1
|
Wickert M, Hildick KL, Baillie GL, Jelinek R, Aparisi Rey A, Monory K, Schneider M, Ross RA, Henley JM, Lutz B. The F238L Point Mutation in the Cannabinoid Type 1 Receptor Enhances Basal Endocytosis via Lipid Rafts. Front Mol Neurosci 2018; 11:230. [PMID: 30026687 PMCID: PMC6041392 DOI: 10.3389/fnmol.2018.00230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/12/2018] [Indexed: 11/22/2022] Open
Abstract
Defining functional domains and amino acid residues in G protein coupled receptors (GPCRs) represent an important way to improve rational drug design for this major class of drug targets. The cannabinoid type 1 (CB1) receptor is one of the most abundant GPCRs in the central nervous system and is involved in many physiological and pathophysiological processes. Interestingly, cannabinoid type 1 receptor with a phenylalanine 238 to leucine mutation (CB1F238L) has been already linked to a number of both in vitro and in vivo alterations. While CB1F238L causes significantly reduced presynaptic neurotransmitter release at the cellular level, behaviorally this mutation induces increased risk taking, social play behavior and reward sensitivity in rats. However, the molecular mechanisms underlying these changes are not fully understood. In this study, we tested whether the F238L mutation affects trafficking and axonal/presynaptic polarization of the CB1 receptor in vitro. Steady state or ligand modulated surface expression and lipid raft association was analyzed in human embryonic kidney 293 (HEK293) cells stably expressing either wild-type cannabinoid type 1 receptor (CB1wt) or CB1F238L receptor. Axonal/presynaptic polarization of the CB1F238L receptor was assessed in transfected primary hippocampal neurons. We show that in vitro the CB1F238L receptor displays increased association with lipid rafts, which coincides with increased lipid raft mediated constitutive endocytosis, leading to a reduction in steady state surface expression of the CB1F238L receptor. Furthermore, the CB1F238L receptor showed increased axonal polarization in primary hippocampal neurons. These data demonstrate that endocytosis of the CB1 receptor is an important mediator of axonal/presynaptic polarization and that phenylalanine 238 plays a key role in CB1 receptor trafficking and axonal polarization.
Collapse
Affiliation(s)
- Melanie Wickert
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Keri L Hildick
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Gemma L Baillie
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ruth Jelinek
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Alejandro Aparisi Rey
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Krisztina Monory
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Miriam Schneider
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Psychology, University of Heidelberg, Heidelberg, Germany
| | - Ruth A Ross
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jeremy M Henley
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Resilience Center (DRZ), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
2
|
Abstract
The CB1 and CB2 cannabinoid receptors (CB1R, CB2R) are members of the G protein-coupled receptor (GPCR) family that were identified over 20 years ago. CB1Rs and CB2Rs mediate the effects of Δ9-tetrahydrocannabinol (Δ9-THC), the principal psychoactive constituent of marijuana, and subsequently identified endogenous cannabinoids (endocannabinoids) anandamide and 2-arachidonoyl glycerol. CB1Rs and CB2Rs have both similarities and differences in their pharmacology. Both receptors recognize multiple classes of agonist and antagonist compounds and produce an array of distinct downstream effects. Natural polymorphisms and alternative splice variants may also contribute to their pharmacological diversity. As our knowledge of the distinct differences grows, we may be able to target select receptor conformations and their corresponding pharmacological responses. This chapter will discuss their pharmacological characterization, distribution, phylogeny, and signaling pathways. In addition, the effects of extended agonist exposure and how that affects signaling and expression patterns of the receptors are considered.
Collapse
MESH Headings
- Alternative Splicing/genetics
- Animals
- Humans
- Phylogeny
- Polymorphism, Genetic
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Allyn C Howlett
- Center for Research on Substance Use and Addiction, Wake Forest University Health Sciences, Winston-Salem, NC, United States
| | - Mary E Abood
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.
| |
Collapse
|
3
|
Laprairie RB, Kulkarni AR, Kulkarni PM, Hurst DP, Lynch D, Reggio PH, Janero DR, Pertwee RG, Stevenson LA, Kelly MEM, Denovan-Wright EM, Thakur GA. Mapping Cannabinoid 1 Receptor Allosteric Site(s): Critical Molecular Determinant and Signaling Profile of GAT100, a Novel, Potent, and Irreversibly Binding Probe. ACS Chem Neurosci 2016; 7:776-98. [PMID: 27046127 DOI: 10.1021/acschemneuro.6b00041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
One of the most abundant G-protein coupled receptors (GPCRs) in brain, the cannabinoid 1 receptor (CB1R), is a tractable therapeutic target for treating diverse psychobehavioral and somatic disorders. Adverse on-target effects associated with small-molecule CB1R orthosteric agonists and inverse agonists/antagonists have plagued their translational potential. Allosteric CB1R modulators offer a potentially safer modality through which CB1R signaling may be directed for therapeutic benefit. Rational design of candidate, druglike CB1R allosteric modulators requires greater understanding of the architecture of the CB1R allosteric endodomain(s) and the capacity of CB1R allosteric ligands to tune the receptor's information output. We have recently reported the synthesis of a focused library of rationally designed, covalent analogues of Org27569 and PSNCBAM-1, two prototypic CB1R negative allosteric modulators (NAMs). Among the novel, pharmacologically active CB1R NAMs reported, the isothiocyanate GAT100 emerged as the lead by virtue of its exceptional potency in the [(35)S]GTPγS and β-arrestin signaling assays and its ability to label CB1R as a covalent allosteric probe with significantly reduced inverse agonism in the [(35)S]GTPγS assay as compared to Org27569. We report here a comprehensive functional profiling of GAT100 across an array of important downstream cell-signaling pathways and analysis of its potential orthosteric probe-dependence and signaling bias. The results demonstrate that GAT100 is a NAM of the orthosteric CB1R agonist CP55,940 and the endocannabinoids 2-arachidonoylglycerol and anandamide for β-arrestin1 recruitment, PLCβ3 and ERK1/2 phosphorylation, cAMP accumulation, and CB1R internalization in HEK293A cells overexpressing CB1R and in Neuro2a and STHdh(Q7/Q7) cells endogenously expressing CB1R. Distinctively, GAT100 was a more potent and efficacious CB1R NAM than Org27569 and PSNCBAM-1 in all signaling assays and did not exhibit the inverse agonism associated with Org27569 and PSNCBAM-1. Computational docking studies implicate C7.38(382) as a key feature of GAT100 ligand-binding motif. These data help inform the engineering of newer-generation, druggable CB1R allosteric modulators and demonstrate the utility of GAT100 as a covalent probe for mapping structure-function correlates characteristic of the druggable CB1R allosteric space.
Collapse
Affiliation(s)
| | | | | | - Dow P. Hurst
- Center
for Drug Discovery, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Diane Lynch
- Center
for Drug Discovery, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Patricia H. Reggio
- Center
for Drug Discovery, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | | | - Roger G. Pertwee
- School of
Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill,
Aberdeen AB25 2ZD, Scotland
| | - Lesley A. Stevenson
- School of
Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill,
Aberdeen AB25 2ZD, Scotland
| | | | | | | |
Collapse
|
4
|
Scott C, Ahn KH, Graf ST, Goddard WA, Kendall DA, Abrol R. Computational Prediction and Biochemical Analyses of New Inverse Agonists for the CB1 Receptor. J Chem Inf Model 2016; 56:201-12. [PMID: 26633590 PMCID: PMC4863456 DOI: 10.1021/acs.jcim.5b00581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Indexed: 11/28/2022]
Abstract
Human cannabinoid type 1 (CB1) G-protein coupled receptor is a potential therapeutic target for obesity. The previously predicted and experimentally validated ensemble of ligand-free conformations of CB1 [Scott, C. E. et al. Protein Sci. 2013 , 22 , 101 - 113 ; Ahn, K. H. et al. Proteins 2013 , 81 , 1304 - 1317] are used here to predict the binding sites for known CB1-selective inverse agonists including rimonabant and its seven known derivatives. This binding pocket, which differs significantly from previously published models, is used to identify 16 novel compounds expected to be CB1 inverse agonists by exploiting potential new interactions. We show experimentally that two of these compounds exhibit inverse agonist properties including inhibition of basal and agonist-induced G-protein coupling activity, as well as an enhanced level of CB1 cell surface localization. This demonstrates the utility of using the predicted binding sites for an ensemble of CB1 receptor structures for designing new CB1 inverse agonists.
Collapse
Affiliation(s)
- Caitlin
E. Scott
- Materials
and Process Simulation Center, Division of Chemistry and Chemical
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Kwang H. Ahn
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269, United States
| | - Steven T. Graf
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269, United States
| | - William A. Goddard
- Materials
and Process Simulation Center, Division of Chemistry and Chemical
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Debra A. Kendall
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269, United States
| | - Ravinder Abrol
- Materials
and Process Simulation Center, Division of Chemistry and Chemical
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
5
|
Kulkarni PM, Kulkarni AR, Korde A, Tichkule RB, Laprairie RB, Denovan-Wright EM, Zhou H, Janero DR, Zvonok N, Makriyannis A, Cascio MG, Pertwee RG, Thakur GA. Novel Electrophilic and Photoaffinity Covalent Probes for Mapping the Cannabinoid 1 Receptor Allosteric Site(s). J Med Chem 2015; 59:44-60. [PMID: 26529344 PMCID: PMC4716578 DOI: 10.1021/acs.jmedchem.5b01303] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Undesirable side effects associated
with orthosteric agonists/antagonists of cannabinoid 1 receptor (CB1R),
a tractable target for treating several pathologies affecting humans,
have greatly limited their translational potential. Recent discovery
of CB1R negative allosteric modulators (NAMs) has renewed interest
in CB1R by offering a potentially safer therapeutic avenue. To elucidate
the CB1R allosteric binding motif and thereby facilitate rational
drug discovery, we report the synthesis and biochemical characterization
of first covalent ligands designed to bind irreversibly to the CB1R
allosteric site. Either an electrophilic or a photoactivatable group
was introduced at key positions of two classical CB1R NAMs: Org27569
(1) and PSNCBAM-1 (2). Among these, 20 (GAT100) emerged as the most potent NAM in functional assays,
did not exhibit inverse agonism, and behaved as a robust positive
allosteric modulator of binding of orthosteric agonist CP55,940. This
novel covalent probe can serve as a useful tool for characterizing
CB1R allosteric ligand-binding motifs.
Collapse
Affiliation(s)
| | | | | | | | - Robert B Laprairie
- Department of Pharmacology, Dalhousie University , Halifax NS Canada B3H 4R2
| | | | | | | | | | | | - Maria G Cascio
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen , Foresterhill, Aberdeen, AB25 2ZD, Scotland
| | - Roger G Pertwee
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen , Foresterhill, Aberdeen, AB25 2ZD, Scotland
| | | |
Collapse
|
6
|
Bedlack RS, Joyce N, Carter GT, Paganoni S, Karam C. Complementary and Alternative Therapies in Amyotrophic Lateral Sclerosis. Neurol Clin 2015; 33:909-36. [PMID: 26515629 PMCID: PMC4712627 DOI: 10.1016/j.ncl.2015.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Given the severity of their illness and lack of effective disease-modifying agents, it is not surprising that most patients with amyotrophic lateral sclerosis (ALS) consider trying complementary and alternative therapies. Some of the most commonly considered alternative therapies include special diets, nutritional supplements, cannabis, acupuncture, chelation, and energy healing. This article reviews these in detail. The authors also describe 3 models by which physicians may frame discussions about alternative therapies: paternalism, autonomy, and shared decision making. Finally, the authors review a program called ALSUntangled, which uses shared decision making to review alternative therapies for ALS.
Collapse
Affiliation(s)
- Richard S Bedlack
- Department of Neurology, Duke University Medical Center, Durham, NC 27702, USA.
| | - Nanette Joyce
- Department of Physical Medicine and Rehabilitation, University of California, Davis School of Medicine, 4860 Y Street Suite 3850, Sacramento, CA 95817, USA
| | - Gregory T Carter
- Department of Physical Medicine and Rehabilitation, St. Luke's Rehabilitation Institute, 711 South Cowley, Spokane, WA 99202, USA
| | - Sabrina Paganoni
- Spaulding Rehabilitation Hospital, Boston VA Health Care System, Harvard Medical School, Massachussets General Hospital, Boston, MA 02114, USA
| | - Chafic Karam
- Department of Neurology, University of North Carolina School of Medicine, 170 Manning Drive, Campus Box 7025, Chapel Hill, NC 27599-7025, USA
| |
Collapse
|
7
|
Altomonte S, Baillie GL, Ross RA, Riley J, Zanda M. The pentafluorosulfanyl group in cannabinoid receptor ligands: synthesis and comparison with trifluoromethyl and tert-butyl analogues. RSC Adv 2014. [DOI: 10.1039/c4ra01212g] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Competitive CB1 receptor antagonists carrying an aromatic SF5 group in position 3 of a pyrazole ring were synthesised and compared with their CF3 and tert-butyl analogues. Results confirmed that an aromatic SF5 group can be used as a bioisosteric analogue of a CF3 group and possibly of a bulky aliphatic group too.
Collapse
Affiliation(s)
- Stefano Altomonte
- Kosterlitz Centre for Therapeutics
- Institute of Medical Sciences and “John Mallard” Scottish PET Centre
- University of Aberdeen
- Aberdeen AB25 2ZD, UK
| | - Gemma L. Baillie
- Medical Sciences Building
- University of Toronto
- 1 King's College Circle
- Toronto, Canada
| | - Ruth A. Ross
- Medical Sciences Building
- University of Toronto
- 1 King's College Circle
- Toronto, Canada
| | | | - Matteo Zanda
- Kosterlitz Centre for Therapeutics
- Institute of Medical Sciences and “John Mallard” Scottish PET Centre
- University of Aberdeen
- Aberdeen AB25 2ZD, UK
- C.N.R.-Istituto di Chimica del Riconoscimento Molecolare
| |
Collapse
|
8
|
Shim JY, Ahn KH, Kendall DA. Molecular basis of cannabinoid CB1 receptor coupling to the G protein heterotrimer Gαiβγ: identification of key CB1 contacts with the C-terminal helix α5 of Gαi. J Biol Chem 2013; 288:32449-32465. [PMID: 24092756 DOI: 10.1074/jbc.m113.489153] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cannabinoid (CB1) receptor is a member of the rhodopsin-like G protein-coupled receptor superfamily. The human CB1 receptor, which is among the most expressed receptors in the brain, has been implicated in several disease states, including drug addiction, anxiety, depression, obesity, and chronic pain. Different classes of CB1 agonists evoke signaling pathways through the activation of specific subtypes of G proteins. The molecular basis of CB1 receptor coupling to its cognate G protein is unknown. As a first step toward understanding CB1 receptor-mediated G protein signaling, we have constructed a ternary complex structural model of the CB1 receptor and Gi heterotrimer (CB1-Gi), guided by the x-ray structure of β2-adrenergic receptor (β2AR) in complex with Gs (β2AR-Gs), through 824-ns duration molecular dynamics simulations in a fully hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer environment. We identified a group of residues at the juxtamembrane regions of the intracellular loops 2 and 3 (IC2 and IC3) of the CB1 receptor, including Ile-218(3.54), Tyr-224(IC2), Asp-338(6.30), Arg-340(6.32), Leu-341(6.33), and Thr-344(6.36), as potential key contacts with the extreme C-terminal helix α5 of Gαi. Ala mutations of these residues at the receptor-Gi interface resulted in little G protein coupling activity, consistent with the present model of the CB1-Gi complex, which suggests tight interactions between CB1 and the extreme C-terminal helix α5 of Gαi. The model also suggests that unique conformational changes in the extreme C-terminal helix α5 of Gα play a crucial role in the receptor-mediated G protein activation.
Collapse
Affiliation(s)
- Joong-Youn Shim
- From the J. L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina 27707.
| | - Kwang H Ahn
- the Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269
| | - Debra A Kendall
- the Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
9
|
Ahn KH, Scott CE, Abrol R, Goddard WA, Kendall DA. Computationally-predicted CB1 cannabinoid receptor mutants show distinct patterns of salt-bridges that correlate with their level of constitutive activity reflected in G protein coupling levels, thermal stability, and ligand binding. Proteins 2013; 81:1304-17. [PMID: 23408552 DOI: 10.1002/prot.24264] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/21/2013] [Accepted: 01/21/2013] [Indexed: 11/09/2022]
Abstract
The cannabinoid receptor 1 (CB1), a member of the class A G-protein-coupled receptor (GPCR) family, possesses an observable level of constitutive activity. Its activation mechanism, however, has yet to be elucidated. Previously we discovered dramatic changes in CB1 activity due to single mutations; T3.46A, which made the receptor inactive, and T3.46I and L3.43A, which made it essentially fully constitutively active. Our subsequent prediction of the structures of these mutant receptors indicated that these changes in activity are explained in terms of the pattern of salt-bridges in the receptor region involving transmembrane domains 2, 3, 5, and 6. Here we identified key salt-bridges, R2.37 + D6.30 and D2.63 + K3.28, critical for CB1 inactive and active states, respectively, and generated new mutant receptors that we predicted would change CB1 activity by either precluding or promoting these interactions. We find that breaking the R2.37 + D6.30 salt-bridge resulted in substantial increase in G-protein coupling activity and reduced thermal stability relative to the wild-type reflecting the changes in constitutive activity from inactive to active. In contrast, breaking the D2.63 + K3.28 salt-bridge produced the opposite profile suggesting this interaction is critical for the receptor activation. Thus, we demonstrate an excellent correlation with the predicted pattern of key salt-bridges and experimental levels of activity and conformational flexibility. These results are also consistent with the extended ternary complex model with respect to shifts in agonist and inverse agonist affinity and provide a powerful framework for understanding the molecular basis for the multiple stages of CB1 activation and that of other GPCRs in general.
Collapse
Affiliation(s)
- Kwang H Ahn
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269-3092, USA
| | | | | | | | | |
Collapse
|
10
|
Marcu J, Shore DM, Kapur A, Trznadel M, Makriyannis A, Reggio PH, Abood ME. Novel insights into CB1 cannabinoid receptor signaling: a key interaction identified between the extracellular-3 loop and transmembrane helix 2. J Pharmacol Exp Ther 2013; 345:189-97. [PMID: 23426954 PMCID: PMC3629795 DOI: 10.1124/jpet.112.201046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/19/2013] [Indexed: 11/22/2022] Open
Abstract
Activation of the cannabinoid CB1 receptor (CB1) is modulated by aspartate residue D2.63(176) in transmembrane helix (TMH) 2. Interestingly, D2.63 does not affect the affinity for ligand binding at the CB1 receptor. Studies in class A G protein-coupled receptors have suggested an ionic interaction between residues of TMH2 and 7. In this report, modeling studies identified residue K373 in the extracellular-3 (EC-3) loop in charged interactions with D2.63. We investigated this possibility by performing reciprocal mutations and biochemical studies. D2.63(176)A, K373A, D2.63(176)A-K373A, and the reciprocal mutant with the interacting residues juxtaposed D2.63(176)K-K373D were characterized using radioligand binding and guanosine 5'-3-O-(thio)triphosphate functional assays. None of the mutations resulted in a significant change in the binding affinity of N-(piperidiny-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichloro-phenyl)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride (SR141716A) or (-)-3cis -[2-hydroxyl-4-(1,1-dimethyl-heptyl)phenyl]-trans-4-[3-hydroxyl-propyl] cyclohexan-1-ol (CP55,940). Modeling studies indicated that binding-site interactions and energies of interaction for CP55,940 were similar between wild-type and mutant receptors. However, the signaling of CP55,940, and (R)-(+)-[2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]-pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl](1-naphthalenyl)-methanone mesylate (WIN55,212-2) was impaired at the D2.63(176)A-K373A and the single-alanine mutants. In contrast, the reciprocal D2.63(176)K-K373D mutant regained function for both CP55,940 and WIN55,212-2. Computational results indicate that the D2.63(176)-K373 ionic interaction strongly influences the conformation(s) of the EC-3 loop, providing a structure-based rationale for the importance of the EC-3 loop to signal transduction in CB1. The putative ionic interaction results in the EC-3 loop pulling over the top (extracellular side) of the receptor; this EC-3 loop conformation may serve protective and mechanistic roles. These results suggest that the ionic interaction between D2.63(176) and K373 is important for CB1 signal transduction.
Collapse
MESH Headings
- Amino Acid Sequence
- Benzoxazines/pharmacology
- Binding, Competitive/drug effects
- Cell Line
- Cyclohexanols/pharmacology
- Energy Metabolism/drug effects
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- Humans
- Immunosuppressive Agents/pharmacology
- Models, Chemical
- Molecular Sequence Data
- Morpholines/pharmacology
- Mutagenesis, Site-Directed
- Naphthalenes/pharmacology
- Piperidines/metabolism
- Protein Conformation
- Protein Structure, Secondary
- Pyrazoles/metabolism
- Radioligand Assay
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/drug effects
- Rimonabant
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Jahan Marcu
- Department of Anatomy and Cell Biology, Center for Substance Abuse Research, Temple University, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Console-Bram L, Marcu J, Abood ME. Cannabinoid receptors: nomenclature and pharmacological principles. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:4-15. [PMID: 22421596 PMCID: PMC3378782 DOI: 10.1016/j.pnpbp.2012.02.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 02/20/2012] [Accepted: 02/20/2012] [Indexed: 02/06/2023]
Abstract
The CB1 and CB2 cannabinoid receptors are members of the G protein-coupled receptor (GPCR) family that are pharmacologically well defined. However, the discovery of additional sites of action for endocannabinoids as well as synthetic cannabinoid compounds suggests the existence of additional cannabinoid receptors. Here we review this evidence, as well as the current nomenclature for classifying a target as a cannabinoid receptor. Basic pharmacological definitions, principles and experimental conditions are discussed in order to place in context the mechanisms underlying cannabinoid receptor activation. Constitutive (agonist-independent) activity is observed with the overexpression of many GPCRs, including cannabinoid receptors. Allosteric modulators can alter the pharmacological responses of cannabinoid receptors. The complex molecular architecture of each of the cannabinoid receptors allows for a single receptor to recognize multiple classes of compounds and produce an array of distinct downstream effects. Natural polymorphisms and alternative splice variants may also contribute to their pharmacological diversity. As our knowledge of the distinct differences grows, we may be able to target select receptor conformations and their corresponding pharmacological responses. Importantly, the basic biology of the endocannabinoid system will continue to be revealed by ongoing investigations.
Collapse
Affiliation(s)
- Linda Console-Bram
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA 19140
| | - Jahan Marcu
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA 19140,Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA 19140
| | - Mary E. Abood
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA 19140,Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA 19140
| |
Collapse
|
12
|
|
13
|
Nithipatikom K, Gomez-Granados AD, Tang AT, Pfeiffer AW, Williams CL, Campbell WB. Cannabinoid receptor type 1 (CB1) activation inhibits small GTPase RhoA activity and regulates motility of prostate carcinoma cells. Endocrinology 2012; 153:29-41. [PMID: 22087025 PMCID: PMC3249681 DOI: 10.1210/en.2011-1144] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cannabinoid receptor type 1 (CB1) is a G protein-coupled receptor that is activated in an autocrine fashion by the endocannabinoids (EC), N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG). The CB1 and its endogenous and synthetic agonists are emerging as therapeutic targets in several cancers due to their ability to suppress carcinoma cell invasion and migration. However, the mechanisms that the CB1 regulates cell motility are not well understood. In this study, we examined the molecular mechanisms that diminish cell migration upon the CB1 activation in prostate carcinoma cells. The CB1 activation with the agonist WIN55212 significantly diminishes the small GTPase RhoA activity but modestly increases the Rac1 and Cdc42 activity. The diminished RhoA activity is accompanied by the loss of actin/myosin microfilaments, cell spreading, and cell migration. Interestingly, the CB1 inactivation with the selective CB1 antagonist AM251 significantly increases RhoA activity, enhances microfilament formation and cell spreading, and promotes cell migration. This finding suggests that endogenously produced EC activate the CB1, resulting in chronic repression of RhoA activity and cell migration. Consistent with this possibility, RhoA activity is significantly diminished by the exogenous application of AEA but not by 2-AG in PC-3 cells (cells with very low AEA hydrolysis). Pretreatment of cells with a monoacylglycerol lipase inhibitor, JZL184, which blocks 2-AG hydrolysis, decreases the RhoA activity. These results indicate the unique CB1 signaling and support the model that EC, through their autocrine activation of CB1 and subsequent repression of RhoA activity, suppress migration in prostate carcinoma cells.
Collapse
Affiliation(s)
- Kasem Nithipatikom
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Shim JY, Rudd J, Ding TT. Distinct second extracellular loop structures of the brain cannabinoid CB(1) receptor: implication in ligand binding and receptor function. Proteins 2011; 79:581-97. [PMID: 21120862 PMCID: PMC3058415 DOI: 10.1002/prot.22907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The G-protein-coupled receptor (GPCR) second extracellular loop (E2) is known to play an important role in receptor structure and function. The brain cannabinoid (CB(1)) receptor is unique in that it lacks the interloop E2 disulfide linkage to the transmembrane (TM) helical bundle, a characteristic of many GPCRs. Recent mutation studies of the CB(1) receptor, however, suggest the presence of an alternative intraloop disulfide bond between two E2 Cys residues. Considering the oxidation state of these Cys residues, we determine the molecular structures of the 17-residue E2 in the dithiol form (E2(dithiol)) and in the disulfide form (E2(disulfide)) of the CB(1) receptor in a fully hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer, using a combination of simulated annealing and molecular dynamics simulation approaches. We characterize the CB(1) receptor models with these two E2 forms, CB(1)(E2(dithiol)) and CB(1)(E2(disulfide)), by analyzing interaction energy, contact number, core crevice, and cross correlation. The results show that the distinct E2 structures interact differently with the TM helical bundle and uniquely modify the TM helical topology, suggesting that E2 of the CB(1) receptor plays a critical role in stabilizing receptor structure, regulating ligand binding, and ultimately modulating receptor activation. Further studies on the role of E2 of the CB(1) receptor are warranted, particularly comparisons of the ligand-bound form with the present ligand-free form.
Collapse
Affiliation(s)
- Joong-Youn Shim
- JL Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina 27707, USA.
| | | | | |
Collapse
|
15
|
Sitkoff DF, Lee N, Ellsworth BA, Huang Q, Kang L, Baska R, Huang Y, Sun C, Pendri A, Malley MF, Scaringe RP, Gougoutas JZ, Reggio PH, Ewing WR, Pelleymounter MA, Carlson KE. Cannabinoid CB(1) receptor ligand binding and function examined through mutagenesis studies of F200 and S383. Eur J Pharmacol 2010; 651:9-17. [PMID: 21044623 DOI: 10.1016/j.ejphar.2010.10.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 10/05/2010] [Accepted: 10/16/2010] [Indexed: 11/15/2022]
Abstract
The cannabinoid CB(1) G protein-coupled receptor has been shown to be a regulator of food consumption and has been studied extensively as a drug target for the treatment of obesity. To advance understanding of the receptor's three-dimensional structure, we performed mutagenesis studies at human cannabinoid CB(1) receptor residues F200 and S383 and measured changes in activity and binding affinity of compounds from two recently discovered active chemotypes, arylsulfonamide agonists and tetrahydroquinoline-based inverse agonists, as well as literature compounds. Our results add support to previous findings that both agonists and inverse agonists show varied patterns of binding at the two mutated residue sites, suggesting multiple subsites for binding to the cannabinoid CB(1) receptor for both functional types of ligands. We additionally find that an F200L mutation in the receptor largely restores binding affinity to ligands and significantly decreases constitutive activity when compared to F200A, resulting in a receptor phenotype that is closer to the wild-type receptor. The results downplay the importance of aromatic stacking interactions at F200 and suggest that a bulky hydrophobic contact is largely sufficient to provide significant receptor function and binding affinity to cannabinoid CB(1) receptor ligands.
Collapse
Affiliation(s)
- Doree F Sitkoff
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-5400, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zvonok N, Xu W, Williams J, Janero DR, Krishnan SC, Makriyannis A. Mass spectrometry-based GPCR proteomics: comprehensive characterization of the human cannabinoid 1 receptor. J Proteome Res 2010; 9:1746-53. [PMID: 20131867 DOI: 10.1021/pr900870p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The human cannabinoid 1 receptor (hCB1), a ubiquitous G protein-coupled receptor (GPCR), transmits cannabinergic signals that participate in diverse (patho)physiological processes. Pharmacotherapeutic hCB1 targeting is considered a tractable approach for treating such prevalent diseases as obesity, mood disorders, and drug addiction. The hydrophobic nature of the transmembrane helices of hCB1 presents a formidable difficulty to its direct structural analysis. Comprehensive experimental characterization of functional hCB1 by mass spectrometry (MS) is essential to the targeting of affinity probes that can be used to define directly hCB1 binding domains using a ligand-assisted experimental approach. Such information would greatly facilitate the rational design of hCB1-selective agonists/antagonists with therapeutic potential. We report the first high-coverage MS analysis of the primary sequence of the functional hCB1 receptor, one of the few such comprehensive MS-based analyses of any GPCR. Recombinant C-terminal hexa-histidine-tagged hCB1 (His6-hCB1) was expressed in cultured insect (Spodoptera frugiperda) cells, solubilized by a procedure devised to enhance receptor purity following metal-affinity chromatography, desalted by buffer exchange, and digested in solution with (chymo)trypsin. "Bottom-up" nanoLC-MS/MS of the (chymo)tryptic digests afforded a degree of overall hCB1 coverage (>94%) thus far reported for only two other GPCRs. This MS-compatible procedure devised for His6-hCB1 sample preparation, incorporating in-solution (chymo)trypsin digestion in the presence of a low concentration of CYMAL-5 detergent, may be applicable to the MS-based proteomic characterization of other GPCRs. This work should help enable future ligand-assisted structural characterization of hCB1 binding motifs at the amino-acid level using rationally designed and targeted covalent cannabinergic probes.
Collapse
Affiliation(s)
- Nikolai Zvonok
- Northeastern University, Center for Drug Discovery, 116 Mugar Life Sciences Building, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
17
|
Sharir H, Abood ME. Pharmacological characterization of GPR55, a putative cannabinoid receptor. Pharmacol Ther 2010; 126:301-13. [PMID: 20298715 PMCID: PMC2874616 DOI: 10.1016/j.pharmthera.2010.02.004] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 02/10/2010] [Indexed: 01/02/2023]
Abstract
GPR55 has recently attracted much attention as another member of the cannabinoid family, potentially explaining physiological effects that are non-CB1/CB2 mediated. However, the data gathered so far are conflicting with respect to its pharmacology. We review the primary literature to date on GPR55, describing its discovery, structure, pharmacology and potential physiological functions. The CB1 receptor antagonist/inverse agonist AM251 has been shown to be a GPR55 agonist in all reports in which it was evaluated, as has the lysophospholipid, lysophosphatidylinositol (LPI). Whether GPR55 responds to the endocannabinoid ligands anandamide and 2-arachidonylglycerol and the phytocannabinoids, delta-9-tetrahydrocannabidiol and cannabidiol, is cell type and tissue-dependent. GPR55 has been shown to utilize G(q), G(12), or G(13) for signal transduction; RhoA and phospholipase C are activated. Experiments with mice in which GPR55 has been inactivated reveal a role for this receptor in neuropathic and inflammatory pain as well as in bone physiology. Thus delineating the pharmacology of this receptor and the discovery of selective agonists and antagonists merits further study and could lead to new therapeutics.
Collapse
Affiliation(s)
- Haleli Sharir
- Department of Anatomy and Cell Biology and Center for Substance Abuse Research, Temple University, Philadelphia, PA 19140, USA
| | | |
Collapse
|
18
|
Carter GT, Abood ME, Aggarwal SK, Weiss MD. Cannabis and Amyotrophic Lateral Sclerosis: Hypothetical and Practical Applications, and a Call for Clinical Trials. Am J Hosp Palliat Care 2010; 27:347-56. [DOI: 10.1177/1049909110369531] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Significant advances have increased our understanding of the molecular mechanisms of amyotrophic lateral sclerosis (ALS), yet this has not translated into any greatly effective therapies. It appears that a number of abnormal physiological processes occur simultaneously in this devastating disease. Ideally, a multidrug regimen, including glutamate antagonists, antioxidants, a centrally acting anti-inflammatory agent, microglial cell modulators (including tumor necrosis factor alpha [TNF-α] inhibitors), an antiapoptotic agent, 1 or more neurotrophic growth factors, and a mitochondrial function-enhancing agent would be required to comprehensively address the known pathophysiology of ALS. Remarkably, cannabis appears to have activity in all of those areas. Preclinical data indicate that cannabis has powerful antioxidative, anti-inflammatory, and neuroprotective effects. In the G93A-SOD1 ALS mouse, this has translated to prolonged neuronal cell survival, delayed onset, and slower progression of the disease. Cannabis also has properties applicable to symptom management of ALS, including analgesia, muscle relaxation, bronchodilation, saliva reduction, appetite stimulation, and sleep induction. With respect to the treatment of ALS, from both a disease modifying and symptom management viewpoint, clinical trials with cannabis are the next logical step. Based on the currently available scientific data, it is reasonable to think that cannabis might significantly slow the progression of ALS, potentially extending life expectancy and substantially reducing the overall burden of the disease.
Collapse
Affiliation(s)
- Gregory T. Carter
- Muscular Dystrophy Association/Amyotrophic Lateral Sclerosis Center, University of Washington Medical Center, Seattle, WA, USA,
| | - Mary E. Abood
- Anatomy and Cell Biology and Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
| | - Sunil K. Aggarwal
- Medical Scientist Training Program, School of Medicine, University of Washington, Seattle, WA, USA
| | - Michael D. Weiss
- Muscular Dystrophy Association/Amyotrophic Lateral Sclerosis Center, University of Washington Medical Center, Seattle, WA, USA, Neuromuscular Disease Division, Department of Neurology, University of Washington Medical Center, Seattle, WA, USA, Electrodiagnostic Laboratory, University of Washington Medical Center, Seattle, WA, USA
| |
Collapse
|
19
|
Kapur A, Zhao P, Sharir H, Bai Y, Caron MG, Barak LS, Abood ME. Atypical responsiveness of the orphan receptor GPR55 to cannabinoid ligands. J Biol Chem 2009; 284:29817-27. [PMID: 19723626 PMCID: PMC2785612 DOI: 10.1074/jbc.m109.050187] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 08/21/2009] [Indexed: 01/09/2023] Open
Abstract
The cannabinoid receptor 1 (CB(1)) and CB(2) cannabinoid receptors, associated with drugs of abuse, may provide a means to treat pain, mood, and addiction disorders affecting widespread segments of society. Whether the orphan G-protein coupled receptor GPR55 is also a cannabinoid receptor remains unclear as a result of conflicting pharmacological studies. GPR55 has been reported to be activated by exogenous and endogenous cannabinoid compounds but surprisingly also by the endogenous non-cannabinoid mediator lysophosphatidylinositol (LPI). We examined the effects of a representative panel of cannabinoid ligands and LPI on GPR55 using a beta-arrestin-green fluorescent protein biosensor as a direct readout of agonist-mediated receptor activation. Our data demonstrate that AM251 and SR141716A (rimonabant), which are cannabinoid antagonists, and the lipid LPI, which is not a cannabinoid receptor ligand, are GPR55 agonists. They possess comparable efficacy in inducing beta-arrestin trafficking and, moreover, activate the G-protein-dependent signaling of protein kinase CbetaII. Conversely, the potent synthetic cannabinoid agonist CP55,940 acts as a GPR55 antagonist/partial agonist. CP55,940 blocks GPR55 internalization, the formation of beta-arrestin GPR55 complexes, and the phosphorylation of ERK1/2; CP55,940 produces only a slight amount of protein kinase CbetaII membrane recruitment but does not stimulate membrane remodeling like LPI, AM251, or rimonabant. Our studies provide a paradigm for measuring the responsiveness of GPR55 to a variety of ligand scaffolds comprising cannabinoid and novel compounds and suggest that at best GPR55 is an atypical cannabinoid responder. The activation of GPR55 by rimonabant may be responsible for some of the off-target effects that led to its removal as a potential obesity therapy.
Collapse
Affiliation(s)
- Ankur Kapur
- From the Department of Anatomy and Cell Biology and Center for Substance Abuse Research, Temple University, Philadelphia, Pennsylvania 19140 and
| | - Pingwei Zhao
- From the Department of Anatomy and Cell Biology and Center for Substance Abuse Research, Temple University, Philadelphia, Pennsylvania 19140 and
| | - Haleli Sharir
- From the Department of Anatomy and Cell Biology and Center for Substance Abuse Research, Temple University, Philadelphia, Pennsylvania 19140 and
| | - Yushi Bai
- the Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Marc G. Caron
- the Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Larry S. Barak
- the Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Mary E. Abood
- From the Department of Anatomy and Cell Biology and Center for Substance Abuse Research, Temple University, Philadelphia, Pennsylvania 19140 and
| |
Collapse
|
20
|
New vistas in GPCR 3D structure prediction. J Mol Model 2009; 16:183-91. [PMID: 19551412 DOI: 10.1007/s00894-009-0533-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 05/06/2009] [Indexed: 10/20/2022]
Abstract
Human G-protein coupled receptors (hGPCRs) comprise the most prominent family of validated drug targets. More than 50% of approved drugs reveal their therapeutic effects by targeting this family. Accurate models would greatly facilitate the process of drug discovery and development. However, 3-D structure prediction of GPCRs remains a challenge due to limited availability of resolved structure. The X-ray structures have been solved for only four such proteins. The identity between hGPCRs and the potential templates is mostly less than 30%, well below the level at which sequence alignment can be done regularly. In this study, we analyze a large database of human G-protein coupled receptors that are members of family A in order to optimize usage of the available crystal structures for molecular modeling of hGPCRs. On the basis of our findings in this study, we propose to regard specific parts from the trans-membrane domains of the reference receptor helices as appropriate template for constructing models of other GPCRs, while other residues require other techniques for their remodeling and refinement. The proposed hypothesis in the current study has been tested by modeling human beta2-adrenergic receptor based on crystal structures of bovine rhodopsin (1F88) and human A2A adenosine receptor (3EML). The results have shown some improvement in the quality of the predicted models compared to Modeller software.
Collapse
|
21
|
Tiburu EK, Gulla SV, Tiburu M, Janero DR, Budil DE, Makriyannis A. Dynamic conformational responses of a human cannabinoid receptor-1 helix domain to its membrane environment. Biochemistry 2009; 48:4895-904. [PMID: 19485422 PMCID: PMC2777635 DOI: 10.1021/bi802235w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The influence of membrane environment on human cannabinoid 1 (hCB(1)) receptor transmembrane helix (TMH) conformational dynamics was investigated by solid-state NMR and site-directed spin labeling/EPR with a synthetic peptide, hCB(1)(T377-E416), corresponding to the receptor's C-terminal component, i.e., TMH7 and its intracellular alpha-helical extension (H8) (TMH7/H8). Solid-state NMR experiments with mechanically aligned hCB(1)(T377-E416) specifically (2)H- or (15)N-labeled at Ala380 and reconstituted in membrane-mimetic dimyristoylphosphocholine (DMPC) or 1-palmitoyl-2-oleoyl-sn-glycerophosphocholine (POPC) bilayers demonstrate that the conformation of the TMH7/H8 peptide is more heterogeneous in the thinner DMPC bilayer than in the thicker POPC bilayer. As revealed by EPR studies on hCB(1)(T377-E416) spin-labeled at Cys382 and reconstituted into the phospholipid bilayers, the spin label partitions actively between hydrophobic and hydrophilic environments. In the DMPC bilayer, the hydrophobic component dominates, regardless of temperature. Mobility parameters (DeltaH(0)(-1)) are 0.3 and 0.73 G for the peptide in the DMPC or POPC bilayer environment, respectively. Interspin distances of doubly labeled hCB(1)(T377-E416) peptide reconstituted into a TFE/H(2)O mixture or a POPC or DMPC bilayer were estimated to be 10.6 +/- 0.5, 16.8 +/- 1, and 11.6 +/- 0.8 A, respectively. The extent of coupling (>or=50%) between spin labels located at i and i + 4 in a TFE/H(2)O mixture or a POPC bilayer is indicative of an alpha-helical TMH conformation, whereas the much lower coupling (14%) when the peptide is in a DMPC bilayer suggests a high degree of peptide conformational heterogeneity. These data demonstrate that hCB(1)(T377-E416) backbone dynamics as well as spin-label rotameric freedom are sensitive to and altered by the peptide's phospholipid bilayer environment, which exerts a dynamic influence on the conformation of a TMH critical to signal transmission by the hCB(1) receptor.
Collapse
Affiliation(s)
| | | | | | | | - David E. Budil
- Corresponding authors: Alexandros Makriyannis, Ph.D., Center for Drug Discovery, Northeastern University, Boston, MA 02115. Phone: (617) 373-4200. Fax: (617) 373-7493. E-mail: David E. Budil, Ph.D., Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115. Phone: (617) 373-2369. Fax: (617) 373-8795. E-mail:
| | - Alexandros Makriyannis
- Corresponding authors: Alexandros Makriyannis, Ph.D., Center for Drug Discovery, Northeastern University, Boston, MA 02115. Phone: (617) 373-4200. Fax: (617) 373-7493. E-mail: David E. Budil, Ph.D., Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115. Phone: (617) 373-2369. Fax: (617) 373-8795. E-mail:
| |
Collapse
|
22
|
Tiburu EK, Bowman AL, Struppe JO, Janero DR, Avraham HK, Makriyannis A. Solid-state NMR and molecular dynamics characterization of cannabinoid receptor-1 (CB1) helix 7 conformational plasticity in model membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1788:1159-67. [PMID: 19366584 PMCID: PMC3712639 DOI: 10.1016/j.bbamem.2009.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 01/30/2009] [Accepted: 02/02/2009] [Indexed: 11/30/2022]
Abstract
Little direct information is available regarding the influence of membrane environment on transmembrane (TM) G-protein-coupled receptor (GPCR) conformation and dynamics. The human CB1 cannabinoid receptor (hCB1) is a prominent GPCR pharmacotherapeutic target in which helix 7 appears critical to ligand recognition. We have chemically synthesized a hCB1 peptide corresponding to a segment of TM helix 7 and the entire contiguous helix 8 domain (fourth cytoplasmic loop) and reconstituted it in defined phospholipid-bilayer model membranes. Using an NMR-based strategy combined with molecular dynamics simulations, we provide the first direct experimental description of the orientation of hCB1 helix 7 in phospholipid membranes of varying thickness and the mechanism by which helix-7 conformation adjusts to avoid hydrophobic mismatch. Solid-state (15)N NMR data show that hCB1 helices 7 and 8 reconstituted into phospholipid bilayers are oriented in a TM and in-plane (i.e., parallel to the phospholipid membrane surface) fashion, respectively. TM helix orientation is influenced by the thickness of the hydrophobic membrane bilayer as well as the interaction of helix 8 with phospholipid polar headgroups. Molecular dynamics simulations show that a decrease in phospholipid chain-length induces a kink at P394 in TM helix 7 to avoid hydrophobic mismatch. Thus, the NP(X)nY motif found in hCB1 and highly conserved throughout the GPCR superfamily is important for flexing helix 7 to accommodate bilayer thickness. Dynamic modulation of hCB1-receptor TM helix conformation by its membrane environment may have general relevance to GPCR structure and function.
Collapse
Affiliation(s)
- Elvis K. Tiburu
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Anna L. Bowman
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | | | - David R. Janero
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | | | | |
Collapse
|
23
|
Shim JY. Transmembrane helical domain of the cannabinoid CB1 receptor. Biophys J 2009; 96:3251-62. [PMID: 19383469 PMCID: PMC2718272 DOI: 10.1016/j.bpj.2008.12.3934] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 12/09/2008] [Accepted: 12/30/2008] [Indexed: 01/05/2023] Open
Abstract
Brain cannabinoid (CB(1)) receptors are G-protein coupled receptors and belong to the rhodopsin-like subfamily. A homology model of the inactive state of the CB(1) receptor was constructed using the x-ray structure of beta(2)-adrenergic receptor (beta(2)AR) as the template. We used 105 ns duration molecular-dynamics simulations of the CB(1) receptor embedded in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer to gain some insight into the structure and function of the CB(1) receptor. As judged from the root mean-square deviations combined with the detailed structural analyses, the helical bundle of the CB(1) receptor appears to be fully converged in 50 ns of the simulation. The results reveal that the helical bundle structure of the CB(1) receptor maintains a topology quite similar to the x-ray structures of G-protein coupled receptors overall. It is also revealed that the CB(1) receptor is stabilized by the formation of extensive, water-mediated H-bond networks, aromatic stacking interactions, and receptor-lipid interactions within the helical core region. It is likely that these interactions, which are often specific to functional motifs, including the S(N)LAxAD, D(E)RY, CWxP, and NPxxY motifs, are the molecular constraints imposed on the inactive state of the CB(1) receptor. It appears that disruption of these specific interactions is necessary to release the molecular constraints to achieve a conformational change of the receptor suitable for G-protein activation.
Collapse
MESH Headings
- Binding Sites
- Computer Simulation
- Conserved Sequence
- Crystallography, X-Ray
- Hydrogen Bonding
- Hydrophobic and Hydrophilic Interactions
- Lipid Bilayers/metabolism
- Models, Molecular
- Phosphatidylcholines/metabolism
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptor, Cannabinoid, CB1/chemistry
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, Adrenergic, beta-2/chemistry
- Software
- Water/metabolism
Collapse
Affiliation(s)
- Joong-Youn Shim
- J. L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina
| |
Collapse
|