1
|
Pham AC, Holstein SA, Borgstahl GE. Structural Insight into Geranylgeranyl Diphosphate Synthase (GGDPS) for Cancer Therapy. Mol Cancer Ther 2024; 23:14-23. [PMID: 37756579 PMCID: PMC10762340 DOI: 10.1158/1535-7163.mct-23-0358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/09/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Geranylgeranyl diphosphate synthase (GGDPS), the source of the isoprenoid donor in protein geranylgeranylation reactions, has become an attractive target for anticancer therapy due to the reliance of cancers on geranylgeranylated proteins. Current GGDPS inhibitor development focuses on optimizing the drug-target enzyme interactions of nitrogen-containing bisphosphonate-based drugs. To advance GGDPS inhibitor development, understanding the enzyme structure, active site, and ligand/product interactions is essential. Here we provide a comprehensive structure-focused review of GGDPS. We reviewed available yeast and human GGDPS structures and then used AlphaFold modeling to complete unsolved structural aspects of these models. We delineate the elements of higher-order structure formation, product-substrate binding, the electrostatic surface, and small-molecule inhibitor binding. With the rise of structure-based drug design, the information provided here will serve as a valuable tool for rationally optimizing inhibitor selectivity and effectiveness.
Collapse
Affiliation(s)
- Andrew C. Pham
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sarah A. Holstein
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Gloria E.O. Borgstahl
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
2
|
Haney SL, Varney ML, Chhonker Y, Talmon G, Smith LM, Murry DJ, Holstein SA. In vivo evaluation of combination therapy targeting the isoprenoid biosynthetic pathway. Pharmacol Res 2021; 167:105528. [PMID: 33667685 DOI: 10.1016/j.phrs.2021.105528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
Geranylgeranyl diphosphate synthase (GGDPS), an enzyme in the isoprenoid biosynthetic pathway (IBP), produces the isoprenoid (geranylgeranyl pyrophosphate, GGPP) used in protein geranylgeranylation reactions. Our prior studies utilizing triazole bisphosphonate-based GGDPS inhibitors (GGSIs) have revealed that these agents represent a novel strategy by which to induce cancer cell death, including multiple myeloma and pancreatic cancer. Statins inhibit the rate-limiting enzyme in the IBP and potentiate the effects of GGSIs in vitro. The in vivo effects of combination therapy with statins and GGSIs have not been determined. Here we evaluated the effects of combining VSW1198, a novel GGSI, with a statin (lovastatin or pravastatin) in CD-1 mice. Twice-weekly dosing with VSW1198 at the previously established maximally tolerated dose in combination with a statin led to hepatotoxicity, while once-weekly VSW1198-based combinations were feasible. No abnormalities in kidney, spleen, brain or skeletal muscle were observed with combination therapy. Combination therapy disrupted protein geranylgeranylation in vivo. Evaluation of hepatic isoprenoid levels revealed decreased GGPP levels in the single drug groups and undetectable GGPP levels in the combination groups. Additional studies with combinations using 50% dose-reductions of either VSW1198 or lovastatin revealed minimal hepatotoxicity with expected on-target effects of diminished GGPP levels and disruption of protein geranylgeranylation. Combination statin/GGSI therapy significantly slowed tumor growth in a myeloma xenograft model. Collectively, these studies are the first to demonstrate that combination IBP inhibitor therapy alters isoprenoid levels and disrupts protein geranylgeranylation in vivo as well as slows tumor growth in a myeloma xenograft model, thus providing the framework for future clinical exploration.
Collapse
Affiliation(s)
- Staci L Haney
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michelle L Varney
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yashpal Chhonker
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Geoffrey Talmon
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Lynette M Smith
- College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Daryl J Murry
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sarah A Holstein
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
3
|
Regulation of the Notch-ATM-abl axis by geranylgeranyl diphosphate synthase inhibition. Cell Death Dis 2019; 10:733. [PMID: 31570763 PMCID: PMC6768865 DOI: 10.1038/s41419-019-1973-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/21/2022]
Abstract
Notch proteins drive oncogenesis of many cancers, most prominently T-cell acute lymphoblastic leukemia (T-ALL). Because geranylgeranylated Rab proteins regulate Notch processing, we hypothesized that inhibition of geranylgeranyl diphosphate synthase (GGDPS) would impair Notch processing and reduce viability of T-ALL cells that express Notch. Here, we show that GGDPS inhibition reduces Notch1 expression and impairs the proliferation of T-ALL cells. GGDPS inhibition also reduces Rab7 membrane association and depletes Notch1 mRNA. GGDPS inhibition increases phosphorylation of histone H2A.X, and inhibitors of ataxia telangiectasia-mutated kinase (ATM) mitigate GGDPS inhibitor-induced apoptosis. GGDPS inhibition also influences c-abl activity downstream of caspases, and inhibitors of these enzymes prevent GGDPS inhibitor-induced apoptosis. Surprisingly, induction of apoptosis by GGDPS inhibition is reduced by co-treatment with γ-secretase inhibitors. While inhibitors of γ-secretase deplete one specific form of the Notch1 intracellular domain (NICD), they also increase Notch1 mRNA expression and increase alternate forms of Notch1 protein expression in cells treated with a GGDPS inhibitor. Furthermore, inhibitors of γ-secretase and ATM increase Notch1 mRNA stability independent of GGDPS inhibition. These results provide a model by which T-ALL cells use Notch1 to avoid DNA-damage-induced apoptosis, and can be overcome by inhibition of GGDPS through effects on Notch1 expression and its subsequent response.
Collapse
|
4
|
Abstract
Leukemia is a common hematological malignancy with overall poor prognosis. Novel therapies are needed to improve the outcome of leukemia patients. Cholesterol metabolism reprogramming is a featured alteration in leukemia. Many metabolic-related genes and metabolites are essential to the progress and drug resistance of leukemia. Exploring potential therapeutical targets related to cholesterol homeostasis is a promising area. This review summarized the functions of cholesterol and its derived intermediate metabolites, and also discussed potential agents targeting this metabolic vulnerability in leukemia.
Collapse
|
5
|
CIUBEAN AD, IRSAY L, UNGUR RA, CIORTEA VM, BORDA IM, DOGARU 1, BG, TRIFA AP, BUZOIANU AD. Association between polymorphisms in GGPS1 and RANKL genes and postmenopausal osteoporosis in Romanian women. BALNEO RESEARCH JOURNAL 2019. [DOI: 10.12680/balneo.2019.265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives: This study aimed to assess the relationship between bone mineral density, fragility fractures, fracture risk and polymorphisms of two osteoporosis-candidate genes (GGPS1 and RANKL) in Romanian women with postmenopausal osteoporosis.
Methods: An analytical, prospective, transversal, observational, case-control study on 364 postmenopausal women, of which 228 were previously diagnosed with osteoporosis, was carried out between June 2016 and August 2017 in Cluj Napoca, Romania. Clinical data and blood samples were collected from all study participants. Polymorphisms in GGPS1 and RANKL genes were genotyped using TaqMan SNP Genotyping assays, run on a QuantStudio 3 real-time PCR machine.
Results: The CT genotype in GGPS1 rs10925503 was associated with significant lower bone mineral density values at lumbar spine and femoral neck sites and a higher fracture risk compared to controls. No significant association was found between genotypes of RANKL rs2277439 with bone mineral density or fracture risk compared to the healthy controls.
Conclusions: Our study showed a strong association between low bone mineral density and genotype CT of GGPS1 rs10925503 polymorphisms. No association was found for RANKL rs2277439 polymorphism.
Collapse
Affiliation(s)
- Alina Deniza CIUBEAN
- University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Laszlo IRSAY
- University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Rodica Ana UNGUR
- University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Viorela Mihaela CIORTEA
- University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Ileana Monica BORDA
- University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Bombonica Gabriela DOGARU 1,
- University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Adrian Pavel TRIFA
- University of Medicine and Pharmacy“ Iuliu Hațieganu”, Department of Genetics, Cluj-Napoca, Romania
| | - Anca Dana BUZOIANU
- University of Medicine and Pharmacy“ Iuliu Hațieganu”, Department of Pharmacology, Toxicology and Clinical Pharmacology, Cluj-Napoca, Romania
| |
Collapse
|
6
|
Screening a library of approved drugs reveals that prednisolone synergizes with pitavastatin to induce ovarian cancer cell death. Sci Rep 2019; 9:9632. [PMID: 31270377 PMCID: PMC6610640 DOI: 10.1038/s41598-019-46102-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 06/24/2019] [Indexed: 12/22/2022] Open
Abstract
The survival rate for patients with ovarian cancer has changed little in the past three decades since the introduction of platinum-based chemotherapy and new drugs are needed. Statins are drugs used for the treatment and prevention of cardiovascular diseases. Recent work from our laboratory has shown that pitavastatin has potential as a treatment for ovarian cancer if dietary geranylgeraniol is controlled. However, relatively high doses of statins are required to induce apoptosis in cancer cells, increasing the risk of myopathy, the most common adverse effect associated with statins. This makes it desirable to identify drugs which reduce the dose of pitavastatin necessary to treat cancer. A drug-repositioning strategy was employed to identify suitable candidates. Screening a custom library of 100 off-patent drugs for synergistic activity with pitavastatin identified prednisolone as the most prominent hit. Prednisolone potentiated the activity of pitavastatin in several assays measuring the growth, survival or apoptosis in several ovarian cancer cells lines. Prednisolone, alone or in some cases in combination with pitavastatin, reduced the expression of genes encoding enzymes in the mevalonate pathway, providing a mechanistic explanation for the synergy.
Collapse
|
7
|
Weissenrieder JS, Reilly JE, Neighbors JD, Hohl RJ. Inhibiting geranylgeranyl diphosphate synthesis reduces nuclear androgen receptor signaling and neuroendocrine differentiation in prostate cancer cell models. Prostate 2019; 79:21-30. [PMID: 30106164 DOI: 10.1002/pros.23707] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/23/2018] [Indexed: 11/09/2022]
Abstract
BACKGROUND Following androgen deprivation for the treatment of advanced adenocarcinoma of the prostate, tumors can progress to neuroendocrine prostate cancer (NEPC). This transdifferentiation process is poorly understood, but trafficking of transcriptional factors and/or cytoskeletal rearrangements may be involved. We observed the role of geranylgeranylation in this process by treatment with digeranyl bisphosphonate (DGBP), a selective inhibitor of geranylgeranyl pyrophosphate synthase which blocks the prenylation of small GTPases such as Rho and Rab family proteins, including Cdc42 and Rac1. METHODS We examined the therapeutic potential of DGBP in LNCaP, C4-2B4, and 22Rv1 cell culture models. Cell morphology and protein expression were quantified to observe the development of the neuroendocrine phenotype in androgen-deprivation and abiraterone-treated LNCaP models of NEPC development. Luciferase reporter assays were utilized to examine AR activity, and immunofluorescence visualized the localization of AR within the cell. RESULTS Essential genes in the isoprenoid pathway, such as HMGCR, MVK, GGPS1, and GGT1, were highly expressed in a subset of castration resistant prostate cancers reported by Beltran et al. Under treatment with DGBP, nuclear localization of AR decreased in LNCaP, 22Rv1, and C4-2B4 cell lines, luciferase reporter activity was reduced in LNCaP and 22Rv1, and AR target gene transcription also decreased in LNCaP. Conversely, nuclear localization of AR was enhanced by the addition of GGOH. Finally, induction of the NEPC structural and molecular phenotype via androgen deprivation in LNCaP cells was inhibited by DGBP in a GGOH-dependent manner. CONCLUSIONS DGBP is a novel compound with the potential to reduce AR transcriptional activity and inhibit PCa progression to NEPC phenotype. These results suggest that DGBP may be used to block cell growth and metastasis in both hormone therapy sensitive and resistant paradigms.
Collapse
Affiliation(s)
- Jillian S Weissenrieder
- Departments of Medicine and Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | | | - Jeffrey D Neighbors
- Department of Pharmacology and Medicine Penn State College of Medicine, Hershey, Pennsylvania
| | - Raymond J Hohl
- Departments of Medicine and Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
8
|
Joachimiak Ł, Marchwicka A, Gendaszewska-Darmach E, Błażewska KM. Synthesis and Biological Evaluation of Imidazole-Bearing α-Phosphonocarboxylates as Inhibitors of Rab Geranylgeranyl Transferase (RGGT). ChemMedChem 2018; 13:842-851. [PMID: 29498238 DOI: 10.1002/cmdc.201700791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/06/2018] [Indexed: 01/02/2023]
Abstract
Rab geranylgeranyl transferase (RGGT) is an interesting therapeutic target, as it ensures proper functioning of Rab GTPases, a class of enzymes responsible for the regulation of vesicle trafficking. Relying on our previous studies, we synthesized a set of new α-phosphonocarboxylic acids as potential RGGT inhibitors, with emphasis on the elaboration of imidazole-containing analogues. We identified two compounds with activity similar to that of previously reported RGGT inhibitors, showing structural similarity to imidazo[1,2-a]pyridine-containing analogues in terms of their substitution pattern. Interestingly, analogues of the N-series, derived from another phosphonocarboxylate RGGT inhibitor, 2-fluoro-3-(1H-imidazol-1-yl)-2-phosphonopropanoic acid, turned out to be inactive in our model, indicating that an additional substituent localized at positions C2 or C4 of the imidazole ring, may adversely affect the potency against the targeted enzyme.
Collapse
Affiliation(s)
- Łukasz Joachimiak
- Faculty of Chemistry, Lodz University of Technology, Institute of Organic Chemistry, Żeromskiego Str. 116, 90-924, Łódź, Poland
| | - Aleksandra Marchwicka
- Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Institute of Technical Biochemistry, Stefanowskiego Str. 4/10, 90-924, Łódź, Poland
| | - Edyta Gendaszewska-Darmach
- Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Institute of Technical Biochemistry, Stefanowskiego Str. 4/10, 90-924, Łódź, Poland
| | - Katarzyna M Błażewska
- Faculty of Chemistry, Lodz University of Technology, Institute of Organic Chemistry, Żeromskiego Str. 116, 90-924, Łódź, Poland
| |
Collapse
|
9
|
Gbelcová H, Rimpelová S, Knejzlík Z, Šáchová J, Kolář M, Strnad H, Repiská V, D'Acunto WC, Ruml T, Vítek L. Isoprenoids responsible for protein prenylation modulate the biological effects of statins on pancreatic cancer cells. Lipids Health Dis 2017; 16:250. [PMID: 29262834 PMCID: PMC5738693 DOI: 10.1186/s12944-017-0641-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/05/2017] [Indexed: 01/08/2023] Open
Abstract
Background Statin treatment of hypercholesterolemia is accompanied also with depletion of the mevalonate intermediates, including farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) necessary for proper function of small GTPases. These include Ras proteins, prevalently mutated in pancreatic cancer. In our study, we evaluated the effect of three key intermediates of the mevalonate pathway on GFP-K-Ras protein localization and the gene expression profile in pancreatic cancer cells after exposure to individual statins. Methods These effects were tested on MiaPaCa-2 human pancreatic cancer cells carrying a K-Ras activating mutation (G12C) after exposure to individual statins (20 μM). The effect of statins (atorvastatin, lovastatin, simvastatin, fluvastatin, cerivastatin, rosuvastatin, and pitavastatin) and mevalonate intermediates on GFP-K-Ras protein translocation was analyzed using fluorescence microscopy. The changes in gene expression induced in MiaPaCa-2 cells treated with simvastatin, FPP, GGPP, and their combinations with simvastatin were examined by whole genome DNA microarray analysis. Results All tested statins efficiently inhibited K-Ras protein trafficking from cytoplasm to the cell membrane of the MiaPaCa-2 cells. The inhibitory effect of statins on GFP-K-Ras protein trafficking was partially prevented by addition of any of the mevalonate pathway’s intermediates tested. Expressions of genes involved in metabolic and signaling pathways modulated by simvastatin treatment was normalized by the concurrent addition of FPP or GGPP. K-Ras protein trafficking within the pancreatic cancer cells is effectively inhibited by the majority of statins; the inhibition is eliminated by isoprenoid intermediates of the mevalonate pathway. Conclusions Our data indicate that the anticancer effects of statins observed in numerous studies to a large extent are mediated through isoprenoid intermediates of the mevalonate pathway, as they influence expression of genes involved in multiple intracellular pathways. Electronic supplementary material The online version of this article (10.1186/s12944-017-0641-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helena Gbelcová
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Zdeněk Knejzlík
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Jana Šáchová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Hynek Strnad
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Vanda Repiská
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Walter Cosimo D'Acunto
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic.
| | - Libor Vítek
- Institute of Medical Biochemistry and Laboratory Diagnostics, and 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
10
|
Kaźmierczak A, Kusy D, Niinivehmas SP, Gmach J, Joachimiak Ł, Pentikäinen OT, Gendaszewska-Darmach E, Błażewska KM. Identification of the Privileged Position in the Imidazo[1,2-a]pyridine Ring of Phosphonocarboxylates for Development of Rab Geranylgeranyl Transferase (RGGT) Inhibitors. J Med Chem 2017; 60:8781-8800. [PMID: 28953373 DOI: 10.1021/acs.jmedchem.7b00811] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Members of the Rab GTPase family are master regulators of vesicle trafficking. When disregulated, they are associated with a number of pathological states. The inhibition of RGGT, an enzyme responsible for post-translational geranylgeranylation of Rab GTPases represents one way to control the activity of these proteins. Because the number of molecules modulating RGGT is limited, we combined molecular modeling with biological assays to ascertain how modifications of phosphonocarboxylates, the first reported RGGT inhibitors, rationally improve understanding of their structure-activity relationship. We have identified the privileged position in the core scaffold of the imidazo[1,2-a]pyridine ring, which can be modified without compromising compounds' potency. Thus modified compounds are micromolar inhibitors of Rab11A prenylation, simultaneously being inactive against Rap1A/Rap1B modification, with the ability to inhibit proliferation of the HeLa cancer cell line. These findings were rationalized by molecular docking, which recognized interaction of phosphonic and carboxylic groups as decisive in phosphonocarboxylate localization in the RGGT binding site.
Collapse
Affiliation(s)
- Aleksandra Kaźmierczak
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology , Stefanowskiego Street 4/10, 90-924 Łódź, Poland
| | - Damian Kusy
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology , Żeromskiego Street 116, 90-924 Łódź, Poland
| | - Sanna P Niinivehmas
- Department of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä , P.O. Box 35, FI-40014 University of Jyväskylä, Finland
| | - Joanna Gmach
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology , Żeromskiego Street 116, 90-924 Łódź, Poland
| | - Łukasz Joachimiak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology , Żeromskiego Street 116, 90-924 Łódź, Poland
| | - Olli T Pentikäinen
- Department of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä , P.O. Box 35, FI-40014 University of Jyväskylä, Finland.,Institute of Biomedicine, University of Turku , FI-20520 Turku, Finland
| | - Edyta Gendaszewska-Darmach
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology , Stefanowskiego Street 4/10, 90-924 Łódź, Poland
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology , Żeromskiego Street 116, 90-924 Łódź, Poland
| |
Collapse
|
11
|
Abdullah MI, Abed MN, Richardson A. Inhibition of the mevalonate pathway augments the activity of pitavastatin against ovarian cancer cells. Sci Rep 2017; 7:8090. [PMID: 28808351 PMCID: PMC5556066 DOI: 10.1038/s41598-017-08649-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/11/2017] [Indexed: 11/29/2022] Open
Abstract
Only 40% of patients with advanced ovarian cancer survive more than 5 years. We have previously shown that pitavastatin induces regression of ovarian cancer xenografts in mice. To evaluate whether the response of ovarian cancer cells to pitavastatin is potentiated by farnesyl diphosphate synthase inhibitors or geranylgeraniol transferase I inhibitors, we evaluated combinations of pitavastatin with zoledronic acid, risedronate and GGTI-2133 in a panel of ovarian cancer cells. Pitavastatin (IC50 = 0.6–14 μM), zoledronic acid (IC50 = 21–57 μM), risedronate (IC50 > 100 μM) or GGTI-2133 (IC50 > 25 μM) inhibited the growth of ovarian cancer cell cultures. Combinations of pitavastatin with zoledronic acid displayed additive or synergistic effects in cell growth assays in 10 of 11 cell lines evaluated as well as in trypan blue exclusion, cellular ATP or caspase 3/7, 8 and 9 assays. Pitavastatin reduced levels of GGT-IIβ and the membrane localization of several small GTPases and this was potentiated by zoledronic acid. siRNA to GGT-Iβ and GGT-IIβ used in combination, but not when used individually, significantly increased the sensitivity of cells to pitavastatin. These data suggest that zoledronic acid, a drug already in clinical use, may be usefully combined with pitavastatin in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Marwan Ibrahim Abdullah
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Thornborrow Drive, Stoke-on-Trent, UK
| | - Mohammed Najim Abed
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Thornborrow Drive, Stoke-on-Trent, UK
| | - Alan Richardson
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Thornborrow Drive, Stoke-on-Trent, UK. .,School of Pharmacy, Keele University, Keele, United Kingdom.
| |
Collapse
|
12
|
Dietary geranylgeraniol can limit the activity of pitavastatin as a potential treatment for drug-resistant ovarian cancer. Sci Rep 2017; 7:5410. [PMID: 28710496 PMCID: PMC5511264 DOI: 10.1038/s41598-017-05595-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022] Open
Abstract
Pre-clinical and retrospective studies of patients using statins to reduce plasma cholesterol have suggested that statins may be useful to treat cancer. However, prospective clinical trials have yet to demonstrate significant efficacy. We have previously shown that this is in part because a hydrophobic statin with a long half-life is necessary. Pitavastatin, the only statin with this profile, has not undergone clinical evaluation in oncology. The target of pitavastatin, hydroxymethylglutarate coenzyme-A reductase (HMGCR), was found to be over-expressed in all ovarian cancer cell lines examined and upregulated by mutated TP53, a gene commonly altered in ovarian cancer. Pitavastatin-induced apoptosis was blocked by geranylgeraniol and mevalonate, products of the HMGCR pathway, confirming that pitavastatin causes cell death through inhibition of HMGCR. Solvent extracts of human and mouse food were also able to block pitavastatin-induced apoptosis, suggesting diet might influence the outcome of clinical trials. When nude mice were maintained on a diet lacking geranylgeraniol, oral pitavastatin caused regression of Ovcar-4 tumour xenografts. However, when the animal diet was supplemented with geranylgeraniol, pitavastatin failed to prevent tumour growth. This suggests that a diet containing geranylgeraniol can limit the anti-tumour activity of pitavastatin and diet should be controlled in clinical trials of statins.
Collapse
|
13
|
Agabiti SS, Li J, Wiemer AJ. Geranylgeranyl diphosphate synthase inhibition induces apoptosis that is dependent upon GGPP depletion, ERK phosphorylation and caspase activation. Cell Death Dis 2017; 8:e2678. [PMID: 28300835 PMCID: PMC5386513 DOI: 10.1038/cddis.2017.101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/26/2017] [Accepted: 02/15/2017] [Indexed: 02/08/2023]
Abstract
Bisphosphonates are diphosphate analogs that inhibit the intermediate enzymes of the mevalonate pathway. Here, we compared the effects of a farnesyl diphosphate synthase inhibitor, zoledronate, and a geranylgeranyl diphosphate synthase (GGDPS) inhibitor, digeranyl bisphosphonate (DGBP), on lymphocytic leukemia cell proliferation and apoptosis. Both zoledronate and DGBP inhibited proliferation with DGBP doing so more potently. DGBP was markedly less toxic than zoledronate toward the viability of healthy human peripheral blood mononuclear cells. Addition of GGPP, but not farnesyl diphosphate (FPP), prevented the anti-proliferative effects of DGBP. Both GGPP and FPP partially rescued the effects of zoledronate. Co-treatment with DGBP and zoledronate was antagonistic. To further assess the effects of the bisphosphonates, we analyzed annexin V and propidium iodide staining via flow cytometry and found that DGBP induced apoptosis more potently than zoledronate. Western blots show that DGBP treatment altered expression and membrane affinity of some but not all geranylgeranylated small GTPases, activated caspases and increased ERK phosphorylation. Importantly, the anti-proliferative effects of DGBP were blocked by treatment with a caspase inhibitor and by treatment with a MEK inhibitor. Together, our findings indicate that DGBP is a more potent and selective compound than zoledronate in inducing apoptosis mediated through pathways that include caspases and MEK/ERK. These findings support the further development of GGDPS inhibitors as anticancer therapeutics.
Collapse
Affiliation(s)
- Sherry S Agabiti
- Department of Pharmaceutical Sciences, University of Connecticut, School of Pharmacy, Storrs, CT, USA
| | - Jin Li
- Department of Pharmaceutical Sciences, University of Connecticut, School of Pharmacy, Storrs, CT, USA
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, School of Pharmacy, Storrs, CT, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
14
|
Castaneda OA, Lee SC, Ho CT, Huang TC. Macrophages in oxidative stress and models to evaluate the antioxidant function of dietary natural compounds. J Food Drug Anal 2016; 25:111-118. [PMID: 28911528 PMCID: PMC9333431 DOI: 10.1016/j.jfda.2016.11.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/20/2022] Open
Abstract
Antioxidant testing of natural products has attracted increasing interest in recent years, mainly due to the fact that an antioxidant-rich diet might provide health benefits. Activated macrophages are a major source of reactive oxygen species, reactive nitrogen species, and peroxynitrite generated through the so-called respiratory burst. Constitutively released proinflammatory cytokine, especially tumor necrosis factor-α, triggers nuclear factor-κB, and activator protein-1 translocation leading to the over production of reactive oxygen species and reactive nitrogen species in macrophages. Activation of transcription factors in the long-lived tissue-resident macrophages and/or monocyte-derived macrophages, trigger epigenetic modifications leading to the pathogenesis of chronic diseases. Nutraceuticals including lipid raft structure disruption agent, cholesterol depletion agent, farnesyltransferase inhibitor, nuclear factor-κB blocker (α,β-unsaturated carbonyl compounds), glucocorticoid receptor agonist, and peroxisome proliferator-activated receptor-γ agonist have long been used to inactive macrophage. The inhibition effects on the formation of nitric oxide, superoxide, and nitrite peroxide may be responsible for the anti-inflammatory functionalities. Activated macrophage models could be used to identify the active components for functional diets development through a multiple targets strategy.
Collapse
Affiliation(s)
- Omir Adrian Castaneda
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Sheng-Chi Lee
- Department of Orthopaedics, Pingtung Branch, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Tzou-Chi Huang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| |
Collapse
|
15
|
Brock EJ, Ji K, Reiners JJ, Mattingly RR. How to Target Activated Ras Proteins: Direct Inhibition vs. Induced Mislocalization. Mini Rev Med Chem 2016; 16:358-69. [PMID: 26423696 DOI: 10.2174/1389557515666151001154002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/03/2015] [Accepted: 09/18/2015] [Indexed: 12/13/2022]
Abstract
Oncogenic Ras proteins are a driving force in a significant set of human cancers and wildtype, unmutated Ras proteins likely contribute to the malignant phenotype of many more. The overall challenge of targeting activated Ras proteins has great promise to treat cancer, but this goal has yet to be achieved. Significant efforts and resources have been committed to inhibiting Ras, but these energies have so far made little impact in the clinic. Direct attempts to target activated Ras proteins have faced many obstacles, including the fundamental nature of the gain-of-function oncogenic activity being produced by a loss-of-function at the biochemical level. Nevertheless, there has been very promising recent pre-clinical progress. The major strategy that has so far reached the clinic aimed to inhibit activated Ras indirectly through blocking its post-translational modification and inducing its mislocalization. While these efforts to indirectly target Ras through inhibition of farnesyl transferase (FTase) were rationally designed, this strategy suffered from insufficient attention to the distinctions between the isoforms of Ras. This led to subsequent failures in large-scale clinical trials targeting K-Ras driven lung, colon, and pancreatic cancers. Despite these setbacks, efforts to indirectly target activated Ras through inducing its mislocalization have persisted. It is plausible that FTase inhibitors may still have some utility in the clinic, perhaps in combination with statins or other agents. Alternative approaches for inducing mislocalization of Ras through disruption of its palmitoylation cycle or interaction with chaperone proteins are in early stages of development.
Collapse
Affiliation(s)
| | | | | | - Raymond R Mattingly
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Ave, Detroit MI, USA.
| |
Collapse
|
16
|
Genome-wide RNAi analysis reveals that simultaneous inhibition of specific mevalonate pathway genes potentiates tumor cell death. Oncotarget 2016; 6:26909-21. [PMID: 26353928 PMCID: PMC4694962 DOI: 10.18632/oncotarget.4817] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/12/2015] [Indexed: 01/03/2023] Open
Abstract
The mevalonate (MVA) pathway is often dysregulated or overexpressed in many cancers suggesting tumor dependency on this classic metabolic pathway. Statins, which target the rate-limiting enzyme of this pathway, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), are promising agents currently being evaluated in clinical trials for anti-cancer efficacy. To uncover novel targets that potentiate statin-induced apoptosis when knocked down, we carried out a pooled genome-wide short hairpin RNA (shRNA) screen. Genes of the MVA pathway were amongst the top-scoring targets, including sterol regulatory element binding transcription factor 2 (SREBP2), 3-hydroxy-3-methylglutaryl-coenzyme A synthase 1 (HMGCS1) and geranylgeranyl diphosphate synthase 1 (GGPS1). Each gene was independently validated and shown to significantly sensitize A549 cells to statin-induced apoptosis when knocked down. SREBP2 knockdown in lung and breast cancer cells completely abrogated the fluvastatin-induced upregulation of sterol-responsive genes HMGCR and HMGCS1. Knockdown of SREBP2 alone did not affect three-dimensional growth of lung and breast cancer cells, yet in combination with fluvastatin cell growth was disrupted. Taken together, these results show that directly targeting multiple levels of the MVA pathway, including blocking the sterol-feedback loop initiated by statin treatment, is an effective and targetable anti-tumor strategy.
Collapse
|
17
|
Abstract
Background:
Bisphosphonates are drugs commonly used for the medication and prevention of diseases caused by decreased mineral density. Despite such important medicinal use, they display a variety of physiologic activities, which make them promising anti-cancer, anti-protozoal, antibacterial and antiviral agents.
Objective:
To review physiological activity of bisphosphonates with special emphasis on their ongoing and potential applications in medicine and agriculture.
Method:
Critical review of recent literature data.
Results:
Comprehensive review of activities revealed by bisphosphonates.
Conclusion:
although bisphosphonates are mostly recognized by their profound effects on bone physiology their medicinal potential has not been fully evaluated yet. Literature data considering enzyme inhibition suggest possibilities of far more wide application of these compounds. These applications are, however, limited by their low bioavailability and therefore intensive search for new chemical entities overcoming this shortage are carried out.
Collapse
|
18
|
Han LW, Ma DD, Xu XJ, Lü F, Liu Y, Xia WB, Jiang Y, Wang O, Xing XP, Li M. Association Between Geranylgeranyl Pyrophosphate Synthase Gene Polymorphisms and Bone Phenotypes and Response to Alendronate Treatment in Chinese Osteoporotic Women. ACTA ACUST UNITED AC 2016; 31:8-16. [PMID: 28031082 DOI: 10.1016/s1001-9294(16)30016-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Objective To investigate the relationship between geranylgeranyl pyrophosphate synthase (GGPPS) gene polymorphisms and bone response to alendronate in Chinese osteoporotic women.Methods A total of 639 postmenopausal women with osteoporosis or osteopenia were included and randomly received treatment of low dose (70 mg per two weeks) or standard dose (70 mg weekly) of alendronate for one year. The six tag single nucleotide polymorphisms of GGPPS gene were identified. Bone mineral density (BMD), serum cross-linked C-telopeptide of type I collagen (β-CTX), and total alkaline phosphatase (ALP) were measured before and after treatment. GGPPS gene polymorphisms and the changes of BMD and bone turnover markers after treatment were analyzed.Results rs10925503 polymorphism of GGPPS gene was correlated to serum β-CTX levels at baseline, and patients with TT genotype had significantly higher serum β-CTX level than those with TC or CC genotype (all P<0.05). No correlation was found between polymorphisms of GGPPS gene and serum total ALP levels, as well as BMD at baseline. After 12 months of treatment, lumbar spine and hip BMD increased and serum bone turnover markers decreased significantly (P<0.01), and without obvious differences between the low dose and standard dose groups (all P>0.05). However, GGPPS gene polymorphisms were uncorrelated to percentage changes of BMD, serum total ALP, and β-CTX levels (all P>0.05).Conclusion GGPPS gene polymorphisms are correlated to osteoclasts activity, but all tag single nucleotide polymorphisms of GGPPS gene have no influence on the skeletal response to alendronate treatment.
Collapse
Affiliation(s)
- Lan-Wen Han
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Dou-Dou Ma
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Xiao-Jie Xu
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Fang Lü
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Yi Liu
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Wei-Bo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Xiao-Ping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| |
Collapse
|
19
|
Li K, Liu Y, Venners SA, Hsu YH, Jiang S, Weinstock J, Sun Y, Wang B, Xu X. Effects of LEP G2548A and LEPR Q223R Polymorphisms on Serum Lipids and Response to Simvastatin Treatment in Chinese Patients With Primary Hyperlipidemia. Clin Appl Thromb Hemost 2016; 23:336-344. [DOI: 10.1177/1076029616638504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Objectives: To investigate whether LEP G2548A and LEPR Q223R polymorphisms influence serum lipid levels and whether the 2 polymorphisms affect the efficacy of simvastatin treatment in Chinese patients with primary hyperlipidemia. Methods: We used an extreme sampling approach by selecting 212 individuals from the top and bottom 15% of adjusted lipid-lowering response residuals to simvastatin (n = 106 in each group of good or bad response) from a total of 734 samples with primary hyperlipidemia. They were treated with simvastatin orally 20 mg/d. Fasting serum lipids were measured at baseline and after 4 and 8 weeks of treatment. Genotyping was carried out using polymerase chain reaction-restriction fragment length polymorphism. Results: More patients in the good response group (27%) had LEPR Q223R than in the bad response group (16%, P = .046). Secondary stratified analyses showed that patients carrying the RR genotype of the LEPR Q223R gene had significantly higher high-density lipoprotein cholesterol levels than those with the QR genotype at baseline ( P = .034) among good responders. After 29 consecutive days of treatment with simvastatin, patients carrying the RR genotype had a significantly larger decrease in triglycerides (change: −0.74 ± 0.92, P = .036) and total cholesterol levels (change: −1.77 ± 0.68, P = .023) compared with those carrying QR genotype among bad responders. After Bonferroni correction, the results were not statistically significant. Conclusion: LEPR Q223R polymorphism, but not LEP G2548A, could modulate the efficacy of simvastatin in Chinese patients with primary hyperlipidemia.
Collapse
Affiliation(s)
- Kang Li
- School of Life Sciences, Anhui University, Hefei, China
| | - Yanhong Liu
- School of Life Sciences, Anhui University, Hefei, China
| | - Scott A. Venners
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Yi-Hsiang Hsu
- Institute for Aging Research, HSL and Harvard Medical School, Boston, MA, USA
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA, USA
| | - Shanqun Jiang
- School of Life Sciences, Anhui University, Hefei, China
- Institute of Biomedicine, Anhui Medical University, Hefei, China
| | - Justin Weinstock
- Department of Statistics, University of Virginia, Charlottesville, VA, USA
| | - Yiyang Sun
- School of Life Sciences, Anhui University, Hefei, China
| | - Binyan Wang
- Institute of Biomedicine, Anhui Medical University, Hefei, China
| | - Xiping Xu
- Institute of Biomedicine, Anhui Medical University, Hefei, China
- Division of Epidemiology and Biostatistics, University of Illinois at Chicago School of Public Health, Chicago, IL, USA
| |
Collapse
|
20
|
Chauhan IS, Kaur J, Krishna S, Ghosh A, Singh P, Siddiqi MI, Singh N. Evolutionary comparison of prenylation pathway in kinetoplastid Leishmania and its sister Leptomonas. BMC Evol Biol 2015; 15:261. [PMID: 26588894 PMCID: PMC4654808 DOI: 10.1186/s12862-015-0538-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/10/2015] [Indexed: 12/05/2022] Open
Abstract
Background Leptomonas is monogenetic kinetoplastid parasite of insects and is primitive in comparison to Leishmania. Comparative studies of these two kinetoplastid may share light on the evolutionary transition to dixenous parasitism in Leishmania. In order to adapt and survive within two hosts, Leishmania species must have acquired virulence factors in addition to mechanisms that mediate susceptibility/resistance to infection in the pathology associated with disease. Rab proteins are key mediators of vesicle transport and contribute greatly to the evolution of complexity of membrane transport system. In this study we used our whole genome sequence data of these two divergent kinetoplastids to analyze the orthologues/paralogues of Rab proteins. Results During change of lifestyle from monogenetic (Leptomonas) to digenetic (Leishmania), we found that the prenyl machinery remained unchanged. Geranylgeranyl transferase-I (GGTase-I) was absent in both Leishmania and its sister Leptomonas. Farnesyltransferase (FTase) and geranylgeranyl transferase-II (GGTase-II) were identified for protein prenylation. We predict that activity of the missing alpha-subunit (α-subunit) of GGTase-II in Leptomonas was probably contributed by the α-subunit of FTase, while beta-subunit (β-subunit) of GGTase-II was conserved and indicated functional conservation in the evolution of these two kinetoplastids. Therefore the β-subunit emerges as an excellent target for compounds inhibiting parasite activity in clinical cases of co-infections. We also confirmed that during the evolution to digenetic life style in Leishmania, the parasite acquired capabilities to evade drug action and maintain parasite virulence in the host with the incorporation of short-chain dehydrogenase/reductase (SDR/MDR) superfamily in Rab genes. Conclusion Our study based on whole genome sequences is the first to build comparative evolutionary analysis and identification of prenylation proteins in Leishmania and its sister Leptomonas. The information presented in our present work has importance for drug design targeted to kill L. donovani in humans but not affect the human form of the prenylation enzymes. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0538-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Indira Singh Chauhan
- Biochemistry Division, CSIR Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
| | - Jaspreet Kaur
- Department of Biochemistry, Shri Ram Murti Smarak Institute of Medical Sciences, Bareilly, 243202, India.
| | - Shagun Krishna
- Molecular and Structural Biology Division, CSIR Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
| | | | - Prashant Singh
- Department of Chemistry, Dayanand Anglo Vedic (P.G.) College, Dehradun, 248001, India.
| | - Mohammad Imran Siddiqi
- Molecular and Structural Biology Division, CSIR Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
| | - Neeloo Singh
- Biochemistry Division, CSIR Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
| |
Collapse
|
21
|
Differentiation and apoptosis induction by lovastatin and γ-tocotrienol in HL-60 cells via Ras/ERK/NF-κB and Ras/Akt/NF-κB signaling dependent down-regulation of glyoxalase 1 and HMG-CoA reductase. Cell Signal 2015. [DOI: 10.1016/j.cellsig.2015.07.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Kuo KK, Wu BN, Liu CP, Yang TY, Kao LP, Wu JR, Lai WT, Chen IJ. Xanthine-based KMUP-1 improves HDL via PPARγ/SR-B1, LDL via LDLRs, and HSL via PKA/PKG for hepatic fat loss. J Lipid Res 2015; 56:2070-84. [PMID: 26351364 PMCID: PMC4617394 DOI: 10.1194/jlr.m057547] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Indexed: 12/21/2022] Open
Abstract
The phosphodiesterase inhibitor (PDEI)/eNOS enhancer KMUP-1, targeting G-protein coupled receptors (GPCRs), improves dyslipidemia. We compared its lipid-lowering effects with simvastatin and explored hormone-sensitive lipase (HSL) translocation in hepatic fat loss. KMUP-1 HCl (1, 2.5, and 5 mg/kg/day) and simvastatin (5 mg/kg/day) were administered in C57BL/6J male mice fed a high-fat diet (HFD) by gavage for 8 weeks. KMUP-1 inhibited HFD-induced plasma/liver TG, total cholesterol, and LDL; increased HDL/3-hydroxy-3-methylglutaryl-CoA reductase (HMGR)/Rho kinase II (ROCK II)/PPARγ/ABCA1; and decreased liver and body weight. KMUP-1 HCl in drinking water (2.5 mg/200 ml tap water) for 1–14 or 8–14 weeks decreased HFD-induced liver and body weight and scavenger receptor class B type I expression and increased protein kinase A (PKA)/PKG/LDLRs/HSL expression and immunoreactivity. In HepG2 cells incubated with serum or exogenous mevalonate, KMUP-1 (10−7∼10−5 M) reversed HMGR expression by feedback regulation, colocalized expression of ABCA1/apolipoprotein A-I/LXRα/PPARγ, and reduced exogenous geranylgeranyl pyrophosphate/farnesyl pyrophosphate (FPP)-induced RhoA/ROCK II expression. A guanosine 3′,5′-cyclic monophosphate (cGMP) antagonist reversed KMUP-1-induced ROCK II reduction, indicating cGMP/eNOS involvement. KMUP-1 inceased PKG and LDLRs surrounded by LDL and restored oxidized LDL-induced PKA expresion. Unlike simvastatin, KMUP-1 could not inhibit 14C mevalonate formation. KMUP-1 could, but simvastatin could not, decrease ROCK II expression by exogenous FPP/CGPP. KMUP-1 improves HDL via PPARγ/LXRα/ABCA1/Apo-I expression and increases LDLRs/PKA/PKG/HSL expression and immunoreactivity, leading to TG hydrolysis to lower hepatic fat and body weight.
Collapse
Affiliation(s)
- Kung-Kai Kuo
- Division of Hepatobiliopancreatic Surgery, Kaohsiung Medical University Hospital
| | - Bin-Nan Wu
- Department of Pharmacology, School of Medicine, College of Medicine
| | - Chung-Pin Liu
- Department of Cardiology, Yuan's General Hospital, Kaohsiung, Taiwan
| | - Tzu-Yang Yang
- Department of Pharmacology, School of Medicine, College of Medicine
| | - Li-Pin Kao
- Department of Pharmacology, School of Medicine, College of Medicine
| | - Jiunn-Ren Wu
- Department of Pedatrics, Kaohsiung Medical University Hospital
| | - Wen-Ter Lai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ing-Jun Chen
- Department of Pharmacology, School of Medicine, College of Medicine
| |
Collapse
|
23
|
Afshordel S, Kern B, Clasohm J, König H, Priester M, Weissenberger J, Kögel D, Eckert GP. Lovastatin and perillyl alcohol inhibit glioma cell invasion, migration, and proliferation--impact of Ras-/Rho-prenylation. Pharmacol Res 2014; 91:69-77. [PMID: 25497898 DOI: 10.1016/j.phrs.2014.11.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/27/2014] [Accepted: 11/29/2014] [Indexed: 11/19/2022]
Abstract
Alterations in small GTPase mediated signal transduction pathways have emerged as a central step in the molecular pathogenesis of glioblastoma (GBM), the most common malignant brain tumor in adults. Farnesylpyrophosphate (FPP) and geranylgeranylpyrophosphate (GGPP) are derived from mevalonate, whose production is catalyzed by 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase. Prenylation by FPP and GGPP is required for membrane insertion and oncogenic function of Ras- and Rho-proteins, within the stimulation of the Ras-Raf-MEK-ERK pathway. A straightforward prediction from HMG-CoA reductase inhibitor studies is that statins decrease FPP and GGPP levels and diminish ERK signaling ensuring less proliferation and migration of cancer cells. Perillyl alcohol (POH), a naturally occurring monoterpene inhibits prenyltransferases and is able to inhibit cancer cell growth, but the underlying mechanism is still unclear. We here report that lovastatin (LOV) and POH impair the regulation of the mevalonate- and the Ras-Raf-MEK-ERK pathway in U87 and U343 glioblastoma cells. Both compounds affected the post-translational modification of H-Ras and Rac1. While LOV diminished the substrates of the transferase reaction that catalyze prenylation, POH inhibited the enzymes itself. Our data highlight the impact of isoprenoids for post-translational modification of small GTPases promoting proliferation, migration and invasion capabilities in glioma cells.
Collapse
Affiliation(s)
- Sarah Afshordel
- Department of Pharmacology, Goethe-University, Frankfurt, Germany
| | - Beatrice Kern
- Department of Pharmacology, Goethe-University, Frankfurt, Germany
| | - Jasmin Clasohm
- Department of Pharmacology, Goethe-University, Frankfurt, Germany
| | - Hildegard König
- Division of Experimental Neurosurgery, University Clinics of Frankfurt, Germany
| | - Maike Priester
- Division of Experimental Neurosurgery, University Clinics of Frankfurt, Germany
| | - Jakob Weissenberger
- Division of Experimental Neurosurgery, University Clinics of Frankfurt, Germany
| | - Donat Kögel
- Division of Experimental Neurosurgery, University Clinics of Frankfurt, Germany
| | - Gunter P Eckert
- Department of Pharmacology, Goethe-University, Frankfurt, Germany.
| |
Collapse
|
24
|
Jiang P, Mukthavaram R, Chao Y, Nomura N, Bharati IS, Fogal V, Pastorino S, Teng D, Cong X, Pingle SC, Kapoor S, Shetty K, Aggrawal A, Vali S, Abbasi T, Chien S, Kesari S. In vitro and in vivo anticancer effects of mevalonate pathway modulation on human cancer cells. Br J Cancer 2014; 111:1562-71. [PMID: 25093497 PMCID: PMC4200085 DOI: 10.1038/bjc.2014.431] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 12/13/2022] Open
Abstract
Background: The increasing usage of statins (the 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors) has revealed a number of unexpected beneficial effects, including a reduction in cancer risk. Methods: We investigated the direct anticancer effects of different statins approved for clinical use on human breast and brain cancer cells. We also explored the effects of statins on cancer cells using in silico simulations. Results: In vitro studies showed that cerivastatin, pitavastatin, and fluvastatin were the most potent anti-proliferative, autophagy inducing agents in human cancer cells including stem cell-like primary glioblastoma cell lines. Consistently, pitavastatin was more effective than fluvastatin in inhibiting U87 tumour growth in vivo. Intraperitoneal injection was much better than oral administration in delaying glioblastoma growth. Following statin treatment, tumour cells were rescued by adding mevalonate and geranylgeranyl pyrophosphate. Knockdown of geranylgeranyl pyrophosphate synthetase-1 also induced strong cell autophagy and cell death in vitro and reduced U87 tumour growth in vivo. These data demonstrate that statins main effect is via targeting the mevalonate synthesis pathway in tumour cells. Conclusions: Our study demonstrates the potent anticancer effects of statins. These safe and well-tolerated drugs need to be further investigated as cancer chemotherapeutics in comprehensive clinical studies.
Collapse
Affiliation(s)
- P Jiang
- Translational Neuro-Oncology Laboratories, Moores Cancer Center, UC San Diego, La Jolla, CA 92093, USA
| | - R Mukthavaram
- Translational Neuro-Oncology Laboratories, Moores Cancer Center, UC San Diego, La Jolla, CA 92093, USA
| | - Y Chao
- Translational Neuro-Oncology Laboratories, Moores Cancer Center, UC San Diego, La Jolla, CA 92093, USA
| | - N Nomura
- Translational Neuro-Oncology Laboratories, Moores Cancer Center, UC San Diego, La Jolla, CA 92093, USA
| | - I S Bharati
- Translational Neuro-Oncology Laboratories, Moores Cancer Center, UC San Diego, La Jolla, CA 92093, USA
| | - V Fogal
- Translational Neuro-Oncology Laboratories, Moores Cancer Center, UC San Diego, La Jolla, CA 92093, USA
| | - S Pastorino
- Translational Neuro-Oncology Laboratories, Moores Cancer Center, UC San Diego, La Jolla, CA 92093, USA
| | - D Teng
- Departments of Bioengineering and Medicine and Institute of Engineering in Medicine, UC San Diego, La Jolla, CA 92093, USA
| | - X Cong
- Translational Neuro-Oncology Laboratories, Moores Cancer Center, UC San Diego, La Jolla, CA 92093, USA
| | - S C Pingle
- Translational Neuro-Oncology Laboratories, Moores Cancer Center, UC San Diego, La Jolla, CA 92093, USA
| | - S Kapoor
- Cellworks Group, Inc., 2025 Gateway Place, Suite 265, San Jose, CA 95110, USA
| | - K Shetty
- Cellworks Group, Inc., 2025 Gateway Place, Suite 265, San Jose, CA 95110, USA
| | - A Aggrawal
- Cellworks Group, Inc., 2025 Gateway Place, Suite 265, San Jose, CA 95110, USA
| | - S Vali
- Cellworks Group, Inc., 2025 Gateway Place, Suite 265, San Jose, CA 95110, USA
| | - T Abbasi
- Cellworks Group, Inc., 2025 Gateway Place, Suite 265, San Jose, CA 95110, USA
| | - S Chien
- Departments of Bioengineering and Medicine and Institute of Engineering in Medicine, UC San Diego, La Jolla, CA 92093, USA
| | - S Kesari
- 1] Translational Neuro-Oncology Laboratories, Moores Cancer Center, UC San Diego, La Jolla, CA 92093, USA [2] Department of Neurosciences, UC San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
25
|
Coxon FP, Joachimiak L, Najumudeen AK, Breen G, Gmach J, Oetken-Lindholm C, Way R, Dunford JE, Abankwa D, Błażewska KM. Synthesis and characterization of novel phosphonocarboxylate inhibitors of RGGT. Eur J Med Chem 2014; 84:77-89. [PMID: 25016230 DOI: 10.1016/j.ejmech.2014.06.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/14/2014] [Accepted: 06/27/2014] [Indexed: 12/31/2022]
Abstract
Phosphonocarboxylate (PC) analogs of the anti-osteoporotic drugs, bisphosphonates, represent the first class of selective inhibitors of Rab geranylgeranyl transferase (RabGGTase, RGGT), an enzyme implicated in several diseases including ovarian, breast and skin cancer. Here we present the synthesis and biological characterization of an extended set of this class of compounds, including lipophilic derivatives of the known RGGT inhibitors. From this new panel of PCs, we have identified an inhibitor of RGGT that is of similar potency as the most active published phosphonocarboxylate, but of higher selectivity towards this enzyme compared to prenyl pyrophosphate synthases. New insights into structural requirements are also presented, showing that only PC analogs of the most potent 3rd generation bisphosphonates inhibit RGGT. In addition, the first phosphonocarboxylate-derived GGPPS inhibitor is reported.
Collapse
Affiliation(s)
- Fraser P Coxon
- Musculoskeletal Programme, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB252ZD, UK
| | - Lukasz Joachimiak
- Institute of Organic Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Arafath Kaja Najumudeen
- Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520 Turku, Finland
| | - George Breen
- Musculoskeletal Programme, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB252ZD, UK
| | - Joanna Gmach
- Institute of Organic Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | | | - Rebecca Way
- Musculoskeletal Programme, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB252ZD, UK
| | - James E Dunford
- University of Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, The Botnar Research Center, UK
| | - Daniel Abankwa
- Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520 Turku, Finland
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland.
| |
Collapse
|
26
|
Wiemer DF, Wiemer AJ. Opportunities and challenges in development of phosphoantigens as Vγ9Vδ2 T cell agonists. Biochem Pharmacol 2014; 89:301-12. [DOI: 10.1016/j.bcp.2014.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/17/2014] [Accepted: 03/17/2014] [Indexed: 01/29/2023]
|
27
|
Zhou X, Ferree SD, Wills VS, Born EJ, Tong H, Wiemer DF, Holstein SA. Geranyl and neryl triazole bisphosphonates as inhibitors of geranylgeranyl diphosphate synthase. Bioorg Med Chem 2014; 22:2791-8. [PMID: 24726306 DOI: 10.1016/j.bmc.2014.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/26/2014] [Accepted: 03/08/2014] [Indexed: 10/25/2022]
Abstract
When inhibitors of enzymes that utilize isoprenoid pyrophosphates are based on the natural substrates, a significant challenge can be to achieve selective inhibition of a specific enzyme. One element in the design process is the stereochemistry of the isoprenoid olefins. We recently reported preparation of a series of isoprenoid triazoles as potential inhibitors of geranylgeranyl transferase II but these compounds were obtained as a mixture of olefin isomers. We now have accomplished the stereoselective synthesis of these triazoles through the use of epoxy azides for the cycloaddition reaction followed by regeneration of the desired olefin. Both geranyl and neryl derivatives have been prepared as single olefin isomers through parallel reaction sequences. The products were assayed against multiple enzymes as well as in cell culture studies and surprisingly a Z-olefin isomer was found to be a potent and selective inhibitor of geranylgeranyl diphosphate synthase.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Sarah D Ferree
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Veronica S Wills
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Ella J Born
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Huaxiang Tong
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - David F Wiemer
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA; Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA.
| | - Sarah A Holstein
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
28
|
Tong H, Kuder CH, Wasko BM, Hohl RJ. Quantitative determination of isopentenyl diphosphate in cultured mammalian cells. Anal Biochem 2013; 433:36-42. [DOI: 10.1016/j.ab.2012.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/22/2012] [Accepted: 09/02/2012] [Indexed: 01/08/2023]
|
29
|
Vintonenko N, Jais JP, Kassis N, Abdelkarim M, Perret GY, Lecouvey M, Crepin M, Di Benedetto M. Transcriptome analysis and in vivo activity of fluvastatin versus zoledronic acid in a murine breast cancer metastasis model. Mol Pharmacol 2012; 82:521-8. [PMID: 22723339 DOI: 10.1124/mol.111.077248] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Statins and bisphosphonates are two distinct classes of isoprenoid pathway inhibitors targeting downstream enzyme to HMG-CoA reductase (upstream enzyme) and farnesyl-pyrophosphate synthase, respectively. Here, we studied fluvastatin (Fluva) and zoledronate (Zol), representative molecules of each class, respectively. In vivo metastatic potentials of both molecules were assessed. For the first time, we observed a significant reduction in progression of established metastases with Fluva treatment. Treatment with both Zol at 100 μg/kg and Fluva at 15 mg/kg inhibited 80% of the metastasis bioluminescence signal and increased survival of mice. The Zol and Fluva transcriptomic profiles of treated MDA-MB-231 cells revealed analogous patterns of affected genes, but each of them reached with different kinetics. The observable changes in gene expression started after 24 h for Fluva IC(50 72 h) and only after 48 h for Zol IC(50 72 h). To obtain early changes in gene expression of Zol-treated cells, a 3 times higher dose of Zol IC(50 72 h) had to be applied. Combining Fluva and Zol in vivo showed no synergy, but a benefit of several days in survival of mice. This study demonstrated that Zol or Fluva is of potential clinical use for the treatment of established metastasis.
Collapse
Affiliation(s)
- Nadejda Vintonenko
- Unité Mixte de Recherche 7244 Centre National de la Recherche Scientifique, Chimie, Structure et Propriétés de Biomaté riaux et d’Agents Thé rapeutiques, Université Paris 13, Bobigny, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Effects of tocotrienol and lovastatin combination on osteoblast and osteoclast activity in estrogen-deficient osteoporosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:960742. [PMID: 22927884 PMCID: PMC3425381 DOI: 10.1155/2012/960742] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/12/2012] [Accepted: 07/13/2012] [Indexed: 12/21/2022]
Abstract
Statins are HMGCoA reductase inhibitors and had been demonstrated to stimulate bone formation in rodents after high oral doses. Observational studies on patients treated with oral statins were varied. Delta-tocotrienol had been found to stimulate the cleavage of HMGCoA reductase and inhibit its activity. Tocotrienols were found to have both catabolic and anabolic effects on bone in different animal models of osteoporosis. The current study aimed to ascertain the effects of delta-tocotrienol and lovastatin combination on biochemical and static bone histomorphometric parameters in a postmenopausal rat model at clinically tolerable doses. 48 Sprague Dawley female rats were randomly divided into 6 groups: (1) baseline control group; (2) sham-operated control group; (3) ovariectomised control group; (4) ovariectomised and 11 mg/kg lovastatin; (5) ovariectomised and 60 mg/kg delta-tocotrienol; (6) ovariectomised and 60 mg/kg delta-tocotrienol + 11 mg/kg lovastatin. These treatments were given daily via oral gavage for 8 weeks. Delta-tocotrienol plus lovastatin treatment significantly increased bone formation and reduced bone resorption compared to the other groups. Therefore, the combined treatment may have synergistic or additive effects and have the potential to be used as an antiosteoporotic agent in patients who are at risk of both osteoporosis and hypercholesterolemia, especially in postmenopausal women.
Collapse
|
31
|
Wiemer AJ, Wiemer DF, Hohl RJ. Geranylgeranyl diphosphate synthase: an emerging therapeutic target. Clin Pharmacol Ther 2011; 90:804-12. [PMID: 22048229 DOI: 10.1038/clpt.2011.215] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Proteins modified post-translationally by geranylgeranylation have been implicated in numerous cellular processes related to human disease. In recent years, the study of protein geranylgeranylation has advanced tremendously in both cellular and animal models. The advances in our understanding of the biological roles of geranylgeranylated proteins have been paralleled by advances in the medicinal chemistry of geranylgeranylation inhibitors such as those that target geranylgeranyl transferases I and II and geranylgeranyl diphosphate synthase (GGDPS). Although these findings provide the rationale for further development of geranylgeranylation as a therapeutic target, more advanced studies on the efficacy of this approach in various disease models will be required to support translation to clinical studies. This article attempts to describe the advances in (and the challenges of) validation of GGDPS as a novel therapeutic target and assesses the advantages of targeting GGDPS relative to other enzymes involved in geranylgeranylation.
Collapse
Affiliation(s)
- A J Wiemer
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | | |
Collapse
|
32
|
Nürenberg G, Volmer DA. The analytical determination of isoprenoid intermediates from the mevalonate pathway. Anal Bioanal Chem 2011; 402:671-85. [PMID: 21789486 DOI: 10.1007/s00216-011-5262-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/12/2011] [Accepted: 07/15/2011] [Indexed: 01/22/2023]
Abstract
In this article, assays on the analytical determination of farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP), two important isoprenoid intermediates at biochemically relevant branching points in the mevalonate pathway, are summarized and reviewed. There is considerable recent interest in the measurement of these two isoprenoids because of their direct involvement in several diseases, for example, statins lower cholesterol by inhibiting 3-hydroxy-3-methylglutaryl-CoA reductase but equally affect other metabolite biosyntheses. The isoprenoids FPP and GGPP are key intermediates due to their role as CaaX-specific substrates for posttranslational modification of proteins (protein prenylation). Disease pathologies and therapeutic efficacy of different treatments (e.g., cholesterol-lowering drugs) may lead to a reduction in isoprenoid levels and an accompanying reduction in prenylation of specific proteins. To understand the exact biochemical role of the isoprenoids FPP and GGPP, we need to know their levels. Several recent studies have shown exact levels of FPP and GGP in plasma and relevant tissues and their modulation following treatment. Furthermore, by directly measuring the extent of protein prenylation and identifying target proteins, further insight into the exact biochemical nature of the pathology and regulatory mechanisms will be possible. This short review aims to highlight the relevant literature on the analytical determination of the free isoprenoids FPP and GGPP in biological tissue as well as techniques for directly measuring prenylated proteins.
Collapse
Affiliation(s)
- Gudrun Nürenberg
- Institute of Bioanalytical Chemistry, Saarland University, Saarbrücken, Germany
| | | |
Collapse
|
33
|
Wasko BM, Dudakovic A, Hohl RJ. Bisphosphonates induce autophagy by depleting geranylgeranyl diphosphate. J Pharmacol Exp Ther 2011; 337:540-6. [PMID: 21335425 DOI: 10.1124/jpet.110.175521] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Multiple studies have implicated the depletion of isoprenoid biosynthetic pathway intermediates in the induction of autophagy. However, the exact mechanism by which isoprenoid biosynthesis inhibitors induce autophagy has not been well established. We hypothesized that inhibition of farnesyl diphosphate synthase (FDPS) and geranylgeranyl diphosphate synthase (GGDPS) by bisphosphonates would induce autophagy by depleting cellular geranylgeranyl diphosphate (GGPP) and impairing protein geranylgeranylation. Herein, we show that an inhibitor of FDPS (zoledronate) and an inhibitor of GGDPS (digeranyl bisphosphonate, DGBP) induce autophagy in PC3 prostate cancer and MDA-MB-231 breast cancer cells as measured by accumulation of the autophagic marker LC3-II. Treatment of cells with lysosomal protease inhibitors [(2S,3S)-trans-epoxysuccinyl-L-leucylamido-3-methylbutane ethyl ester (E-64d) and pepstatin A] in combination with zoledronate or digeranyl bisphosphonate further enhances the formation of LC3-II, indicating that these compounds induce autophagic flux. It is noteworthy that the addition of exogenous GGPP prevented the accumulation of LC3-II and impairment of Rab6 (a GGTase II substrate) geranylgeranylation by isoprenoid pathway inhibitors (lovastatin, zoledronate, and DGBP). However, exogenous GGPP did not restore isoprenoid pathway inhibitor-induced impairment of Rap1a (a GGTase I substrate) geranylgeranylation. In addition, specific inhibitors of farnesyl transferase and geranylgeranyl transferase I are unable to induce autophagy in our system. Furthermore, the addition of bafilomycin A1 (an inhibitor of autophagy processing) enhanced the antiproliferative effects of digeranyl bisphosphonate. These results are the first to demonstrate that bisphosphonates induce autophagy. Our study suggests that induction of autophagy in PC3 cells with these agents is probably dependent upon impairment of geranylgeranylation of GGTase II substrates.
Collapse
Affiliation(s)
- Brian M Wasko
- Interdisciplinary Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
34
|
Geranylgeranyl diphosphate depletion inhibits breast cancer cell migration. Invest New Drugs 2010; 29:912-20. [PMID: 20480384 DOI: 10.1007/s10637-010-9446-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 04/27/2010] [Indexed: 01/04/2023]
Abstract
The objective of this study was to determine whether geranylgeranyl diphosphate synthase inhibition, and therefore geranylgeranyl diphosphate depletion, interferes with breast cancer cell migration. Digeranyl bisphosphonate is a specific geranylgeranyl diphosphate synthase inhibitor. We demonstrate that digeranyl bisphosphonate depleted geranylgeranyl diphosphate and inhibited protein geranylgeranylation in MDA-MB-231 cells. Similar to GGTI-286, a GGTase I inhibitor, digeranyl bisphosphate significantly inhibited migration of MDA-MB-231 cells as measured by transwell assay. Similarly, digeranyl bisphosphonate reduced motility of MDA-MB-231 cells in a time-dependent manner as measured by large scale digital cell analysis system microscopy. Digeranyl bisphosphonate was mildly toxic and did not induce apoptosis. Treatment of MDA-MB-231 cells with digeranyl bisphosphonate decreased membrane while it increased cytosolic RhoA localization. In addition, digeranyl bisphosphonate increased RhoA GTP binding in MDA-MB-231 cells. The specificity of geranylgeranyl diphosphonate synthase inhibition by digeranyl bisphosphonate was confirmed by exogenous addition of geranylgeranyl diphosphate. Geranylgeranyl diphosphate addition prevented the effects of digeranyl bisphosphonate on migration, RhoA localization, and GTP binding to RhoA in MDA-MB-231 cells. These studies suggest that geranylgeranyl diphosphate synthase inhibitors are a novel approach to interfere with cancer cell migration.
Collapse
|
35
|
|
36
|
Differential activities of thalidomide and isoprenoid biosynthetic pathway inhibitors in multiple myeloma cells. Leuk Res 2009; 34:344-51. [PMID: 19646757 DOI: 10.1016/j.leukres.2009.06.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/05/2009] [Accepted: 06/30/2009] [Indexed: 11/21/2022]
Abstract
Thalidomide has emerged as an effective agent for treating multiple myeloma, however the precise mechanism of action remains unknown. Agents known to target the isoprenoid biosynthetic pathway (IBP) can have cytotoxic effects in myeloma cells. The interactions between thalidomide and IBP inhibitors in human multiple myeloma cells were evaluated. Enhanced cytotoxicity and induction of apoptosis were observed in RPMI-8226 cells. Examination of intracellular levels of farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) revealed a wide variance in basal levels and response to IBP inhibitors. These findings provide a mechanism for the differential sensitivity of myeloma cells to pharmacologic manipulation of the IBP.
Collapse
|
37
|
Sun YM, Wang LF, Li J, Li ZQ, Pan W. The 223A>G polymorphism of the leptin receptor gene and lipid-lowering efficacy of simvastatin in Chinese patients with coronary heart disease. Eur J Clin Pharmacol 2008; 65:157-61. [DOI: 10.1007/s00228-008-0578-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 09/29/2008] [Indexed: 12/01/2022]
|
38
|
Coxon FP. An update on the pharmacology of bisphosphonates and analogues with lower bone affinity. ACTA ACUST UNITED AC 2008. [DOI: 10.1138/20080341] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Fuchs D, Berges C, Opelz G, Daniel V, Naujokat C. HMG-CoA reductase inhibitor simvastatin overcomes bortezomib-induced apoptosis resistance by disrupting a geranylgeranyl pyrophosphate-dependent survival pathway. Biochem Biophys Res Commun 2008; 374:309-14. [DOI: 10.1016/j.bbrc.2008.07.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 07/04/2008] [Indexed: 01/08/2023]
|
40
|
Tong H, Wiemer AJ, Neighbors JD, Hohl RJ. Quantitative determination of farnesyl and geranylgeranyl diphosphate levels in mammalian tissue. Anal Biochem 2008; 378:138-43. [PMID: 18457649 DOI: 10.1016/j.ab.2008.04.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 04/09/2008] [Accepted: 04/11/2008] [Indexed: 11/27/2022]
Abstract
Farnesyl diphosphate (FPP) and geranylgeranyl diphosphate (GGPP) are branch point intermediates of isoprenoid biosynthesis. Inhibitors of isoprenoid biosynthesis, such as the statins and bisphosphonates, are widely used therapeutic agents. However, little is known about the degree to which they alter levels of upstream and downstream isoprenoids, including FPP and GGPP. Therefore, we developed a method to isolate and quantify FPP and GGPP from mammalian tissues. Tissues from mice were collected, snap frozen in liquid nitrogen, and stored at -80 degrees C. FPP and GGPP were isolated by a combined homogenization and extraction procedure and were purified with a C18 solid phase extraction column. Farnesyl protein transferase (FTase) or geranylgeranyl protein transferase I (GGTase I) were used to conjugate FPP and GGPP with fluorescent dansylated peptides. FPP and GGPP were quantified by high-performance liquid chromatography (HPLC). The respective concentrations of FPP and GGPP are as follows: 0.355+/-0.030 and 0.827+/-0.082 units of nmol/g wet tissues in brain, 0.320+/-0.019 and 0.293+/-0.035 units of nmol/g wet tissues in kidney, 0.326+/-0.064 and 0.213+/-0.029 units of nmol/g wet tissues in liver, and 0.364+/-0.015 and 0.349+/-0.023 units of nmol/g wet tissues in heart (means+/-SEM). This method allows for determination of FPP and GGPP concentrations in any tissue type and is sensitive enough to detect changes following treatment with inhibitors of isoprenoid biosynthesis.
Collapse
Affiliation(s)
- Huaxiang Tong
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|