cmpd1, at doses that produced minimal efficacy in the absence of insulin, potentiated insulin action during an OGTT in non-diabetic mice and enhanced insulin-mediated glucose lowering in diabetic mice. Interestingly, different from insulin alone, Cmpd1 combined with insulin showed enhanced efficacy and duration of action without increased hypoglycemia. To explore the mechanism underlying the apparent glucose dependent efficacy, tissue insulin signaling was compared in healthy and diabetic mice. Cmpd1 enhanced insulin’s effects on IR phosphorylation in both healthy and diabetic mice. In contrast, the compound potentiated insulin’s effects on Akt phosphorylation in diabetic but not in non-diabetic mice. These differential effects on signaling corresponding to glucose levels could be part of the mechanism for reduced hypoglycemia risk. The in vivo efficacy of Cmpd1 is specific and dependent on IR expression. Results from these studies support the idea of targeting IR for insulin sensitization, which carries low hypoglycemia risk by standalone treatment and could improve the effectiveness of insulin therapies.
Collapse
Affiliation(s)
- Margaret Wu
- Early Development and Discovery Sciences, Merck Research Laboratories, Merck Sharp & Dohme Corp., Whitehouse Station, NJ 08889, United States of America
| | - Ge Dai
- Early Development and Discovery Sciences, Merck Research Laboratories, Merck Sharp & Dohme Corp., Whitehouse Station, NJ 08889, United States of America
| | - Jun Yao
- Early Development and Discovery Sciences, Merck Research Laboratories, Merck Sharp & Dohme Corp., Whitehouse Station, NJ 08889, United States of America
| | - Scott Hoyt
- Early Development and Discovery Sciences, Merck Research Laboratories, Merck Sharp & Dohme Corp., Whitehouse Station, NJ 08889, United States of America
| | - Liangsu Wang
- Early Development and Discovery Sciences, Merck Research Laboratories, Merck Sharp & Dohme Corp., Whitehouse Station, NJ 08889, United States of America
| | - James Mu
- Early Development and Discovery Sciences, Merck Research Laboratories, Merck Sharp & Dohme Corp., Whitehouse Station, NJ 08889, United States of America
- * E-mail:
| |
Collapse
|
10
|
Qiang G, Xue S, Yang JJ, Du G, Pang X, Li X, Goswami D, Griffin PR, Ortlund EA, Chan CB, Ye K. Identification of a small molecular insulin receptor agonist with potent antidiabetes activity. Diabetes 2014; 63:1394-409. [PMID: 24651808 PMCID: PMC3964510 DOI: 10.2337/db13-0334] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insulin replacement therapy is a widely adopted treatment for all patients with type 1 diabetes and some with type 2 diabetes. However, injection of insulin has suffered from problems such as tissue irritation, abscesses, discomfort, and inconvenience. The use of orally bioactive insulin mimetics thus represents an ideal treatment alternative. Here we show that a chaetochromin derivative (4548-G05) acts as a new nonpeptidyl insulin mimetic. 4548-G05 selectively activates an insulin receptor (IR) but not insulin-like growth factor receptor-I or other receptor tyrosine kinases. Through binding to the extracellular domain of the IR, 4548-G05 induces activation of the receptor and initiates the downstream Akt and extracellular signal-related kinase pathways to trigger glucose uptake in C2C12 myotubes. Moreover, it displays a potent blood glucose-lowering effect when administrated orally in normal, type 1 diabetic, and type 2 diabetic mice models. Therefore, 4548-G05 may represent a novel pharmacological agent for antidiabetes drug development.
Collapse
Affiliation(s)
- Guifen Qiang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Shenghui Xue
- Departments of Chemistry and Biology, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, GA
| | - Jenny J. Yang
- Departments of Chemistry and Biology, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, GA
| | - Guanhua Du
- National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaobin Pang
- National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Institute of Pharmacy, Henan University, Kaifeng, China
| | - Xiaoting Li
- National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Institute of Pharmacy, Henan University, Kaifeng, China
| | - Devrishi Goswami
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL
| | - Patrick R. Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL
| | - Eric A. Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA
| | - Chi Bun Chan
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
- Corresponding author: Chi Bun Chan, , or Keqiang Ye,
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
- Corresponding author: Chi Bun Chan, , or Keqiang Ye,
| |
Collapse
|
11
|
Non-peptidyl insulin mimetics as a potential antidiabetic agent. Drug Discov Today 2013; 18:748-55. [DOI: 10.1016/j.drudis.2013.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/21/2013] [Accepted: 04/11/2013] [Indexed: 12/29/2022]
|
12
|
He K, Chan CB, Liu X, Jia Y, Luo HR, France SA, Liu Y, Wilson WD, Ye K. Identification of a molecular activator for insulin receptor with potent anti-diabetic effects. J Biol Chem 2011; 286:37379-88. [PMID: 21908618 DOI: 10.1074/jbc.m111.247387] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin exerts its actions through the insulin receptor (IR) and plays an essential role in diabetes. The inconvenient daily injection and undesirable side-effects associated with insulin injection demand novel drugs for the diseases. To search for bioactive insulin mimetics, we developed an in vitro screening assay using phospho-IR ELISA. After screening the small molecule chemical libraries, we have obtained a compound (5,8-diacetyloxy-2,3-dichloro-1,4-naphthoquinone) that provokes IR activation by directly binding to the receptor kinase domain to trigger its kinase activity at micromolar concentrations. This compound selectively activates IR but not other receptors and sensitizes insulin's action. Moreover, it elevates glucose uptake in adipocytes and has oral hypoglycemic effect in wild-type C57BL/6J mice and db/db and ob/ob mice without demonstrable toxicity. Hence, this promising compound mimics the biological functions of insulin and is useful for further drug development for diabetes treatment.
Collapse
Affiliation(s)
- Kunyan He
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Liu Q, Chen L, Hu L, Guo Y, Shen X. Small molecules from natural sources, targeting signaling pathways in diabetes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:854-65. [DOI: 10.1016/j.bbagrm.2010.06.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 06/04/2010] [Accepted: 06/10/2010] [Indexed: 01/08/2023]
|
14
|
Brahimi F, Liu J, Malakhov A, Chowdhury S, Purisima EO, Ivanisevic L, Caron A, Burgess K, Saragovi HU. A monovalent agonist of TrkA tyrosine kinase receptors can be converted into a bivalent antagonist. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1800:1018-26. [PMID: 20600627 PMCID: PMC2943489 DOI: 10.1016/j.bbagen.2010.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 05/28/2010] [Accepted: 06/11/2010] [Indexed: 01/18/2023]
Abstract
BACKGROUND Receptor tyrosine kinases (RTK) act through dimerization. Previously it was thought that only bivalent ligands could be agonistic, whereas monovalent ligands should be antagonistic. This notion changed after the demonstration that monovalent ligands can be agonistic, including our report of a small molecule monovalent ligand "D3" that is a partial agonist of the NGF receptor TrkA. A bivalent "D3-linker-D3" was expected to increase agonism. METHODS Dimeric analogs were synthesized and tested in binding, biochemical, and biological assays. RESULTS One analog, 1-ss, binds TrkA with higher affinity than D3 and induces or stabilizes receptor dimers. However, 1-ss exhibited antagonistic activity, through two mechanisms. One mechanism is that 1-ss blocks NGF binding, unlike D3 which is non-competitive. Inhibition of NGF binding may be due to the linker of 1-ss filling the inter-receptor space that NGF traverses before docking. In a second mechanism, 1-ss acts as a pure antagonist, inhibiting NGF-independent TrkA activity in cells over-expressing receptors. Inhibition is likely due to 1-ss "freezing" the TrkA dimer in the inactive state. CONCLUSIONS Dimerization of an RTK can result in antagonism, through two independent mechanisms. GENERAL SIGNIFICANCE we report a small molecule monovalent agonist being converted to a bivalent antagonist.
Collapse
Affiliation(s)
- Fouad Brahimi
- Lady Davis Institute-Jewish General Hospital, Pharmacology and Therapeutics, Oncology and the Cancer Center. McGill University, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Mohler ML, He Y, Wu Z, Hwang DJ, Miller DD. Recent and emerging anti-diabetes targets. Med Res Rev 2009; 29:125-95. [DOI: 10.1002/med.20142] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Xiong X, Pirrung MC. Modular Synthesis of Candidate Indole-based Insulin Mimics by Claisen Rearrangement. Org Lett 2008; 10:1151-4. [DOI: 10.1021/ol800058d] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xin Xiong
- Department of Chemistry, University of California, Riverside, California 92521
| | - Michael C. Pirrung
- Department of Chemistry, University of California, Riverside, California 92521
| |
Collapse
|
17
|
Pirrung MC, Deng L, Lin B, Webster NJG. Quinone Replacements for Small Molecule Insulin Mimics. Chembiochem 2008; 9:360-2. [DOI: 10.1002/cbic.200700597] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|