1
|
Yates JR. Pharmacological Treatments for Methamphetamine Use Disorder: Current Status and Future Targets. Subst Abuse Rehabil 2024; 15:125-161. [PMID: 39228432 PMCID: PMC11370775 DOI: 10.2147/sar.s431273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024] Open
Abstract
The illicit use of the psychostimulant methamphetamine (METH) is a major concern, with overdose deaths increasing substantially since the mid-2010s. One challenge to treating METH use disorder (MUD), as with other psychostimulant use disorders, is that there are no available pharmacotherapies that can reduce cravings and help individuals achieve abstinence. The purpose of the current review is to discuss the molecular targets that have been tested in assays measuring the physiological, the cognitive, and the reinforcing effects of METH in both animals and humans. Several drugs show promise as potential pharmacotherapies for MUD when tested in animals, but fail to produce long-term changes in METH use in dependent individuals (eg, modafinil, antipsychotic medications, baclofen). However, these drugs, plus medications like atomoxetine and varenicline, may be better served as treatments to ameliorate the psychotomimetic effects of METH or to reverse METH-induced cognitive deficits. Preclinical studies show that vesicular monoamine transporter 2 inhibitors, metabotropic glutamate receptor ligands, and trace amine-associated receptor agonists are efficacious in attenuating the reinforcing effects of METH; however, clinical studies are needed to determine if these drugs effectively treat MUD. In addition to screening these compounds in individuals with MUD, potential future directions include increased emphasis on sex differences in preclinical studies and utilization of pharmacogenetic approaches to determine if genetic variances are predictive of treatment outcomes. These future directions can help lead to better interventions for treating MUD.
Collapse
Affiliation(s)
- Justin R Yates
- Department of Psychological Science, Northern Kentucky University, Highland Heights, KY, USA
| |
Collapse
|
2
|
Pinckaers NET, Blankesteijn WM, Mircheva A, Shi X, Opperhuizen A, van Schooten FJ, Vrolijk MF. In Vitro Activation of Human Adrenergic Receptors and Trace Amine-Associated Receptor 1 by Phenethylamine Analogues Present in Food Supplements. Nutrients 2024; 16:1567. [PMID: 38892500 PMCID: PMC11174489 DOI: 10.3390/nu16111567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Pre-workout supplements are popular among sport athletes and overweight individuals. Phenethylamines (PEAs) and alkylamines (AA) are widely present in these supplements. Although the health effects of these analogues are not well understood yet, they are hypothesised to be agonists of adrenergic (ADR) and trace amine-associated receptors (TAARs). Therefore, we aimed to pharmacologically characterise these compounds by investigating their activating properties of ADRs and TAAR1 in vitro. The potency and efficacy of the selected PEAs and AAs was studied by using cell lines overexpressing human ADRα1A/α1B/α1D/α2a/α2B/β1/β2 or TAAR1. Concentration-response relationships are expressed as percentages of the maximal signal obtained by the full ADR agonist adrenaline or the full TAAR1 agonist phenethylamine. Multiple PEAs activated ADRs (EC50 = 34 nM-690 µM; Emax = 8-105%). Almost all PEAs activated TAAR1 (EC50 = 1.8-92 µM; Emax = 40-104%). Our results reveal the pharmacological profile of PEAs and AAs that are often used in food supplements. Several PEAs have strong agonistic properties on multiple receptors and resemble potencies of the endogenous ligands, indicating that they might further stimulate the already activated sympathetic nervous system in exercising athletes via multiple mechanisms. The use of supplements containing one, or a combination of, PEA(s) may pose a health risk for their consumers.
Collapse
Affiliation(s)
- Nicole E. T. Pinckaers
- Department of Pharmacology and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands
- Research Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - W. Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Anastasiya Mircheva
- Department of Pharmacology and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Xiao Shi
- Research Service, Veterans Affairs Portland Health Care System, Portland, OR 97239, USA
- Department of Psychiatry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Antoon Opperhuizen
- Department of Pharmacology and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands
- Office for Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority, 3540 AA Utrecht, The Netherlands
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands
- Research Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Misha F. Vrolijk
- Department of Pharmacology and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands
- Research Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
3
|
Zhang MX, Hong H, Shi Y, Huang WY, Xia YM, Tan LL, Zhao WJ, Qiao CM, Wu J, Zhao LP, Huang SB, Jia XB, Shen YQ, Cui C. A Pilot Study on a Possible Mechanism behind Olfactory Dysfunction in Parkinson's Disease: The Association of TAAR1 Downregulation with Neuronal Loss and Inflammation along Olfactory Pathway. Brain Sci 2024; 14:300. [PMID: 38671952 PMCID: PMC11048016 DOI: 10.3390/brainsci14040300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Parkinson's disease (PD) is characterized not only by motor symptoms but also by non-motor dysfunctions, such as olfactory impairment; the cause is not fully understood. Our study suggests that neuronal loss and inflammation in brain regions along the olfactory pathway, such as the olfactory bulb (OB) and the piriform cortex (PC), may contribute to olfactory dysfunction in PD mice, which might be related to the downregulation of the trace amine-associated receptor 1 (TAAR1) in these areas. In the striatum, although only a decrease in mRNA level, but not in protein level, of TAAR1 was detected, bioinformatic analyses substantiated its correlation with PD. Moreover, we discovered that neuronal death and inflammation in the OB and the PC in PD mice might be regulated by TAAR through the Bcl-2/caspase3 pathway. This manifested as a decrease of anti-apoptotic protein Bcl-2 and an increase of the pro-apoptotic protein cleaved caspase3, or through regulating astrocytes activity, manifested as the increase of TAAR1 in astrocytes, which might lead to the decreased clearance of glutamate and consequent neurotoxicity. In summary, we have identified a possible mechanism to elucidate the olfactory dysfunction in PD, positing neuronal damage and inflammation due to apoptosis and astrocyte activity along the olfactory pathway in conjunction with the downregulation of TAAR1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Chun Cui
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
| |
Collapse
|
4
|
Yoo J, Han J, Lim MH. Transition metal ions and neurotransmitters: coordination chemistry and implications for neurodegeneration. RSC Chem Biol 2023; 4:548-563. [PMID: 37547459 PMCID: PMC10398360 DOI: 10.1039/d3cb00052d] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Neurodegeneration is characterized by a disturbance in neurotransmitter-mediated signaling pathways. Recent studies have highlighted the significant role of transition metal ions, including Cu(i/ii), Zn(ii), and Fe(ii/iii), in neurotransmission, thereby making the coordination chemistry of neurotransmitters a growing field of interest in understanding signal dysfunction. This review outlines the physiological functions of transition metal ions and neurotransmitters, with the metal-binding properties of small molecule-based neurotransmitters and neuropeptides. Additionally, we discuss the structural and conformational changes of neurotransmitters induced by redox-active metal ions, such as Cu(i/ii) and Fe(ii/iii), and briefly describe the outcomes arising from their oxidation, polymerization, and aggregation. These observations have important implications for neurodegeneration and emphasize the need for further research to develop potential therapeutic strategies.
Collapse
Affiliation(s)
- Jeasang Yoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jiyeon Han
- Department of Applied Chemistry, University of Seoul Seoul 02504 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
5
|
Small C, Cheng MH, Belay SS, Bulloch SL, Zimmerman B, Sorkin A, Block ER. The Alkylamine Stimulant 1,3-Dimethylamylamine Exhibits Substrate-Like Regulation of Dopamine Transporter Function and Localization. J Pharmacol Exp Ther 2023; 386:266-273. [PMID: 37348963 PMCID: PMC10353075 DOI: 10.1124/jpet.122.001573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 05/04/2023] [Indexed: 06/24/2023] Open
Abstract
The alkylamine stimulant 1,3-dimethylamylamine (DMAA) is used nonmedically as an appetite suppressant and exercise performance enhancer despite adverse cardiovascular effects that have limited its legal status. There is scant research describing the mechanism of action of DMAA, making it difficult to gauge risks or therapeutic potential. An important molecular target of structurally related phenethylamines, such as amphetamine, for regulating mood, cognition, movement, and the development of substance use disorder is the dopamine transporter, which limits the range and magnitude of dopamine signaling via reuptake from the extracellular space. The present studies were therefore initiated to characterize the effects of DMAA on dopamine transporter function. Specifically, we tested the hypothesis that DMAA exhibits substrate-like effects on dopamine transporter function and trafficking. In transport assays in human embryonic kidney cells, DMAA inhibited dopamine uptake by the human dopamine transporter in a competitive manner. Docking analysis and molecular dynamics simulations supported these findings, revealing that DMAA binds to the S1 substrate binding site and induces a conformational change from outward-facing open to outward-facing closed states, similar to the known substrates. Further supporting substrate-like effects of DMAA, the drug stimulated dopamine transporter endocytosis in a heterologous expression system via cocaine- and protein kinase A-sensitive mechanisms, mirroring findings with amphetamine. Together, these data indicate that DMAA elicits neurologic effects by binding to and regulating function of the dopamine transporter. Furthermore, pharmacologic distinctions from amphetamine reveal structural determinants for regulating transporter conformation and add mechanistic insight for the regulation of dopamine transporter endocytosis. SIGNIFICANCE STATEMENT: The alkylamine stimulant 1,3-dimethylamylamine (DMAA) is used as an appetite suppressant and athletic performance enhancer and is structurally similar to amphetamine, but there is scant research describing its mechanism of action. Characterizing the effects of DMAA on dopamine transporter function supports evaluation of potential risks and therapeutic potential while also revealing mechanistic details of dynamic transporter-substrate interactions.
Collapse
Affiliation(s)
- Cassandra Small
- Science Department, Chatham University, Pittsburgh, Pennsylvania (C.S., S.S.B., S.L.B., B.Z., E.R.B.) and Departments of Computational and Systems Biology (M.H.C.) and Cell Biology (A.S.), School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mary Hongying Cheng
- Science Department, Chatham University, Pittsburgh, Pennsylvania (C.S., S.S.B., S.L.B., B.Z., E.R.B.) and Departments of Computational and Systems Biology (M.H.C.) and Cell Biology (A.S.), School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Saron S Belay
- Science Department, Chatham University, Pittsburgh, Pennsylvania (C.S., S.S.B., S.L.B., B.Z., E.R.B.) and Departments of Computational and Systems Biology (M.H.C.) and Cell Biology (A.S.), School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sarah L Bulloch
- Science Department, Chatham University, Pittsburgh, Pennsylvania (C.S., S.S.B., S.L.B., B.Z., E.R.B.) and Departments of Computational and Systems Biology (M.H.C.) and Cell Biology (A.S.), School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brooke Zimmerman
- Science Department, Chatham University, Pittsburgh, Pennsylvania (C.S., S.S.B., S.L.B., B.Z., E.R.B.) and Departments of Computational and Systems Biology (M.H.C.) and Cell Biology (A.S.), School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alexander Sorkin
- Science Department, Chatham University, Pittsburgh, Pennsylvania (C.S., S.S.B., S.L.B., B.Z., E.R.B.) and Departments of Computational and Systems Biology (M.H.C.) and Cell Biology (A.S.), School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ethan R Block
- Science Department, Chatham University, Pittsburgh, Pennsylvania (C.S., S.S.B., S.L.B., B.Z., E.R.B.) and Departments of Computational and Systems Biology (M.H.C.) and Cell Biology (A.S.), School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
6
|
Kundu D, Zhu A, Kim E, Paudel S, Jang CG, Lee YS, Kim KM. Potential Functional Role of Phenethylamine Derivatives in Inhibiting Dopamine Reuptake: Structure-Activity Relationship. Biomol Ther (Seoul) 2023; 31:108-115. [PMID: 36098044 PMCID: PMC9810443 DOI: 10.4062/biomolther.2022.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 01/13/2023] Open
Abstract
Numerous psychotropic and addictive substances possess structural features similar to those of β-phenethylamine (β-PEA). In this study, we selected 29 β-PEA derivatives and determined their structure-activity relationship (SAR) to their ability to inhibit dopamine (DA) reuptake; conducted docking simulation for two selected compounds; and identified their potential functionals. The compounds were subdivided into arylethylamines, 2-(alkyl amino)-1-arylalkan-1-one derivatives and alkyl 2-phenyl-2-(piperidin-2-yl)acetate derivatives. An aromatic group, alkyl group, and alkylamine derivative were attached to the arylethylamine and 2-(alkyl amino)-1-arylalkan-1-one derivatives. The inhibitory effect of the compounds on dopamine reuptake increased in the order of the compounds substituted with phenyl, thiophenyl, and substituted phenyl groups in the aromatic position; compounds with longer alkyl groups and smaller ring-sized compounds at the alkylamine position showed stronger inhibitory activities. Docking simulation conducted for two compounds, 9 and 28, showed that the (S)-form of compound 9 was more stable than the (R)-form, with a good fit into the binding site covered by helices 1, 3, and 6 of human dopamine transporter (hDAT). In contrast, the (R, S)-configuration of compound 28 was more stable than that of other isomers and was firmly placed in the binding pocket of DAT bound to DA. DA-induced endocytosis of dopamine D2 receptors was inhibited when they were co-expressed with DAT, which lowered extracellular DA levels, and uninhibited when they were pretreated with compound 9 or 28. In summary, this study revealed critical structural features responsible for the inhibition of DA reuptake and the functional role of DA reuptake inhibitors in regulating D2 receptor function.
Collapse
Affiliation(s)
- Dooti Kundu
- College of Pharmacy, Chonnam National University, Gwangju 61146, Republic of Korea
| | - Anlin Zhu
- College of Pharmacy, Chonnam National University, Gwangju 61146, Republic of Korea
| | - Eunae Kim
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Suresh Paudel
- College of Pharmacy, Chonnam National University, Gwangju 61146, Republic of Korea
| | - Choon-Gon Jang
- College of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yong Sup Lee
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyeong-Man Kim
- College of Pharmacy, Chonnam National University, Gwangju 61146, Republic of Korea,Corresponding Author E-mail: , Tel: +82-62-530-2936, Fax: +82-62-530-2949
| |
Collapse
|
7
|
Trace amine-associated receptor 1 (TAAR1) agonism as a new treatment strategy for schizophrenia and related disorders. Trends Neurosci 2023; 46:60-74. [PMID: 36369028 DOI: 10.1016/j.tins.2022.10.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
Schizophrenia remains a major health burden, highlighting the need for new treatment approaches. We consider the potential for targeting the trace amine (TA) system. We first review genetic, preclinical, and clinical evidence for the role of TAs in the aetiopathology of schizophrenia. We then consider how the localisation and function of the trace amine-associated receptor 1 (TAAR1) position it to modulate key brain circuits for the disorder. Studies in rodents using Taar1 knockout (TAAR1-KO) and overexpression models show that TAAR1 agonism inhibits midbrain dopaminergic and serotonergic activity, and enhances prefrontal glutamatergic function. TAAR1 agonists also reduce hyperactivity, attenuate prepulse inhibition (PPI) deficits and social withdrawal, and improve cognitive measures in animal models. Finally, we consider findings from clinical trials of TAAR1 agonists and how this approach may address psychotic and negative symptoms, tolerability issues, and other unmet needs in the treatment of schizophrenia.
Collapse
|
8
|
Sugiyama Y, Mori Y, Nara M, Kotani Y, Nagai E, Kawada H, Kitamura M, Hirano R, Shimokawa H, Nakagawa A, Minami H, Gotoh A, Sakanaka M, Iida N, Koyanagi T, Katayama T, Okamoto S, Kurihara S. Gut bacterial aromatic amine production: aromatic amino acid decarboxylase and its effects on peripheral serotonin production. Gut Microbes 2022; 14:2128605. [PMID: 36217238 PMCID: PMC9553188 DOI: 10.1080/19490976.2022.2128605] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Colonic luminal aromatic amines have been historically considered to be derived from dietary source, especially fermented foods; however, recent studies indicate that the gut microbiota serves as an alternative source of these amines. Herein, we show that five prominent genera of Firmicutes (Blautia, Clostridium, Enterococcus, Ruminococcus, and Tyzzerella) have the ability to abundantly produce aromatic amines through the action of aromatic amino acid decarboxylase (AADC). In vitro cultivation of human fecal samples revealed that a significant positive correlation between aadc copy number of Ruminococcus gnavus and phenylethylamine (PEA) production. Furthermore, using genetically engineered Enterococcus faecalis-colonized BALB/cCrSlc mouse model, we showed that the gut bacterial aadc stimulates the production of colonic serotonin, which is reportedly involved in osteoporosis and irritable bowel syndrome. Finally, we showed that human AADC inhibitors carbidopa and benserazide inhibit PEA production in En. faecalis.
Collapse
Affiliation(s)
- Yuta Sugiyama
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, 921-8836, Japan,Gunma University Center for Food Science and Wellness, Gunma University, Maebashi, Japan
| | - Yumiko Mori
- Department of Clinical Laboratory Sciences, Faculty of Health Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Misaki Nara
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, 921-8836, Japan
| | - Yusuke Kotani
- Department of Clinical Laboratory Sciences, Faculty of Health Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Emiko Nagai
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, 921-8836, Japan,Department of Biotechnology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Japan
| | - Hiroki Kawada
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, 921-8836, Japan
| | - Mayu Kitamura
- Department of Clinical Laboratory Sciences, Faculty of Health Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Rika Hirano
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Hiromi Shimokawa
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Akira Nakagawa
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, 921-8836, Japan
| | - Hiromichi Minami
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, 921-8836, Japan
| | - Aina Gotoh
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Mikiyasu Sakanaka
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, 921-8836, Japan
| | - Noriho Iida
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Takashi Koyanagi
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, 921-8836, Japan
| | - Takane Katayama
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, 921-8836, Japan,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shigefumi Okamoto
- Department of Clinical Laboratory Sciences, Faculty of Health Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa, Japan,Advanced Health Care Science Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Shin Kurihara
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, 921-8836, Japan,Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan,CONTACT Shin Kurihara Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama649-6493, Japan
| |
Collapse
|
9
|
Enhancer Regulation of Dopaminergic Neurochemical Transmission in the Striatum. Int J Mol Sci 2022; 23:ijms23158543. [PMID: 35955676 PMCID: PMC9369307 DOI: 10.3390/ijms23158543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
The trace amine-associated receptor 1 (TAAR1) is a Gs protein-coupled, intracellularly located metabotropic receptor. Trace and classic amines, amphetamines, act as agonists on TAAR1; they activate downstream signal transduction influencing neurotransmitter release via intracellular phosphorylation. Our aim was to check the effect of the catecholaminergic activity enhancer compound ((−)BPAP, (R)-(−)-1-(benzofuran-2-yl)-2-propylaminopentane) on neurotransmitter release via the TAAR1 signaling. Rat striatal slices were prepared and the resting and electrical stimulation-evoked [3H]dopamine release was measured. The releaser (±)methamphetamine evoked non-vesicular [3H]dopamine release in a TAAR1-dependent manner, whereas (−)BPAP potentiated [3H]dopamine release with vesicular origin via TAAR1 mediation. (−)BPAP did not induce non-vesicular [3H]dopamine release. N-Ethylmaleimide, which inhibits SNARE core complex disassembly, potentiated the stimulatory effect of (−)BPAP on vesicular [3H]dopamine release. Subsequent analyses indicated that the dopamine-release stimulatory effect of (−)BPAP was due to an increase in PKC-mediated phosphorylation. We have hypothesized that there are two binding sites present on TAAR1, one for the releaser and one for the enhancer compounds, and they activate different PKC-mediated phosphorylation leading to the evoking of non-vesicular and vesicular dopamine release. (−)BPAP also increased VMAT2 operation enforcing vesicular [3H]dopamine accumulation and release. Vesicular dopamine release promoted by TAAR1 evokes activation of D2 dopamine autoreceptor-mediated presynaptic feedback inhibition. In conclusion, TAAR1 possesses a triggering role in both non-vesicular and vesicular dopamine release, and the mechanism of action of (−)BPAP is linked to the activation of TAAR1 and the signal transduction attached.
Collapse
|
10
|
Long SE, Jacobson MH, Wang Y, Liu M, Afanasyeva Y, Sumner SJ, McRitchie S, Kirchner DR, Brubaker SG, Mehta-Lee SS, Kahn LG, Trasande L. Longitudinal associations of pre-pregnancy BMI and gestational weight gain with maternal urinary metabolites: an NYU CHES study. Int J Obes (Lond) 2022; 46:1332-1340. [PMID: 35411100 PMCID: PMC9581342 DOI: 10.1038/s41366-022-01116-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND/OBJECTIVES Excessive gestational weight gain (GWG) and pre-pregnancy obesity affect a significant portion of the US pregnant population and are linked with negative maternal and child health outcomes. The objective of this study was to explore associations of pre-pregnancy body mass index (pBMI) and GWG with longitudinally measured maternal urinary metabolites throughout pregnancy. SUBJECTS/METHODS Among 652 participants in the New York University Children's Health and Environment Study, a longitudinal pregnancy cohort, targeted metabolomics were measured in serially collected urine samples throughout pregnancy. Metabolites were measured at median 10 (T1), 21 (T2), and 29 (T3) weeks gestation using the Biocrates AbsoluteIDQ® p180 Urine Extension kit. Acylcarnitine, amino acid, biogenic amine, phosphatidylcholine, lysophosphatidylcholine, sphingolipid, and sugar levels were quantified. Pregnant people 18 years or older, without type 1 or 2 diabetes and with singleton live births and valid pBMI and metabolomics data were included. GWG and pBMI were calculated using weight and height data obtained from electronic health records. Linear mixed effects models with interactions with time were fit to determine the gestational age-specific associations of categorical pBMI and continuous interval-specific GWG with urinary metabolites. All analyses were corrected for false discovery rate. RESULTS Participants with obesity had lower long-chain acylcarnitine levels throughout pregnancy and lower phosphatidylcholine and glucogenic amino acids and higher phenylethylamine concentrations in T2 and T3 compared with participants with normal/underweight pBMI. GWG was associated with taurine in T2 and T3 and C5 acylcarnitine species, C5:1, C5-DC, and C5-M-DC, in T2. CONCLUSIONS pBMI and GWG were associated with the metabolic environment of pregnant individuals, particularly in relation to mid-pregnancy. These results highlight the importance of both preconception and prenatal maternal health.
Collapse
Affiliation(s)
- Sara E Long
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Langone Medical Center, New York, NY, USA.
| | - Melanie H Jacobson
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Langone Medical Center, New York, NY, USA
| | - Yuyan Wang
- Department of Population Health, NYU Langone Medical Center, New York, NY, USA
| | - Mengling Liu
- Department of Population Health, NYU Langone Medical Center, New York, NY, USA
- Department of Environmental Medicine, NYU Langone Medical Center, New York, NY, USA
| | - Yelena Afanasyeva
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Langone Medical Center, New York, NY, USA
- Department of Population Health, NYU Langone Medical Center, New York, NY, USA
| | - Susan J Sumner
- Department of Nutrition, UNC Chapel Hill, Chapel Hill, NC, USA
- UNC Chapel Hill Nutrition Research Institute, Kannapolis, NC, USA
| | - Susan McRitchie
- UNC Chapel Hill Nutrition Research Institute, Kannapolis, NC, USA
| | - David R Kirchner
- UNC Chapel Hill Nutrition Research Institute, Kannapolis, NC, USA
| | - Sara G Brubaker
- Department of Obstetrics and Gynecology, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Shilpi S Mehta-Lee
- Department of Obstetrics and Gynecology, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Linda G Kahn
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Langone Medical Center, New York, NY, USA
- Department of Population Health, NYU Langone Medical Center, New York, NY, USA
| | - Leonardo Trasande
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Langone Medical Center, New York, NY, USA
- Department of Population Health, NYU Langone Medical Center, New York, NY, USA
- Department of Environmental Medicine, NYU Langone Medical Center, New York, NY, USA
- NYU Wagner School of Public Service, New York, NY, USA
- NYU College of Global Public Health, New York, NY, USA
| |
Collapse
|
11
|
Chen K, Palagashvili T, Hsu W, Chen Y, Tabakoff B, Hong F, Shih AT, Shih JC. Brain injury and inflammation genes common to a number of neurological diseases and the genes involved in the genesis of GABAnergic neurons are altered in monoamine oxidase B knockout mice. Brain Res 2022; 1774:147724. [PMID: 34780749 PMCID: PMC8638699 DOI: 10.1016/j.brainres.2021.147724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 01/03/2023]
Abstract
Monoamine oxidase B (MAO B) oxidizes trace amine phenylethylamine (PEA), and neurotransmitters serotonin and dopamine in the brain. We reported previously that PEA levels increased significantly in all brain regions, but serotonin and dopamine levels were unchanged in MAO B knockout (KO) mice. PEA and dopamine are both synthesized from phenylalanine by aromatic L-amino acid decarboxylase in dopaminergic neurons in the striatum. A high concentration of PEA in the striatum may cause dopaminergic neuronal death in the absence of MAO B. We isolated the RNA from brain tissue of MAO B KO mice (2-month old) and age-matched wild type (WT) male mice and analyzed the altered genes by Affymetrix microarray. Differentially expressed genes (DEGs) in MAO B KO compared to WT mice were analyzed by Partek Genomics Suite, followed by Ingenuity Pathway Analysis (IPA) to assess their functional relationships. DEGs in MAO B KO mice are involved in brain inflammation and the genesis of GABAnergic neurons. The significant DEGs include four brain injury or inflammation genes (upregulated: Ido1, TSPO, AVP, Tdo2), five gamma-aminobutyric acid (GABA) receptors (down-regulated: GABRA2, GABRA3, GABRB1, GABRB3, GABRG3), five transcription factors related to adult neurogenesis (upregulated: Wnt7b, Hes5; down-regulated: Pax6, Tcf4, Dtna). Altered brain injury and inflammation genes in MAO B knockout mice are involved in various neurological disorders: attention deficit hyperactive disorder, panic disorder, obsessive compulsive disorder, autism, amyotrophic lateral sclerosis, Parkinson's diseases, Alzheimer's disease, bipolar affective disorder. Many were commonly involved in these disorders, indicating that there are overlapping molecular pathways.
Collapse
Affiliation(s)
- Kevin Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Ave., Los Angeles, CA, USA
| | - Tamara Palagashvili
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Ave., Los Angeles, CA, USA
| | - W Hsu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Ave., Los Angeles, CA, USA
| | - Yibu Chen
- Norris Medical Library, University of Southern California, Los Angeles, CA, USA
| | - Boris Tabakoff
- University of Colorado Health Science Center, Denver, CO, USA
| | - Frank Hong
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Ave., Los Angeles, CA, USA
| | - Abigail T Shih
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Ave., Los Angeles, CA, USA
| | - Jean C Shih
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Ave., Los Angeles, CA, USA; Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC-Taiwan Center for Translational Research, University of Southern California, Los Angeles CA, USA.
| |
Collapse
|
12
|
Cuperlovic-Culf M, Cunningham EL, Teimoorinia H, Surendra A, Pan X, Bennett SAL, Jung M, McGuiness B, Passmore AP, Beverland D, Green BD. Metabolomics and computational analysis of the role of monoamine oxidase activity in delirium and SARS-COV-2 infection. Sci Rep 2021; 11:10629. [PMID: 34017039 PMCID: PMC8138024 DOI: 10.1038/s41598-021-90243-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/05/2021] [Indexed: 02/03/2023] Open
Abstract
Delirium is an acute change in attention and cognition occurring in ~ 65% of severe SARS-CoV-2 cases. It is also common following surgery and an indicator of brain vulnerability and risk for the development of dementia. In this work we analyzed the underlying role of metabolism in delirium-susceptibility in the postoperative setting using metabolomic profiling of cerebrospinal fluid and blood taken from the same patients prior to planned orthopaedic surgery. Distance correlation analysis and Random Forest (RF) feature selection were used to determine changes in metabolic networks. We found significant concentration differences in several amino acids, acylcarnitines and polyamines linking delirium-prone patients to known factors in Alzheimer's disease such as monoamine oxidase B (MAOB) protein. Subsequent computational structural comparison between MAOB and angiotensin converting enzyme 2 as well as protein-protein docking analysis showed that there potentially is strong binding of SARS-CoV-2 spike protein to MAOB. The possibility that SARS-CoV-2 influences MAOB activity leading to the observed neurological and platelet-based complications of SARS-CoV-2 infection requires further investigation.
Collapse
Affiliation(s)
- Miroslava Cuperlovic-Culf
- Digital Technologies Research Centre, National Research Council of Canada, Ottawa, Canada.
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| | - Emma L Cunningham
- Centre for Public Health, Queen's University Belfast, Block B, Institute of Clinical Sciences, Royal Victoria Hospital Site, Grosvenor Road, Belfast, BT12 6BA, Northern Ireland
| | - Hossen Teimoorinia
- NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC, V9E 2E7, Canada
| | - Anuradha Surendra
- Digital Technologies Research Centre, National Research Council of Canada, Ottawa, Canada
| | - Xiaobei Pan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 8 Malone Road, Belfast, BT9 5BN, Northern Ireland
| | - Steffany A L Bennett
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Brain and Mind Research Institute, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Mijin Jung
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 8 Malone Road, Belfast, BT9 5BN, Northern Ireland
| | - Bernadette McGuiness
- Centre for Public Health, Queen's University Belfast, Block B, Institute of Clinical Sciences, Royal Victoria Hospital Site, Grosvenor Road, Belfast, BT12 6BA, Northern Ireland
| | - Anthony Peter Passmore
- Centre for Public Health, Queen's University Belfast, Block B, Institute of Clinical Sciences, Royal Victoria Hospital Site, Grosvenor Road, Belfast, BT12 6BA, Northern Ireland
| | - David Beverland
- Outcomes Assessment Unit, Musgrave Park Hospital, Stockman's Lane, Belfast, BT9 7JB, Northern Ireland
| | - Brian D Green
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 8 Malone Road, Belfast, BT9 5BN, Northern Ireland.
| |
Collapse
|
13
|
Horne SM, Ugrinov A, Prüβ BM. The Food Anti-Microbials β-Phenylethylamine (-HCl) and Ethyl Acetoacetate Do Not Change during the Heating Process. Antibiotics (Basel) 2021; 10:antibiotics10040418. [PMID: 33920266 PMCID: PMC8069388 DOI: 10.3390/antibiotics10040418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 01/17/2023] Open
Abstract
β-Phenylethylamine hydrochloride (PEA-HCl) and ethyl acetoacetate (EAA) are anti-microbials with applications in food processing. As food anti-microbials, the compounds will have to withstand the cooking process without changing to toxic compounds. With this Communication, we address the question of whether PEA and EAA are altered when heated to 73.9 °C or 93.3 °C. A combination of gas chromatography and mass spectrometry was used to analyze solutions of PEA(-HCl) or EAA in beef broth or water. In addition, the anti-microbial activity of PEA-HCl and EAA was compared between heated and unheated samples at a range of concentrations. The gas chromatograms of PEA(-HCl) and EAA showed one peak at early retention times that did not differ between the heated and unheated samples. The mass spectra for PEA and EAA were near identical to those from a spectral database and did not show any differences between the heated and unheated samples. We conclude that PEA(-HCl) and EAA formed pure solutions and were not altered during the heating process. In addition, the anti-microbial activity of PEA-HCl and EAA did not change after the heating of the compounds. Regardless of temperature, the minimal inhibitory concentrations (MICs) for PEA-HCl were 20.75 mmol mL−1 for Escherichia coli and Salmonella enterica serotype Typhimurium. For EAA, the MICs were 23.4 mmol mL−1 for E. coli and 15.6 mmol mL−1 for S. enterica.
Collapse
Affiliation(s)
- Shelley M. Horne
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA;
| | - Angel Ugrinov
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108, USA;
| | - Birgit M. Prüβ
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA;
- Correspondence: ; Tel.: +1-701-231-7848
| |
Collapse
|
14
|
Zhukov DA, Vinogradova EP. Trace Amines and Behavior. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420040108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Mootz JRK, Miner NB, Phillips TJ. Differential genetic risk for methamphetamine intake confers differential sensitivity to the temperature-altering effects of other addictive drugs. GENES, BRAIN, AND BEHAVIOR 2020; 19:e12640. [PMID: 31925906 PMCID: PMC7286770 DOI: 10.1111/gbb.12640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 01/03/2023]
Abstract
Mice selectively bred for high methamphetamine (MA) drinking (MAHDR), compared with mice bred for low MA drinking (MALDR), exhibit greater sensitivity to MA reward and insensitivity to aversive and hypothermic effects of MA. Previous work identified the trace amine-associated receptor 1 gene (Taar1) as a quantitative trait gene for MA intake that also impacts thermal response to MA. All MAHDR mice are homozygous for the mutant Taar1 m1J allele, whereas all MALDR mice possess at least one copy of the reference Taar1 + allele. To determine if their differential sensitivity to MA-induced hypothermia extends to drugs of similar and different classes, we examined sensitivity to the hypothermic effect of the stimulant cocaine, the amphetamine-like substance 3,4-methylenedioxymethamphetamine (MDMA), and the opioid morphine in these lines. The lines did not differ in thermal response to cocaine, only MALDR mice exhibited a hypothermic response to MDMA, and MAHDR mice were more sensitive to the hypothermic effect of morphine than MALDR mice. We speculated that the μ-opioid receptor gene (Oprm1) impacts morphine response, and genotyped the mice tested for morphine-induced hypothermia. We report genetic linkage between Taar1 and Oprm1; MAHDR mice more often inherit the Oprm1 D2 allele and MALDR mice more often inherit the Oprm1 B6 allele. Data from a family of recombinant inbred mouse strains support the influence of Oprm1 genotype, but not Taar1 genotype, on thermal response to morphine. These results nominate Oprm1 as a genetic risk factor for morphine-induced hypothermia, and provide additional evidence for a connection between drug preference and drug thermal response.
Collapse
Affiliation(s)
- John R K Mootz
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon
| | - Nicholas B Miner
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon
| | - Tamara J Phillips
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon
- Division of Research, Veterans Affairs Portland Health Care System, Portland, Oregon
| |
Collapse
|
16
|
Bugda Gwilt K, González DP, Olliffe N, Oller H, Hoffing R, Puzan M, El Aidy S, Miller GM. Actions of Trace Amines in the Brain-Gut-Microbiome Axis via Trace Amine-Associated Receptor-1 (TAAR1). Cell Mol Neurobiol 2020; 40:191-201. [PMID: 31836967 PMCID: PMC11448870 DOI: 10.1007/s10571-019-00772-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022]
Abstract
Trace amines and their primary receptor, Trace Amine-Associated Receptor-1 (TAAR1) are widely studied for their involvement in the pathogenesis of neuropsychiatric disorders despite being found in the gastrointestinal tract at physiological levels. With the emergence of the "brain-gut-microbiome axis," we take the opportunity to review what is known about trace amines in the brain, the defined sources of trace amines in the gut, and emerging understandings on the levels of trace amines in various gastrointestinal disorders. Similarly, we discuss localization of TAAR1 expression in the gut, novel findings that TAAR1 may be implicated in inflammatory bowel diseases, and the reported comorbidities of neuropsychiatric disorders and gastrointestinal disorders. With the emergence of TAAR1 specific compounds as next-generation therapeutics for schizophrenia (Roche) and Parkinson's related psychoses (Sunovion), we hypothesize a therapeutic benefit of these compounds in clinical trials in the brain-gut-microbiome axis, as well as a potential for thoughtful manipulation of the brain-gut-microbiome axis to modulate symptoms of neuropsychiatric disease.
Collapse
Affiliation(s)
- Katlynn Bugda Gwilt
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA.
- Center for Drug Discovery, Northeastern University, Boston, MA, USA.
- Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, USA.
| | - Dulce Pamela González
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Neva Olliffe
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
- Department of Biology, College of Science, Northeastern University, Boston, MA, USA
| | - Haley Oller
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Rachel Hoffing
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
- Department of Biology, College of Science, Northeastern University, Boston, MA, USA
| | - Marissa Puzan
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA
| | - Sahar El Aidy
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Gregory M Miller
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
17
|
Effect of trace amine-associated receptor 1 agonist RO5263397 on sensory gating in mice. Neuroreport 2019; 30:1004-1007. [DOI: 10.1097/wnr.0000000000001313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Bugda Gwilt K, Olliffe N, Hoffing RA, Miller GM. Trace amine associated receptor 1 (TAAR1) expression and modulation of inflammatory cytokine production in mouse bone marrow-derived macrophages: a novel mechanism for inflammation in ulcerative colitis. Immunopharmacol Immunotoxicol 2019; 41:577-585. [DOI: 10.1080/08923973.2019.1672178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Katlynn Bugda Gwilt
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Neva Olliffe
- Department of Biology, Northeastern University, Boston, MA, USA
- Honors Program, Northeastern University, Boston, MA, USA
| | | | - Gregory M. Miller
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
19
|
Luqman A, Nega M, Nguyen MT, Ebner P, Götz F. SadA-Expressing Staphylococci in the Human Gut Show Increased Cell Adherence and Internalization. Cell Rep 2019; 22:535-545. [PMID: 29320746 DOI: 10.1016/j.celrep.2017.12.058] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/11/2017] [Accepted: 12/17/2017] [Indexed: 12/14/2022] Open
Abstract
A subgroup of biogenic amines, the so-called trace amines (TAs), are produced by mammals and bacteria and can act as neuromodulators. In the genus Staphylococcus, certain species are capable of producing TAs through the activity of staphylococcal aromatic amino acid decarboxylase (SadA). SadA decarboxylates aromatic amino acids to produce TAs, as well as dihydroxy phenylalanine and 5-hydroxytryptophan to thus produce the neurotransmitters dopamine and serotonin. SadA-expressing staphylococci were prevalent in the gut of most probands, where they are part of the human intestinal microflora. Furthermore, sadA-expressing staphylococci showed increased adherence to HT-29 cells and 2- to 3-fold increased internalization. Internalization and adherence was also increased in a sadA mutant in the presence of tryptamine. The α2-adrenergic receptor is required for enhanced adherence and internalization. Thus, staphylococci in the gut might contribute to gut activity and intestinal colonization.
Collapse
Affiliation(s)
- Arif Luqman
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany; Biology Department, Institut Teknologi Sepuluh Nopember, 60111 Surabaya, Indonesia
| | - Mulugeta Nega
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany
| | - Minh-Thu Nguyen
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany
| | - Patrick Ebner
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
20
|
Stafford AM, Reed C, Baba H, Walter NAR, Mootz JRK, Williams RW, Neve KA, Fedorov LM, Janowsky AJ, Phillips TJ. Taar1 gene variants have a causal role in methamphetamine intake and response and interact with Oprm1. eLife 2019; 8:e46472. [PMID: 31274109 PMCID: PMC6682400 DOI: 10.7554/elife.46472] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/04/2019] [Indexed: 12/17/2022] Open
Abstract
We identified a locus on mouse chromosome 10 that accounts for 60% of the genetic variance in methamphetamine intake in mice selectively bred for high versus low methamphetamine consumption. We nominated the trace amine-associated receptor 1 gene, Taar1, as the strongest candidate and identified regulation of the mu-opioid receptor 1 gene, Oprm1, as another contributor. This study exploited CRISPR-Cas9 to test the causal role of Taar1 in methamphetamine intake and a genetically-associated thermal response to methamphetamine. The methamphetamine-related traits were rescued, converting them to levels found in methamphetamine-avoiding animals. We used a family of recombinant inbred mouse strains for interval mapping and to examine independent and epistatic effects of Taar1 and Oprm1. Both methamphetamine intake and the thermal response mapped to Taar1 and the independent effect of Taar1 was dependent on genotype at Oprm1. Our findings encourage investigation of the contribution of Taar1 and Oprm1 variants to human methamphetamine addiction.
Collapse
Affiliation(s)
- Alexandra M Stafford
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research CenterOregon Health & Science UniversityPortlandUnited States
| | - Cheryl Reed
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research CenterOregon Health & Science UniversityPortlandUnited States
| | - Harue Baba
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research CenterOregon Health & Science UniversityPortlandUnited States
| | - Nicole AR Walter
- Division of NeuroscienceOregon National Primate Research CenterPortlandUnited States
| | - John RK Mootz
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research CenterOregon Health & Science UniversityPortlandUnited States
| | - Robert W Williams
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Sciences CenterMemphisUnited States
| | - Kim A Neve
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research CenterOregon Health & Science UniversityPortlandUnited States
- Veterans Affairs Portland Health Care SystemPortlandUnited States
| | - Lev M Fedorov
- Transgenic Mouse Models Shared Resource, Knight Cancer InstituteOregon Health & Science UniversityPortlandUnited States
| | - Aaron J Janowsky
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research CenterOregon Health & Science UniversityPortlandUnited States
- Veterans Affairs Portland Health Care SystemPortlandUnited States
- Department of PsychiatryOregon Health & Science UniversityPortlandUnited States
| | - Tamara J Phillips
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research CenterOregon Health & Science UniversityPortlandUnited States
- Veterans Affairs Portland Health Care SystemPortlandUnited States
| |
Collapse
|
21
|
Rickli A, Hoener MC, Liechti ME. Pharmacological profiles of compounds in preworkout supplements ("boosters"). Eur J Pharmacol 2019; 859:172515. [PMID: 31265842 DOI: 10.1016/j.ejphar.2019.172515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/21/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023]
Abstract
Preworkout supplements ("boosters") are used to enhance physical and mental performance during workouts. These products may contain various chemical substances with undefined pharmacological activity. We investigated whether substances that are contained in commercially available athletic multiple-ingredient preworkout supplements exert amphetamine-type activity at norepinephrine, dopamine, and serotonin transporters (NET, DAT, and SERT, respectively). We assessed the in vitro monoamine transporter inhibition potencies of the substances using human embryonic kidney 293 cells that expressed the human NET, DAT, and SERT. The phenethylamines β-phenethylamine, N-methylphenethylamine, β-methylphenethylamine, N-benzylphenethylamine, N-methyl-β-methylphenethylamine, and methylsynephrine inhibited the NET and less potently the DAT similarly to D-amphetamine. β-phenethylamine was the most potent, with IC50 values of 0.05 and 1.8 μM at the NET and DAT, respectively. These IC50 values were comparable to D-amphetamine (IC50 = 0.09 and 1.3 μM, respectively). The alkylamines 1,3-dimethylbutylamine and 1,3-dimethylamylamine blocked the NET but not the DAT. Most of the phenethylamines interacted with trace amine-associated receptor 1, serotonin 5-hydroxytryptamine-1A receptor, and adrenergic α1A and α2A receptors at submicromolar concentrations. None of the compounds blocked the SERT. In conclusion, products that are used by athletes may contain substances with mainly noradrenergic amphetamine-type properties.
Collapse
Affiliation(s)
- Anna Rickli
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Marius C Hoener
- Neuroscience Research, pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.
| |
Collapse
|
22
|
Farfán-García ED, Márquez-Gómez R, Barrón-González M, Pérez-Capistran T, Rosales-Hernández MC, Pinto-Almazán R, Soriano-Ursúa MA. Monoamines and their Derivatives on GPCRs: Potential Therapy for Alzheimer's Disease. Curr Alzheimer Res 2019; 16:871-894. [PMID: 30963972 DOI: 10.2174/1570159x17666190409144558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/18/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
Abstract
Albeit cholinergic depletion remains the key event in Alzheimer's Disease (AD), recent information describes stronger links between monoamines (trace amines, catecholamines, histamine, serotonin, and melatonin) and AD than those known in the past century. Therefore, new drug design strategies focus efforts to translate the scope on these topics and to offer new drugs which can be applied as therapeutic tools in AD. In the present work, we reviewed the state-of-art regarding genetic, neuropathology and neurochemistry of AD involving monoamine systems. Then, we compiled the effects of monoamines found in the brain of mammals as well as the reported effects of their derivatives and some structure-activity relationships. Recent derivatives have triggered exciting effects and pharmacokinetic properties in both murine models and humans. In some cases, the mechanism of action is clear, essentially through the interaction on G-protein-coupled receptors as revised in this manuscript. Additional mechanisms are inhibition of enzymes for their biotransformation, regulation of free-radicals in the central nervous system and others for the effects on Tau phosphorylation or amyloid-beta accumulation. All these data make the monoamines and their derivatives attractive potential elements for AD therapy.
Collapse
Affiliation(s)
- Eunice D Farfán-García
- Departamento de Fisiologia y Bioquimica. Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, 11340, Mexico City, Mexico
| | - Ricardo Márquez-Gómez
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, OX1 3TH, Oxford, United Kingdom
| | - Mónica Barrón-González
- Departamento de Fisiologia y Bioquimica. Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, 11340, Mexico City, Mexico
| | - Teresa Pérez-Capistran
- Departamento de Fisiologia y Bioquimica. Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, 11340, Mexico City, Mexico
| | - Martha C Rosales-Hernández
- Laboratorio de Biofisica y Biocatalisis, Seccion de Estudios de Posgrado e Investigacion Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, 11340, Mexico City, Mexico
| | - Rodolfo Pinto-Almazán
- Unidad de Investigacion Hospital Regional de Alta Especialidad Ixtapaluca, Carretera Federal Mexico-Puebla km 34.5, C.P. 56530. Ixtapaluca, State of Mexico, Mexico
| | - Marvin A Soriano-Ursúa
- Departamento de Fisiologia y Bioquimica. Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, 11340, Mexico City, Mexico
| |
Collapse
|
23
|
Zsilla G, Hegyi DE, Baranyi M, Vizi ES. 3,4-Methylenedioxymethamphetamine, mephedrone, and β-phenylethylamine release dopamine from the cytoplasm by means of transporters and keep the concentration high and constant by blocking reuptake. Eur J Pharmacol 2018; 837:72-80. [DOI: 10.1016/j.ejphar.2018.08.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/24/2018] [Accepted: 08/29/2018] [Indexed: 02/02/2023]
|
24
|
Abstract
Trace amines are endogenous compounds classically regarded as comprising β-phenylethyalmine, p-tyramine, tryptamine, p-octopamine, and some of their metabolites. They are also abundant in common foodstuffs and can be produced and degraded by the constitutive microbiota. The ability to use trace amines has arisen at least twice during evolution, with distinct receptor families present in invertebrates and vertebrates. The term "trace amine" was coined to reflect the low tissue levels in mammals; however, invertebrates have relatively high levels where they function like mammalian adrenergic systems, involved in "fight-or-flight" responses. Vertebrates express a family of receptors termed trace amine-associated receptors (TAARs). Humans possess six functional isoforms (TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9), whereas some fish species express over 100. With the exception of TAAR1, TAARs are expressed in olfactory epithelium neurons, where they detect diverse ethological signals including predators, spoiled food, migratory cues, and pheromones. Outside the olfactory system, TAAR1 is the most thoroughly studied and has both central and peripheral roles. In the brain, TAAR1 acts as a rheostat of dopaminergic, glutamatergic, and serotonergic neurotransmission and has been identified as a novel therapeutic target for schizophrenia, depression, and addiction. In the periphery, TAAR1 regulates nutrient-induced hormone secretion, suggesting its potential as a novel therapeutic target for diabetes and obesity. TAAR1 may also regulate immune responses by regulating leukocyte differentiation and activation. This article provides a comprehensive review of the current state of knowledge of the evolution, physiologic functions, pharmacology, molecular mechanisms, and therapeutic potential of trace amines and their receptors in vertebrates and invertebrates.
Collapse
Affiliation(s)
- Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Marius C Hoener
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Mark D Berry
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| |
Collapse
|
25
|
Fleischer LM, Somaiya RD, Miller GM. Review and Meta-Analyses of TAAR1 Expression in the Immune System and Cancers. Front Pharmacol 2018; 9:683. [PMID: 29997511 PMCID: PMC6029583 DOI: 10.3389/fphar.2018.00683] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 06/06/2018] [Indexed: 12/29/2022] Open
Abstract
Since its discovery in 2001, the major focus of TAAR1 research has been on its role in monoaminergic regulation, drug-induced reward and psychiatric conditions. More recently, TAAR1 expression and functionality in immune system regulation and immune cell activation has become a topic of emerging interest. Here, we review the immunologically-relevant TAAR1 literature and incorporate open-source expression and cancer survival data meta-analyses. We provide strong evidence for TAAR1 expression in the immune system and cancers revealed through NCBI GEO datamining and discuss its regulation in a spectrum of immune cell types as well as in numerous cancers. We discuss connections and logical directions for further study of TAAR1 in immunological function, and its potential role as a mediator or modulator of immune dysregulation, immunological effects of psychostimulant drugs of abuse, and cancer progression.
Collapse
Affiliation(s)
- Lisa M Fleischer
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Rachana D Somaiya
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Gregory M Miller
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States.,Department of Chemical Engineering, Northeastern University, Boston, MA, United States.,Center for Drug Discovery, Northeastern University, Boston, MA, United States
| |
Collapse
|
26
|
Schwartz MD, Canales JJ, Zucchi R, Espinoza S, Sukhanov I, Gainetdinov RR. Trace amine-associated receptor 1: a multimodal therapeutic target for neuropsychiatric diseases. Expert Opin Ther Targets 2018; 22:513-526. [DOI: 10.1080/14728222.2018.1480723] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Juan J. Canales
- Division of Psychology, School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | | | - Stefano Espinoza
- Fondazione Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies Dept., Genoa, Italy
| | - Ilya Sukhanov
- Institute of Pharmacology, Pavlov Medical University, St. Petersburg, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Center for Translational Biomedicine, Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
27
|
Dasgupta S, Mukherjee S, Mukhopadhyay BP. Recognition of trans and gauche phenylethylamine conformers in the active site of human monoamine oxidase B: A MD-simulation and DFT studies. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Zhang X, Mantas I, Alvarsson A, Yoshitake T, Shariatgorji M, Pereira M, Nilsson A, Kehr J, Andrén PE, Millan MJ, Chergui K, Svenningsson P. Striatal Tyrosine Hydroxylase Is Stimulated via TAAR1 by 3-Iodothyronamine, But Not by Tyramine or β-Phenylethylamine. Front Pharmacol 2018; 9:166. [PMID: 29545750 PMCID: PMC5837966 DOI: 10.3389/fphar.2018.00166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/14/2018] [Indexed: 01/16/2023] Open
Abstract
The trace amine-associated receptor 1 (TAAR1) is expressed by dopaminergic neurons, but the precise influence of trace amines upon their functional activity remains to be fully characterized. Here, we examined the regulation of tyrosine hydroxylase (TH) by tyramine and beta-phenylethylamine (β-PEA) compared to 3-iodothyronamine (T1AM). Immunoblotting and amperometry were performed in dorsal striatal slices from wild-type (WT) and TAAR1 knockout (KO) mice. T1AM increased TH phosphorylation at both Ser19 and Ser40, actions that should promote functional activity of TH. Indeed, HPLC data revealed higher rates of L-dihydroxyphenylalanine (DOPA) accumulation in WT animals treated with T1AM after the administration of a DOPA decarboxylase inhibitor. These effects were abolished both in TAAR1 KO mice and by the TAAR1 antagonist, EPPTB. Further, they were specific inasmuch as Ser845 phosphorylation of the post-synaptic GluA1 AMPAR subunit was unaffected. The effects of T1AM on TH phosphorylation at both Ser19 (CamKII-targeted), and Ser40 (PKA-phosphorylated) were inhibited by KN-92 and H-89, inhibitors of CamKII and PKA respectively. Conversely, there was no effect of an EPAC analog, 8-CPT-2Me-cAMP, on TH phosphorylation. In line with these data, T1AM increased evoked striatal dopamine release in TAAR1 WT mice, an action blunted in TAAR1 KO mice and by EPPTB. Mass spectrometry imaging revealed no endogenous T1AM in the brain, but detected T1AM in several brain areas upon systemic administration in both WT and TAAR1 KO mice. In contrast to T1AM, tyramine decreased the phosphorylation of Ser40-TH, while increasing Ser845-GluA1 phosphorylation, actions that were not blocked in TAAR1 KO mice. Likewise, β-PEA reduced Ser40-TH and tended to promote Ser845-GluA1 phosphorylation. The D1 receptor antagonist SCH23390 blocked tyramine-induced Ser845-GluA1 phosphorylation, but had no effect on tyramine- or β-PEA-induced Ser40-TH phosphorylation. In conclusion, by intracellular cascades involving CaMKII and PKA, T1AM, but not tyramine and β-PEA, acts via TAAR1 to promote the phosphorylation and functional activity of TH in the dorsal striatum, supporting a modulatory influence on dopamine transmission.
Collapse
Affiliation(s)
- Xiaoqun Zhang
- Section of Translational Neuropharmacology, Department of Clinical Neuroscience, Center for Molecular Medicine L8:01, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Ioannis Mantas
- Section of Translational Neuropharmacology, Department of Clinical Neuroscience, Center for Molecular Medicine L8:01, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Alexandra Alvarsson
- Section of Translational Neuropharmacology, Department of Clinical Neuroscience, Center for Molecular Medicine L8:01, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Takashi Yoshitake
- Section of Pharmacological Neurochemistry, Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Mohammadreza Shariatgorji
- Biomolecular Mass Spectrometry Imaging, National Resource for Mass Spectrometry Imaging, Science for Life Laboratory, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Marcela Pereira
- Section of Translational Neuropharmacology, Department of Clinical Neuroscience, Center for Molecular Medicine L8:01, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Nilsson
- Biomolecular Mass Spectrometry Imaging, National Resource for Mass Spectrometry Imaging, Science for Life Laboratory, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Jan Kehr
- Section of Pharmacological Neurochemistry, Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Per E Andrén
- Biomolecular Mass Spectrometry Imaging, National Resource for Mass Spectrometry Imaging, Science for Life Laboratory, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Mark J Millan
- Centre for Therapeutic Innovation-CNS, Institut de Recherches Servier, Centre de Recherches de Croissy, Paris, France
| | - Karima Chergui
- Section of Molecular Neurophysiology, Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Per Svenningsson
- Section of Translational Neuropharmacology, Department of Clinical Neuroscience, Center for Molecular Medicine L8:01, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
29
|
Gemechu JM, Sharma A, Yu D, Xie Y, Merkel OM, Moszczynska A. Characterization of Dopaminergic System in the Striatum of Young Adult Park2 -/- Knockout Rats. Sci Rep 2018; 8:1517. [PMID: 29367643 PMCID: PMC5784013 DOI: 10.1038/s41598-017-18526-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/20/2017] [Indexed: 12/13/2022] Open
Abstract
Mutations in parkin gene (Park2) are linked to early-onset autosomal recessive Parkinson's disease (PD) and young-onset sporadic PD. Park2 knockout (PKO) rodents; however, do not display neurodegeneration of the nigrostriatal pathway, suggesting age-dependent compensatory changes. Our goal was to examine dopaminergic (DAergic) system in the striatum of 2 month-old PKO rats in order to characterize compensatory mechanisms that may have occurred within the system. The striata form wild type (WT) and PKO Long Evans male rats were assessed for the levels of DAergic markers, for monoamine oxidase (MAO) A and B activities and levels, and for the levels of their respective preferred substrates, serotonin (5-HT) and ß-phenylethylamine (ß-PEA). The PKO rats displayed lower activities of MAOs and higher levels of ß-PEA in the striatum than their WT counterparts. Decreased levels of ß-PEA receptor, trace amine-associated receptor 1 (TAAR-1), and postsynaptic DA D2 (D2L) receptor accompanied these alterations. Drug-naive PKO rats displayed normal locomotor activity; however, they displayed decreased locomotor response to a low dose of psychostimulant methamphetamine, suggesting altered DAergic neurotransmission in the striatum when challenged with an indirect agonist. Altogether, our findings suggest that 2 month-old PKO male rats have altered DAergic and trace aminergic signaling.
Collapse
Affiliation(s)
- Jickssa M Gemechu
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
- Department of Biomedical Sciences, OUWB School of Medicine, Rochester, MI, USA
| | - Akhil Sharma
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| | - Dongyue Yu
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Yuran Xie
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
- Boston Biomedical Inc., Allston, MA, USA
| | - Olivia M Merkel
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Anna Moszczynska
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
30
|
Rutigliano G, Accorroni A, Zucchi R. The Case for TAAR1 as a Modulator of Central Nervous System Function. Front Pharmacol 2018; 8:987. [PMID: 29375386 PMCID: PMC5767590 DOI: 10.3389/fphar.2017.00987] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/22/2017] [Indexed: 01/06/2023] Open
Abstract
TAAR1 is widely expressed across the mammalian brain, particularly in limbic and monoaminergic areas, allegedly involved in mood, attention, memory, fear, and addiction. However, the subcellular distribution of TAAR1 is still unclear, since TAAR1 signal is largely intracellular. In vitro, TAAR1 is activated with nanomolar to micromolar affinity by some endogenous amines, particularly p-tyramine, beta-phenylethylamine, and 3-iodothyronamine (T1AM), the latter representing a novel branch of thyroid hormone signaling. In addition, TAAR1 responds to a number of psychoactive drugs, i.e., amphetamines, ergoline derivatives, bromocriptine and lisuride. Trace amines have been identified as neurotransmitters in invertebrates, and they are considered as potential neuromodulators. In particular, beta-phenylethylamine and p-tyramine have been reported to modify the release and/or the response to dopamine, norepinephrine, acetylcholine and GABA, while evidence of cross-talk between TAAR1 and other aminergic receptors has been provided. Systemic or intracerebroventricular injection of exogenous T1AM produced prolearning and antiamnestic effects, reduced pain threshold, decreased non-REM sleep, and modulated the firing rate of adrenergic neurons in locus coeruleus. However each of these substances may have additional molecular targets, and it is unclear whether their endogenous levels are sufficient to produce significant TAAR1 activation in vivo. TAAR1 knock out mice show a worse performance in anxiety and working memory tests, and they are more prone to develop ethanol addiction. They also show increased locomotor response to amphetamine, and decreased stereotypical responses induced by apomorphine. Notably, human genes for TAARs cluster on chromosome 6 at q23, within a region whose mutations have been reported to confer susceptibility to schizophrenia and bipolar disorder. For human TAAR1, around 200 non-synonymous and 400 synonymous single nucleotide polymorphisms have been identified, but their functional consequences have not been extensively investigated yet. In conclusion, the bulk of evidence points to a significant physiological role of TAAR1 in the modulation of central nervous system function and a potential pharmacological role of TAAR1 agonists in neurology and/or psychiatry. However, the specific effects of TAAR1 stimulation are still controversial, and many crucial issues require further investigation.
Collapse
Affiliation(s)
- Grazia Rutigliano
- Istituto di Scienze della Vita, Scuola Superiore Sant'Anna, Pisa, Italy.,Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Alice Accorroni
- Istituto di Scienze della Vita, Scuola Superiore Sant'Anna, Pisa, Italy.,Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | | |
Collapse
|
31
|
Akanuma SI, Yamazaki Y, Kubo Y, Hosoya KI. Role of cationic drug-sensitive transport systems at the blood-cerebrospinal fluid barrier in para-tyramine elimination from rat brain. Fluids Barriers CNS 2018; 15:1. [PMID: 29307307 PMCID: PMC5757291 DOI: 10.1186/s12987-017-0087-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/20/2017] [Indexed: 11/10/2022] Open
Abstract
Background para-Tyramine (p-TA) is a biogenic amine which is involved in multiple neuronal signal transductions. Since the concentration of p-TA in dog cerebrospinal fluid (CSF) has been reported to be greater than that in plasma, it is proposed that clearance of cerebral p-TA is important for normal function. The purpose of this study was to examine the role of the blood–brain barrier and blood-cerebrospinal fluid barrier (BCSFB) in p-TA clearance from the brain. Methods In vivo [3H]p-TA elimination from rat cerebral cortex and from CSF was examined after intracerebral and intracerebroventricular administration, respectively. To evaluate BCSFB-mediated p-TA transport, [3H]p-TA uptake by isolated rat choroid plexus and conditionally immortalized rat choroid plexus epithelial cells, TR-CSFB3 cells, was performed. Results The half-life of [3H]p-TA elimination from rat CSF was found to be 2.9 min, which is 62-fold faster than that from rat cerebral cortex. In addition, this [3H]p-TA elimination from the CSF was significantly inhibited by co-injection of excess unlabeled p-TA. Thus, carrier-mediated p-TA transport process(es) are assumed to take part in p-TA elimination from the CSF. Since it is known that transporters at the BCSFB participate in compound elimination from the CSF, [3H]p-TA transport in ex vivo and in vitro models of rat BCSFB was examined. The [3H]p-TA uptake by isolated rat choroid plexus and TR-CSFB3 cells was time-dependent and was inhibited by unlabeled p-TA, indicating carrier-mediated p-TA transport at the BCSFB. The p-TA uptake by isolated choroid plexus and TR-CSFB3 cells was not reduced in the absence of extracellular Na+ and Cl−, and in the presence of substrates of typical organic cation transporters. However, this p-TA uptake was significantly inhibited by cationic drugs such as propranolol, imipramine, amantadine, verapamil, and pyrilamine. Moreover, p-TA uptake by TR-CSFB3 cells took place in an oppositely-directed H+ gradient manner. Therefore, this suggested that p-TA transport at the BCSFB involves cationic drug-sensitive transport systems which are distinct from typical plasma membrane organic cation transporters. Conclusion Our study indicates that p-TA elimination from the CSF is greater than that from the cerebral cortex. Moreover, it is suggested that cationic drug-sensitive transport systems in the BCSFB participate in this p-TA elimination from the CSF.
Collapse
Affiliation(s)
- Shin-Ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yuhei Yamazaki
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yoshiyuki Kubo
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Ken-Ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
32
|
Berry MD, Gainetdinov RR, Hoener MC, Shahid M. Pharmacology of human trace amine-associated receptors: Therapeutic opportunities and challenges. Pharmacol Ther 2017; 180:161-180. [DOI: 10.1016/j.pharmthera.2017.07.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Cremonte M, Sisti D, Maraucci I, Giribone S, Colombo E, Rocchi MBL, Scoglio S. The Effect of Experimental Supplementation with the Klamath Algae Extract Klamin on Attention-Deficit/Hyperactivity Disorder. J Med Food 2017; 20:1233-1239. [PMID: 29116873 DOI: 10.1089/jmf.2016.0181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a chronic neurobiological condition with onset in childhood. The disorder is characterized by inattention, impulsivity, and/or motor hyperactivity, which often affect the development and social integration of affected subjects. Phenylethylamine (PEA), naturally contained in the Klamath Lake microalgae and concentrated in the Klamin® extract, is an endogenous molecule with a general neuromodulatory activity. It functions as an activator for the neurotransmission of dopamine and other catecholamines, and very low concentrations of PEA may be associated with specific psychological disorders such as ADHD. The aim of our study was to evaluate the efficacy of the Klamin extract in treating a group of subjects diagnosed with ADHD. Thirty subjects, aged 6-15, who had been diagnosed with ADHD according to the DSM-IV TR criteria, were enrolled. The supplement was administered to all the subjects, who reported to an ADHD clinic for routine follow-up visits. Observations were made and data collected over a 6-month period. After 6 months of therapy the subjects appeared to show significant improvements based on assessments of their overall functioning, behavioral aspects related to inattention and hyperactivity-impulsivity, attention functions in both the selective and sustained component and executive functions. The study appears to confirm the initial hypothesis that the Klamin extract may positively affect the expression of ADHD symptoms. Additional larger studies on the effects of Klamin on ADHD are needed to further investigate the potential of this extract in ADHD treatment.
Collapse
Affiliation(s)
- Maurizio Cremonte
- 1 Neurological and Psychiatric Child Unit, Department of Pediatric, Alessandria Hospital , Alessandria, Italy
| | - Davide Sisti
- 2 Department of Biomolecular Sciences, University of Urbino "Carlo Bo ," Urbino, Italy
| | - Ilaria Maraucci
- 1 Neurological and Psychiatric Child Unit, Department of Pediatric, Alessandria Hospital , Alessandria, Italy
| | - Simona Giribone
- 1 Neurological and Psychiatric Child Unit, Department of Pediatric, Alessandria Hospital , Alessandria, Italy
| | | | | | | |
Collapse
|
34
|
Naman CB, Almaliti J, Armstrong L, Caro-Díaz EJ, Pierce ML, Glukhov E, Fenner A, Spadafora C, Debonsi HM, Dorrestein PC, Murray TF, Gerwick WH. Discovery and Synthesis of Caracolamide A, an Ion Channel Modulating Dichlorovinylidene Containing Phenethylamide from a Panamanian Marine Cyanobacterium cf. Symploca Species. JOURNAL OF NATURAL PRODUCTS 2017; 80:2328-2334. [PMID: 28783331 DOI: 10.1021/acs.jnatprod.7b00367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A recent untargeted metabolomics investigation into the chemical profile of 10 organic extracts from cf. Symploca spp. revealed several interesting chemical leads for further natural product drug discovery. Subsequent target-directed isolation efforts with one of these, a Panamanian marine cyanobacterium cf. Symploca sp., yielded a phenethylamide metabolite that terminates in a relatively rare gem-dichlorovinylidene moiety, caracolamide A (1), along with a known isotactic polymethoxy-1-alkene (2). Detailed NMR and HRESIMS analyses were used to determine the structures of these molecules, and compound 1 was confirmed by a three-step synthesis. Pure compound 1 was shown to have in vitro calcium influx and calcium channel oscillation modulatory activity when tested as low as 10 pM using cultured murine cortical neurons, but was not cytotoxic to NCI-H460 human non-small-cell lung cancer cells in vitro (IC50 > 10 μM).
Collapse
Affiliation(s)
- C Benjamin Naman
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego , La Jolla, California 92093, United States
| | - Jehad Almaliti
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego , La Jolla, California 92093, United States
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan , Amman, 11942, Jordan
| | - Lorene Armstrong
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego , La Jolla, California 92093, United States
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo , Avenida Do Café, s/n, Campus Universitário, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Eduardo J Caro-Díaz
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego , La Jolla, California 92093, United States
| | - Marsha L Pierce
- Department of Pharmacology, Creighton University School of Medicine , 2500 California Plaza, Omaha, Nebraska 68178, United States
| | - Evgenia Glukhov
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego , La Jolla, California 92093, United States
| | - Amanda Fenner
- Center of Cellular and Molecular Biology of Diseases, City of Knowledge, Instituto de Investigaciones Científicas y Sevicios de Alta Tecnología , Bldg. 219, P.O. Box 7250, Panama 5, Republic of Panama
| | - Carmenza Spadafora
- Center of Cellular and Molecular Biology of Diseases, City of Knowledge, Instituto de Investigaciones Científicas y Sevicios de Alta Tecnología , Bldg. 219, P.O. Box 7250, Panama 5, Republic of Panama
| | - Hosana M Debonsi
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo , Avenida Do Café, s/n, Campus Universitário, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| | - Thomas F Murray
- Department of Pharmacology, Creighton University School of Medicine , 2500 California Plaza, Omaha, Nebraska 68178, United States
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego , La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| |
Collapse
|
35
|
Bienenstock J, Kunze WA, Forsythe P. Disruptive physiology: olfaction and the microbiome-gut-brain axis. Biol Rev Camb Philos Soc 2017; 93:390-403. [DOI: 10.1111/brv.12348] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 12/21/2022]
Affiliation(s)
- John Bienenstock
- McMaster Brain-Body Institute at St Joseph's Healthcare Hamilton; 50 Charlton Ave. E. Room T3304 Hamilton L8N 4A6 Canada
- Department of Pathology and Molecular Medicine; McMaster University, 1280 Main St. W.; Hamilton L8S 4L8 Canada
| | - Wolfgang A. Kunze
- McMaster Brain-Body Institute at St Joseph's Healthcare Hamilton; 50 Charlton Ave. E. Room T3304 Hamilton L8N 4A6 Canada
- Department of Psychiatry & Behavioural Sciences; McMaster University, 1280 Main St. W.; Hamilton L8S 4L8 Canada
| | - Paul Forsythe
- McMaster Brain-Body Institute at St Joseph's Healthcare Hamilton; 50 Charlton Ave. E. Room T3304 Hamilton L8N 4A6 Canada
- Firestone Institute for Respiratory Health; Hamilton 50 Charlton Ave. E., Room T3302 L8N 4A6 Canada
- Department of Medicine; McMaster University, 1280 Main St. W.; Hamilton L8S 4L8 Canada
| |
Collapse
|
36
|
Briggs SB, Blouin AM, Young EJ, Rumbaugh G, Miller CA. Memory disrupting effects of nonmuscle myosin II inhibition depend on the class of abused drug and brain region. ACTA ACUST UNITED AC 2017; 24:70-75. [PMID: 28096495 PMCID: PMC5238718 DOI: 10.1101/lm.043976.116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/23/2016] [Indexed: 11/25/2022]
Abstract
Depolymerizing actin in the amygdala through nonmuscle myosin II inhibition (NMIIi) produces a selective, lasting, and retrieval-independent disruption of the storage of methamphetamine-associated memories. Here we report a similar disruption of memories associated with amphetamine, but not cocaine or morphine, by NMIIi. Reconsolidation appeared to be disrupted with cocaine. Unlike in the amygdala, methamphetamine-associated memory storage was not disrupted by NMIIi in the hippocampus, nucleus accumbens, or orbitofrontal cortex. NMIIi in the hippocampus did appear to disrupt reconsolidation. Identification of the unique mechanisms responsible for NMII-mediated, amygdala-dependent disruption of memory storage associated with the amphetamine class may enable induction of retrieval-independent vulnerability to other pathological memories.
Collapse
Affiliation(s)
- Sherri B Briggs
- Department of Metabolism & Aging, The Scripps Research Institute, Jupiter, Florida 33458, USA.,Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Ashley M Blouin
- Department of Metabolism & Aging, The Scripps Research Institute, Jupiter, Florida 33458, USA.,Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Erica J Young
- Department of Metabolism & Aging, The Scripps Research Institute, Jupiter, Florida 33458, USA.,Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Courtney A Miller
- Department of Metabolism & Aging, The Scripps Research Institute, Jupiter, Florida 33458, USA.,Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| |
Collapse
|
37
|
Berry MD, Hart S, Pryor AR, Hunter S, Gardiner D. Pharmacological characterization of a high-affinity p-tyramine transporter in rat brain synaptosomes. Sci Rep 2016; 6:38006. [PMID: 27901065 PMCID: PMC5128819 DOI: 10.1038/srep38006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/03/2016] [Indexed: 11/22/2022] Open
Abstract
p-Tyramine is an archetypal member of the endogenous family of monoamines known as trace amines, and is one of the endogenous agonists for trace amine-associated receptor (TAAR)1. While much work has focused on the function of TAAR1, very little is known about the regulation of the endogenous agonists. We have previously reported that p-tyramine readily crosses lipid bilayers and that its release from synaptosomes is non-exocytotic. Such release, however, showed characteristics of modification by one or more transporters. Here we provide the first characterization of such a transporter. Using frontal cortical and striatal synaptosomes we show that p-tyramine passage across synaptosome membranes is not modified by selective inhibition of either the dopamine, noradrenaline or 5-HT transporters. In contrast, inhibition of uptake-2 transporters significantly slowed p-tyramine re-uptake. Using inhibitors of varying selectivity, we identify Organic Cation Transporter 2 (OCT2; SLC22A2) as mediating high affinity uptake of p-tyramine at physiologically relevant concentrations. Further, we confirm the presence of OCT2 protein in synaptosomes. These results provide the first identification of a high affinity neuronal transporter for p-tyramine, and also confirm the recently described localization of OCT2 in pre-synaptic terminals.
Collapse
Affiliation(s)
- Mark D Berry
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Shannon Hart
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Anthony R Pryor
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Samantha Hunter
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Danielle Gardiner
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| |
Collapse
|
38
|
Behavioral effects of β-phenylethylamine and various monomethylated and monohalogenated analogs in mice are mediated by catecholaminergic mechanisms. Am J Ther 2016; 22:412-22. [PMID: 26544964 DOI: 10.1097/mjt.0000000000000337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effects of the administration [intraperitoneally, 15 and 75 mg/kg, except α-MePEA (amphetamine, AMPH) at 5 and 10 mg/kg] of β-phenylethylamine (PEA), its methylated (o-Me-, p-Me-, α-Me-, β-Me-, N-Me-, p-OMe-, N,N-di-Me-, and 3,4-diOH-N-Me-), para-halogenated (Br-, Cl-, F-, and I-), and other derivatives for example, p-OHPEA (p-tyramine), on Swiss male albino mice caged behavior fall into 3 broad categories. (1) N,N-diMe-, 3,4-diOH-N-Me-, and o-MePEA tend to reduce the behavioral activity, (2) p-OH and p-IPEA were without noticeable effects, and (3) the remaining compounds increased locomotor activity, produced hyperexcitability and fighting, jumping and vocalization, and convulsion in a graded manner (listed in increasing order p-OMe-, β-Me-, p-Cl-, p-Br-, p-F-, p-Me-, and N-MePEA, PEA itself and α-MePEA). The latter compound (amphetamine) being the most potent among them; equieffective but with lower potency were p-MePEA, N-MePEA, and PEA itself. The effects of PEAs upon group cage behavior were increased by pretreatment with pargyline (1.5 hours; 15 mg/kg) and decreased after reserpine or haloperidol [4 hours and/or 24 hours (2.5 and/or 2.5 mg/kg) and 1 hour (1 mg/kg), respectively], reaching full suppression with the double-dose regimen of reserpine and single dose of haloperidol. As expected, none of these substances by themselves were noticeable changed group mice activity or stereotypic behavior. The effects of test amines and catecholamine-modulating agents on stereotypy were assessed by rating the sequentially occurring behaviors: increased exploratory behavior with increased sniffing; occasional side-to-side head weaving; paw-licking and other grooming; gnawing, fighting and continuous side-to-side head weaving, and periodic episodes of "popcorn" behavior, during which all mice in the cage ran, jumped, and vocalized. In general, rank efficacy in eliciting stereotype aligned with rank efficacy in affecting group cage behavior. Our results show that a number of as yet little studied monomethylated and monohalogenated PEA analogs share a similar behavioral profile with PEA and AMPH. Behavioral changes observed appear to be, at least in part, mediated by catecholaminergic mechanism as they are modulated by drugs known to influence catecholamine activity. PEA analogs provide a large number of clinically useful drugs; whether further studies on these novel amines will lead to the rational design of newer, safer, and effective PEA-class drugs remains to be seen.
Collapse
|
39
|
Khan MZ, Nawaz W. The emerging roles of human trace amines and human trace amine-associated receptors (hTAARs) in central nervous system. Biomed Pharmacother 2016; 83:439-449. [PMID: 27424325 DOI: 10.1016/j.biopha.2016.07.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 02/06/2023] Open
Abstract
Human trace amines (TAs) are endogenous compounds, previously almost ignored in human pathology for many reasons (difficulty of their measurement in biological fluids, unknown receptors for elusive amines), are now considered to play a significant role in synaptic transmission within the central nervous system (CNS) acting as neuromodulators. The recent discovery of a novel family of G-protein-coupled receptors (GPCRs) that includes individual members that are highly specific for TAs indicates a potential role for TAs as vertebrate neurotransmitters or neuromodulators, although the majority of these GPCRs so far have not been demonstrated to be activated by TAs. Human trace amine receptors (including TAAR1 TAAR2 TAAR5 TAAR6 TAAR8 TAAR9) are expressed in the brain and play significant physiological and neuropathological roles by activation of trace amines. We herein discuss the recent findings that provide insights into the functional roles of human trace amines (including P-Octopamine, β phenylethylamine, Tryptamine, Tyramine, Synephrine, 3-Iodothyronamine, 3-Methoxytyramine, N-Methyltyramine, N-Methylphenethylamine) in brain. Furthermore, we discuss the known functions of human trace amine receptors in brain.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China.
| | - Waqas Nawaz
- School of basic medicine and clinical pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
40
|
Pei Y, Asif-Malik A, Canales JJ. Trace Amines and the Trace Amine-Associated Receptor 1: Pharmacology, Neurochemistry, and Clinical Implications. Front Neurosci 2016; 10:148. [PMID: 27092049 PMCID: PMC4820462 DOI: 10.3389/fnins.2016.00148] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 03/21/2016] [Indexed: 01/30/2023] Open
Abstract
Biogenic amines are a collection of endogenous molecules that play pivotal roles as neurotransmitters and hormones. In addition to the "classical" biogenic amines resulting from decarboxylation of aromatic acids, including dopamine (DA), norepinephrine, epinephrine, serotonin (5-HT), and histamine, other biogenic amines, present at much lower concentrations in the central nervous system (CNS), and hence referred to as "trace" amines (TAs), are now recognized to play significant neurophysiological and behavioral functions. At the turn of the century, the discovery of the trace amine-associated receptor 1 (TAAR1), a phylogenetically conserved G protein-coupled receptor that is responsive to both TAs, such as β-phenylethylamine, octopamine, and tyramine, and structurally-related amphetamines, unveiled mechanisms of action for TAs other than interference with aminergic pathways, laying the foundations for deciphering the functional significance of TAs and its mammalian CNS receptor, TAAR1. Although, its molecular interactions and downstream targets have not been fully elucidated, TAAR1 activation triggers accumulation of intracellular cAMP, modulates PKA and PKC signaling and interferes with the β-arrestin2-dependent pathway via G protein-independent mechanisms. TAAR1 is uniquely positioned to exert direct control over DA and 5-HT neuronal firing and release, which has profound implications for understanding the pathophysiology of, and therefore designing more efficacious therapeutic interventions for, a range of neuropsychiatric disorders that involve aminergic dysregulation, including Parkinson's disease, schizophrenia, mood disorders, and addiction. Indeed, the recent development of novel pharmacological tools targeting TAAR1 has uncovered the remarkable potential of TAAR1-based medications as new generation pharmacotherapies in neuropsychiatry. This review summarizes recent developments in the study of TAs and TAAR1, their intricate neurochemistry and pharmacology, and their relevance for neurodegenerative and neuropsychiatric disease.
Collapse
Affiliation(s)
| | | | - Juan J. Canales
- Department of Neuroscience, Psychology and Behaviour, University of LeicesterLeicester, UK
| |
Collapse
|
41
|
Phillips TJ, Mootz JRK, Reed C. Identification of Treatment Targets in a Genetic Mouse Model of Voluntary Methamphetamine Drinking. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:39-85. [PMID: 27055611 DOI: 10.1016/bs.irn.2016.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Methamphetamine has powerful stimulant and euphoric effects that are experienced as rewarding and encourage use. Methamphetamine addiction is associated with debilitating illnesses, destroyed relationships, child neglect, violence, and crime; but after many years of research, broadly effective medications have not been identified. Individual differences that may impact not only risk for developing a methamphetamine use disorder but also affect treatment response have not been fully considered. Human studies have identified candidate genes that may be relevant, but lack of control over drug history, the common use or coabuse of multiple addictive drugs, and restrictions on the types of data that can be collected in humans are barriers to progress. To overcome some of these issues, a genetic animal model comprised of lines of mice selectively bred for high and low voluntary methamphetamine intake was developed to identify risk and protective alleles for methamphetamine consumption, and identify therapeutic targets. The mu opioid receptor gene was supported as a target for genes within a top-ranked transcription factor network associated with level of methamphetamine intake. In addition, mice that consume high levels of methamphetamine were found to possess a nonfunctional form of the trace amine-associated receptor 1 (TAAR1). The Taar1 gene is within a mouse chromosome 10 quantitative trait locus for methamphetamine consumption, and TAAR1 function determines sensitivity to aversive effects of methamphetamine that may curb intake. The genes, gene interaction partners, and protein products identified in this genetic mouse model represent treatment target candidates for methamphetamine addiction.
Collapse
Affiliation(s)
- T J Phillips
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States; Veterans Affairs Portland Health Care System, Portland, OR, United States.
| | - J R K Mootz
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - C Reed
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
42
|
Grandy DK, Miller GM, Li JX. "TAARgeting Addiction"--The Alamo Bears Witness to Another Revolution: An Overview of the Plenary Symposium of the 2015 Behavior, Biology and Chemistry Conference. Drug Alcohol Depend 2016; 159:9-16. [PMID: 26644139 PMCID: PMC4724540 DOI: 10.1016/j.drugalcdep.2015.11.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/13/2015] [Accepted: 11/14/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND In keeping with the free-thinking tradition San Antonians are known for, the Scientific Program Committee of the Behavior, Biology and Chemistry: Translational Research in Addiction Conference chose trace amine-associated receptor 1 (TAAR1) as the focus of the plenary symposium for its 7th annual meeting held at the University of Texas Health Science Center at San Antonio on March 14 and 15, 2015. The timing of the meeting's plenary session on TAAR1 coincided with the Ides of March, an apt concurrence given the long association of this date with the overthrow of the status quo. And whether aware of the coincidence or not, those in attendance witnessed the plunging of the metaphorical dagger into the heart of the dopamine (DA) transporter (DAT)-centric view of psychostimulant action. METHODS The symposium's four plenary presentations focused on the molecular and cellular biology, genetics, medicinal chemistry and behavioral pharmacology of the TAAR1 system and the experimental use of newly developed selective TAAR1 ligands. RESULTS The consensus was that TAAR1 is a DA and methamphetamine receptor, interacts with DAT and DA D2 receptors, and is essential in modulating addiction-related effects of psychostimulants. CONCLUSIONS Collectively the findings presented during the symposium constitute a significant challenge to the current view that psychostimulants such as methamphetamine and amphetamine solely target DAT to interfere with normal DA signaling and provide a novel conceptual framework from which a more complete understanding of the molecular mechanisms underlying the actions of DA and METH is likely to emerge.
Collapse
Affiliation(s)
- David K. Grandy
- Department of Physiology and Pharmacology, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Gregory M. Miller
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
43
|
Harkness JH, Shi X, Janowsky A, Phillips TJ. Trace Amine-Associated Receptor 1 Regulation of Methamphetamine Intake and Related Traits. Neuropsychopharmacology 2015; 40:2175-84. [PMID: 25740289 PMCID: PMC4613607 DOI: 10.1038/npp.2015.61] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/17/2015] [Accepted: 03/03/2015] [Indexed: 12/17/2022]
Abstract
Continued methamphetamine (MA) use is dependent on a positive MA experience and is likely attenuated by sensitivity to the aversive effects of MA. Bidirectional selective breeding of mice for high (MAHDR) or low (MALDR) voluntary consumption of MA demonstrates a genetic influence on MA intake. Quantitative trait locus (QTL) mapping identified a QTL on mouse chromosome 10 that accounts for greater than 50% of the genetically-determined differences in MA intake in the MAHDR and MALDR lines. The trace amine-associated receptor 1 gene (Taar1) is within the confidence interval of the QTL and encodes a receptor (TAAR1) that modulates monoamine neurotransmission and at which MA serves as an agonist. We demonstrate the existence of a non-functional allele of Taar1 in the DBA/2J mouse strain, one of the founder strains of the selected lines, and show that this non-functional allele co-segregates with high MA drinking and with reduced sensitivity to MA-induced conditioned taste aversion (CTA) and hypothermia. The functional Taar1 allele, derived from the other founder strain, C57BL/6J, segregates with low MA drinking and heightened sensitivity to MA-induced CTA and hypothermia. A role for TAAR1 in these phenotypes is corroborated in Taar1 transgenic mice: Taar1 knockout mice consume more MA and exhibit insensitivity to MA-induced CTA and hypothermia, compared with Taar1 wild-type mice. These are the first data to show that voluntary MA consumption is, in part, regulated by TAAR1 function. Behavioral and physiological studies indicate that TAAR1 function increases sensitivity to aversive effects of MA, and may thereby protect against MA use.
Collapse
Affiliation(s)
- John H Harkness
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Xiao Shi
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Aaron Janowsky
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Tamara J Phillips
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
- Veterans Affairs Portland Health Care System, Portland, OR, USA
| |
Collapse
|
44
|
Jing L, Li JX. Trace amine-associated receptor 1: A promising target for the treatment of psychostimulant addiction. Eur J Pharmacol 2015; 761:345-52. [PMID: 26092759 DOI: 10.1016/j.ejphar.2015.06.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 05/14/2015] [Accepted: 06/12/2015] [Indexed: 11/28/2022]
Abstract
Abuse of and addiction to psychostimulants remains a challenging clinical issue; yet no effective pharmacotherapy is available. Trace amine associated receptor 1 (TAAR 1) is increasingly recognized as a novel drug target that participates in the modulation of drug abuse. This review analyzed existing preclinical evidence from electrophysiological, biochemical to behavioral aspects regarding the functional interactions between TAAR 1 and dopaminergic system. TAAR 1 knockout mice demonstrate increased sensitivity to dopaminergic activation while TAAR 1 agonists reduce the neurochemical effects of cocaine and amphetamines, attenuate abuse- and addiction-related behavioral effects of cocaine and methamphetamine. It is concluded that TAAR 1 activation functionally modulates the dopaminergic activity and TAAR 1 agonists appear to be promising pharmacotherapies against psychostimulant addiction.
Collapse
Affiliation(s)
- Li Jing
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA; Department of Physiology and Pathophysiology, Tianjin Me dical University, Tianjin, China
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
45
|
Nebbioso M, Plateroti AM, Pucci B, Pescosolido N. Role of the dopaminergic system in the development of myopia in children and adolescents. J Child Neurol 2014; 29:1739-46. [PMID: 24996871 DOI: 10.1177/0883073814538666] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This review summarizes the experimental evidence that supports the role of dopamine in the regulation of ocular axial growth. The most important functions attributed to dopamine are light adaptation and regulation of the retinal circadian rhythm. An increase of the retinal levels of dopamine activates D1 and D2 dopaminergic receptors present throughout the retina, generating a signal that inhibits axial growth once the eye has reached emmetropization. Researchers induced form-deprivation myopia in animal models in order to assess the different changes of ocular axial growth. Other studies have shown that phenylethylamine is an endogenous precursor-neurotransmitter capable of modulating the activity of dopamine. Considering the role of the dopaminergic system in the development of myopia (in children and adolescents) and the fact that phenylethylamine improves the consequences of a dopamine deficit, it would be interesting to study the effect of phenylethylamine on the regulation of axial growth, which represents the genesis of myopia.
Collapse
Affiliation(s)
- Marcella Nebbioso
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | | | - Bruna Pucci
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Nicola Pescosolido
- Department of Cardiovascular, Respiratory, Nephrology, Geriatric, and Anesthetic Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
46
|
Gozal EA, O'Neill BE, Sawchuk MA, Zhu H, Halder M, Chou CC, Hochman S. Anatomical and functional evidence for trace amines as unique modulators of locomotor function in the mammalian spinal cord. Front Neural Circuits 2014; 8:134. [PMID: 25426030 PMCID: PMC4224135 DOI: 10.3389/fncir.2014.00134] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 10/22/2014] [Indexed: 12/18/2022] Open
Abstract
The trace amines (TAs), tryptamine, tyramine, and β-phenylethylamine, are synthesized from precursor amino acids via aromatic-L-amino acid decarboxylase (AADC). We explored their role in the neuromodulation of neonatal rat spinal cord motor circuits. We first showed that the spinal cord contains the substrates for TA biosynthesis (AADC) and for receptor-mediated actions via trace amine-associated receptors (TAARs) 1 and 4. We next examined the actions of the TAs on motor activity using the in vitro isolated neonatal rat spinal cord. Tyramine and tryptamine most consistently increased motor activity with prominent direct actions on motoneurons. In the presence of N-methyl-D-aspartate, all applied TAs supported expression of a locomotor-like activity (LLA) that was indistinguishable from that ordinarily observed with serotonin, suggesting that the TAs act on common central pattern generating neurons. The TAs also generated distinctive complex rhythms characterized by episodic bouts of LLA. TA actions on locomotor circuits did not require interaction with descending monoaminergic projections since evoked LLA was maintained following block of all Na+-dependent monoamine transporters or the vesicular monoamine transporter. Instead, TA (tryptamine and tyramine) actions depended on intracellular uptake via pentamidine-sensitive Na+-independent membrane transporters. Requirement for intracellular transport is consistent with the TAs having much slower LLA onset than serotonin and for activation of intracellular TAARs. To test for endogenous actions following biosynthesis, we increased intracellular amino acid levels with cycloheximide. LLA emerged and included distinctive TA-like episodic bouts. In summary, we provided anatomical and functional evidence of the TAs as an intrinsic spinal monoaminergic modulatory system capable of promoting recruitment of locomotor circuits independent of the descending monoamines. These actions support their known sympathomimetic function.
Collapse
Affiliation(s)
| | | | | | - Hong Zhu
- Physiology Department, Emory University Atlanta, GA, USA
| | - Mallika Halder
- Physiology Department, Emory University Atlanta, GA, USA
| | | | - Shawn Hochman
- Physiology Department, Emory University Atlanta, GA, USA
| |
Collapse
|
47
|
Narang D, Kerr PM, Lunn SE, Beaudry R, Sigurdson J, Lalies MD, Hudson AL, Light PE, Holt A, Plane F. Modulation of resistance artery tone by the trace amine β-phenylethylamine: dual indirect sympathomimetic and α1-adrenoceptor blocking actions. J Pharmacol Exp Ther 2014; 351:164-71. [PMID: 25118217 DOI: 10.1124/jpet.114.216523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
The trace amine β-phenylethylamine (PEA) is normally present in the body at low nanomolar concentrations but can reach micromolar levels after ingestion of drugs that inhibit monoamine oxidase and primary amine oxidase. In vivo, PEA elicits a robust pressor response, but there is no consensus regarding the underlying mechanism, with both vasodilation and constriction reported in isolated blood vessels. Using functional and biochemical approaches, we found that at low micromolar concentrations PEA (1-30 μM) enhanced nerve-evoked vasoconstriction in the perfused rat mesenteric bed but at a higher concentration (100 μM) significantly inhibited these responses. The α2-adrenoceptor antagonist rauwolscine (1 µM) also enhanced nerve-mediated vasoconstriction, but in the presence of both rauwolscine (1 µM) and PEA (30 µM) together, nerve-evoked responses were initially potentiated and then showed time-dependent rundown. PEA (10 and 100 μM) significantly increased noradrenaline outflow from the mesenteric bed as determined by high-pressure liquid chromatography coupled with electrochemical detection. In isolated endothelium-denuded arterial segments, PEA (1 µM to 1 mM) caused concentration-dependent reversal of tone elicited by the α1-adrenoceptor agonists noradrenaline (EC50 51.69 ± 10.8 μM; n = 5), methoxamine (EC50 68.21 ± 1.70 μM; n = 5), and phenylephrine (EC50 67.74 ± 16.72 μM; n = 5) but was ineffective against tone induced by prostaglandin F2 α or U46619 (9,11-dideoxy-9α,11α-methanoepoxyprostaglandin F2 α). In rat brain homogenates, PEA displaced binding of both [(3)H]prazosin (Ki ≈ 25 μM) and [(3)H]rauwolscine (Ki ≈ 1.2 μM), ligands for α1- and α2-adrenoceptors, respectively. These data provide the first demonstration that dual indirect sympathomimetic and α1-adrenoceptor blocking actions underlie the vascular effects of PEA in resistance arteries.
Collapse
Affiliation(s)
- Deepak Narang
- Department of Pharmacology (D.N., P.M.K., S.E.L., R.B., J.S., M.D.L., A.L.H., P.E.L., A.H., F.P.), and Cardiovascular Research Centre (P.E.L., F.P.), University of Alberta, Edmonton, Alberta, Canada
| | - Paul M Kerr
- Department of Pharmacology (D.N., P.M.K., S.E.L., R.B., J.S., M.D.L., A.L.H., P.E.L., A.H., F.P.), and Cardiovascular Research Centre (P.E.L., F.P.), University of Alberta, Edmonton, Alberta, Canada
| | - Stephanie E Lunn
- Department of Pharmacology (D.N., P.M.K., S.E.L., R.B., J.S., M.D.L., A.L.H., P.E.L., A.H., F.P.), and Cardiovascular Research Centre (P.E.L., F.P.), University of Alberta, Edmonton, Alberta, Canada
| | - Rhys Beaudry
- Department of Pharmacology (D.N., P.M.K., S.E.L., R.B., J.S., M.D.L., A.L.H., P.E.L., A.H., F.P.), and Cardiovascular Research Centre (P.E.L., F.P.), University of Alberta, Edmonton, Alberta, Canada
| | - Julie Sigurdson
- Department of Pharmacology (D.N., P.M.K., S.E.L., R.B., J.S., M.D.L., A.L.H., P.E.L., A.H., F.P.), and Cardiovascular Research Centre (P.E.L., F.P.), University of Alberta, Edmonton, Alberta, Canada
| | - Margaret D Lalies
- Department of Pharmacology (D.N., P.M.K., S.E.L., R.B., J.S., M.D.L., A.L.H., P.E.L., A.H., F.P.), and Cardiovascular Research Centre (P.E.L., F.P.), University of Alberta, Edmonton, Alberta, Canada
| | - Alan L Hudson
- Department of Pharmacology (D.N., P.M.K., S.E.L., R.B., J.S., M.D.L., A.L.H., P.E.L., A.H., F.P.), and Cardiovascular Research Centre (P.E.L., F.P.), University of Alberta, Edmonton, Alberta, Canada
| | - Peter E Light
- Department of Pharmacology (D.N., P.M.K., S.E.L., R.B., J.S., M.D.L., A.L.H., P.E.L., A.H., F.P.), and Cardiovascular Research Centre (P.E.L., F.P.), University of Alberta, Edmonton, Alberta, Canada
| | - Andrew Holt
- Department of Pharmacology (D.N., P.M.K., S.E.L., R.B., J.S., M.D.L., A.L.H., P.E.L., A.H., F.P.), and Cardiovascular Research Centre (P.E.L., F.P.), University of Alberta, Edmonton, Alberta, Canada
| | - Frances Plane
- Department of Pharmacology (D.N., P.M.K., S.E.L., R.B., J.S., M.D.L., A.L.H., P.E.L., A.H., F.P.), and Cardiovascular Research Centre (P.E.L., F.P.), University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
48
|
Neuronal Functions and Emerging Pharmacology of TAAR1. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_78] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
49
|
Lynch LJ, Sullivan KA, Vallender EJ, Rowlett JK, Platt DM, Miller GM. Trace amine associated receptor 1 modulates behavioral effects of ethanol. SUBSTANCE ABUSE-RESEARCH AND TREATMENT 2013; 7:117-26. [PMID: 23861588 PMCID: PMC3682756 DOI: 10.4137/sart.s12110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background Few treatment options for alcohol use disorders (AUDs) exist and more are critically needed. Here, we assessed whether trace amine associated receptor 1 (TAAR1), a modulator of brain monoamine systems, is involved in the behavioral and reinforcement-related effects of ethanol and whether it could potentially serve as a therapeutic target. Methods Wild-type (WT) and TAAR1 knockout (KO) mice (75% C57J/BL6 and 25% 129S1/Sv background) were compared in tests of ethanol consumption (two-bottle choice [TBC]), motor impairment (loss of righting reflex, [LORR], locomotor activity) and ethanol clearance (blood ethanol level [BEL]). Results As compared with WT mice, KO mice displayed (1) significantly greater preference for and consumption of ethanol in a TBC paradigm (3%–11% vol/vol escalating over 10 weeks), with no significant difference observed in TBC with sucrose (1%–3%); (2) significantly greater sedative-like effects of acute ethanol (2.0 or 2.5 g/kg, intraperitoneal [i.p.]) manifested as LORR observed at a lower dose and for longer time, with similar BELs and rates of ethanol clearance; and (3) lower cumulative locomotor activity over 60 minutes in response to an acute ethanol challenge (1.0–2.5 g/kg, i.p.). Conclusions The present findings are the first to implicate TAAR1 in the behavioral and reinforcement-related effects of ethanol and raise the question of whether specific drugs that target TAAR1 could potentially reduce alcohol consumption in humans with AUDs.
Collapse
Affiliation(s)
- Laurie J Lynch
- Division of Neuroscience, New England Primate Research Center, Harvard Medical School, Southborough, MA, USA
| | | | | | | | | | | |
Collapse
|
50
|
Berry MD, Shitut MR, Almousa A, Alcorn J, Tomberli B. Membrane permeability of trace amines: evidence for a regulated, activity-dependent, nonexocytotic, synaptic release. Synapse 2013; 67:656-67. [PMID: 23564683 DOI: 10.1002/syn.21670] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 03/26/2013] [Indexed: 01/11/2023]
Abstract
Both pre- and post-synaptic effects of trace amines have been demonstrated. The putative intracellular location of Trace Amine-Associated Receptors necessitate that membrane transport processes be present in order for post-synaptic effects to occur. Here we examine the ability of trace amines to cross synthetic (Fluorosomes) and native (synaptosomes) lipid bilayer membranes. Trace amines readily crossed Fluorosome membranes by simple diffusion, p-tyramine (P = 0.01) and tryptamine (P = 0.0004) showing significantly faster diffusion than dopamine and 5-HT, respectively, with diffusion half-lives of 13.5 ± 4.1 (p-tyramine) and 6.8 ± 0.7 seconds (tryptamine). Similarly, release of [(3) H]p-tyramine and [(3) H]2-phenylethylamine from pre-loaded synaptosomes occurred significantly quicker than did [(3) H]dopamine (P = 0.0001), with half lives of 38.9 (p-tyramine), 7.8 (2-phenylethylamine) and 133.6 seconds (dopamine). This was, however, significantly slower than the diffusion mediated passage across Fluorosome membranes (P = 0.0001), suggesting a role for transporters in mediating trace amine release. Further, a pronounced shoulder region was observed in the synaptosome [(3) H]p-tyramine release curve, suggesting that multiple processes regulate release. No such shoulder region was present for [(3) H]dopamine release. Surprisingly, both [(3) H]p-tyramine (P = 0.001) and [(3) H]2-phenylethylamine (P = 0.0001) release from synaptosomes was significantly decreased under depolarizing conditions. As expected, depolarization significantly increased [(3) H]dopamine release. The data presented indicate that the release of p-tyramine and 2-phenylethylamine from neuronal terminals occurs by a different mechanism than dopamine, and does not involve classical exocytosis. The data are consistent with an initial release of trace amines by simple diffusion, followed by an activity-dependent regulation of synaptic levels via one or more transporter proteins.
Collapse
Affiliation(s)
- Mark D Berry
- Department of Chemistry, Brandon University, Brandon, Manitoba, Canada, R7A 6A9.
| | | | | | | | | |
Collapse
|