1
|
Dimethyl Sulfoxide Induces Hemolysis and Pulmonary Hypertension. PRILOZI (MAKEDONSKA AKADEMIJA NA NAUKITE I UMETNOSTITE. ODDELENIE ZA MEDICINSKI NAUKI) 2022; 43:5-20. [PMID: 36473034 DOI: 10.2478/prilozi-2022-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vascular and lung injury are well established complications associated with hemolytic disorders, and hemolysis associated pulmonary hypertension (PH) has emerged as the most serious complication of sickle cell disease. The causal relationship between intravascular hemolysis and the development of PH is still under investigation. Previously we have shown that repetitive administration of hemolyzed autologous blood causes PH in rats. Dimethyl sulfoxide (DMSO), a widely used solvent and anti-inflammatory agent, induces hemolysis in vivo. We hypothesized that repetitive administration of DMSO would induce PH in rats. We also examined hemolysis-induced release of adenosine deaminase (ADA) and arginase from red blood cells, which may amplify hemolysis-mediated vascular injury. Acute administration of DMSO (1.5ml/30 min into the right atrium) induced intravascular hemolysis and pulmonary vasoconstriction. DMSO-induced increase in right ventricular peak systolic pressure (RVPSP) was associated with increased release of ADA. Notably, the acute increase in RVPSP was attenuated by administration of an adenosine A2A receptor agonist or by pretreatment of animals with ADA inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA). Repetitive administration of DMSO for 10 days produced anemia, hemoglobinuria, hemoglobinemia, splenomegaly, and development of PH. Histopathological analysis revealed pulmonary vascular remodeling. The presented data describe a new model of hemolysis induced PH, suggesting that hemolysis is mechanistically related to pulmonary hypertension, and pointing to a potential pathogenic role that adenosine deaminase and accelerated adenosine metabolism may play in hemolysis associated pulmonary hypertension.
Collapse
|
2
|
Maity C, Ghosh D, Guha S. Assays for Intracellular Cyclic Adenosine Monophosphate (cAMP) and Lysosomal Acidification. Methods Mol Biol 2020; 1996:161-178. [PMID: 31127555 DOI: 10.1007/978-1-4939-9488-5_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cyclic adenosine monophosphate (3',5'-cAMP) is a multifunctional second messenger which controls extremely diverse and physiologically important biochemical pathways. Among its myriad roles, 3',5'-cAMP functions as an intracellular regulator of lysosomal pH, which is essential for the activity of acidic lysosomal enzymes. Defects in lysosomal acidification are attributed to many diseases like macular degeneration, Parkinson's, Alzheimer's, and cystic fibrosis. Strategic re-acidification of defective lysosomes by pharmacological increase of intracellular cAMP offers exciting therapeutic potential in these diseases. Modular assays for accurate assessment of intracellular cAMP and lysosomal pH are a critical component of this research. We describe label-free targeted metabolomics for quantitating intracellular cAMP and integrated assays for measuring lysosomal pH. These hybrid assays offer fast, unbiased information on intracellular cAMP concentrations and lysosomal pH that can be applied to many cell types and putative drug screening strategies.
Collapse
Affiliation(s)
- Chiranjit Maity
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Dipankar Ghosh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sonia Guha
- Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Structural and Biomolecular Analyses of Borrelia burgdorferi BmpD Reveal a Substrate-Binding Protein of an ABC-Type Nucleoside Transporter Family. Infect Immun 2020; 88:IAI.00962-19. [PMID: 31988175 PMCID: PMC7093131 DOI: 10.1128/iai.00962-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 01/23/2020] [Indexed: 02/08/2023] Open
Abstract
Borrelia burgdorferisensu lato, the causative agent of tick-borne Lyme borreliosis (LB), has a limited metabolic capacity and needs to acquire nutrients, such as amino acids, fatty acids, and nucleic acids, from the host environment. Using X-ray crystallography, liquid chromatography-mass spectrometry, microscale thermophoresis, and cellular localization studies, we show that basic membrane protein D (BmpD) is a periplasmic substrate-binding protein of an ABC transporter system binding to purine nucleosides. Borrelia burgdorferisensu lato, the causative agent of tick-borne Lyme borreliosis (LB), has a limited metabolic capacity and needs to acquire nutrients, such as amino acids, fatty acids, and nucleic acids, from the host environment. Using X-ray crystallography, liquid chromatography-mass spectrometry, microscale thermophoresis, and cellular localization studies, we show that basic membrane protein D (BmpD) is a periplasmic substrate-binding protein of an ABC transporter system binding to purine nucleosides. Nucleosides are essential for bacterial survival in the host organism, and these studies suggest a key role for BmpD in the purine salvage pathway of B. burgdorferi sensu lato. Because B. burgdorferisensu lato lacks the enzymes required for de novo purine synthesis, BmpD may play a vital role in ensuring access to the purines needed to sustain an infection in the host. Furthermore, we show that, although human LB patients develop anti-BmpD antibodies, immunization of mice with BmpD does not confer protection against B. burgdorferi sensu lato infection.
Collapse
|
4
|
Le DE, Davis CM, Wei K, Zhao Y, Cao Z, Nugent M, Scott KLL, Liu L, Nagarajan S, Alkayed NJ, Kaul S. Ranolazine may exert its beneficial effects by increasing myocardial adenosine levels. Am J Physiol Heart Circ Physiol 2019; 318:H189-H202. [PMID: 31834840 DOI: 10.1152/ajpheart.00217.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We hypothesized that ranolazine-induced adenosine release is responsible for its beneficial effects in ischemic heart disease. Sixteen open-chest anesthetized dogs with noncritical coronary stenosis were studied at rest, during dobutamine stress, and during dobutamine stress with ranolazine. Six additional dogs without stenosis were studied only at rest. Regional myocardial function and perfusion were assessed. Coronary venous blood was drawn. Murine endothelial cells and cardiomyocytes were incubated with ranolazine and adenosine metabolic enzyme inhibitors, and adenosine levels were measured. Cardiomyocytes were also exposed to dobutamine and dobutamine with ranolazine. Modeling was employed to determine whether ranolazine can bind to an enzyme that alters adenosine stores. Ranolazine was associated with increased adenosine levels in the absence (21.7 ± 3.0 vs. 9.4 ± 2.1 ng/mL, P < 0.05) and presence of ischemia (43.1 ± 13.2 vs. 23.4 ± 5.3 ng/mL, P < 0.05). Left ventricular end-systolic wall stress decreased (49.85 ± 4.68 vs. 57.42 ± 3.73 dyn/cm2, P < 0.05) and endocardial-to-epicardial myocardial blood flow ratio tended to normalize (0.89 ± 0.08 vs. 0.76 ± 0.10, P = nonsignificant). Adenosine levels increased in cardiac endothelial cells and cardiomyocytes when incubated with ranolazine that was reversed when cytosolic-5'-nucleotidase (cN-II) was inhibited. Point mutation of cN-II aborted an increase in its specific activity by ranolazine. Similarly, adenosine levels did not increase when cardiomyocytes were incubated with dobutamine. Modeling demonstrated plausible binding of ranolazine to cN-II with a docking energy of -11.7 kcal/mol. We conclude that the anti-adrenergic and cardioprotective effects of ranolazine-induced increase in tissue adenosine levels, likely mediated by increasing cN-II activity, may contribute to its beneficial effects in ischemic heart disease.NEW & NOTEWORTHY Ranolazine is a drug used for treatment of angina pectoris in patients with ischemic heart disease. We discovered a novel mechanism by which this drug may exhibit its beneficial effects. It increases coronary venous levels of adenosine both at rest and during dobutamine-induced myocardial ischemia. Ranolazine also increases adenosine levels in endothelial cells and cardiomyocytes in vitro, by principally increasing activity of the enzyme cytosolic-5'-nucleotidase. Adenosine has well-known myocardial protective and anti-adrenergic properties that may explain, in part, ranolazine's beneficial effect in ischemic heart disease.
Collapse
Affiliation(s)
- D Elizabeth Le
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon.,Veterans Administration Portland Health Care System, Oregon Health and Science University, Portland, Oregon
| | - Catherine M Davis
- Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon
| | - Kevin Wei
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - Yan Zhao
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - Zhiping Cao
- Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon
| | - Matthew Nugent
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - Kristin L Lyon Scott
- Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon
| | - Lijuan Liu
- Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon
| | - Shanthi Nagarajan
- Medicinal Chemistry Core, Oregon Health and Science University, Portland, Oregon
| | - Nabil J Alkayed
- Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon
| | - Sanjiv Kaul
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
5
|
Bilan VP, Schneider F, Novelli EM, Kelley EE, Shiva S, Gladwin MT, Jackson EK, Tofovic SP. Experimental intravascular hemolysis induces hemodynamic and pathological pulmonary hypertension: association with accelerated purine metabolism. Pulm Circ 2018; 8:2045894018791557. [PMID: 30003836 PMCID: PMC6080084 DOI: 10.1177/2045894018791557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Pulmonary hypertension (PH) is emerging as a serious complication associated with
hemolytic disorders, and plexiform lesions (PXL) have been reported in patients
with sickle cell disease (SCD). We hypothesized that repetitive hemolysis per se
induces PH and angioproliferative vasculopathy and evaluated a new mechanism for
hemolysis-associated PH (HA-PH) that involves the release of adenosine deaminase
(ADA) and purine nucleoside phosphorylase (PNP) from erythrocytes. In healthy
rats, repetitive administration of hemolyzed autologous blood (HAB) for 10 days
produced reversible pulmonary parenchymal injury and vascular remodeling and PH.
Moreover, the combination of a single dose of Sugen-5416 (SU, 200 mg/kg) and
10-day HAB treatment resulted in severe and progressive obliterative PH and
formation of PXL (Day 26, right ventricular peak systolic pressure (mmHg):
26.1 ± 1.1, 41.5 ± 0.5 and 85.1 ± 5.9 in untreated, HAB treated and SU+HAB
treated rats, respectively). In rats, repetitive administration of HAB increased
plasma ADA activity and reduced urinary adenosine levels. Similarly, SCD
patients had higher plasma ADA and PNP activity and accelerated adenosine,
inosine, and guanosine metabolism than healthy controls. Our study provides
evidence that hemolysis per se leads to the development of angioproliferative
PH. We also report the development of a rat model of HA-PH that closely mimics
pulmonary vasculopathy seen in patients with HA-PH. Finally, this study suggests
that in hemolytic diseases released ADA and PNP may increase the risk of PH,
likely by abolishing the vasoprotective effects of adenosine, inosine and
guanosine. Further characterization of this new rat model of hemolysis-induced
angioproliferative PH and additional studies of the role of purines metabolism
in HA-PH are warranted.
Collapse
Affiliation(s)
- Victor P Bilan
- 1 Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,2 Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,3 Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Frank Schneider
- 4 Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Enrico M Novelli
- 2 Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,3 Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eric E Kelley
- 5 Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Sruti Shiva
- 2 Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,6 Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mark T Gladwin
- 1 Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,2 Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,3 Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Edwin K Jackson
- 6 Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stevan P Tofovic
- 1 Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,2 Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,3 Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Jackson EK, Zhang Y, Cheng D. Alkaline Phosphatase Inhibitors Attenuate Renovascular Responses to Norepinephrine. Hypertension 2017; 69:484-493. [PMID: 28137984 DOI: 10.1161/hypertensionaha.116.08623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/08/2016] [Accepted: 01/04/2017] [Indexed: 12/21/2022]
Abstract
Tissue nonspecific alkaline phosphatase (TNAP) contributes to the production of adenosine by the kidney, and A1-receptor activation enhances renovascular responses to norepinephrine. Therefore, we hypothesized that TNAP regulates renovascular responsiveness to norepinephrine. In isolated, perfused rat kidneys, the TNAP inhibitor l-p-bromotetramisole (0.1 mmol/L) decreased renal venous levels of 5'-AMP (adenosine precursor) and adenosine by 61% (P<0.0384) and 62% (P=0.0013), respectively, at 1 hour into treatment and caused a 10-fold rightward shift of the concentration-response relationship to exogenous norepinephrine (P<0.0001). Similarly, 2 other TNAP inhibitors, levamisole (1 mmol/L) and 2,5-dimethoxy-N-(quinolin-3-yl)benzenesulfonamide (0.02 mmol/L), also right shifted the concentration-response relationship to norepinephrine. The ability of TNAP inhibition to blunt renovascular responses to norepinephrine was mostly prevented or reversed by restoring A1-adenosinergic tone with the A1-receptor agonist 2-chloro-N6-cyclopentyladenosine (100 nmol/L). All 3 TNAP inhibitors also attenuated renovascular responses to renal sympathetic nerve stimulation, suggesting that TNAP inhibition attenuates renovascular responses to endogenous norepinephrine. In control propranolol-pretreated rats, acute infusions of norepinephrine (10 μg/kg/min) increased mean arterial blood pressure from 95±5 mm Hg to a peak of 169±4 mm Hg and renovascular resistance from 12±2 mm Hg/mL/min to a peak of 55±12 mm Hg/mL/min; however, in rats also treated with intravenous l-p-bromotetramisole (30 mg/kg), the pressor and renovascular effects of norepinephrine were significantly attenuated (blood pressure: basal and peak, 93±7 and 146±6 mm Hg, respectively; renovascular resistance: basal and peak, 13±2 and 29±5 mm Hg/mL/min, respectively). TNAP inhibitors attenuate renovascular and blood pressure responses to norepinephrine, suggesting that TNAP participates in the regulation of renal function and blood pressure.
Collapse
Affiliation(s)
- Edwin K Jackson
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA.
| | - Yumeng Zhang
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA
| | - Dongmei Cheng
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA
| |
Collapse
|
7
|
Davis CM, Ammi AY, Alkayed NJ, Kaul S. Ultrasound stimulates formation and release of vasoactive compounds in brain endothelial cells. Am J Physiol Heart Circ Physiol 2015; 309:H583-91. [PMID: 26092990 DOI: 10.1152/ajpheart.00690.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 06/17/2015] [Indexed: 01/07/2023]
Abstract
Stroke outcome is improved by therapeutic ultrasound. This benefit is presumed to be principally from ultrasound-mediated thrombolysis. We hypothesized that the therapeutic benefit of ultrasound in stroke may, in part, be mediated by the release of beneficial vasoactive substances. Accordingly, we investigated the effect of ultrasound on levels of cytochrome P-450, lipoxygenase, and cyclooxygenase metabolites of arachidonic acid as well as adenosine release and endothelial nitric oxide synthase (eNOS) phosphorylation in primary brain endothelial cells in vitro. Brain endothelial cells were exposed to 1.05-MHz ultrasound at peak rarefactional acoustic pressure amplitudes of 0.35, 0.55, 0.90, and 1.30 MPa. Epoxyeicosatrienoic acids (EETs), hydroxyeicosatetraenoic acids (HETEs), PGE2, adenosine, nitrate/nitrite, and eNOS phosphorylation were measured after ultrasound exposure. Levels of 8,9-EET, 11,12-EET, and 14,15-EET increased by 230 ± 28%, 240 ± 30%, and 246 ± 31% (P < 0.05), respectively, whereas 5-HETE and 15-HETE levels were reduced to 24 ± 14% and 10 ± 3% (P < 0.05), respectively, compared with cells not exposed to ultrasound. PGE2 levels were reduced to 56 ± 14% of control. Adenosine increased more than sixfold after ultrasound exposure compared with unstimulated cells (1.36 ± 0.22 vs. 0.37 ± 0.10 ng/ml, P < 0.05), nitrate/nitrite was below levels of quantification, and eNOS phosphorylation was not altered significantly. Our results suggest that ultrasound may enhance tissue perfusion during stroke by augmenting the generation of vasodilator compounds and inhibiting that of vasoconstrictors. Such regulation supports a beneficial role for therapeutic ultrasound in stroke independent of its effect on the occlusive thrombus.
Collapse
Affiliation(s)
- Catherine M Davis
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon; and Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon
| | - Azzdine Y Ammi
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon; and
| | - Nabil J Alkayed
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon; and Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon
| | - Sanjiv Kaul
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon; and
| |
Collapse
|
8
|
Torell F, Bennett K, Cereghini S, Rännar S, Lundstedt-Enkel K, Moritz T, Haumaitre C, Trygg J, Lundstedt T. Multi-Organ Contribution to the Metabolic Plasma Profile Using Hierarchical Modelling. PLoS One 2015; 10:e0129260. [PMID: 26086868 PMCID: PMC4472231 DOI: 10.1371/journal.pone.0129260] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 05/06/2015] [Indexed: 12/17/2022] Open
Abstract
Hierarchical modelling was applied in order to identify the organs that contribute to the levels of metabolites in plasma. Plasma and organ samples from gut, kidney, liver, muscle and pancreas were obtained from mice. The samples were analysed using gas chromatography time-of-flight mass spectrometry (GC TOF-MS) at the Swedish Metabolomics centre, Umeå University, Sweden. The multivariate analysis was performed by means of principal component analysis (PCA) and orthogonal projections to latent structures (OPLS). The main goal of this study was to investigate how each organ contributes to the metabolic plasma profile. This was performed using hierarchical modelling. Each organ was found to have a unique metabolic profile. The hierarchical modelling showed that the gut, kidney and liver demonstrated the greatest contribution to the metabolic pattern of plasma. For example, we found that metabolites were absorbed in the gut and transported to the plasma. The kidneys excrete branched chain amino acids (BCAAs) and fatty acids are transported in the plasma to the muscles and liver. Lactic acid was also found to be transported from the pancreas to plasma. The results indicated that hierarchical modelling can be utilized to identify the organ contribution of unknown metabolites to the metabolic profile of plasma.
Collapse
Affiliation(s)
- Frida Torell
- Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, Umeå, Sweden
- Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | - Silvia Cereghini
- CNRS, UMR7622, 75005, Paris, France
- Sorbonne Universités, UPMC, UMR7622, 75005, Paris, France
- Inserm U-1156, Paris, France
| | | | | | | | - Cecile Haumaitre
- CNRS, UMR7622, 75005, Paris, France
- Sorbonne Universités, UPMC, UMR7622, 75005, Paris, France
- Inserm U-1156, Paris, France
| | - Johan Trygg
- Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, Umeå, Sweden
- * E-mail:
| | | |
Collapse
|
9
|
Chang A, Yeung S, Thakkar A, Huang KM, Liu MM, Kanassatega RS, Parsa C, Orlando R, Jackson EK, Andresen BT, Huang Y. Prevention of skin carcinogenesis by the β-blocker carvedilol. Cancer Prev Res (Phila) 2014; 8:27-36. [PMID: 25367979 DOI: 10.1158/1940-6207.capr-14-0193] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The stress-related catecholamine hormones and the α- and β-adrenergic receptors (α- and β-AR) may affect carcinogenesis. The β-AR GRK/β-arrestin biased agonist carvedilol can induce β-AR-mediated transactivation of the EGFR. The initial purpose of this study was to determine whether carvedilol, through activation of EGFR, can promote cancer. Carvedilol failed to promote anchorage-independent growth of JB6 P(+) cells, a skin cell model used to study tumor promotion. However, at nontoxic concentrations, carvedilol dose dependently inhibited EGF-induced malignant transformation of JB6 P(+) cells, suggesting that carvedilol has chemopreventive activity against skin cancer. Such effect was not observed for the β-AR agonist isoproterenol and the β-AR antagonist atenolol. Gene expression, receptor binding, and functional studies indicate that JB6 P(+) cells only express β2-ARs. Carvedilol, but not atenolol, inhibited EGF-mediated activator protein-1 (AP-1) activation. A topical 7,12-dimethylbenz(α)anthracene (DMBA)-induced skin hyperplasia model in SENCAR mice was utilized to determine the in vivo cancer preventative activity of carvedilol. Both topical and oral carvedilol treatment inhibited DMBA-induced epidermal hyperplasia (P < 0.05) and reduced H-ras mutations; topical treatment being the most potent. However, in models of established cancer, carvedilol had modest to no inhibitory effect on tumor growth of human lung cancer A549 cells in vitro and in vivo. In conclusion, these results suggest that the cardiovascular drug carvedilol may be repurposed for skin cancer chemoprevention, but may not be an effective treatment of established tumors. More broadly, this study suggests that β-ARs may serve as a novel target for cancer prevention.
Collapse
Affiliation(s)
- Andy Chang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Steven Yeung
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Arvind Thakkar
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Kevin M Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Mandy M Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Rhye-Samuel Kanassatega
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Cyrus Parsa
- Department of Clinical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, California
| | - Robert Orlando
- Department of Clinical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, California
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bradley T Andresen
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California.
| | - Ying Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California.
| |
Collapse
|
10
|
Wei Y, Liao Y, Zavilowitz B, Ren J, Liu W, Chan P, Rohatgi R, Estilo G, Jackson EK, Wang WH, Satlin LM. Angiotensin II type 2 receptor regulates ROMK-like K⁺ channel activity in the renal cortical collecting duct during high dietary K⁺ adaptation. Am J Physiol Renal Physiol 2014; 307:F833-43. [PMID: 25100281 PMCID: PMC4187043 DOI: 10.1152/ajprenal.00141.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 08/06/2014] [Indexed: 11/22/2022] Open
Abstract
The kidney adjusts K⁺ excretion to match intake in part by regulation of the activity of apical K⁺ secretory channels, including renal outer medullary K⁺ (ROMK)-like K⁺ channels, in the cortical collecting duct (CCD). ANG II inhibits ROMK channels via the ANG II type 1 receptor (AT1R) during dietary K⁺ restriction. Because AT1Rs and ANG II type 2 receptors (AT2Rs) generally function in an antagonistic manner, we sought to characterize the regulation of ROMK channels by the AT2R. Patch-clamp experiments revealed that ANG II increased ROMK channel activity in CCDs isolated from high-K⁺ (HK)-fed but not normal K⁺ (NK)-fed rats. This response was blocked by PD-123319, an AT2R antagonist, but not by losartan, an AT1R antagonist, and was mimicked by the AT2R agonist CGP-42112. Nitric oxide (NO) synthase is present in CCD cells that express ROMK channels. Blockade of NO synthase with N-nitro-l-arginine methyl ester and free NO with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt completely abolished ANG II-stimulated ROMK channel activity. NO enhances the synthesis of cGMP, which inhibits phosphodiesterases (PDEs) that normally degrade cAMP; cAMP increases ROMK channel activity. Pretreatment of CCDs with IBMX, a broad-spectrum PDE inhibitor, or cilostamide, a PDE3 inhibitor, abolished the stimulatory effect of ANG II on ROMK channels. Furthermore, PKA inhibitor peptide, but not an activator of the exchange protein directly activated by cAMP (Epac), also prevented the stimulatory effect of ANG II. We conclude that ANG II acts at the AT2R to stimulate ROMK channel activity in CCDs from HK-fed rats, a response opposite to that mediated by the AT1R in dietary K⁺-restricted animals, via a NO/cGMP pathway linked to a cAMP-PKA pathway.
Collapse
Affiliation(s)
- Yuan Wei
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Pharmacology, New York Medical College, Valhalla, New York; Department of Cell Biology, New York University Medical Center, New York, New York
| | - Yi Liao
- Department of Cell Biology, New York University Medical Center, New York, New York
| | - Beth Zavilowitz
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jin Ren
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Wen Liu
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pokman Chan
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rajeev Rohatgi
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, James J. Peters Veterans Affairs Medical Center, Bronx, New York; and
| | - Genevieve Estilo
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Edwin K Jackson
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
11
|
Jackson EK, Cheng D, Verrier JD, Janesko-Feldman K, Kochanek PM. Interactive roles of CD73 and tissue nonspecific alkaline phosphatase in the renal vascular metabolism of 5'-AMP. Am J Physiol Renal Physiol 2014; 307:F680-5. [PMID: 24990899 DOI: 10.1152/ajprenal.00312.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CD73 metabolizes extracellular 5'-AMP to adenosine; yet recent experiments in brain tissue suggest that CD73 is not required for the metabolism of 5'-AMP to adenosine because of tissue nonspecific alkaline phosphatase (TNAP), which like CD73 is a GPI-anchored ecto-enyzme with 5'-nucleotidase activity. Because adenosine importantly regulates renovascular function, we investigated whether both TNAP and CD73 are involved in the renovascular metabolism of 5'-AMP. To test this, we examined in isolated, perfused mouse kidneys the metabolism of 5'-AMP (applied to the lumen of the renal vasculature via intrarenal artery administration) to adenosine by measuring renal venous levels of 5'-AMP, adenosine, and inosine (adenosine metabolite) by mass spectrometry. In one study, we compared 5'-AMP metabolism in naive CD73+/+ (wild-type, n = 16) vs. CD73-/- (knockout, n = 16) kidneys; and in a second study, we compared 5'-AMP metabolism in CD73+/+ (n = 9) vs. CD73-/- (n = 8) kidneys pretreated with levamisole (1 mmol/l; TNAP inhibitor). In naive kidneys, 5'-AMP increased renal venous 5'-AMP, adenosine, and inosine, and these responses were similar in CD73+/+ vs. CD73-/- kidneys. Levamisole per se did not inhibit renovascular 5'-AMP metabolism; however, in the presence of levamisole, 5'-AMP increased renal venous 5'-AMP threefold more in CD73-/- vs. CD73+/+ kidneys and knockout of CD73 inhibited 5'-induced adenosine and inosine by 81 and 86%, respectively. TNAP mRNA, protein, and activity were similar in CD73+/+ vs. CD73-/- kidneys. In conclusion, CD73 and TNAP play interactive roles to metabolize luminally applied 5'-AMP in the renal vasculature such that inhibition of both is required to inhibit the production of adenosine.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania;
| | - Dongmei Cheng
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jonathan D Verrier
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Keri Janesko-Feldman
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
12
|
Burnstock G, Evans LC, Bailey MA. Purinergic signalling in the kidney in health and disease. Purinergic Signal 2014; 10:71-101. [PMID: 24265071 PMCID: PMC3944043 DOI: 10.1007/s11302-013-9400-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/21/2022] Open
Abstract
The involvement of purinergic signalling in kidney physiology and pathophysiology is rapidly gaining recognition and this is a comprehensive review of early and recent publications in the field. Purinergic signalling involvement is described in several important intrarenal regulatory mechanisms, including tuboglomerular feedback, the autoregulatory response of the glomerular and extraglomerular microcirculation and the control of renin release. Furthermore, purinergic signalling influences water and electrolyte transport in all segments of the renal tubule. Reports about purine- and pyrimidine-mediated actions in diseases of the kidney, including polycystic kidney disease, nephritis, diabetes, hypertension and nephrotoxicant injury are covered and possible purinergic therapeutic strategies discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
13
|
Jackson EK, Cheng D, Mi Z, Verrier JD, Janesko-Feldman K, Kochanek PM. Role of CD73 in Renal Sympathetic Neurotransmission in the Mouse Kidney. Physiol Rep 2013; 1. [PMID: 24066228 PMCID: PMC3779432 DOI: 10.1002/phy2.57] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Adenosine formed during renal sympathetic nerve stimulation (RSNS) enhances, by activating A1 receptors, the postjunctional effects of released norepinephrine and participates in renal sympathetic neurotransmission. Because in many cell types CD73 (ecto-5'-nucleotidase) is important for the conversion of 5'-AMP to adenosine, we investigated whether CD73 is necessary for normal renal sympathetic neurotransmission. In isolated kidneys from CD73 wild-type mice (CD73 +/+; n=17) perfused at a constant rate with Tyrode's solution, RSNS increased perfusion pressure by 17±4, 36±8 and 44±10 mm Hg at 3, 5 and 7 Hz, respectively. Similar responses were elicited from kidneys isolated from CD73 knockout mice (CD73 -/-; n=13; 28±11, 43±10 and 44±10 mm Hg at 3, 5 and 7 Hz, respectively); and a high concentration (100 μmol/L) of α,β-methyleneadenosine 5'-diphosphate (CD73 inhibitor) did not alter responses to RSNS in C57BL/6 mouse kidneys (n=5; 21±5, 36±8 and 43±9 at 3, 5 and 7 Hz, respectively). Measurements of renal venous adenosine and inosine (adenosine metabolite) by liquid chromatography-tandem mass spectrometry demonstrated that the metabolism of exogenous 5'-AMP to adenosine and inosine was similar in CD73 -/- versus CD73 +/+ kidneys. A1 receptor mRNA expression was increased in CD73 -/- kidneys, and 2-chloro-N6-cyclopentyladenosine (0.1 μmol/L; A1 receptor agonist) enhanced renovascular responses to norepinephrine more in CD73 -/- versus CD73 +/+ kidneys. We conclude that CD73 is not essential for renal sympathetic neurotransmission because in the absence of renal CD73 other enzymes metabolize 5'-AMP to adenosine and because of compensatory upregulation of postjunctional coincident signaling between norepinephrine and adenosine.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | | | | | | | | | | |
Collapse
|
14
|
Erickson CE, Gul R, Blessing CP, Nguyen J, Liu T, Pulakat L, Bastepe M, Jackson EK, Andresen BT. The β-blocker Nebivolol Is a GRK/β-arrestin biased agonist. PLoS One 2013; 8:e71980. [PMID: 23977191 PMCID: PMC3748024 DOI: 10.1371/journal.pone.0071980] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/07/2013] [Indexed: 01/14/2023] Open
Abstract
Nebivolol, a third generation β-adrenoceptor (β-AR) antagonist (β-blocker), causes vasodilation by inducing nitric oxide (NO) production. The mechanism via which nebivolol induces NO production remains unknown, resulting in the genesis of much of the controversy regarding the pharmacological action of nebivolol. Carvedilol is another β-blocker that induces NO production. A prominent pharmacological mechanism of carvedilol is biased agonism that is independent of Gαs and involves G protein-coupled receptor kinase (GRK)/β-arrestin signaling with downstream activation of the epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase (ERK). Due to the pharmacological similarities between nebivolol and carvedilol, we hypothesized that nebivolol is also a GRK/β-arrestin biased agonist. We tested this hypothesis utilizing mouse embryonic fibroblasts (MEFs) that solely express β2-ARs, and HL-1 cardiac myocytes that express β1- and β2-ARs and no detectable β3-ARs. We confirmed previous reports that nebivolol does not significantly alter cAMP levels and thus is not a classical agonist. Moreover, in both cell types, nebivolol induced rapid internalization of β-ARs indicating that nebivolol is also not a classical β-blocker. Furthermore, nebivolol treatment resulted in a time-dependent phosphorylation of ERK that was indistinguishable from carvedilol and similar in duration, but not amplitude, to isoproterenol. Nebivolol-mediated phosphorylation of ERK was sensitive to propranolol (non-selective β-AR-blocker), AG1478 (EGFR inhibitor), indicating that the signaling emanates from β-ARs and involves the EGFR. Furthermore, in MEFs, nebivolol-mediated phosphorylation of ERK was sensitive to pharmacological inhibition of GRK2 as well as siRNA knockdown of β-arrestin 1/2. Additionally, nebivolol induced redistribution of β-arrestin 2 from a diffuse staining pattern into more intense punctate spots. We conclude that nebivolol is a β2-AR, and likely β1-AR, GRK/β-arrestin biased agonist, which suggests that some of the unique clinically beneficial effects of nebivolol may be due to biased agonism at β1- and/or β2-ARs.
Collapse
Affiliation(s)
- Catherine E. Erickson
- Department of Internal Medicine, University of Missouri, Columbia, Missouri, United States of America
- Harry S Truman Memorial Veterans’ Hospital, Columbia, Missouri, United States of America
| | - Rukhsana Gul
- Department of Internal Medicine, University of Missouri, Columbia, Missouri, United States of America
- Harry S Truman Memorial Veterans’ Hospital, Columbia, Missouri, United States of America
- Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Christopher P. Blessing
- Department of Internal Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Jenny Nguyen
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, California, United States of America
| | - Tammy Liu
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, California, United States of America
| | - Lakshmi Pulakat
- Department of Internal Medicine, University of Missouri, Columbia, Missouri, United States of America
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States of America
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
- Harry S Truman Memorial Veterans’ Hospital, Columbia, Missouri, United States of America
| | - Murat Bastepe
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Edwin K. Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh Pennsylvania, United States of America
| | - Bradley T. Andresen
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Jackson EK, Cheng D, Mi Z, Verrier JD, Janesko-Feldman K, Kochanek PM. Role of A1 receptors in renal sympathetic neurotransmission in the mouse kidney. Am J Physiol Renal Physiol 2012; 303:F1000-5. [PMID: 22874760 PMCID: PMC3469685 DOI: 10.1152/ajprenal.00363.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/01/2012] [Indexed: 11/22/2022] Open
Abstract
A(1) receptors may participate in renal sympathetic neurotransmission by enhancing the postjunctional effects of norepinephrine. The purpose of this study was to test this concept using A(1) receptor knockout (A(1)AR-/-) mice. In isolated kidneys from nontransgenic mice perfused with Tyrode's solution at a constant rate, renal sympathetic nerve stimulation (RSNS) increased (P < 0.0001) renal venous perfusate levels of inosine (adenosine metabolite) from 23.9 ± 3.7 to 32.7 ± 5.1, 68.2 ± 12.4, and 94.0 ± 14.3 ng/ml at 3, 5, and 7 Hz, respectively (n = 28), suggesting frequency-dependent production of adenosine. Conversely, RSNS decreased (P < 0.0001) renal venous perfusate levels of 5'-AMP (adenosine precursor) from 1.4 ± 0.3 to 1.1 ± 0.3, 0.80 ± 0.2, and 0.6 ± 0.2 ng/ml at 3, 5, and 7 Hz, respectively (n = 28), suggesting frequency-dependent increased metabolism of 5'-AMP. In kidneys from nontransgenic mice, blockade of adenosine receptors with 1,3-dipropyl-8-p-sulfophenylxanthine attenuated (P = 0.0130) vasoconstrictor responses to RSNS at 3, 5, and 7 Hz [control (n = 29): 22 ± 4, 34 ± 6, 42 ± 6 mmHg, respectively; 1,3-dipropyl-8-p-sulfophenylxanthine-treated (n = 11): 6 ± 1, 12 ± 3, 15 ± 3 mmHg, respectively]. In A(1)AR-/- kidneys (n = 10), vasoconstrictor responses to RSNS at 3, 5, and 7 Hz were 7 ± 3, 20 ± 5, and 36 ± 9 mmHg, respectively. In kidneys from wild-type littermates (n = 9), responses were 27 ± 9, 58 ± 14, and 59 ± 11 mmHg, respectively (effect of genotype: P = 0.0363). In kidneys from nontransgenic mice, 2-chloro-N(6)-cyclopentyladenosine (CCPA; highly selective A(1) receptor agonist) increased renal vasoconstriction induced by norepinephrine (P = 0.0008; n = 28). In kidneys from A(1)AR-/- the response to norepinephrine was attenuated and the ability of CCPA to enhance responses to norepinephrine was abolished. In conclusion, adenosine formed during RSNS enhances the postjunctional effects of released norepinephrine by activating A(1) receptors.
Collapse
Affiliation(s)
- Edwin K Jackson
- Dept. of Pharmacology and Chemical Biology, 100 Technology Dr., Rm. 514, Univ. of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Zhang L, Franchini M, Wehrli Eser M, Jackson EK, Dip R. Increased adenosine concentration in bronchoalveolar lavage fluid of horses with lower airway inflammation. Vet J 2011; 193:268-70. [PMID: 22206730 DOI: 10.1016/j.tvjl.2011.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 11/06/2011] [Accepted: 11/09/2011] [Indexed: 11/27/2022]
Abstract
Several reports have suggested a role for adenosine in the pathogenesis of chronic airway conditions and this has led to new therapeutic strategies to limit airway inflammation. In this study, detectable levels of adenosine in bronchoalveolar lavage (BAL) samples from 11 horses with non-infectious lower-airway inflammation and 14 healthy controls are reported, with significantly higher values in horses with airway inflammation. Although these increased levels did not correlate with changes in neutrophil percentage in BAL, a positive association between adenosine levels and signs of lower airway inflammation (clinical score) was observed. These novel findings support the hypothesis that adenosine may contribute to bronchoconstriction and also act as a pro-inflammatory mediator in the bronchoalveolar milieu of horses with airway inflammation. Further investigation of this axis could lead to new approaches for the treatment of highly prevalent lower airway inflammatory conditions in the horse.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, CH-8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
17
|
Hui Y, Zhao SS, Love JA, Ansley DM, Chen DDY. Development and application of a LC-MS/MS method to quantify basal adenosine concentration in human plasma from patients undergoing on-pump CABG surgery. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 885-886:30-6. [PMID: 22226467 DOI: 10.1016/j.jchromb.2011.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 11/25/2011] [Accepted: 12/06/2011] [Indexed: 10/14/2022]
Abstract
A sensitive and robust LC-MS/MS method was developed to quantify basal adenosine concentrations in human plasma of patients undergoing on-pump coronary artery bypass grafting (CABG) surgery. A strong cation exchange (SCX) monolithic cartridge was used to enrich analyte, improve robustness, and reduce biological complexity. A simple modifier-free mobile phase was employed to improve sensitivity and reproducibility. This method exhibits consistent precision and accuracy, and the RSDs or REs of all the intraday and interday determinations were within 10%. The calibration curve was linear across the examined dynamic range from 1nM to 500nM (r(2)=0.996). LOD and LOQ were determined to be 0.257nM and 0.857nM respectively, while LLOQ was below 10nM. This method was used to monitor changes of adenosine levels in patient plasma drawn intraoperatively during on-pump CABG surgery. The analysis of 84 patients revealed that the mean concentration of adenosine in coronary sinus plasma after cardiopulmonary bypass (CPB) is higher than that in coronary sinus before CPB (p=0.0024; two-tailed t-test) and that in radial artery plasma after CPB (p=0.0409; two-tailed t-test). These findings suggest that the equilibrium between adenosine production and elimination has favored the elevation of adenosine basal level during on-pump CABG surgery and the change is specific to heart tissues. Evaluation of adenosine with a sensitive and robust analytical method has important implications on providing consistent results and meaningful insights into adenosine regulation, as well as its steady state and sustained action on the heart. Relating patient characteristics or clinical outcomes with basal adenosine concentration can be used to optimize the CABG-CPB maneuver by regulating adenosine level via pharmacological intervention, and differentiating adenosine's contribution to cardioprotection from other modulatory factors.
Collapse
Affiliation(s)
- Yu Hui
- Department of Chemistry, University of British Colombia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
18
|
Jackson EK, Cheng D, Tofovic SP, Mi Z. Endogenous adenosine contributes to renal sympathetic neurotransmission via postjunctional A1 receptor-mediated coincident signaling. Am J Physiol Renal Physiol 2011; 302:F466-76. [PMID: 22114202 DOI: 10.1152/ajprenal.00495.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adenosine A(1) receptor antagonists have diuretic/natriuretic activity and may be useful for treating sodium-retaining diseases, many of which are associated with increased renal sympathetic tone. Therefore, it is important to determine whether A(1) receptor antagonists alter renal sympathetic neurotransmission. In isolated, perfused rat kidneys, renal vasoconstriction induced by renal sympathetic nerve simulation was attenuated by 1) 1,3-dipropyl-8-p-sulfophenylxanthine (xanthine analog that is a nonselective adenosine receptor antagonist, but is cell membrane impermeable and thus does not block intracellular phosphodiesterases), 2) xanthine amine congener (xanthine analog that is a selective A(1) receptor antagonist), 3) 1,3-dipropyl-8-cyclopentylxanthine (xanthine analog that is a highly selective A(1) receptor antagonist), and 4) FK453 (nonxanthine analog that is a highly selective A(1) receptor antagonist). In contrast, FR113452 (enantiomer of FK453 that does not block A(1) receptors), MRS-1754 (selective A(2B) receptor antagonist), and VUF-5574 (selective A(3) receptor antagonist) did not alter responses to renal sympathetic nerve stimulation, and ZM-241385 (selective A(2A) receptor antagonist) enhanced responses. Antagonism of A(1) receptors did not alter renal spillover of norepinephrine. 2-Chloro-N(6)-cyclopentyladenosine (highly selective A(1) receptor agonist) increased renal vasoconstriction induced by exogenous norepinephrine, an effect that was blocked by 1,3-dipropyl-8-cyclopentylxanthine, U73122 (phospholipase C inhibitor), GF109203X (protein kinase C inhibitor), PP1 (c-src inhibitor), wortmannin (phosphatidylinositol 3-kinase inhibitor), and OSU-03012 (3-phosphoinositide-dependent protein kinase-1 inhibitor). These results indicate that adenosine formed during renal sympathetic nerve stimulation enhances the postjunctional effects of released norepinephrine via coincident signaling and contributes to renal sympathetic neurotransmission. Likely, the coincident signaling pathway is: phospholipase C → protein kinase C → c-src → phosphatidylinositol 3-kinase → 3-phosphoinositide-dependent protein kinase-1.
Collapse
Affiliation(s)
- Edwin K Jackson
- Dept. of Pharmacology and Chemical Biology, 100 Technology Dr., Rm. 514, Univ. of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| | | | | | | |
Collapse
|
19
|
Verrier JD, Exo JL, Jackson TC, Ren J, Gillespie DG, Dubey RK, Kochanek PM, Jackson EK. Expression of the 2',3'-cAMP-adenosine pathway in astrocytes and microglia. J Neurochem 2011; 118:979-87. [PMID: 21777245 PMCID: PMC3166383 DOI: 10.1111/j.1471-4159.2011.07392.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many organs express the extracellular 3',5'-cAMP-adenosine pathway (conversion of extracellular 3',5'-cAMP to 5'-AMP and 5'-AMP to adenosine). Some organs release 2',3'-cAMP (isomer of 3',5'-cAMP) and convert extracellular 2',3'-cAMP to 2'- and 3'-AMP and convert these AMPs to adenosine (extracellular 2',3'-cAMP-adenosine pathway). As astrocytes and microglia are important participants in the response to brain injury and adenosine is an endogenous neuroprotectant, we investigated whether these extracellular cAMP-adenosine pathways exist in these cell types. 2',3'-, 3',5'-cAMP, 5'-, 3'-, and 2'-AMP were incubated with mouse primary astrocytes or primary microglia for 1 h and purine metabolites were measured in the medium by mass spectrometry. There was little evidence of a 3',5'-cAMP-adenosine pathway in either astrocytes or microglia. In contrast, both cell types converted 2',3'-cAMP to 2'- and 3'-AMP (with 2'-AMP being the predominant product). Although both cell types converted 2'- and 3'-AMP to adenosine, microglia were five- and sevenfold, respectively, more efficient than astrocytes in this regard. Inhibitor studies indicated that the conversion of 2',3'-cAMP to 2'-AMP was mediated by a different ecto-enzyme than that involved in the metabolism of 2',3'-cAMP to 3'-AMP and that although CD73 mediates the conversion of 5'-AMP to adenosine, an alternative ecto-enzyme metabolizes 2'- or 3'-AMP to adenosine.
Collapse
Affiliation(s)
- Jonathan D. Verrier
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jennifer L. Exo
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Travis C. Jackson
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jin Ren
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Delbert G. Gillespie
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Raghvendra K. Dubey
- Department of Obstetrics & Gynecology, University Hospital Zurich, Switzerland
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Edwin K. Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
20
|
Jackson EK, Ren J, Gillespie DG. 2',3'-cAMP, 3'-AMP, and 2'-AMP inhibit human aortic and coronary vascular smooth muscle cell proliferation via A2B receptors. Am J Physiol Heart Circ Physiol 2011; 301:H391-401. [PMID: 21622827 DOI: 10.1152/ajpheart.00336.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rat vascular smooth muscle cells (VSMCs) from renal microvessels metabolize 2',3'-cAMP to 2'-AMP and 3'-AMP, and these AMPs are converted to adenosine that inhibits microvascular VSMC proliferation via A(2B) receptors. The goal of this study was to test whether this mechanism also exists in VSMCs from conduit arteries and whether it is similarly expressed in human vs. rat VSMCs. Incubation of rat and human aortic VSMCs with 2',3'-cAMP concentration-dependently increased levels of 2'-AMP and 3'-AMP in the medium, with a similar absolute increase in 2'-AMP vs. 3'-AMP. In contrast, in human coronary VSMCs, 2',3'-cAMP increased 2'-AMP levels yet had little effect on 3'-AMP levels. In all cell types, 2',3'-cAMP increased levels of adenosine, but not 5'-AMP, and 2',3'-AMP inhibited cell proliferation. Antagonism of A(2B) receptors (MRS-1754), but not A(1) (1,3-dipropyl-8-cyclopentylxanthine), A(2A) (SCH-58261), or A(3) (VUF-5574) receptors, attenuated the antiproliferative effects of 2',3'-cAMP. In all cell types, 2'-AMP, 3'-AMP, and 5'-AMP increased adenosine levels, and inhibition of ecto-5'-nucleotidase blocked this effect of 5'-AMP but not that of 2'-AMP nor 3'-AMP. Also, 2'-AMP, 3'-AMP, and 5'-AMP, like 2',3'-cAMP, exerted antiproliferative effects that were abolished by antagonism of A(2B) receptors with MRS-1754. In conclusion, VSMCs from conduit arteries metabolize 2',3'-cAMP to AMPs, which are metabolized to adenosine. In rat and human aortic VSMCs, both 2'-AMP and 3'-AMP are involved in this process, whereas, in human coronary VSMCs, 2',3'-cAMP is mainly converted to 2'-AMP. Because adenosine inhibits VSMC proliferation via A(2B) receptors, local vascular production of 2',3'-cAMP may protect conduit arteries from atherosclerosis.
Collapse
Affiliation(s)
- Edwin K Jackson
- Dept. of Pharmacology and Chemical Biology, Univ. of Pittsburgh School of Medicine, 100 Technology Drive, Rm. 514, Pittsburgh, PA 15219-3130, USA.
| | | | | |
Collapse
|
21
|
Sharma K, Singh R, Giri S, Rajagopal S, Mullangi R. Highly sensitive method for the determination of adenosine by LC-MS/MS-ESI: method validation and scope of application to a pharmacokinetic/pharmacodynamic study. Biomed Chromatogr 2011; 26:81-8. [DOI: 10.1002/bmc.1629] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 02/23/2011] [Indexed: 11/10/2022]
Affiliation(s)
- Kuldeep Sharma
- Drug Metabolism and Pharmacokinetics; Jubilant Biosys Ltd; Industrial Suburb, Yeshwanthpur; Bangalore; 560 022; India
| | - Radheraman Singh
- Drug Metabolism and Pharmacokinetics; Jubilant Biosys Ltd; Industrial Suburb, Yeshwanthpur; Bangalore; 560 022; India
| | - Sanjeev Giri
- Drug Metabolism and Pharmacokinetics; Jubilant Biosys Ltd; Industrial Suburb, Yeshwanthpur; Bangalore; 560 022; India
| | - Sriram Rajagopal
- Drug Metabolism and Pharmacokinetics; Jubilant Biosys Ltd; Industrial Suburb, Yeshwanthpur; Bangalore; 560 022; India
| | - Ramesh Mullangi
- Drug Metabolism and Pharmacokinetics; Jubilant Biosys Ltd; Industrial Suburb, Yeshwanthpur; Bangalore; 560 022; India
| |
Collapse
|
22
|
Jackson EK, Ren J, Gillespie DG, Dubey RK. Extracellular 2,3-cyclic adenosine monophosphate is a potent inhibitor of preglomerular vascular smooth muscle cell and mesangial cell growth [corrected]. Hypertension 2010; 56:151-8. [PMID: 20516392 PMCID: PMC2892387 DOI: 10.1161/hypertensionaha.110.152454] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Accepted: 05/05/2010] [Indexed: 11/16/2022]
Abstract
Recently we discovered that intact kidneys release into the extracellular compartment 2',3'-cAMP (a positional isomer of 3',5'-cAMP with unknown pharmacology) and metabolize 2',3'-cAMP to 2'-AMP, 3'-AMP, and adenosine. Because adenosine inhibits growth of vascular smooth muscle cells and mesangial cells, we tested the hypothesis that extracellular 2',3'-cAMP attenuates growth of preglomerular vascular smooth muscle and mesangial cells via production of adenosine. For comparison, all of the experiments were performed with both 2',3'-cAMP and 3',5'-cAMP. In study 1, 2',3'-cAMP, 3',5'-cAMP, 5'-AMP, 3'-AMP, or 2'-AMP was incubated with cells and purines measured in the medium by mass spectrometry. Both preglomerular vascular smooth muscle and mesangial cells metabolized 3',5'-cAMP to 5'-AMP and adenosine; 5'-AMP to adenosine; 2',3'-cAMP to 2'-AMP, 3'-AMP, and adenosine; and 2'-AMP and 3'-AMP to adenosine. 3-Isobutyl-1-methylxanthine (phosphodiesterase inhibitor) and 1,3-dipropyl-8-p-sulfophenylxanthine (ecto-phosphodiesterase inhibitor) blocked conversion of 3',5'-cAMP to 5'-AMP and adenosine, and alpha,beta-methylene-adenosine-5'-diphosphate (CD73 inhibitor) blocked conversion of 5'-AMP to adenosine. These enzyme inhibitors had little effect on metabolism of 2',3'-cAMP, 2'-AMP, or 3'-AMP. For study 2, 2',3'-cAMP and 3',5'-cAMP profoundly inhibited proliferation (thymidine incorporation and cell number) of both cell types, with 2',3'-cAMP more potent than 3',5'-cAMP. Antagonism of A(2B) receptors (MRS-1724), but not A(1) (1,3-dipropyl-8-cyclopentylxanthine), A(2A) (SCH-58261), or A(3) (VUF-5574) receptors, attenuated the growth inhibitory effects of 2',3'-cAMP and 3',5'-cAMP. Extracellular 2',3'-cAMP inhibits growth of preglomerular vascular smooth muscle and mesangial cells more profoundly than does 3',5'-cAMP. Although both cAMPs inhibit growth in part via conversion to adenosine followed by A(2B) receptor activation, their metabolism is mediated by different enzymes.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Dr, Suite 450, Pittsburgh, PA 15219, USA.
| | | | | | | |
Collapse
|
23
|
Van Dycke A, Verstraete A, Pil K, Raedt R, Vonck K, Boison D, Boon P. Quantitative analysis of adenosine using liquid chromatography/atmospheric pressure chemical ionization-tandem mass spectrometry (LC/APCI-MS/MS). J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:1493-8. [PMID: 20409760 PMCID: PMC2987626 DOI: 10.1016/j.jchromb.2010.03.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/21/2010] [Accepted: 03/28/2010] [Indexed: 12/22/2022]
Abstract
Adenosine-secreting cellular brain implants constitute a promising therapeutic approach for the treatment of epilepsy. To engineer neural stem cells for therapeutic adenosine delivery, a reliable and fast analytical method is necessary to quantify cell-based adenosine release. Here we describe the development, optimization and validation of adenosine measurement using liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry (LC-APCI-MS/MS). LC-MS/MS in positive ion mode used selected reaction monitoring at m/z of 268.2/136.1 and 302.2/170.0 for adenosine and the internal standard, respectively. The bias was within 15% of the nominal value and evaluation of precision showed a relative standard deviation lower than 15% for all measured concentrations. The lower limit of quantification of adenosine was 15.6 ng/ml. Freeze and thaw stability and processed sample stability also fulfilled the acceptance criteria. Evaluation of the matrix effect showed that the method is not affected by relative matrix effects. The major advantages of this method are the absence of an extraction phase and the combination of the high selectivity and sensitivity characteristic for the LC-MS/MS technique, with a short run time of 4.5 min. These results demonstrate that this method is a useful tool to measure adenosine concentrations in culture medium released from stem cells in vitro.
Collapse
Affiliation(s)
- Annelies Van Dycke
- Laboratory for Clinical and Experimental Neurophysiology, Department of Neurology, Ghent University Hospital, Ghent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
24
|
Cheng D, Ren J, Jackson EK. Multidrug resistance protein 4 mediates cAMP efflux from rat preglomerular vascular smooth muscle cells. Clin Exp Pharmacol Physiol 2010; 37:205-7. [PMID: 19671067 PMCID: PMC3068533 DOI: 10.1111/j.1440-1681.2009.05272.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
1. Previous studies have shown that stimulation of adenylyl cyclase in preglomerular vascular smooth muscle cells (PGVSMC) increases extracellular cAMP; however, the mechanism by which PGVSMC transport intracellular cAMP into the extracellular milieu is unknown. 2. We hypothesize that multidrug resistance protein (MRP) 4 is the primary transporter mediating efflux of intracellular cAMP from PGVSMC. 3. Both reverse transcription-polymerase chain reaction and real-time polymerase chain reaction detected MRP4 mRNA in PGVSMC in culture. Moreover, western blotting using an antibody specific for MRP4 gave rise to a 150 kDa signal, consistent with the presence of MRP4 protein in PGVSMC. 4. Specifically designed short interference (si) RNA reduced MRP4 mRNA expression by 71% (P = 0.0075) and MRP4 protein by 80% (P = 0.0004). 5. Isoproterenol (1 micromol/L) increased intracellular cAMP, which resulted in efflux of cAMP into the medium. The siRNA knockdown of MRP4 significantly reduced basal extracellular cAMP and nearly abolished isoproterenol-induced increases in extracellular cAMP (P = 0.0143, interaction between isoproterenol and MRP4 siRNA in two-factor analysis of variance). In isoproterenol-treated cells, MRP4 siRNA decreased the ratio of extracellular cAMP to intracellular cAMP by 72% (P = 0.0019). 6. We conclude that MRP4 is the dominant cAMP transporter in PGVSMC.
Collapse
Affiliation(s)
- Dongmei Cheng
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, USA
| | | | | |
Collapse
|
25
|
Abstract
We discovered that renal injury releases 2',3'-cAMP (positional isomer of 3',5'-cAMP) into the interstitium. This finding motivated a novel hypothesis: renal injury leads to activation of an extracellular 2',3'-cAMP-adenosine pathway (i.e. metabolism of extracellular 2',3'-cAMP to 3'-AMP and 2'-AMP, which are metabolized to adenosine, a retaliatory metabolite). In isolated rat kidneys, arterial infusions of 2',3'-cAMP (30 mumol/liter) increased the mean venous secretion of 3'-AMP (3,400-fold), 2'-AMP (26,000-fold), adenosine (53-fold), and inosine (adenosine metabolite, 30-fold). Renal injury with metabolic inhibitors increased the mean secretion of 2',3'-cAMP (29-fold), 3'-AMP (16-fold), 2'-AMP (10-fold), adenosine (4.2-fold), and inosine (6.1-fold) while slightly increasing 5'-AMP (2.4-fold). Arterial infusions of 2'-AMP and 3'-AMP increased secretion of adenosine and inosine similar to that achieved by 5'-AMP. Renal artery infusions of 2',3'-cAMP in vivo increased urinary excretion of 2'-AMP, 3'-AMP and adenosine, and infusions of 2'-AMP and 3'-AMP increased urinary excretion of adenosine as efficiently as 5'-AMP. The implications are that 1) in intact organs, 2'-AMP and 3'-AMP are converted to adenosine as efficiently as 5'-AMP (previously considered the most important adenosine precursor) and 2) because 2',3'-cAMP opens mitochondrial permeability transition pores, a pro-apoptotic/pro-necrotic process, conversion of 2',3'-cAMP to adenosine by the extracellular 2',3'-cAMP-adenosine pathway would protect tissues by reducing a pro-death factor (2',3'-cAMP) while increasing a retaliatory metabolite (adenosine).
Collapse
Affiliation(s)
- Edwin K Jackson
- Departments of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, USA.
| | | | | |
Collapse
|
26
|
Ren J, Mi Z, Stewart NA, Jackson EK. Identification and quantification of 2',3'-cAMP release by the kidney. J Pharmacol Exp Ther 2009; 328:855-65. [PMID: 19033554 PMCID: PMC2646794 DOI: 10.1124/jpet.108.146712] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 11/24/2008] [Indexed: 11/22/2022] Open
Abstract
We recently developed a sensitive assay for 3',5'-cAMP using high-performance liquid chromatography-tandem mass spectrometry. Using this assay, we investigated the release of 3',5'-cAMP from isolated, perfused rat kidneys. To our surprise, we observed a dominant chromatographic peak that was because of an endogenous substance that had the same parent ion as 3',5'-cAMP and that fragmented to the same daughter ion (adenine) as 3',5'-cAMP. However, the retention time of this unknown was approximately 2.9 min, compared with 6.3 min for authentic 3',5'-cAMP. We hypothesized that the unknown substance was an isomer of 3',5'-cAMP. The unknown substance had the same retention time and mass spectral properties as authentic 2',3'-cAMP. Renal venous secretion of 2',3'-cAMP was greater in kidneys from 20-week-old genetically hypertensive rats compared with age-matched normotensive rats (12.49 +/- 2.14 versus 5.32 +/- 1.97 ng/min/g kidney weight, respectively; n = 18). Isoproterenol (1 microM; beta-adrenoceptor agonist) increased renal venous 3',5'-cAMP secretion (approximately 690% of control) but had no effect on 2',3'-cAMP production. In contrast, rapamycin (0.2 microM; activator of mRNA turnover) and iodoacetate + 2,4-dinitrophenol (50 microM; metabolic inhibitors) increased the renal venous secretion of 2',3'-cAMP (approximately 1000 and 4100% of control, respectively) while simultaneously decreasing the renal venous secretion of 3',5'-cAMP. In conclusion, 2',3'-cAMP is a naturally occurring isomer of 3',5'-cAMP that is: 1) not made by adenylyl cyclase; 2) released from kidneys into the extracellular compartment; 3) released more by kidneys from rats with long-standing hypertension; 4) derived from mRNA turnover; and 5) increased by energy depletion.
Collapse
Affiliation(s)
- Jin Ren
- Department of Medicine, Center for Clinical Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|