1
|
Ray JL, Walum J, Jelic D, Barnes R, Bentley ID, Britt RD, Englert JA, Ballinger MN. scRNA-seq identifies unique macrophage population in murine model of ozone induced asthma exacerbation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604740. [PMID: 39211080 PMCID: PMC11361036 DOI: 10.1101/2024.07.23.604740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Ozone (O 3 ) inhalation triggers asthmatic airway hyperresponsiveness (AHR), but the mechanisms by which this occurs are unknown. Previously, we developed a murine model of dust mite, ragweed, and aspergillus (DRA)-induced allergic lung inflammation followed by O 3 exposure for mechanistic investigation. The present study used single cell RNA-sequencing for unbiased profiling of immune cells within the lungs of mice exposed to DRA, O 3 , or DRA+O 3 , to identify the components of the immune cell niche that contribute to AHR. Alveolar macrophages (AMs) had the greatest number of differentially expressed genes following DRA+O 3 , most of which were unique to the 2-hit exposure. Following DRA+O 3 , AMs activated transcriptional pathways related to cholesterol biosynthesis, degradation of the extracellular matrix, endosomal TLR processing, and various cytokine signals. We also identified AM and monocyte subset populations that were unique to the DRA+O 3 group. These unique AMs activated gene pathways related to inflammation, sphingolipid metabolism, and bronchial constriction. The unique monocyte population had a gene signature that suggested phospholipase activation and increased degradation of the extracellular matrix. Flow cytometry analysis of BAL immune cells showed recruited monocyte-derived AMs after DRA and DRA+O 3 , but not after O 3 exposure alone. O 3 alone increased BAL neutrophils but this response was attenuated in DRA+O 3 mice. DRA-induced changes in the airspace immune cell profile were reflected in elevated BAL cytokine/chemokine levels following DRA+O 3 compared to O 3 alone. The present work highlights the role of monocytes and AMs in the response to O 3 and suggests that the presence of distinct subpopulations following allergic inflammation may contribute to O 3 -induced AHR.
Collapse
|
2
|
Britt RD, Ruwanpathirana A, Ford ML, Lewis BW. Macrophages Orchestrate Airway Inflammation, Remodeling, and Resolution in Asthma. Int J Mol Sci 2023; 24:10451. [PMID: 37445635 PMCID: PMC10341920 DOI: 10.3390/ijms241310451] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Asthma is a heterogenous chronic inflammatory lung disease with endotypes that manifest different immune system profiles, severity, and responses to current therapies. Regardless of endotype, asthma features increased immune cell infiltration, inflammatory cytokine release, and airway remodeling. Lung macrophages are also heterogenous in that there are separate subsets and, depending on the environment, different effector functions. Lung macrophages are important in recruitment of immune cells such as eosinophils, neutrophils, and monocytes that enhance allergic inflammation and initiate T helper cell responses. Persistent lung remodeling including mucus hypersecretion, increased airway smooth muscle mass, and airway fibrosis contributes to progressive lung function decline that is insensitive to current asthma treatments. Macrophages secrete inflammatory mediators that induce airway inflammation and remodeling. Additionally, lung macrophages are instrumental in protecting against pathogens and play a critical role in resolution of inflammation and return to homeostasis. This review summarizes current literature detailing the roles and existing knowledge gaps for macrophages as key inflammatory orchestrators in asthma pathogenesis. We also raise the idea that modulating inflammatory responses in lung macrophages is important for alleviating asthma.
Collapse
Affiliation(s)
- Rodney D Britt
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Anushka Ruwanpathirana
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH 43205, USA
| | - Maria L Ford
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH 43205, USA
| | - Brandon W Lewis
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
| |
Collapse
|
3
|
Hong JH, Lee YC. Anti-Inflammatory Effects of Cicadidae Periostracum Extract and Oleic Acid through Inhibiting Inflammatory Chemokines Using PCR Arrays in LPS-Induced Lung inflammation In Vitro. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060857. [PMID: 35743888 PMCID: PMC9225349 DOI: 10.3390/life12060857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
In this study, we aimed to evaluate the anti-inflammatory effects and mechanisms of CP and OA treatments in LPS-stimulated lung epithelial cells on overall chemokines and their receptors using PCR arrays. In addition, we aimed to confirm those effects and mechanisms in LPS-stimulated lung macrophages on some chemokines and cytokines. In our study, CP treatments significantly inhibited the inflammatory mediators CCL2, CCL3, CCL4, CCL5, CCL6, CCL9, CCL11, CCL17, CCL20, CXCL1, CXCL2, CXCL3, CXCL5, CXCL7, CXCL10, TNF-α, and IL-6, while markedly suppressing NF-κB p65 nuclear translocation and the phosphorylations of PI3K p55, Akt, Erk1/2, p38, and NF-κB p65 in LPS-stimulated lung epithelial cells. CP treatments also significantly decreased the inflammatory mediators CCL2, CCL5, CCL17, CXCL1, and CXCL2, while markedly inhibiting phospho-PI3K p55 and iNOS expression in LPS-stimulated lung macrophages. Likewise, OA treatments significantly suppressed the inflammatory mediators CCL2, CCL3, CCL4, CCL5, CCL8, CCL11, CXCL1, CXCL3, CXCL5, CXCL7, CXCL10, CCRL2, TNF-α, and IL-6, while markedly reducing the phosphorylations of PI3K p85, PI3K p55, p38, JNK, and NF-κB p65 in LPS-stimulated lung epithelial cells. Finally, OA treatments significantly inhibited the inflammatory mediators CCL2, CCL5, CCL17, CXCL1, CXCL2, TNF-α, and IL-6, while markedly suppressing phospho-PI3K p55, iNOS, and Cox-2 in LPS-stimulated lung macrophages. These results prove that CP and OA treatments have anti-inflammatory effects on the inflammatory chemokines and cytokines by inhibiting pro-inflammatory mediators, including PI3K, Akt, MAPKs, NF-κB, iNOS, and Cox-2. These findings suggest that CP and OA are potential chemokine-based therapeutic substances for treating the lung and airway inflammation seen in allergic disorders.
Collapse
Affiliation(s)
| | - Young-Cheol Lee
- Correspondence: ; Tel.: +82-33-730-0672; Fax: +82-33-730-0653
| |
Collapse
|
4
|
Aktar A, Shan L, Koussih L, Almiski MS, Basu S, Halayko A, Okwor I, Uzonna JE, Gounni AS. PlexinD1 Deficiency in Lung Interstitial Macrophages Exacerbates House Dust Mite-Induced Allergic Asthma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1272-1279. [PMID: 35110420 DOI: 10.4049/jimmunol.2100089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Interstitial macrophages (IMs) are key regulators of allergic inflammation. We previously showed that the absence of semaphorin 3E (Sema3E) exacerbates asthma features in both acute and chronic asthma models. However, it has not been studied whether Sema3E, via its receptor plexinD1, regulates IM function in allergic asthma. Therefore, we investigated the role of plexinD1 deficiency on IMs in allergic asthma. We found that the absence of plexinD1 in IMs increased airway hyperresponsiveness, airway leukocyte numbers, allergen-specific IgE, goblet cell hyperplasia, and Th2/Th17 cytokine response in the house dust mite (HDM)-induced allergic asthma model. Muc5ac, Muc5b, and α-SMA genes were increased in mice with Plxnd1-deficient IMs compared with wild-type mice. Furthermore, plexinD1-deficient bone marrow-derived macrophages displayed reduced IL-10 mRNA expression, at both the baseline and following HDM challenge, compared with their wild-type counterpart mice. Our data suggest that Sema3E/plexinD1 signaling in IMs is a critical pathway that modulates airway inflammation, airway resistance, and tissue remodeling in the HDM murine model of allergic asthma. Reduced IL-10 expression by plexinD1-deficient macrophages may account for these enhanced allergic asthma features.
Collapse
Affiliation(s)
- Amena Aktar
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Lianyu Shan
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Latifa Koussih
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Experimental Biology, Université de Saint-Boniface, Winnipeg, MB, Canada
| | - Mohamed S Almiski
- Department of Pathology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; and
| | - Sujata Basu
- Department of Physiology and Physiopathology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Andrew Halayko
- Department of Physiology and Physiopathology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ifeoma Okwor
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jude E Uzonna
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Abdelilah S Gounni
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada;
| |
Collapse
|
5
|
Chiba Y, Okumura K, Tamaki S, Yasuhara Y, Suto W, Hanazaki M, Sakai H. Increased Gene expression of CCL2/CCR2 axis in bronchial smooth muscles of allergen-challenged mice. Respir Physiol Neurobiol 2021; 289:103669. [PMID: 33813049 DOI: 10.1016/j.resp.2021.103669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Augmented bronchial smooth muscle (BSM) contraction is a cause of airway hyperresponsiveness (AHR) in asthma. Increasing evidence suggest that C-C motif chemokine 2 (CCL2) modulates smooth muscle contractility by activating its binding partner C-C chemokine receptor type 2 (CCR2). In the present study, changes in the gene expression of CCL2/CCR2 axis were determined in the BSMs of a murine model of allergic asthma. MATERIALS AND METHODS The ovalbumin (OA)-sensitized mice were repeatedly challenged with aerosolized OA to induce asthmatic reaction. Twenty-four hours after the last antigen challenge, total RNAs of the main BSM tissues and bronchoalveolar lavage fluids (BALFs) were obtained. RESULTS Our published microarray data (GEO accession No. GSE116504) detected changes in gene expression associated with the chemokine signaling pathway (KEGG Map ID: 04062) in BSMs of mice with AHR induced by antigen exposure. Among them, quantitative RT-PCR analyses showed significant increase in mRNA expression of Ccl2 and Ccr2. Analysis of BALFs also revealed a significant increase in Ccl2 protein in the airways of the diseased animals. CONCLUSION It is thus possible that, in association with the AHR, the CCL2/CCR2 axis is enhanced in the airways of allergic bronchial asthma.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Japan.
| | - Kaori Okumura
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Japan
| | - Sayuri Tamaki
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Japan
| | - Yurika Yasuhara
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Japan
| | - Wataru Suto
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Japan
| | - Motohiko Hanazaki
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine, International University of Health and Welfare, Japan
| | - Hiroyasu Sakai
- Laboratory of Biomolecular Pharmacology, Hoshi University School of Pharmacy, Japan
| |
Collapse
|
6
|
Hetzel M, Ackermann M, Lachmann N. Beyond "Big Eaters": The Versatile Role of Alveolar Macrophages in Health and Disease. Int J Mol Sci 2021; 22:3308. [PMID: 33804918 PMCID: PMC8036607 DOI: 10.3390/ijms22073308] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
Macrophages act as immune scavengers and are important cell types in the homeostasis of various tissues. Given the multiple roles of macrophages, these cells can also be found as tissue resident macrophages tightly integrated into a variety of tissues in which they fulfill crucial and organ-specific functions. The lung harbors at least two macrophage populations: interstitial and alveolar macrophages, which occupy different niches and functions. In this review, we provide the latest insights into the multiple roles of alveolar macrophages while unraveling the distinct factors which can influence the ontogeny and function of these cells. Furthermore, we will highlight pulmonary diseases, which are associated with dysfunctional macrophages, concentrating on congenital diseases as well as pulmonary infections and impairment of immunological pathways. Moreover, we will provide an overview about different treatment approaches targeting macrophage dysfunction. Improved knowledge of the role of macrophages in the onset of pulmonary diseases may provide the basis for new pharmacological and/or cell-based immunotherapies and will extend our understanding to other macrophage-related disorders.
Collapse
Affiliation(s)
- Miriam Hetzel
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (M.H.); (M.A.)
- REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Mania Ackermann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (M.H.); (M.A.)
- REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
| | - Nico Lachmann
- REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
7
|
Ait Yahia S, Audousset C, Alvarez-Simon D, Vorng H, Togbe D, Marquillies P, Delacre M, Rose S, Bouscayrol H, Rifflet A, Quesniaux V, Boneca IG, Chamaillard M, Tsicopoulos A. NOD1 sensing of house dust mite-derived microbiota promotes allergic experimental asthma. J Allergy Clin Immunol 2021; 148:394-406. [PMID: 33508265 DOI: 10.1016/j.jaci.2020.12.649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/27/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Asthma severity has been linked to exposure to gram-negative bacteria from the environment that are recognized by NOD1 receptor and are present in house dust mite (HDM) extracts. NOD1 polymorphism has been associated with asthma. OBJECTIVE We sought to evaluate whether either host or HDM-derived microbiota may contribute to NOD1-dependent disease severity. METHODS A model of HDM-induced experimental asthma was used and the effect of NOD1 deficiency was evaluated. Contribution of host microbiota was evaluated by fecal transplantation. Contribution of HDM-derived microbiota was assessed by 16S ribosomal RNA sequencing, mass spectrometry analysis, and peptidoglycan depletion of the extracts. RESULTS In this model, loss of the bacterial sensor NOD1 and its adaptor RIPK2 improved asthma features. Such inhibitory effect was not related to dysbiosis caused by NOD1 deficiency, as shown by fecal transplantation of Nod1-deficient microbiota to wild-type germ-free mice. The 16S ribosomal RNA gene sequencing and mass spectrometry analysis of HDM allergen, revealed the presence of some muropeptides from gram-negative bacteria that belong to the Bartonellaceae family. While such HDM-associated muropeptides were found to activate NOD1 signaling in epithelial cells, peptidoglycan-depleted HDM had a decreased ability to instigate asthma in vivo. CONCLUSIONS These data show that NOD1-dependent sensing of HDM-associated gram-negative bacteria aggravates the severity of experimental asthma, suggesting that inhibiting the NOD1 signaling pathway may be a therapeutic approach to treating asthma.
Collapse
Affiliation(s)
- Saliha Ait Yahia
- University of Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1019-Unite Mixte de Recherche (UMR) 9017-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Camille Audousset
- University of Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1019-Unite Mixte de Recherche (UMR) 9017-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Daniel Alvarez-Simon
- University of Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1019-Unite Mixte de Recherche (UMR) 9017-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Han Vorng
- University of Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1019-Unite Mixte de Recherche (UMR) 9017-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Dieudonnée Togbe
- Laboratory of Experimental and Molecular Immunology and Neurogenetics, UMR 7355 CNRS-Universitaire of Orléans, Orléans, France
| | - Philippe Marquillies
- University of Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1019-Unite Mixte de Recherche (UMR) 9017-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Myriam Delacre
- University of Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1019-Unite Mixte de Recherche (UMR) 9017-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Stéphanie Rose
- Laboratory of Experimental and Molecular Immunology and Neurogenetics, UMR 7355 CNRS-Universitaire of Orléans, Orléans, France
| | - Hélène Bouscayrol
- Laboratory of Experimental and Molecular Immunology and Neurogenetics, UMR 7355 CNRS-Universitaire of Orléans, Orléans, France
| | - Aline Rifflet
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France; CNRS, UMR 2001, Paris, France; Institut National de la Santé et de la Recherche Médicale, Équipe Avenir, Paris, France
| | - Valérie Quesniaux
- Laboratory of Experimental and Molecular Immunology and Neurogenetics, UMR 7355 CNRS-Universitaire of Orléans, Orléans, France
| | - Ivo Gomperts Boneca
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France; CNRS, UMR 2001, Paris, France; Institut National de la Santé et de la Recherche Médicale, Équipe Avenir, Paris, France
| | - Mathias Chamaillard
- University of Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1019-Unite Mixte de Recherche (UMR) 9017-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Anne Tsicopoulos
- University of Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1019-Unite Mixte de Recherche (UMR) 9017-Centre d'Infection et d'Immunité de Lille, Lille, France.
| |
Collapse
|
8
|
Mei H, Han J, White S, Graham DJ, Izawa K, Sato T, Fustero S, Meanwell NA, Soloshonok VA. Tailor-Made Amino Acids and Fluorinated Motifs as Prominent Traits in Modern Pharmaceuticals. Chemistry 2020; 26:11349-11390. [PMID: 32359086 DOI: 10.1002/chem.202000617] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/23/2020] [Indexed: 12/11/2022]
Abstract
Structural analysis of modern pharmaceutical practices allows for the identification of two rapidly growing trends: the introduction of tailor-made amino acids and the exploitation of fluorinated motifs. Curiously, the former represents one of the most ubiquitous classes of naturally occurring compounds, whereas the latter is the most xenobiotic and comprised virtually entirely of man-made derivatives. Herein, 39 selected compounds, featuring both of these traits in the same molecule, are profiled. The total synthesis, source of the corresponding amino acids and fluorinated residues, and medicinal chemistry aspects and biological properties of the molecules are discussed.
Collapse
Affiliation(s)
- Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P.R. China
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P.R. China
| | - Sarah White
- Oakwood Chemical, Inc., 730 Columbia Hwy. N, Estill, SC, 29918, USA
| | - Daniel J Graham
- Oakwood Chemical, Inc., 730 Columbia Hwy. N, Estill, SC, 29918, USA
| | - Kunisuke Izawa
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan
| | - Tatsunori Sato
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan
| | - Santos Fustero
- Departamento de Química Orgánica, Universidad de Valencia, 46100, Burjassot, Valencia, Spain
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, NJ, 08543-4000, USA
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain
| |
Collapse
|
9
|
Berghi NO, Dumitru M, Vrinceanu D, Ciuluvica RC, Simioniuc-Petrescu A, Caragheorgheopol R, Tucureanu C, Cornateanu RS, Giurcaneanu C. Relationship between chemokines and T lymphocytes in the context of respiratory allergies (Review). Exp Ther Med 2020; 20:2352-2360. [PMID: 32765714 PMCID: PMC7401840 DOI: 10.3892/etm.2020.8961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Allergic diseases have been classified in the last decades using various theories. The main classes of the newest classification in allergic respiratory diseases focus on the characterization of the endotype (which takes into account biomarkers related to determinant pathophysiological mechanisms) and of the phenotype (based on the description of the disease). Th2, Th1 and Th17 lymphocytes and the type of inflammatory response mediated by them represent the basis for Th2 and non-Th2 endotype classification. In addition, new lymphocytes were also used to characterize allergic diseases: Th9 lymphocytes, Th22 lymphocytes, T follicular helper cells (TFH) lymphocytes and invariant natural killer T (iNKT) lymphocytes. In the last decade, a growing body of evidence focused on chemokines, chemoattractant cytokines, which seems to have an important contribution to the pathogenesis of this pathology. This review presents the interactions between chemokines and Th lymphocytes in the context of Th2/non-Th2 endotype classification of respiratory allergies.
Collapse
Affiliation(s)
- Nicolae Ovidiu Berghi
- Department of Oncologic Dermatology, 'Elias' Emergency University Hospital, 'Carol Davila' University of Medicine and Pharmacy, 011461 Bucharest, Romania
| | - Mihai Dumitru
- Anatomy Department, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Daniela Vrinceanu
- ENT Department, 'Carol Davila' University of Medicine and Pharmacy, 010271 Bucharest, Romania
| | | | - Anca Simioniuc-Petrescu
- ENT Department, 'Carol Davila' University of Medicine and Pharmacy, 010271 Bucharest, Romania
| | - Ramona Caragheorgheopol
- Immunology Laboratory, 'Cantacuzino' National Military-Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Catalin Tucureanu
- Immunology Laboratory, 'Cantacuzino' National Military-Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Roxana Sfrent Cornateanu
- Department of Physiopathology and Immunology, 'Carol Davila' University of Medicine and Pharmacy, 041914 Bucharest, Romania
| | - Calin Giurcaneanu
- Department of Oncologic Dermatology, 'Elias' Emergency University Hospital, 'Carol Davila' University of Medicine and Pharmacy, 011461 Bucharest, Romania
| |
Collapse
|
10
|
Artelsmair M, Miranda-Azpiazu P, Kingston L, Bergare J, Schou M, Varrone A, Elmore CS. Synthesis, 3 H-labelling and in vitro evaluation of a substituted dipiperidine alcohol as a potential ligand for chemokine receptor 2. J Labelled Comp Radiopharm 2019; 62:265-279. [PMID: 30937946 PMCID: PMC6617762 DOI: 10.1002/jlcr.3731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/13/2019] [Accepted: 03/22/2019] [Indexed: 12/28/2022]
Abstract
The immune system is implicated in the pathology of neurodegenerative disorders. The C‐C chemokine receptor 2 (CCR2) is one of the key targets involved in the activation of the immune system. A suitable ligand for CCR2 could be a useful tool to study immune activation in central nervous system (CNS) disorders. Herein, we describe the synthesis, tritium radiolabelling, and preliminary in vitro evaluation in post‐mortem human brain tissue of a known potent small molecule antagonist for CCR2. The preparation of a tritium‐labelled analogue for the autoradiography (ARG) study gave rise to an intriguing and unexpected side reaction profile through a novel amination of ethanol and methanol in the presence of tritium. After successful preparation of the tritiated radioligand, in vitro ARG measurements on human brain sections revealed nonspecific binding properties of the selected antagonist in the CNS.
Collapse
Affiliation(s)
- Markus Artelsmair
- Early Chemical Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Patricia Miranda-Azpiazu
- Department of Clinical Neuroscience, Centre of Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Lee Kingston
- Early Chemical Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Jonas Bergare
- Early Chemical Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Magnus Schou
- PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Varrone
- Department of Clinical Neuroscience, Centre of Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Charles S Elmore
- Early Chemical Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
11
|
Wang XZ, Zhang HH, Qian YL, Tang LF. Sonic hedgehog (Shh) and CC chemokine ligand 2 signaling pathways in asthma. J Chin Med Assoc 2019; 82:343-350. [PMID: 31058710 DOI: 10.1097/jcma.0000000000000094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Asthma is a chronic inflammatory disease of the airways in which many cells are involved, including mast cells, eosinophils, T lymphocytes, and so on. During the process, many chemokines and mediators are released to engage in recruiting and activating eosinophils and other inflammatory cells. Also, some signaling pathways are involved in the pathobiology of asthma. Sonic hedgehog (Shh) is one of the members of hedgehog gene families. Shh signaling plays a critical role in the embryonic development, including the lung. Previous findings from our team reveal that Shh is involved in the asthma pathogenesis. Recombinant Shh could induce the CC chemokine ligand 2 (CCL2) overexpressing and Smo inhibitor GDC-O449 could inhibit CCL2 expression in airway epithelial cells, monocytes, or macrophages. Hence, we reviewed the effects of Shh and CCL2 signaling pathways, and the interaction between signaling pathways in asthma.
Collapse
Affiliation(s)
- Xiang-Zhi Wang
- Department of Pulmonology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hang-Hu Zhang
- Department of Pulmonology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Pediatrics, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Yu-Ling Qian
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lan-Fang Tang
- Department of Pulmonology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Chen K, Bao Z, Tang P, Gong W, Yoshimura T, Wang JM. Chemokines in homeostasis and diseases. Cell Mol Immunol 2018; 15:324-334. [PMID: 29375126 PMCID: PMC6052829 DOI: 10.1038/cmi.2017.134] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 12/19/2022] Open
Abstract
For the past twenty years, chemokines have emerged as a family of critical mediators of cell migration during immune surveillance, development, inflammation and cancer progression. Chemokines bind to seven transmembrane G protein-coupled receptors (GPCRs) that are expressed by a wide variety of cell types and cause conformational changes in trimeric G proteins that trigger the intracellular signaling pathways necessary for cell movement and activation. Although chemokines have evolved to benefit the host, inappropriate regulation or utilization of these small proteins may contribute to or even cause diseases. Therefore, understanding the role of chemokines and their GPCRs in the complex physiological and diseased microenvironment is important for the identification of novel therapeutic targets. This review introduces the functional array and signals of multiple chemokine GPCRs in guiding leukocyte trafficking as well as their roles in homeostasis, inflammation, immune responses and cancer.
Collapse
Affiliation(s)
- Keqiang Chen
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, 21702, Frederick, MD, USA
| | - Zhiyao Bao
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, 21702, Frederick, MD, USA
- Department of Pulmonary & Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, P. R. China
| | - Peng Tang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, 21702, Frederick, MD, USA
- Department of Breast Surgery, Southwest Hospital, Third Military Medical University, 400038, Chongqing, China
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc., 21702, Frederick, MD, USA
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 700-8558, Okayama, Japan
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, 21702, Frederick, MD, USA.
| |
Collapse
|
13
|
Liu C, Zhang X, Xiang Y, Qu X, Liu H, Liu C, Tan M, Jiang J, Qin X. Role of epithelial chemokines in the pathogenesis of airway inflammation in asthma (Review). Mol Med Rep 2018; 17:6935-6941. [PMID: 29568899 DOI: 10.3892/mmr.2018.8739] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/23/2018] [Indexed: 11/06/2022] Open
Abstract
As the first barrier to the outside environment, airway epithelial cells serve a central role in the initiation and development of airway inflammation. Chemokines are the most direct and immediate cell factors for the recruitment and migration of inflammatory cells. The present review focused on the role of epithelial chemokines in the pathogenesis of airway inflammation in asthma. In addition to traditional CC family chemokines and CXC family chemokines, airway epithelial cells also express other chemokines, including thymic stromal lymphopoietin and interleukin‑33. By expressing and secreting chemokines, airway epithelial cells serve a key role in orchestrating airway inflammation in asthma.
Collapse
Affiliation(s)
- Chi Liu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xun Zhang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yang Xiang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiangping Qu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Huijun Liu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Caixia Liu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Meiling Tan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Institute of Surgery Research, Third Military Medical University, Chongqing 400042, P.R. China
| | - Xiaoqun Qin
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
14
|
Draijer C, Peters-Golden M. Alveolar Macrophages in Allergic Asthma: the Forgotten Cell Awakes. Curr Allergy Asthma Rep 2017; 17:12. [PMID: 28233154 DOI: 10.1007/s11882-017-0681-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW The role of alveolar macrophages in innate immune responses has long been appreciated. Here, we review recent studies evaluating the participation of these cells in allergic inflammation. RECENT FINDINGS Immediately after allergen exposure, monocytes are rapidly recruited from the bloodstream and serve to promote acute inflammation. By contrast, resident alveolar macrophages play a predominantly suppressive role in an effort to restore homeostasis. As inflammation becomes established after repeated exposures, alveolar macrophages can polarize across a continuum of activation phenotypes, losing their suppressive functions and gaining pathogenic functions. Future research should focus on the diverse roles of monocytes/macrophages during various types and phases of allergic inflammation. These properties could lead us to new therapeutic opportunities.
Collapse
Affiliation(s)
- Christina Draijer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109-5642, USA
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109-5642, USA.
| |
Collapse
|
15
|
Lee YG, Jeong JJ, Nyenhuis S, Berdyshev E, Chung S, Ranjan R, Karpurapu M, Deng J, Qian F, Kelly EAB, Jarjour NN, Ackerman SJ, Natarajan V, Christman JW, Park GY. Recruited alveolar macrophages, in response to airway epithelial-derived monocyte chemoattractant protein 1/CCl2, regulate airway inflammation and remodeling in allergic asthma. Am J Respir Cell Mol Biol 2015; 52:772-84. [PMID: 25360868 DOI: 10.1165/rcmb.2014-0255oc] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Although alveolar macrophages (AMs) from patients with asthma are known to be functionally different from those of healthy individuals, the mechanism by which this transformation occurs has not been fully elucidated in asthma. The goal of this study was to define the mechanisms that control AM phenotypic and functional transformation in response to acute allergic airway inflammation. The phenotype and functional characteristics of AMs obtained from human subjects with asthma after subsegmental bronchoprovocation with allergen was studied. Using macrophage-depleted mice, the role and trafficking of AM populations was determined using an acute allergic lung inflammation model. We observed that depletion of AMs in a mouse allergic asthma model attenuates Th2-type allergic lung inflammation and its consequent airway remodeling. In both human and mouse, endobronchial challenge with allergen induced a marked increase in monocyte chemotactic proteins (MCPs) in bronchoalveolar fluid, concomitant with the rapid appearance of a monocyte-derived population of AMs. Furthermore, airway allergen challenge of allergic subjects with mild asthma skewed the pattern of AM gene expression toward high levels of the receptor for MCP1 (CCR2/MCP1R) and expression of M2 phenotypic proteins, whereas most proinflammatory genes were highly suppressed. CCL2/MCP-1 gene expression was prominent in bronchial epithelial cells in a mouse allergic asthma model, and in vitro studies indicate that bronchial epithelial cells produced abundant MCP-1 in response to house dust mite allergen. Thus, our study indicates that bronchial allergen challenge induces the recruitment of blood monocytes along a chemotactic gradient generated by allergen-exposed bronchial epithelial cells.
Collapse
Affiliation(s)
- Yong Gyu Lee
- 1 Section of Pulmonary, Allergy, Critical Care and Sleep Medicine, the Ohio State University, Columbus, Ohio
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang A, Wang Z, Cao Y, Cheng S, Chen H, Bunjhoo H, Xie J, Wang C, Xu Y, Xiong W. CCL2/CCR2-dependent recruitment of Th17 cells but not Tc17 cells to the lung in a murine asthma model. Int Arch Allergy Immunol 2015; 166:52-62. [PMID: 25765592 DOI: 10.1159/000371764] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/19/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Interleukin (IL)-17 has been implicated in the pathogenesis of asthma and the progression of airway inflammation. Here, we used a model of allergic asthma and found that the frequencies of IL-17-secreting T helper (Th)17 and CD8 (Tc)17 cells were both significantly increased, as was the expression of the CC chemokine receptor (CCR2) on the surface of these cells. CC chemokine ligand 2 (CCL2) has been shown to mediate the activation and recruitment of inflammatory cells in asthma, which are also skewed after ovalbumin (OVA) challenge. However, the role of CCL2 on Th17 cells and Tc17 cells in asthma has not been illuminated. METHODS Mice that were sensitized and challenged with OVA received anti-CCL2 antibody (Ab; 5 μg/day intratracheally) or CCR2 antagonist (RS504393, 2 mg/kg/day intraperitoneally) prior to the challenge. Some mice received an isotype control Ab or vehicle alone. We then assessed the effects of allergic asthma and anti-CCL2 Ab or CCR2 antagonist treatment on the levels of IL-17 and CCL2, the Th17 and Tc17 cell frequencies and lung tissue inflammation. RESULTS We demonstrated that CCL2 and IL-17 levels and the frequency of Th17 and Tc17 cells in lung tissues and bronchoalveolar lavage fluid increased in the asthma group compared with the normal control mice. Blocking the CCL2/CCR2 axis greatly reduced the Th17 but not the Tc17 cell frequency, and revealed a suppressive effect on airway inflammation. CONCLUSION These findings indicate a role for the CCL2/CCR2 axis in mediating Th17 but not Tc17 cell migration during acute allergic airway inflammation.
Collapse
Affiliation(s)
- Aili Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital and Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tomankova T, Kriegova E, Liu M. Chemokine receptors and their therapeutic opportunities in diseased lung: far beyond leukocyte trafficking. Am J Physiol Lung Cell Mol Physiol 2015; 308:L603-18. [PMID: 25637606 DOI: 10.1152/ajplung.00203.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/28/2015] [Indexed: 12/13/2022] Open
Abstract
Chemokine receptors and their chemokine ligands, key mediators of inflammatory and immune cell trafficking, are involved in the regulation of both physiological and pathological processes in the lung. The discovery that chemokine receptors/chemokines, typically expressed by inflammatory and immune cells, are also expressed in structural lung tissue cells suggests their role in mediating the restoration of lung tissue structure and functions. Thus, chemokine receptors/chemokines contribute not only to inflammatory and immune responses in the lung but also play a critical role in the regulation of lung tissue repair, regeneration, and remodeling. This review aims to summarize current state-of-the-art on chemokine receptors and their ligands in lung diseases such as chronic obstructive pulmonary disease, asthma/allergy, pulmonary fibrosis, acute lung injury, and lung infection. Furthermore, the therapeutic opportunities of chemokine receptors in aforementioned lung diseases are discussed. The review also aims to delineate the potential contribution of chemokine receptors to the processes leading to repair/regeneration of the lung tissue.
Collapse
Affiliation(s)
- Tereza Tomankova
- Faculty of Medicine and Dentistry, Department of Immunology, Palacky University Olomouc, Czech Republic; Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; and
| | - Eva Kriegova
- Faculty of Medicine and Dentistry, Department of Immunology, Palacky University Olomouc, Czech Republic
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; and Faculty of Medicine, Departments of Physiology, Surgery, and Medicine, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, Horuk R, Sparre-Ulrich AH, Locati M, Luster AD, Mantovani A, Matsushima K, Murphy PM, Nibbs R, Nomiyama H, Power CA, Proudfoot AEI, Rosenkilde MM, Rot A, Sozzani S, Thelen M, Yoshie O, Zlotnik A. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 2013; 66:1-79. [PMID: 24218476 PMCID: PMC3880466 DOI: 10.1124/pr.113.007724] [Citation(s) in RCA: 691] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145-176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human Genome Nomenclature Committee.
Collapse
Affiliation(s)
- Francoise Bachelerie
- Chair, Subcommittee on Chemokine Receptors, Nomenclature Committee-International Union of Pharmacology, Bldg. 10, Room 11N113, NIH, Bethesda, MD 20892.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang L, Jenkins TJ, Dai M, Yin W, Pulido JC, Lamantia-Martin E, Hodge MR, Ocain T, Kolbeck R. Antagonism of chemokine receptor CCR8 is ineffective in a primate model of asthma. Thorax 2013; 68:506-12. [PMID: 23457038 DOI: 10.1136/thoraxjnl-2012-203012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Expression of the T-cell-associated chemokine receptor CCR8 and its ligand CCL1 have been demonstrated to be elevated in patients with asthma. CCR8 deficiency or inhibition in models of allergic airway disease in mice resulted in conflicting data. OBJECTIVE To investigate the effects of a selective small molecule CCR8 inhibitor (ML604086) in a primate model of asthma. METHODS ML604086 and vehicle were administered by intravenous infusion to 12 cynomolgus monkeys during airway challenge with Ascaris suum. Samples were collected throughout the study to measure pharmacokinetics (PK) and systemic CCR8 inhibition, as well as inflammation, T helper 2 (Th2) cytokines and mucus in bronchoalveolar lavage (BAL). Airway resistance and compliance were measured before and after allergen challenge, and in response to increasing concentrations of methacholine. RESULTS ML604086 inhibited CCL1 binding to CCR8 on circulating T-cells>98% throughout the duration of the study. However, CCR8 inhibition had no significant effect on allergen-induced BAL eosinophilia and the induction of the Th2 cytokines IL-4, IL-5, IL-13 and mucus levels in BAL. Changes in airway resistance and compliance induced by allergen provocation and increasing concentrations of methacholine were also not affected by ML604086. CONCLUSIONS These results clearly demonstrate a dispensable role for CCR8 in ameliorating allergic airway disease in atopic primates, and suggest that strategies other than CCR8 antagonism should be considered for the treatment of asthma.
Collapse
Affiliation(s)
- Lin Wang
- Department of Cellular Immunology and Pharmacology, Millennium Pharmaceuticals Inc., Cambridge, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Schneider D, Hong JY, Bowman ER, Chung Y, Nagarkar DR, McHenry CL, Goldsmith AM, Bentley JK, Lewis TC, Hershenson MB. Macrophage/epithelial cell CCL2 contributes to rhinovirus-induced hyperresponsiveness and inflammation in a mouse model of allergic airways disease. Am J Physiol Lung Cell Mol Physiol 2012. [PMID: 23204071 DOI: 10.1152/ajplung.00182.2012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human rhinovirus (HRV) infections lead to exacerbations of lower airways disease in asthmatic patients but not in healthy individuals. However, underlying mechanisms remain to be completely elucidated. We hypothesized that the Th2-driven allergic environment enhances HRV-induced CC chemokine production, leading to asthma exacerbations. Ovalbumin (OVA)-sensitized and -challenged mice inoculated with HRV showed significant increases in the expression of lung CC chemokine ligand (CCL)-2/monocyte chemotactic protein (MCP)-1, CCL4/macrophage inflammatory protein (MIP)-1β, CCL7/MCP-3, CCL19/MIP-3β, and CCL20/MIP3α compared with mice treated with OVA alone. Inhibition of CCL2 with neutralizing antibody significantly attenuated HRV-induced airways inflammation and hyperresponsiveness in OVA-treated mice. Immunohistochemical stains showed colocalization of CCL2 with HRV in epithelial cells and CD68-positive macrophages, and flow cytometry showed increased CCL2(+), CD11b(+) cells in the lungs of OVA-treated, HRV-infected mice. Compared with lung macrophages from naïve mice, macrophages from OVA-exposed mice expressed significantly more CCL2 in response to HRV infection ex vivo. Pretreatment of mouse lung macrophages and BEAS-2B human bronchial epithelial cells with interleukin (IL)-4 and IL-13 increased HRV-induced CCL2 expression, and mouse lung macrophages from IL-4 receptor knockout mice showed reduced CCL2 expression in response to HRV, suggesting that exposure to these Th2 cytokines plays a role in the altered HRV response. Finally, bronchoalveolar macrophages from children with asthma elaborated more CCL2 upon ex vivo exposure to HRV than cells from nonasthmatic patients. We conclude that CCL2 production by epithelial cells and macrophages contributes to HRV-induced airway hyperresponsiveness and inflammation in a mouse model of allergic airways disease and may play a role in HRV-induced asthma exacerbations.
Collapse
Affiliation(s)
- Dina Schneider
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
HOU CUIFEN, SUI ZHIHUA. CCR2 Antagonists for the Treatment of Diseases Associated with Inflammation. ANTI-INFLAMMATORY DRUG DISCOVERY 2012. [DOI: 10.1039/9781849735346-00350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The CCR2 and MCP-1 pathway has become one of the most-studied chemokine systems for therapeutic use in inflammatory diseases and conditions. It plays a pivotal role in inflammatory diseases, especially those that are characterized by monocyte-rich infiltration. This chapter reviews the biology of CCR2 and MCP-1, and their roles in diseases and conditions related to inflammation such as rheumatoid arthritis, multiple sclerosis, asthma, obesity, type 2 diabetes, atherosclerosis, nephropathy, cancer, pulmonary fibrosis and pain. Intense drug-discovery efforts over the past 15 years have generated a large number of CCR2 antagonists in diverse structural classes. Mutagenesis studies have elucidated important residues on CCR2 that interact with many classes of these CCR2 antagonists. To facilitate understanding of CCR2 antagonist SAR, a simple pharmacophore model is used to summarize the large number of diverse chemical structures. The majority of published compounds are classified based on their central core structures using this model. Key SAR points in the published literature are briefly discussed for most of the series. Lead compounds in each chemical series are highlighted where information is available. The challenges in drug discovery and development of CCR2 antagonists are briefly discussed. Clinical candidates in various diseases in the public domain are summarized with a brief discussion about the clinical challenges.
Collapse
Affiliation(s)
- CUIFEN HOU
- Johnson & Johnson Pharmaceutical Research and Development Welsh and McKean Roads, Spring House, PA 19477 USA
| | - ZHIHUA SUI
- Johnson & Johnson Pharmaceutical Research and Development Welsh and McKean Roads, Spring House, PA 19477 USA
| |
Collapse
|
22
|
Mellado M, Martínez-A C, Rodríguez-Frade JM. Drug testing in cellular chemotaxis assays. ACTA ACUST UNITED AC 2012; Chapter 12:Unit 12.11. [PMID: 22294218 DOI: 10.1002/0471141755.ph1211s41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Described in this unit are methods for measuring the cell migration process. While cell adhesion protocols allow study of migrating cell interactions with the endothelial matrix, cellular migration assays permit analysis of directed cell movement towards a chemotactic gradient, both in vivo and in vitro. An in vitro cell invasion protocol is provided for analysis of the sum of the cell adhesion, migration, and invasion activities involved in tumor cell motility.
Collapse
Affiliation(s)
- Mario Mellado
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | | | | |
Collapse
|
23
|
Abstract
The directed migration of cells in response to chemical cues is known as chemoattraction, and plays a key role in the temporal and spatial positioning of cells in lower- and higher-order life forms. Key molecules in this process are the chemotactic cytokines, or chemokines, which, in humans, constitute a family of approx. 40 molecules. Chemokines exert their effects by binding to specific GPCRs (G-protein-coupled receptors) which are present on a wide variety of mature cells and their progenitors, notably leucocytes. The inappropriate or excessive generation of chemokines is a key component of the inflammatory response observed in several clinically important diseases, notably allergic diseases such as asthma. Consequently, much time and effort has been directed towards understanding which chemokine receptors and ligands are important in the allergic response with a view to therapeutic intervention. Such strategies can take several forms, although, as the superfamily of GPCRs has historically proved amenable to blockade by small molecules, the development of specific antagonists has been has been a major focus of several groups. In the present review, I detail the roles of chemokines and their receptors in allergic disease and also highlight current progress in the development of relevant chemokine receptor antagonists.
Collapse
|
24
|
Pasternak A, Goble SD, Struthers M, Vicario PP, Ayala JM, Di Salvo J, Kilburn R, Wisniewski T, DeMartino JA, Mills SG, Yang L. Discovery of a Potent and Orally Bioavailable CCR2 and CCR5 Dual Antagonist. ACS Med Chem Lett 2009. [DOI: 10.1021/ml900009d] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
| | | | | | | | | | | | - Ruth Kilburn
- Merck Research Laboratories, Rahway, New Jersey 07065
| | | | | | | | - Lihu Yang
- Merck Research Laboratories, Rahway, New Jersey 07065
| |
Collapse
|
25
|
Shin N, Baribaud F, Wang K, Yang G, Wynn R, Covington MB, Feldman P, Gallagher KB, Leffet LM, Lo YY, Wang A, Xue CB, Newton RC, Scherle PA. Pharmacological characterization of INCB3344, a small molecule antagonist of human CCR2. Biochem Biophys Res Commun 2009; 387:251-5. [DOI: 10.1016/j.bbrc.2009.06.135] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 06/29/2009] [Indexed: 10/20/2022]
|
26
|
Batra J, Ghosh B. Genetic contribution of chemokine receptor 2 (CCR2) polymorphisms towards increased serum total IgE levels in Indian asthmatics. Genomics 2009; 94:161-8. [PMID: 19520154 DOI: 10.1016/j.ygeno.2009.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 05/20/2009] [Accepted: 05/31/2009] [Indexed: 11/30/2022]
Abstract
The chemokine (C-C motif) receptors (CCR) 2 and 5 are members of a large family of G protein-coupled receptors, playing important roles in asthma pathogenesis. Using standard sequencing techniques, a total of 15 single nucleotide and 8 insertion/deletion polymorphisms (DIPs) (5 novels) were identified in and around these two genes. None of the studied polymorphisms (N=7, selected on the basis on linkage disequilibrium) was associated with asthma in a case (N=315) - control (N=337) study and showed no evidence for non-random transmission to individuals with asthma/atopy in Indian pedigrees (n=235). However, multilocus haplotype analysis based on simulations yielded a P=0.00005 in the case-control study and a P=0.03 for the family-based association studies. Furthermore, rs3918356 and rs743660 polymorphisms in CCR2 were found to be associated with total serum IgE levels in both the study designs. Thus, our study supports a significant role for chemokine receptor polymorphisms in genetic susceptibility to asthma.
Collapse
Affiliation(s)
- Jyotsna Batra
- Institute of Genomics and Integrative Biology, Delhi, India.
| | | |
Collapse
|
27
|
Camateros P, Kanagaratham C, Henri J, Sladek R, Hudson TJ, Radzioch D. Modulation of the allergic asthma transcriptome following resiquimod treatment. Physiol Genomics 2009; 38:303-18. [PMID: 19491150 DOI: 10.1152/physiolgenomics.00057.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Resiquimod is a compound belonging to the imidazoquinoline family of compounds known to signal through Toll-like receptor 7. Resiquimod treatment has been demonstrated to inhibit the development of allergen induced asthma in experimental models. The aim of the present study was to elucidate the molecular processes that were altered following resiquimod treatment and allergen challenge in a mouse model of allergic asthma. Employing microarray analysis, we have characterized the "asthmatic" transcriptome of the lungs of A/J and C57BL/6 mice and determined that it includes genes involved in the control of cell cycle progression, the complement and coagulation cascades, and chemokine signaling. Our results demonstrated that resiquimod treatment resulted in the normalization of the expression of genes involved with airway remodeling, and generally, chemokine signaling. Resiquimod treatment also altered the expression of cell adhesion molecules, and molecules involved in natural killer (NK) cell-mediated cytotoxicity. Furthermore, we have demonstrated that systemic resiquimod administration resulted in the recruitment of NK cells to the lungs and livers of the mice, although no causal relationship between NK cell recruitment and treatment efficacy was found. Overall, our findings identified several genes, important in the development of asthma pathology, that were normalized following resiquimod treatment, thus improving our understanding of the molecular consequences of resiquimod treatment in the lung milieu. The recruitment of NK cells to the lungs may also have application in the treatment of virally induced asthma exacerbations.
Collapse
Affiliation(s)
- Pierre Camateros
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec
| | | | | | | | | | | |
Collapse
|
28
|
Current Opinion in Pulmonary Medicine. Current world literature. Curr Opin Pulm Med 2009; 15:79-87. [PMID: 19077710 DOI: 10.1097/mcp.0b013e32831fb1f3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Buntinx M, Hermans B, Goossens J, Moechars D, Gilissen RAHJ, Doyon J, Boeckx S, Coesemans E, Van Lommen G, Van Wauwe JP. Pharmacological profile of JNJ-27141491 [(S)-3-[3,4-difluorophenyl)-propyl]-5-isoxazol-5-yl-2-thioxo-2,3-dihydro-1H-imidazole-4-carboxyl acid methyl ester], as a noncompetitive and orally active antagonist of the human chemokine receptor CCR2. J Pharmacol Exp Ther 2008; 327:1-9. [PMID: 18599682 DOI: 10.1124/jpet.108.140723] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
The interaction between CC chemokine receptor 2 (CCR2) with monocyte chemoattractant proteins, such as MCP-1, regulates the activation and recruitment of inflammatory leukocytes. In this study, we characterized (S)-3-[3,4-difluoro-phenyl)-propyl]-5-isoxazol-5-yl-2-thioxo-2,3-dihydro-1H-imidazole-4-carboxyl acid methyl ester (JNJ-27141491) as a noncompetitive and orally active functional antagonist of human (h)CCR2. JNJ-27141491 strongly suppressed hCCR2-mediated in vitro functions, such as MCP-1-induced guanosine 5'-O-(3-[(35)S]thio)triphosphate binding; MCP-1, -3, and -4-induced Ca(2+) mobilization; and leukocyte chemotaxis toward MCP-1 (IC(50) = 7-97 nM), whereas it had little or no effect on the function of other chemokine receptors tested. The inhibition of CCR2 function was both insurmountable and reversible, consistent with a noncompetitive mode of action. JNJ-27141491 blocked the binding of (125)I-MCP-1 to human monocytes (IC(50) = 0.4 microM), but it failed to affect MCP-1 binding to mouse, rat, and dog cells (IC(50) > 10 microM). Therefore, transgenic mice, in which the mouse (m)CCR2 gene was replaced by the human counterpart, were generated for in vivo testing. In these mice, oral administration of JNJ-27141491 dose-dependently [5-40 mg/kg q.d. (once daily) or b.i.d.] inhibited monocyte and neutrophil recruitment to the alveolar space 48 h after intratracheal mMCP-1/lipopolysaccharide instillation. Furthermore, treatment with JNJ-27141491 (20 mg/kg q.d.) significantly delayed the onset and temporarily reduced neurological signs in an experimental autoimmune encephalomyelitis model of multiple sclerosis. Taken together, these results identify JNJ-27141491 as a noncompetitive, functional antagonist of hCCR2, capable of exerting oral anti-inflammatory activity in transgenic hCCR2-expressing mice.
Collapse
Affiliation(s)
- Mieke Buntinx
- Johnson & Johnson Pharmaceutical Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chelbi H, Ghadiri A, Lacheb J, Ghandil P, Hamzaoui K, Hamzaoui A, Combadiere C. A polymorphism in the CCL2 chemokine gene is associated with asthma risk: a case-control and a family study in Tunisia. Genes Immun 2008; 9:575-81. [PMID: 18615095 DOI: 10.1038/gene.2008.50] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Asthma is a complex genetic disorder characterized by chronic airway inflammation. We hypothesized that genetic polymorphisms in chemokines and their receptors alter leukocyte mobilization and may thus influence the risk and severity of childhood asthma. Distributions of the chemokine CCL2-2578G, CCL2-927C, CCR2-V64I, CX3CR1-V249I and CX3CR1-T280M receptor polymorphisms were examined in a case-control study of 121 children with asthma and 226 age-matched healthy controls and then replicated in a family study of 99 simplex families (297 individuals). The case-control study revealed that the CCL2-2578G allele was less frequent in children with than in those without asthma (P=0.0012). No association with asthma was found for the CCL2-927, CCR2 or CX3CR1 polymorphisms. The finding in the family study that the CCL2-2578G allele was transmitted less often by heterozygous parents to their children with asthma (P=0.0016) confirms the association of CCL2-2578G with asthma risk. Biochemical studies indicated that plasma CCL2 concentrations were higher in both patients (P=0.0214) and controls (P=0.001) carrying the G allele than in subjects with other polymorphisms. Both case-control and family-based studies suggest a protective effect of allele CCL2-2578G in Tunisian asthmatic children.
Collapse
Affiliation(s)
- H Chelbi
- Homeostasis and Cell Dysfunction Unit Research 99/UR/08-40, Medical University of Tunis, Tunis, Tunisia
| | | | | | | | | | | | | |
Collapse
|
31
|
Cheraim AB, Xavier-Elsas P, de Oliveira SHP, Batistella T, Russo M, Gaspar-Elsas MI, Cunha FQ. Leukotriene B4 is essential for selective eosinophil recruitment following allergen challenge of CD4+ cells in a model of chronic eosinophilic inflammation. Life Sci 2008; 83:214-22. [PMID: 18601933 DOI: 10.1016/j.lfs.2008.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 05/22/2008] [Accepted: 06/06/2008] [Indexed: 12/22/2022]
Abstract
Subcutaneous heat-coagulated egg white implants (EWI) induce chronic, intense local eosinophilia in mice, followed by asthma-like responses to airway ovalbumin challenge. Our goal was to define the mechanisms of selective eosinophil accumulation in the EWI model. EWI carriers were challenged i.p. with ovalbumin and the contributions of cellular immunity and inflammatory mediators to the resulting leukocyte accumulation were defined through cell transfer and pharmacological inhibition protocols. Eosinophil recruitment required Major Histocompatibility Complex Class II expression, and was abolished by the leukotriene B4 (LTB4) receptor antagonist CP 105.696, the 5-lipoxygenase inhibitor BWA4C and the 5-lipoxygenase activating protein inhibitor MK886. Eosinophil recruitment in EWI carriers followed transfer of: a) CD4+ (but not CD4-) cells, harvested from EWI donors and restimulated ex vivo; b) their cell-free supernatants, containing LTB4. Restimulation in the presence of MK886 was ineffective. CC chemokine receptor ligand (CCL)5 and CCL2 were induced by ovalbumin challenge in vivo. mRNA for CCL17 and CCL11 was induced in ovalbumin-restimulated CD4+ cells ex vivo. MK886 blocked induction of CCL17. Pretreatment of EWI carriers with MK886 eliminated the effectiveness of exogenously administered CCL11, CCL2 and CCL5. In conclusion, chemokine-producing, ovalbumin-restimulated CD4+ cells initiate eosinophil recruitment which is strictly dependent on LTB4 production.
Collapse
|
32
|
Mechanisms in allergic airway inflammation - lessons from studies in the mouse. Expert Rev Mol Med 2008; 10:e15. [PMID: 18503727 DOI: 10.1017/s1462399408000707] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Asthma is a chronic inflammatory disease of the airways, involving recurrent episodes of airway obstruction and wheezing. A common pathological feature in asthma is the presence of a characteristic allergic airway inflammatory response involving extensive leukocyte infiltration, mucus overproduction and airway hyper-reactivity. The pathogenesis of allergic airway inflammation is complex, involving multiple cell types such as T helper 2 cells, regulatory T cells, eosinophils, dendritic cells, mast cells, and parenchymal cells of the lung. The cellular response in allergic airway inflammation is controlled by a broad range of bioactive mediators, including IgE, cytokines and chemokines. The asthmatic allergic inflammatory response has been a particular focus of efforts to develop novel therapeutic agents. Animal models are widely used to investigate inflammatory mechanisms. Although these models are not perfect replicas of clinical asthma, such studies have led to the development of numerous novel therapeutic agents, of which some have already been successful in clinical trials.
Collapse
|