1
|
Kuang N, Ma Q, Zheng X, Meng X, Zhai Z, Li Q, Pan J. GeTeSEPdb: A comprehensive database and online tool for the identification and analysis of gene profiles with temporal-specific expression patterns. Comput Struct Biotechnol J 2024; 23:2488-2496. [PMID: 38939556 PMCID: PMC11208770 DOI: 10.1016/j.csbj.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024] Open
Abstract
Gene expression is dynamic and varies at different stages of processes. The identification of gene profiles with temporal-specific expression patterns can provide valuable insights into ongoing biological processes, such as the cell cycle, cell development, circadian rhythms, or responses to external stimuli such as drug treatments or viral infections. However, currently, no database defines, identifies or archives gene profiles with temporal-specific expression patterns. Here, using a high-throughput regression analysis approach, eight linear and nonlinear parametric models were fitted to gene expression profiles from time-series experiments to identify eight types of gene profiles with temporal-specific expression patterns. We curated 2684 time-series transcriptome datasets and identified 2644,370 gene profiles exhibiting temporal-specific expression patterns. The results were stored in the database GeTeSEPdb (gene profiles with temporal-specific expression patterns database, http://www.inbirg.com/GeTeSEPdb/). Moreover, we implemented an online tool to identify gene profiles with temporal-specific expression patterns from user-submitted data. In summary, GeTeSEPdb is a comprehensive web service that can be used to identify and analyse gene profiles with temporal-specific expression patterns. This approach facilitates the exploration of transcriptional changes and temporal patterns of responses. We firmly believe that GeTeSEPdb will become a valuable resource for biologists and bioinformaticians.
Collapse
Affiliation(s)
- Ni Kuang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Qinfeng Ma
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xiao Zheng
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xuehang Meng
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Zhaoyu Zhai
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Qiang Li
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jianbo Pan
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
2
|
Mager DE, Straubinger RM. Contributions of William Jusko to Development of Pharmacokinetic and Pharmacodynamic Models and Methods. J Pharm Sci 2024; 113:2-10. [PMID: 37778439 DOI: 10.1016/j.xphs.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Affiliation(s)
- Donald E Mager
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA; Enhanced Pharmacodynamics, LLC, Buffalo, New York, USA.
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
3
|
Abstract
Biomedical research on mammals has traditionally neglected females, raising the concern that some scientific findings may generalize poorly to half the population. Although this lack of sex inclusion has been broadly documented, its extent within circadian genomics remains undescribed. To address this gap, we examined sex inclusion practices in a comprehensive collection of publicly available transcriptome studies on daily rhythms. Among 148 studies having samples from mammals in vivo, we found strong underrepresentation of females across organisms and tissues. Overall, only 23 of 123 studies in mice, 0 of 10 studies in rats, and 9 of 15 studies in humans included samples from females. In addition, studies having samples from both sexes tended to have more samples from males than from females. These trends appear to have changed little over time, including since 2016, when the US National Institutes of Health began requiring investigators to consider sex as a biological variable. Our findings highlight an opportunity to dramatically improve representation of females in circadian research and to explore sex differences in daily rhythms at the genome level.
Collapse
Affiliation(s)
- Dora Obodo
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee,Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Elliot H. Outland
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jacob J. Hughey
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee,Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee,Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee,Jacob J. Hughey, Department of Biomedical Informatics, Vanderbilt University Medical Center, 2525 West End Ave., Suite 1475, Nashville, TN 37232, USA; e-mail:
| |
Collapse
|
4
|
Cyrino JC, de Figueiredo AC, Córdoba-Moreno MO, Gomes FR, Titon SCM. Day Versus Night Melatonin and Corticosterone Modulation by LPS in Distinct Tissues of Toads (Rhinella Icterica). Integr Comp Biol 2022; 62:1606-1617. [PMID: 35568500 DOI: 10.1093/icb/icac028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/30/2022] [Indexed: 01/05/2023] Open
Abstract
Pathogen-associated molecular patterns modulate melatonin (MEL) production in the pineal and extra-pineal sites and corticosterone (CORT) synthesis in the adrenal/interrenal and other tissues. Both MEL and CORT play essential and complex immunomodulatory roles, controlling the inflammatory response. Given that most of what we know about these interactions is derived from mammalian studies, discovering how MEL and CORT are modulated following an immune challenge in anurans would increase understanding of how conserved these immune-endocrine interactions are in vertebrates. Herein, we investigated the modulation of MEL and CORT in plasma vs. local tissues of toads (Rhinella icterica) in response to an immune challenge with lipopolysaccharide (LPS; 2 mg/kg) at day and night. Blood samples were taken 2 hours after injection (noon and midnight), and individuals were killed for tissue collection (bone marrow, lungs, liver, and intestine). MEL and CORT were determined in plasma and tissue homogenates. LPS treatment increased MEL concentration in bone marrow during the day. Intestine MEL levels were higher at night than during the day, particularly in LPS-injected toads. Bone marrow and lungs showed the highest MEL levels among tissues. Plasma MEL levels were not affected by either the treatment or the phase. Plasma CORT levels increased in LPS-treated individuals, with an accentuated increase at night. Otherwise, CORT concentration in the tissues was not affected by LPS exposure. Modulation of MEL levels in bone marrow suggests this tissue may participate in the toad's inflammatory response assembly. Moreover, MEL and CORT levels were different in tissues, pointing to an independent modulation of hormonal concentration. Our results suggest an important role of immune challenge in modulating MEL and CORT, bringing essential insights into the hormone-immune interactions during anuran's inflammatory response.
Collapse
Affiliation(s)
- João Cunha Cyrino
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo CEP 05508-090, São Paulo, Brasil
| | - Aymam Cobo de Figueiredo
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo CEP 05508-090, São Paulo, Brasil
| | - Marlina Olyissa Córdoba-Moreno
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo CEP 05508-090, São Paulo, Brasil
| | - Fernando Ribeiro Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo CEP 05508-090, São Paulo, Brasil
| | | |
Collapse
|
5
|
Moravcová S, Spišská V, Pačesová D, Hrubcová L, Kubištová A, Novotný J, Bendová Z. Circadian control of kynurenine pathway enzymes in the rat pineal gland, liver, and heart and tissue- and enzyme-specific responses to lipopolysaccharide. Arch Biochem Biophys 2022; 722:109213. [DOI: 10.1016/j.abb.2022.109213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/10/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022]
|
6
|
PER2 Regulates Reactive Oxygen Species Production in the Circadian Susceptibility to Ischemia/Reperfusion Injury in the Heart. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6256399. [PMID: 34659637 PMCID: PMC8519710 DOI: 10.1155/2021/6256399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 11/21/2022]
Abstract
The main objective of this study was to investigate the diurnal differences in Period 2 (PER2) expression in myocardial ischemia-reperfusion (I/R) injury. We investigated diurnal variations in oxidative stress and energy metabolism after myocardial I/R in vitro and in vivo. In addition, we also analyzed the effects of H2O2 treatment and serum shock in H9c2 cells transfected with silencing RNA against Per2 (siRNA-Per2) in vitro. We used C57BL/6 male mice to construct a model of I/R injury at zeitgeber time (ZT) 2 and ZT14 by synchronizing the circadian rhythms. Our in vivo analysis demonstrated that there were diurnal differences in the severity of injury caused by myocardial infarctions, with more injury occurring in the daytime. PER2 was significantly reduced in heart tissue in the daytime and was higher at night. Our results also showed that more severe injury of mitochondrial function in daytime produced more reactive oxygen species (ROS) and less ATP, which increased myocardial injury. In vitro, our findings presented a similar trend showing that apoptosis of H9c2 cells was increased when PER2 expression was lower. Meanwhile, downregulation of PER2 disrupted the oxidative balance by increasing ROS and mitochondrial injury. The result was a reduction in ATP and failure to provide sufficient energy protection for cardiomyocytes.
Collapse
|
7
|
Pathway-level analysis of genome-wide circadian dynamics in diverse tissues in rat and mouse. J Pharmacokinet Pharmacodyn 2021; 48:361-374. [PMID: 33768484 DOI: 10.1007/s10928-021-09750-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
A computational framework is developed to enable the characterization of genome-wide, multi-tissue circadian dynamics at the level of "functional groupings of genes" defined in the context of signaling, cellular/genetic processing and metabolic pathways in rat and mouse. Our aim is to identify how individual genes come together to generate orchestrated rhythmic patterns and how these may vary within and across tissues. We focus our analysis on four tissues (adipose, liver, lung, and muscle). A genome-wide pathway-centric analysis enables us to develop a comprehensive picture on how the observed circadian variation at the individual gene level, orchestrates functional responses at the pathway level. Such pathway-based "meta-data" analysis enables the rational integration and comparison across platforms and/or experimental designs evaluating emergent dynamics, as opposed to comparisons of individual elements. One of our key findings is that when considering the dynamics at the pathway level, a complex behavior emerges. Our work proposes that tissues tend to coordinate gene's circadian expression in a way that optimizes tissue-specific pathway activity, depending of each tissue's broader role in homeostasis.
Collapse
|
8
|
Acevedo A, DuBois D, Almon RR, Jusko WJ, Androulakis IP. Modeling Pathway Dynamics of the Skeletal Muscle Response to Intravenous Methylprednisolone (MPL) Administration in Rats: Dosing and Tissue Effects. Front Bioeng Biotechnol 2020; 8:759. [PMID: 32760706 PMCID: PMC7371857 DOI: 10.3389/fbioe.2020.00759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 06/15/2020] [Indexed: 12/27/2022] Open
Abstract
A model-based approach for the assessment of pathway dynamics is explored to characterize metabolic and signaling pathway activity changes characteristic of the dosing-dependent differences in response to methylprednisolone in muscle. To consistently compare dosing-induced changes we extend the principles of pharmacokinetics and pharmacodynamics and introduce a novel representation of pathway-level dynamic models of activity regulation. We hypothesize the emergence of dosing-dependent regulatory interactions is critical to understanding the mechanistic implications of MPL dosing in muscle. Our results indicate that key pathways, including amino acid and lipid metabolism, signal transduction, endocrine regulation, regulation of cellular functions including growth, death, motility, transport, protein degradation, and catabolism are dependent on dosing, exhibiting diverse dynamics depending on whether the drug is administered acutely of continuously. Therefore, the dynamics of drug presentation offer the possibility for the emergence of dosing-dependent models of regulation. Finally, we compared acute and chronic MPL response in muscle with liver. The comparison revealed systematic response differences between the two tissues, notably that muscle appears more prone to adapt to MPL.
Collapse
Affiliation(s)
- Alison Acevedo
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States
| | - Debra DuBois
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Richard R Almon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - William J Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Ioannis P Androulakis
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States.,Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ, United States.,Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
9
|
Sládek M, Houdek P, Sumová A. Circadian profiling reveals distinct regulation of endocannabinoid system in the rat plasma, liver and adrenal glands by light-dark and feeding cycles. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158533. [DOI: 10.1016/j.bbalip.2019.158533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 12/17/2022]
|
10
|
Simak M, Lu HHS, Yang JM. Boolean function network analysis of time course liver transcriptome data to reveal novel circadian transcriptional regulators in mammals. J Chin Med Assoc 2019; 82:872-880. [PMID: 31469689 DOI: 10.1097/jcma.0000000000000180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Many biological processes in mammals are subject to circadian control at the molecular level. Disruption of circadian rhythms has been demonstrated to be associated with a wide range of diseases, such as diabetes mellitus, mental disorders, and cancer. Although the core circadian genes are well established, there are multiple reports of novel peripheral circadian regulators. The goal of this study was to provide a comprehensive computational analysis to identify novel potential circadian transcriptional regulators. METHODS To fulfill the aforementioned goal, we applied a Boolean function network method to analyze the microarray time course mouse and rat liver datasets available in the literature. The inferred direct pairwise relations were further investigated using the functional annotation tool. This approach generated a list of transcription factors (TFs) and cofactors, which were associated with significantly enriched circadian gene ontology (GO) categories. RESULTS As a result, we identified 93 transcriptional circadian regulators in mouse and 95 transcriptional circadian regulators in rat. Of these, 19 regulators in mouse and 21 regulators in rat were known, whereas the rest were novel. Furthermore, we validated novel circadian TFs with bioinformatics databases, previous large-scale circadian studies, and related small-scale studies. Moreover, according to predictions inferred from ChIP-Seq experiments reported in the database, 40 of our candidate circadian regulators were confirmed to have circadian genes as direct regulatory targets. In addition, we annotated candidate circadian regulators with disorders that were often associated with disruptions of circadian rhythm in the literature. CONCLUSION In summary, our computational analysis, which was followed by an extensive verification by means of a literature review, can contribute to translational study from endocrinology to cancer research and provide insights for future investigation.
Collapse
Affiliation(s)
- Maria Simak
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, Taiwan, ROC
- Institute of Statistics, National Chiao Tung University, Hsinchu, Taiwan, ROC
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan, ROC
| | | | - Jinn-Moon Yang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan, ROC
| |
Collapse
|
11
|
Scherholz ML, Schlesinger N, Androulakis IP. Chronopharmacology of glucocorticoids. Adv Drug Deliv Rev 2019; 151-152:245-261. [PMID: 30797955 DOI: 10.1016/j.addr.2019.02.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/24/2018] [Accepted: 02/13/2019] [Indexed: 12/30/2022]
Abstract
Glucocorticoids influence a wide array of metabolic, anti-inflammatory, immunosuppressive, and cognitive signaling processes, playing an important role in homeostasis and preservation of normal organ function. Synthesis is regulated by the hypothalamic-pituitary-adrenal (HPA) axis of which cortisol is the primary glucocorticoid in humans. Synthetic glucocorticoids are important pharmacological agents that augment the anti-inflammatory and immunosuppressive properties of endogenous cortisol and are widely used for the treatment of asthma, Crohn's disease, and rheumatoid arthritis, amongst other chronic conditions. The homeostatic activity of cortisol is disrupted by the administration of synthetic glucocorticoids and so there is interest in developing treatment options that minimize HPA axis disturbance while maintaining the pharmacological effects. Studies suggest that optimizing drug administration time can achieve this goal. The present review provides an overview of endogenous glucocorticoid activity and recent advances in treatment options that have further improved patient safety and efficacy with an emphasis on chronopharmacology.
Collapse
|
12
|
Abstract
Metabolism and transport of many drugs oscillate with times of the day (solar time), resulting in circadian time-dependent drug exposure and pharmacokinetics.Time-dependent pharmacokinetics (also known as chronopharmacokinetics) is associated with time-varying drug effects and toxicity.This review summarizes drug-metabolizing enzymes and transporters with rhythmic expressions in the liver, intestine and/or kidney. Correlations of these diurnal proteins with circadian variations in drug exposure and effects/toxicity are covered. We also discuss the molecular mechanisms for circadian control of enzymes and transporters.Mechanism-based chronopharmacokinetics would facilitate a better understanding of chronopharmacology and the design of time-specific drug delivery systems, ultimately leading to improved drug efficacy and minimized toxicity.
Collapse
Affiliation(s)
- Mengjing Zhao
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Huijie Xing
- Institution of Laboratory Animal, Jinan University, Guangzhou, China
| | - Min Chen
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Dong Dong
- School of Medicine, Jinan University, Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
13
|
Acevedo A, Berthel A, DuBois D, Almon RR, Jusko WJ, Androulakis IP. Pathway-Based Analysis of the Liver Response to Intravenous Methylprednisolone Administration in Rats: Acute Versus Chronic Dosing. GENE REGULATION AND SYSTEMS BIOLOGY 2019; 13:1177625019840282. [PMID: 31019365 PMCID: PMC6466473 DOI: 10.1177/1177625019840282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/05/2019] [Indexed: 12/25/2022]
Abstract
Pharmacological time-series data, from comparative dosing studies, are critical to characterizing drug effects. Reconciling the data from multiple studies is inevitably difficult; multiple in vivo high-throughput -omics studies are necessary to capture the global and temporal effects of the drug, but these experiments, though analogous, differ in (microarray or other) platforms, time-scales, and dosing regimens and thus cannot be directly combined or compared. This investigation addresses this reconciliation issue with a meta-analysis technique aimed at assessing the intrinsic activity at the pathway level. The purpose of this is to characterize the dosing effects of methylprednisolone (MPL), a widely used anti-inflammatory and immunosuppressive corticosteroid (CS), within the liver. A multivariate decomposition approach is applied to analyze acute and chronic MPL dosing in male adrenalectomized rats and characterize the dosing-dependent differences in the dynamic response of MPL-responsive signaling and metabolic pathways. We demonstrate how to deconstruct signaling and metabolic pathways into their constituent pathway activities, activities which are scored for intrinsic pathway activity. Dosing-induced changes in the dynamics of pathway activities are compared using a model-based assessment of pathway dynamics, extending the principles of pharmacokinetics/pharmacodynamics (PKPD) to describe pathway activities. The model-based approach enabled us to hypothesize on the likely emergence (or disappearance) of indirect dosing-dependent regulatory interactions, pointing to likely mechanistic implications of dosing of MPL transcriptional regulation. Both acute and chronic MPL administration induced a strong core of activity within pathway families including the following: lipid metabolism, amino acid metabolism, carbohydrate metabolism, metabolism of cofactors and vitamins, regulation of essential organelles, and xenobiotic metabolism pathway families. Pathway activities alter between acute and chronic dosing, indicating that MPL response is dosing dependent. Furthermore, because multiple pathway activities are dominant within a single pathway, we observe that pathways cannot be defined by a single response. Instead, pathways are defined by multiple, complex, and temporally related activities corresponding to different subgroups of genes within each pathway.
Collapse
Affiliation(s)
- Alison Acevedo
- Department of Biomedical Engineering,
Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey,
Piscataway, NJ, USA
| | - Ana Berthel
- Department of Biochemistry, Mount
Holyoke College, South Hadley, MA, USA
| | - Debra DuBois
- Department of Pharmaceutical Sciences,
School of Pharmacy and Pharmaceutical Sciences, The State University of New York at
Buffalo, Buffalo, NY, USA
- Department of Biological Sciences, The
State University of New York at Buffalo, Buffalo, NY, USA
| | - Richard R Almon
- Department of Pharmaceutical Sciences,
School of Pharmacy and Pharmaceutical Sciences, The State University of New York at
Buffalo, Buffalo, NY, USA
- Department of Biological Sciences, The
State University of New York at Buffalo, Buffalo, NY, USA
| | - William J Jusko
- Department of Pharmaceutical Sciences,
School of Pharmacy and Pharmaceutical Sciences, The State University of New York at
Buffalo, Buffalo, NY, USA
- Department of Biological Sciences, The
State University of New York at Buffalo, Buffalo, NY, USA
| | - Ioannis P Androulakis
- Department of Biomedical Engineering,
Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey,
Piscataway, NJ, USA
- Department of Chemical and Biochemical
Engineering, Robert Wood Johnson Medical School, Rutgers, The State University of
New Jersey, Piscataway, NJ, USA
- Department of Surgery, Robert Wood
Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ,
USA
| |
Collapse
|
14
|
Mavroudis PD, DuBois DC, Almon RR, Jusko WJ. Modeling circadian variability of core-clock and clock-controlled genes in four tissues of the rat. PLoS One 2018; 13:e0197534. [PMID: 29894471 PMCID: PMC5997360 DOI: 10.1371/journal.pone.0197534] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/03/2018] [Indexed: 12/26/2022] Open
Abstract
Circadian clocks, present in almost all cells of the body, are entrained to rhythmic changes in the environment (e.g. light/dark cycles). Genes responsible for this timekeeping are named core-clock genes, which through transcriptional feedback interactions mediated by transcription factor binding to Ebox/RRE/Dbox elements can generate oscillatory activity of their expression. By regulating the transcription of other clock-controlled genes (CCGs) circadian information is transmitted to tissue and organ levels. Recent studies have indicated that there is a considerable variability of clock-controlled gene expression between tissues both with respect to the circadian genes that are regulated and to their phase lags. In this work, a mathematical model was adapted to explore the dynamics of core-clock and clock-controlled genes measured in four tissues of the rat namely liver, muscle, adipose, and lung. The model efficiently described the synchronous rhythmicity of core-clock genes and further predicted that their phases are mainly regulated by Per2 and Cry1 transcriptional delays and Rev-Erba and Cry1 degradation rates. Similarly, after mining databases for potential Ebox/RRE/Dbox elements in the promoter region of clock-controlled genes, the phase variabilities of the same genes between different tissues were described. The analysis suggests that inter-tissue circadian variability of the same clock-controlled genes is an inherent component of homeostatic function and may arise due to different transcription factor activities on Ebox/RRE/Dbox elements.
Collapse
Affiliation(s)
- Panteleimon D. Mavroudis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Debra C. DuBois
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, United States of America
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Richard R. Almon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, United States of America
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - William J. Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, United States of America
- * E-mail:
| |
Collapse
|
15
|
Mavroudis PD, DuBois DC, Almon RR, Jusko WJ. Daily variation of gene expression in diverse rat tissues. PLoS One 2018; 13:e0197258. [PMID: 29746605 PMCID: PMC5945012 DOI: 10.1371/journal.pone.0197258] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 04/30/2018] [Indexed: 11/30/2022] Open
Abstract
Circadian information is maintained in mammalian tissues by a cell-autonomous network of transcriptional feedback loops that have evolved to optimally regulate tissue-specific functions. An analysis of daily gene expression in different tissues, as well as an evaluation of inter-tissue circadian variability, is crucial for a systems-level understanding of this transcriptional circuitry. Affymetrix gene chip measurements of liver, muscle, adipose, and lung tissues were obtained from a rich time series light/dark experiment, involving 54 normal rats sacrificed at 18 time points within the 24-hr cycle. Our analysis revealed a high degree of circadian regulation with a variable distribution of phases among the four tissues. Interestingly, only a small number of common genes maintain circadian activity in all tissues, with many of them consisting of "core-clock" components with synchronous rhythms. Our results suggest that inter-tissue circadian variability is a critical component of homeostatic body function and is mediated by diverse signaling pathways that ultimately lead to highly tissue-specific transcription regulation.
Collapse
Affiliation(s)
- Panteleimon D. Mavroudis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Debra C. DuBois
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Richard R. Almon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - William J. Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
16
|
Smolensky MH, Reinberg AE, Sackett-Lundeen L. Perspectives on the relevance of the circadian time structure to workplace threshold limit values and employee biological monitoring. Chronobiol Int 2017; 34:1439-1464. [PMID: 29215915 DOI: 10.1080/07420528.2017.1384740] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The circadian time structure (CTS) and its disruption by rotating and nightshift schedules relative to work performance, accident risk, and health/wellbeing have long been areas of occupational medicine research. Yet, there has been little exploration of the relevance of the CTS to setting short-term, time-weighted, and ceiling threshold limit values (TLVs); conducting employee biological monitoring (BM); and establishing normative reference biological exposure indices (BEIs). Numerous publications during the past six decades document the CTS substantially affects the disposition - absorption, distribution, metabolism, and elimination - and effects of medications. Additionally, laboratory animal and human studies verify the tolerance to chemical, biological (contagious), and physical agents can differ extensively according to the circadian time of exposure. Because of slow and usually incomplete CTS adjustment by rotating and permanent nightshift workers, occupational chemical and other contaminant encounters occur during a different circadian stage than for dayshift workers. Thus, the intended protection of some TLVs when working the nightshift compared to dayshift might be insufficient, especially in high-risk settings. The CTS is germane to employee BM in that large-amplitude predictable-in-time 24h variation can occur in the concentration of urine, blood, and saliva of monitored chemical contaminants and their metabolites plus biomarkers indicative of adverse xenobiotic exposure. The concept of biological time-qualified (for rhythms) reference values, currently of interest to clinical laboratory pathology practice, is seemingly applicable to industrial medicine as circadian time and workshift-specific BEIs to improve surveillance of night workers, in particular. Furthermore, BM as serial assessments performed frequently both during and off work, exemplified by employee self-measurement of lung function using a small portable peak expiratory flow meter, can easily identify intolerance before induction of pathology.
Collapse
Affiliation(s)
- Michael H Smolensky
- a Department of Biomedical Engineering , Cockrell School of Engineering, The University of Texas at Austin , Austin , TX , USA
| | - Alain E Reinberg
- b Unité de Chronobiologie , Fondation A. de Rothschild , Paris , France
| | - Linda Sackett-Lundeen
- c American Association for Medical Chronobiology and Chronotherapeutics , Roseville , MN , USA
| |
Collapse
|
17
|
Ayyar VS, DuBois DC, Almon RR, Jusko WJ. Mechanistic Multi-Tissue Modeling of Glucocorticoid-Induced Leucine Zipper Regulation: Integrating Circadian Gene Expression with Receptor-Mediated Corticosteroid Pharmacodynamics. J Pharmacol Exp Ther 2017; 363:45-57. [PMID: 28729456 PMCID: PMC5596815 DOI: 10.1124/jpet.117.242990] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/11/2017] [Indexed: 12/15/2022] Open
Abstract
The glucocorticoid-induced leucine zipper (GILZ) is an important mediator of anti-inflammatory corticosteroid action. The pharmacokinetic/pharmacodynamic/pharmacogenomic effects of acute and chronic methylprednisolone (MPL) dosing on the tissue-specific dynamics of GILZ expression were examined in rats. A mechanism-based model was developed to investigate and integrate the role of MPL and circadian rhythms on the transcriptional enhancement of GILZ in multiple tissues. Animals received a single 50-mg/kg intramuscular bolus or a 7-day 0.3-mg/kg/h subcutaneous infusion of MPL and were euthanized at several time points. An additional group of rats were euthanized at several times and served as 24-hour light/dark (circadian) controls. Plasma MPL and corticosterone concentrations were measured by high-performance liquid chromatography. The expression of GILZ and glucocorticoid receptor (GR) mRNA was quantified in tissues using quantitative real-time reverse-transcription polymerase chain reaction. The pharmacokinetics of MPL were described using a two-compartment model. Mild-to-robust circadian oscillations in GR and GILZ mRNA expression were characterized in muscle, lung, and adipose tissues and modeled using Fourier harmonic functions. Acute MPL dosing caused significant down-regulation (40%-80%) in GR mRNA and enhancement of GILZ mRNA expression (500%-1080%) in the tissues examined. While GILZ returned to its rhythmic baseline following acute dosing, a new steady-state was observed upon enhancement by chronic dosing. The model captured the complex dynamics in all tissues for both dosing regimens. The model quantitatively integrates physiologic mechanisms, such as circadian processes and GR tolerance phenomena, which control the tissue-specific regulation of GILZ by corticosteroids. These studies characterize GILZ as a pharmacodynamic marker of corticosteroid actions in several tissues.
Collapse
Affiliation(s)
- Vivaswath S Ayyar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.S.A., D.C.D., R.R.A., W.J.J.), and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Debra C DuBois
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.S.A., D.C.D., R.R.A., W.J.J.), and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Richard R Almon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.S.A., D.C.D., R.R.A., W.J.J.), and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - William J Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.S.A., D.C.D., R.R.A., W.J.J.), and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
18
|
Kamisoglu K, Acevedo A, Almon RR, Coyle S, Corbett S, Dubois DC, Nguyen TT, Jusko WJ, Androulakis IP. Understanding Physiology in the Continuum: Integration of Information from Multiple - Omics Levels. Front Pharmacol 2017; 8:91. [PMID: 28289389 PMCID: PMC5327699 DOI: 10.3389/fphar.2017.00091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/13/2017] [Indexed: 01/18/2023] Open
Abstract
In this paper, we discuss approaches for integrating biological information reflecting diverse physiologic levels. In particular, we explore statistical and model-based methods for integrating transcriptomic, proteomic and metabolomics data. Our case studies reflect responses to a systemic inflammatory stimulus and in response to an anti-inflammatory treatment. Our paper serves partly as a review of existing methods and partly as a means to demonstrate, using case studies related to human endotoxemia and response to methylprednisolone (MPL) treatment, how specific questions may require specific methods, thus emphasizing the non-uniqueness of the approaches. Finally, we explore novel ways for integrating -omics information with PKPD models, toward the development of more integrated pharmacology models.
Collapse
Affiliation(s)
- Kubra Kamisoglu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo NY, USA
| | - Alison Acevedo
- Department of Biomedical Engineering, Rutgers University, Piscataway NJ, USA
| | - Richard R Almon
- Department of Biological Sciences, University at Buffalo, Buffalo NY, USA
| | - Susette Coyle
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick NJ, USA
| | - Siobhan Corbett
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick NJ, USA
| | - Debra C Dubois
- Department of Biological Sciences, University at Buffalo, Buffalo NY, USA
| | - Tung T Nguyen
- BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway NJ, USA
| | - William J Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo NY, USA
| | - Ioannis P Androulakis
- Department of Biomedical Engineering, Rutgers University, PiscatawayNJ, USA; Department of Chemical Engineering, Rutgers University, PiscatawayNJ, USA
| |
Collapse
|
19
|
Hughey JJ, Butte AJ. Differential Phasing between Circadian Clocks in the Brain and Peripheral Organs in Humans. J Biol Rhythms 2016; 31:588-597. [PMID: 27702781 PMCID: PMC5105327 DOI: 10.1177/0748730416668049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The daily timing of mammalian physiology is coordinated by circadian clocks throughout the body. Although measurements of clock gene expression indicate that these clocks in mice are normally in phase with each other, the situation in humans remains unclear. We used publicly available data from five studies, comprising over 1000 samples, to compare the phasing of circadian gene expression in human brain and human blood. Surprisingly, after controlling for age, clock gene expression in brain was phase-delayed by ~8.5 h relative to that of blood. We then examined clock gene expression in two additional human organs and in organs from nine other mammalian species, as well as in the suprachiasmatic nucleus (SCN). In most tissues outside the SCN, the expression of clock gene orthologs showed a phase difference of ~12 h between diurnal and nocturnal species. The exception to this pattern was human brain, whose phasing resembled that of the SCN. Our results highlight the value of a multi-tissue, multi-species meta-analysis, and have implications for our understanding of the human circadian system.
Collapse
Affiliation(s)
- Jacob J Hughey
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Atul J Butte
- Institute for Computational Health Sciences, University of California, San Francisco, California
| |
Collapse
|
20
|
Hartmanshenn C, Scherholz M, Androulakis IP. Physiologically-based pharmacokinetic models: approaches for enabling personalized medicine. J Pharmacokinet Pharmacodyn 2016; 43:481-504. [PMID: 27647273 DOI: 10.1007/s10928-016-9492-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/06/2016] [Indexed: 12/17/2022]
Abstract
Personalized medicine strives to deliver the 'right drug at the right dose' by considering inter-person variability, one of the causes for therapeutic failure in specialized populations of patients. Physiologically-based pharmacokinetic (PBPK) modeling is a key tool in the advancement of personalized medicine to evaluate complex clinical scenarios, making use of physiological information as well as physicochemical data to simulate various physiological states to predict the distribution of pharmacokinetic responses. The increased dependency on PBPK models to address regulatory questions is aligned with the ability of PBPK models to minimize ethical and technical difficulties associated with pharmacokinetic and toxicology experiments for special patient populations. Subpopulation modeling can be achieved through an iterative and integrative approach using an adopt, adapt, develop, assess, amend, and deliver methodology. PBPK modeling has two valuable applications in personalized medicine: (1) determining the importance of certain subpopulations within a distribution of pharmacokinetic responses for a given drug formulation and (2) establishing the formulation design space needed to attain a targeted drug plasma concentration profile. This review article focuses on model development for physiological differences associated with sex (male vs. female), age (pediatric vs. young adults vs. elderly), disease state (healthy vs. unhealthy), and temporal variation (influence of biological rhythms), connecting them to drug product formulation development within the quality by design framework. Although PBPK modeling has come a long way, there is still a lengthy road before it can be fully accepted by pharmacologists, clinicians, and the broader industry.
Collapse
Affiliation(s)
- Clara Hartmanshenn
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ, 08854, USA
| | - Megerle Scherholz
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ, 08854, USA
| | - Ioannis P Androulakis
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ, 08854, USA. .,Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
21
|
Liu X, Hu C, Bao M, Li J, Liu X, Tan X, Zhou Y, Chen Y, Wu S, Chen S, Zhang R, Jiang F, Jia W, Wang X, Yang X, Cai J. Genome Wide Association Study Identifies L3MBTL4 as a Novel Susceptibility Gene for Hypertension. Sci Rep 2016; 6:30811. [PMID: 27480026 PMCID: PMC4969609 DOI: 10.1038/srep30811] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/08/2016] [Indexed: 02/05/2023] Open
Abstract
Hypertension is a major global health burden and a leading risk factor for cardiovascular diseases. Although its heritability has been documented previously, contributing loci identified to date account for only a small fraction of blood pressure (BP) variation, which strongly suggests the existence of undiscovered variants. To identify novel variants, we conducted a three staged genetic study in 21,990 hypertensive cases and normotensive controls. Four single nucleotide polymorphisms (SNPs) at three new genes (L3MBTL4 rs403814, Pmeta = 6.128 × 10(-9); LOC729251, and TCEANC) and seven SNPs at five previously reported genes were identified as being significantly associated with hypertension. Through functional analysis, we found that L3MBTL4 is predominantly expressed in vascular smooth muscle cells and up-regulated in spontaneously hypertensive rats. Rats with ubiquitous over-expression of L3MBTL4 exhibited significantly elevated BP, increased thickness of the vascular media layer and cardiac hypertrophy. Mechanistically, L3MBTL4 over-expression could lead to down-regulation of latent transforming growth factor-β binding protein 1 (LTBP1), and phosphorylation activation of the mitogen-activated protein kinases (MAPK) signaling pathway, which is known to trigger the pathological progression of vascular remodeling and BP elevation. These findings pinpointed L3MBTL4 as a critical contributor to the development and progression of hypertension and uncovers a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Xin Liu
- National Research Institute for Family Planning, Beijing, China
- Beijing Hypertension League Institute, Beijing, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Institute for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus, Shanghai, China
| | - Minghui Bao
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jing Li
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypertension, Beijing, China
| | - Xiaoyan Liu
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xuerui Tan
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yong Zhou
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yequn Chen
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shouling Wu
- Department of Cardiology, Kailuan General Hospital, Hebei Union University, Tangshan, Hebei, China
| | - Shuohua Chen
- Department of Cardiology, Kailuan General Hospital, Hebei Union University, Tangshan, Hebei, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Feng Jiang
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Weiping Jia
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xingyu Wang
- National Research Institute for Family Planning, Beijing, China
- Beijing Hypertension League Institute, Beijing, China
| | - Xinchun Yang
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jun Cai
- Department of Hypertension, Fuwai Hospital, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
- National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Rao R, Yang Q, Orman MA, Berthiaume F, Ierapetritou MG, Androulakis IP. Burn trauma disrupts circadian rhythms in rat liver. INTERNATIONAL JOURNAL OF BURNS AND TRAUMA 2016; 6:12-25. [PMID: 27335693 PMCID: PMC4913229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 04/29/2016] [Indexed: 06/06/2023]
Abstract
Circadian rhythms play an important role in maintaining homeostasis and solid organ function. The purpose of this study is to assess the implications of burn injury in rats on the underlying circadian patterns of gene expression in liver. Circadian-regulated genes and burn-induced genes were identified by applying consensus clustering methodology to temporally differentially expressed probe sets obtained from burn and sham-burn data sets. Of the liver specific genes which we hypothesize that exhibit circadian rhythmicity, 88% are not differentially expressed following the burn injury. Specifically, the vast majority of the circadian regulated-genes representing central carbon and nitrogen metabolism are "up-regulated" after the burn injury, indicating the onset of hypermetabolism. In addition, cell-cell junction and membrane structure related genes showing rhythmic behavior in the control group were not differentially expressed across time in the burn group, which could be an indication of hepatic damage due to the burn. Finally, the suppression of the immune function related genes is observed in the postburn phase, implying the severe "immunosuppression". Our results demonstrated that the short term response (24-h post injury) manifests a loss of circadian variability possibly compromising the host in terms of subsequent challenges.
Collapse
Affiliation(s)
- Rohit Rao
- Chemical and Biochemical Engineering Department, Rutgers, The State University of New JerseyPiscataway, NJ 08854, USA
| | - Qian Yang
- Chemical and Biochemical Engineering Department, Rutgers, The State University of New JerseyPiscataway, NJ 08854, USA
| | - Mehmet A Orman
- Chemical and Biochemical Engineering Department, Rutgers, The State University of New JerseyPiscataway, NJ 08854, USA
| | - Francois Berthiaume
- Biomedical Engineering Department, Rutgers, The State University of New JerseyPiscataway, NJ 08854, USA
| | - Marianthi G Ierapetritou
- Chemical and Biochemical Engineering Department, Rutgers, The State University of New JerseyPiscataway, NJ 08854, USA
| | - Ioannis P Androulakis
- Chemical and Biochemical Engineering Department, Rutgers, The State University of New JerseyPiscataway, NJ 08854, USA
- Biomedical Engineering Department, Rutgers, The State University of New JerseyPiscataway, NJ 08854, USA
| |
Collapse
|
23
|
A likelihood-free filtering method via approximate Bayesian computation in evaluating biological simulation models. Comput Stat Data Anal 2016. [DOI: 10.1016/j.csda.2015.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Dridi I, Ben-Cherif W, Aouam K, Haouas Z, Ben-Attia M, Reinberg A, Boughattas NA. Circadian variation in hepatic toxicity of the immunosuppressive agent “Mycophenolate Mofetil” in rats. BIOL RHYTHM RES 2015. [DOI: 10.1080/09291016.2015.1052648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Ayyar VS, Almon RR, Jusko WJ, DuBois DC. Quantitative tissue-specific dynamics of in vivo GILZ mRNA expression and regulation by endogenous and exogenous glucocorticoids. Physiol Rep 2015; 3:3/6/e12382. [PMID: 26056061 PMCID: PMC4510616 DOI: 10.14814/phy2.12382] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids (GC) are steroid hormones, which regulate metabolism and immune function. Synthetic GCs, or corticosteroids (CS), have appreciable clinical utility via their ability to suppress inflammation in immune-mediated diseases like asthma and rheumatoid arthritis. Recent work has provided insight to novel GC-induced genes that mediate their anti-inflammatory effects, including glucocorticoid-induced leucine zipper (GILZ). Since GILZ comprises an important part of GC action, its regulation by both drug and hormone will influence CS therapy. In addition, GILZ expression is often employed as a biomarker of GC action, which requires judicious selection of sampling time. Understanding the in vivo regulation of GILZ mRNA expression over time will provide insight into both the physiological regulation of GILZ by endogenous GC and the dynamics of its enhancement by CS. A highly quantitative qRT-PCR assay was developed for measuring GILZ mRNA expression in tissues obtained from normal and CS-treated rats. This assay was applied to measure GILZ mRNA expression in eight tissues; to determine its endogenous regulation over time; and to characterize its dynamics in adipose tissue, muscle, and liver following treatment with CS. We demonstrate that GILZ mRNA is expressed in several tissues. GILZ mRNA expression in adipose tissue displayed a robust circadian rhythm that was entrained with the circadian oscillation of endogenous corticosterone; and is strongly enhanced by acute and chronic dosing. Single dosing also enhanced GILZ mRNA in muscle and liver, but the dynamics varied. In conclusion, GILZ is widely expressed in the rat and highly regulated by endogenous and exogenous GCs.
Collapse
Affiliation(s)
- Vivaswath S Ayyar
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Richard R Almon
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York
| | - William J Jusko
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York
| | - Debra C DuBois
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
26
|
Nguyen TT, Mattick JSA, Yang Q, Orman MA, Ierapetritou MG, Berthiaume F, Androulakis IP. Bioinformatics analysis of transcriptional regulation of circadian genes in rat liver. BMC Bioinformatics 2014; 15:83. [PMID: 24666587 PMCID: PMC3987685 DOI: 10.1186/1471-2105-15-83] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 03/06/2014] [Indexed: 02/01/2023] Open
Abstract
Background The circadian clock is a critical regulator of biological functions controlling behavioral, physiological and biochemical processes. Because the liver is the primary regulator of metabolites within the mammalian body and the disruption of circadian rhythms in liver is associated with severe illness, circadian regulators would play a strong role in maintaining liver function. However, the regulatory structure that governs circadian dynamics within the liver at a transcriptional level remains unknown. To explore this aspect, we analyzed hepatic transcriptional dynamics in Sprague-Dawley rats over a period of 24 hours to assess the genome-wide responses. Results Using an unsupervised consensus clustering method, we identified four major gene expression clusters, corresponding to central carbon and nitrogen metabolism, membrane integrity, immune function, and DNA repair, all of which have dynamics which suggest regulation in a circadian manner. With the assumption that transcription factors (TFs) that are differentially expressed and contain CLOCK:BMAL1 binding sites on their proximal promoters are likely to be clock-controlled TFs, we were able to use promoter analysis to putatively identify additional clock-controlled TFs besides PARF and RORA families. These TFs are both functionally and temporally related to the clusters they regulate. Furthermore, we also identified significant sets of clock TFs that are potentially transcriptional regulators of gene clusters. Conclusions All together, we were able to propose a regulatory structure for circadian regulation which represents alternative paths for circadian control of different functions within the liver. Our prediction has been affirmed by functional and temporal analyses which are able to extend for similar studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ioannis P Androulakis
- Chemical and Biochemical Engineering Department, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
27
|
Shavlakadze T, Anwari T, Soffe Z, Cozens G, Mark PJ, Gondro C, Grounds MD. Impact of fasting on the rhythmic expression of myogenic and metabolic factors in skeletal muscle of adult mice. Am J Physiol Cell Physiol 2013; 305:C26-35. [PMID: 23596176 DOI: 10.1152/ajpcell.00027.2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Circadian rhythms and metabolism are tightly integrated, and rhythmic expression of metabolic factors is common in homeostatic processes. We measured the temporal changes in the expression of myogenic regulatory factors and expression and activity level of molecules involved in protein metabolism in skeletal muscles and livers in mice and examined the impact of fasting. Tissues were collected over 24 h (at zeitgeber times ZT1, ZT5, ZT9, ZT13, ZT17, ZT21, and ZT1 the following day) from adult male C57Bl/6J mice that had been either freely fed or fasted for 24 h. In skeletal muscle, there was a robust rise in the mRNA expression of the myogenic regulatory factors MyoD and myogenin during dark hours which was strongly suppressed by fasting. Circadian pattern was observed for mRNA of MuRF1, Akt1, and ribosomal protein S6 in muscles in fed and fasted mice and for Fbxo32 in fed mice. Activity (phosphorylation) levels of Akt(Ser473) displayed temporal regulation in fasted (but not fed) mice and were high at ZT9. Fasting caused significant reductions in phosphorylation for both Akt and S6 in muscles, indicative of inactivation. Hepatic phosphorylated Akt(Ser473) and S6(Ser235/236) proteins did not exhibit daily rhythms. Fasting significantly reduced hepatic Akt(473) phosphorylation compared with fed levels, although (unlike in muscle) it did not affect S6(Ser235/236) phosphorylation. This in vivo circadian study addresses for the first time the signaling activities of key molecules related to protein turnover and their possible cross-regulation of expression of genes related to protein degradation.
Collapse
Affiliation(s)
- T Shavlakadze
- School of Anatomy, Physiology and Human Biology, the University of Western Australia, Crawley, Western Australia, Australia.
| | | | | | | | | | | | | |
Collapse
|
28
|
Joseph P, Umbright C, Sellamuthu R. Blood transcriptomics: applications in toxicology. J Appl Toxicol 2013; 33:1193-202. [PMID: 23456664 DOI: 10.1002/jat.2861] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 12/17/2012] [Accepted: 12/21/2012] [Indexed: 02/02/2023]
Abstract
The number of new chemicals that are being synthesized each year has been steadily increasing. While chemicals are of immense benefit to mankind, many of them have a significant negative impact, primarily owing to their inherent chemistry and toxicity, on the environment as well as human health. In addition to chemical exposures, human exposures to numerous non-chemical toxic agents take place in the environment and workplace. Given that human exposure to toxic agents is often unavoidable and many of these agents are found to have detrimental human health effects, it is important to develop strategies to prevent the adverse health effects associated with toxic exposures. Early detection of adverse health effects as well as a clear understanding of the mechanisms, especially at the molecular level, underlying these effects are key elements in preventing the adverse health effects associated with human exposure to toxic agents. Recent developments in genomics, especially transcriptomics, have prompted investigations into this important area of toxicology. Previous studies conducted in our laboratory and elsewhere have demonstrated the potential application of blood gene expression profiling as a sensitive, mechanistically relevant and practical surrogate approach for the early detection of adverse health effects associated with exposure to toxic agents. The advantages of blood gene expression profiling as a surrogate approach to detect early target organ toxicity and the molecular mechanisms underlying the toxicity are illustrated and discussed using recent studies on hepatotoxicity and pulmonary toxicity. Furthermore, the important challenges this emerging field in toxicology faces are presented in this review article.
Collapse
Affiliation(s)
- Pius Joseph
- Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | | | | |
Collapse
|
29
|
Effect of fasting on the metabolic response of liver to experimental burn injury. PLoS One 2013; 8:e54825. [PMID: 23393558 PMCID: PMC3564862 DOI: 10.1371/journal.pone.0054825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/17/2012] [Indexed: 12/31/2022] Open
Abstract
Liver metabolism is altered after systemic injuries such as burns and trauma. These changes have been elucidated in rat models of experimental burn injury where the liver was isolated and perfused ex vivo. Because these studies were performed in fasted animals to deplete glycogen stores, thus simplifying quantification of gluconeogenesis, these observations reflect the combined impact of fasting and injury on liver metabolism. Herein we asked whether the metabolic response to experimental burn injury is different in fed vs. fasted animals. Rats were subjected to a cutaneous burn covering 20% of the total body surface area, or to similar procedures without administering the burn, hence a sham-burn. Half of the animals in the burn and sham-burn groups were fasted starting on postburn day 3, and the others allowed to continue ad libitum. On postburn day 4, livers were isolated and perfused for 1 hour in physiological medium supplemented with 10% hematocrit red blood cells. The uptake/release rates of major carbon and nitrogen sources, oxygen, and carbon dioxide were measured during the perfusion and the data fed into a mass balance model to estimate intracellular fluxes. The data show that in fed animals, injury increased glucose output mainly from glycogen breakdown and minimally impacted amino acid metabolism. In fasted animals, injury did not increase glucose output but increased urea production and the uptake of several amino acids, namely glutamine, arginine, glycine, and methionine. Furthermore, sham-burn animals responded to fasting by triggering gluconeogenesis from lactate; however, in burned animals the preferred gluconeogenic substrate was amino acids. Taken together, these results suggest that the fed state prevents the burn-induced increase in hepatic amino acid utilization for gluconeogenesis. The role of glycogen stores and means to increase and/or maintain internal sources of glucose to prevent increased hepatic amino acid utilization warrant further studies.
Collapse
|
30
|
DuBois DC, Sukumaran S, Jusko WJ, Almon RR. Evidence for a glucocorticoid receptor beta splice variant in the rat and its physiological regulation in liver. Steroids 2013; 78:312-20. [PMID: 23257260 PMCID: PMC3552070 DOI: 10.1016/j.steroids.2012.11.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 10/22/2012] [Accepted: 11/22/2012] [Indexed: 12/23/2022]
Abstract
Glucocorticoids are important regulators of metabolism and immune function. Synthetic glucocorticoids are extensively used for immunosuppression/anti-inflammatory therapy. Since the glucocorticoid receptor (GR) is central to most hormone effects; its in vivo regulation will influence hormone/drug action. An alternative splice variant, GRβ, is present in humans and may function as a dominant negative regulator of GR transcriptional activity. Recently, a similar splice variant was reported in mouse, although the mechanism of alternative splicing differs from that in humans. We present evidence that a splice variant of GR with an alternative C-terminus also occurs in the rat by a mechanism of intron inclusion. A highly quantitative qRT-PCR assay for the simultaneous measurement of both splice variants in a single sample was developed in order to accurately measure their regulation. We used this assay to assess the tissue specific expression of both mRNAs, and demonstrate that GRα is predominant in all tissues. In addition, the regulation of both GRα and GRβ mRNA by various physiological factors in rat liver was assessed. GRα showed a robust circadian rhythm, which was entrained with the circadian oscillation of the endogenous hormone. Time series experiments showed that both corticosteroids and LPS but not insulin dosing resulted in the transient down-regulation of GRα mRNA. LPS treatment also resulted in down-regulation of GRβ expression. A modest up-regulation in GRβ expression was observed only in animals having chronically elevated plasma insulin concentrations. However the expression of GRβ was significantly lower than that of GRα in all cases.
Collapse
Affiliation(s)
- Debra C DuBois
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA.
| | | | | | | |
Collapse
|
31
|
Lord CC, Thomas G, Brown JM. Mammalian alpha beta hydrolase domain (ABHD) proteins: Lipid metabolizing enzymes at the interface of cell signaling and energy metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:792-802. [PMID: 23328280 DOI: 10.1016/j.bbalip.2013.01.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/07/2012] [Accepted: 01/02/2013] [Indexed: 11/16/2022]
Abstract
Dysregulation of lipid metabolism underlies many chronic diseases such as obesity, diabetes, cardiovascular disease, and cancer. Therefore, understanding enzymatic mechanisms controlling lipid synthesis and degradation is imperative for successful drug discovery for these human diseases. Genes encoding α/β hydrolase fold domain (ABHD) proteins are present in virtually all reported genomes, and conserved structural motifs shared by these proteins predict common roles in lipid synthesis and degradation. However, the physiological substrates and products for these lipid metabolizing enzymes and their broader role in metabolic pathways remain largely uncharacterized. Recently, mutations in several members of the ABHD protein family have been implicated in inherited inborn errors of lipid metabolism. Furthermore, studies in cell and animal models have revealed important roles for ABHD proteins in lipid metabolism, lipid signal transduction, and metabolic disease. The purpose of this review is to provide a comprehensive summary surrounding the current state of knowledge regarding mammalian ABHD protein family members. In particular, we will discuss how ABHD proteins are ideally suited to act at the interface of lipid metabolism and signal transduction. Although, the current state of knowledge regarding mammalian ABHD proteins is still in its infancy, this review highlights the potential for the ABHD enzymes as being attractive targets for novel therapies targeting metabolic disease.
Collapse
Affiliation(s)
- Caleb C Lord
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Gwynneth Thomas
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - J Mark Brown
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
32
|
Arul D, Subramanian P. Attenuation of hepatocellular carcinoma by naringenin is associated with modulation of circadian rhythms of redox status in rats. BIOL RHYTHM RES 2012. [DOI: 10.1080/09291016.2011.631764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
33
|
Wang SQ, Li HX. Bayesian inference based modelling for gene transcriptional dynamics by integrating multiple source of knowledge. BMC SYSTEMS BIOLOGY 2012; 6 Suppl 1:S3. [PMID: 23046631 PMCID: PMC3403574 DOI: 10.1186/1752-0509-6-s1-s3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND A key challenge in the post genome era is to identify genome-wide transcriptional regulatory networks, which specify the interactions between transcription factors and their target genes. Numerous methods have been developed for reconstructing gene regulatory networks from expression data. However, most of them are based on coarse grained qualitative models, and cannot provide a quantitative view of regulatory systems. RESULTS A binding affinity based regulatory model is proposed to quantify the transcriptional regulatory network. Multiple quantities, including binding affinity and the activity level of transcription factor (TF) are incorporated into a general learning model. The sequence features of the promoter and the possible occupancy of nucleosomes are exploited to estimate the binding probability of regulators. Comparing with the previous models that only employ microarray data, the proposed model can bridge the gap between the relative background frequency of the observed nucleotide and the gene's transcription rate. CONCLUSIONS We testify the proposed approach on two real-world microarray datasets. Experimental results show that the proposed model can effectively identify the parameters and the activity level of TF. Moreover, the kinetic parameters introduced in the proposed model can reveal more biological sense than previous models can do.
Collapse
Affiliation(s)
- Shu-Qiang Wang
- Department of Systems Engineering and Engineering Management, City University of Hong Kong, Hong Kong
| | | |
Collapse
|
34
|
Corton JC, Bushel PR, Fostel J, O'Lone RB. Sources of variance in baseline gene expression in the rodent liver. Mutat Res 2012; 746:104-12. [PMID: 22230429 DOI: 10.1016/j.mrgentox.2011.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 12/13/2011] [Indexed: 12/18/2022]
Abstract
The use of gene expression profiling in both clinical and laboratory settings would be enhanced by better characterization of variation due to individual, environmental, and technical factors. Analysis of microarray data from untreated or vehicle-treated animals within the control arm of toxicogenomics studies has yielded useful information on baseline fluctuations in liver gene expression in the rodent. Here, studies which highlight contributions of different factors to gene expression variability in the rodent liver are discussed including a large meta-analysis of rat liver, which identified genes that vary in control animals in the absence of chemical treatment. Genes and their pathways that are the most and least variable were identified in a number of these studies. Life stage, fasting, sex, diet, circadian rhythm and liver lobe source can profoundly influence gene expression in the liver. Recognition of biological and technical factors that contribute to variability of background gene expression can help the investigator in the design of an experiment that maximizes sensitivity and reduces the influence of confounders that may lead to misinterpretation of genomic changes. The factors that contribute to variability in liver gene expression in rodents are likely analogous to those contributing to human interindividual variability in drug response and chemical toxicity. Identification of batteries of genes that are altered in a variety of background conditions could be used to predict responses to drugs and chemicals in appropriate models of the human liver.
Collapse
Affiliation(s)
- J Christopher Corton
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Lab, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | | | | | |
Collapse
|
35
|
Yang Q, Orman MA, Berthiaume F, Ierapetritou MG, Androulakis IP. Dynamics of short-term gene expression profiling in liver following thermal injury. J Surg Res 2011; 176:549-58. [PMID: 22099593 DOI: 10.1016/j.jss.2011.09.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/23/2011] [Accepted: 09/27/2011] [Indexed: 02/01/2023]
Abstract
BACKGROUND Severe trauma, including burns, triggers a systemic response that significantly impacts on the liver, which plays a key role in the metabolic and immune responses aimed at restoring homeostasis. While many of these changes are likely regulated at the gene expression level, there is a need to better understand the dynamics and expression patterns of burn injury-induced genes in order to identify potential regulatory targets in the liver. Herein we characterized the response within the first 24 h in a standard animal model of burn injury using a time series of microarray gene expression data. METHODS Rats were subjected to a full thickness dorsal scald burn injury covering 20% of their total body surface area while under general anesthesia. Animals were saline resuscitated and sacrificed at defined time points (0, 2, 4, 8, 16, and 24 h). Liver tissues were explanted and analyzed for their gene expression profiles using microarray technology. Sham controls consisted of animals handled similarly but not burned. After identifying differentially expressed probe sets between sham and burn conditions over time, the concatenated data sets corresponding to these differentially expressed probe sets in burn and sham groups were combined and analyzed using a "consensus clustering" approach. RESULTS The clustering method of expression data identified 621 burn-responsive probe sets in four different co-expressed clusters. Functional characterization revealed that these four clusters are mainly associated with pro-inflammatory response, anti-inflammatory response, lipid biosynthesis, and insulin-regulated metabolism. Cluster 1 pro-inflammatory response is rapidly up-regulated (within the first 2 h) following burn injury, while Cluster 2 anti-inflammatory response is activated later on (around 8 h post-burn). Cluster 3 lipid biosynthesis is down-regulated rapidly following burn, possibly indicating a shift in the utilization of energy sources to produce acute phase proteins, which serve the anti-inflammatory response. Cluster 4 insulin-regulated metabolism was down-regulated late in the observation window (around 16 h post-burn), which suggests a potential mechanism to explain the onset of hypermetabolism, a delayed but well-known response that is characteristic of severe burns and trauma with potential adverse outcome. CONCLUSIONS Simultaneous analysis and comparison of gene expression profiles for both burn and sham control groups provided a more accurate estimation of the activation time, expression patterns, and characteristics of a certain burn-induced response based on which the cause-effect relationships among responses were revealed.
Collapse
Affiliation(s)
- Qian Yang
- Chemical and Biochemical Engineering Department, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
36
|
Cabras S, Castellanos ME, Biino G, Persico I, Sassu A, Casula L, Del Giacco S, Bertolino F, Pirastu M, Pirastu N. A strategy analysis for genetic association studies with known inbreeding. BMC Genet 2011; 12:63. [PMID: 21767363 PMCID: PMC3155486 DOI: 10.1186/1471-2156-12-63] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 07/18/2011] [Indexed: 11/10/2022] Open
Abstract
Background Association studies consist in identifying the genetic variants which are related to a specific disease through the use of statistical multiple hypothesis testing or segregation analysis in pedigrees. This type of studies has been very successful in the case of Mendelian monogenic disorders while it has been less successful in identifying genetic variants related to complex diseases where the insurgence depends on the interactions between different genes and the environment. The current technology allows to genotype more than a million of markers and this number has been rapidly increasing in the last years with the imputation based on templates sets and whole genome sequencing. This type of data introduces a great amount of noise in the statistical analysis and usually requires a great number of samples. Current methods seldom take into account gene-gene and gene-environment interactions which are fundamental especially in complex diseases. In this paper we propose to use a non-parametric additive model to detect the genetic variants related to diseases which accounts for interactions of unknown order. Although this is not new to the current literature, we show that in an isolated population, where the most related subjects share also most of their genetic code, the use of additive models may be improved if the available genealogical tree is taken into account. Specifically, we form a sample of cases and controls with the highest inbreeding by means of the Hungarian method, and estimate the set of genes/environmental variables, associated with the disease, by means of Random Forest. Results We have evidence, from statistical theory, simulations and two applications, that we build a suitable procedure to eliminate stratification between cases and controls and that it also has enough precision in identifying genetic variants responsible for a disease. This procedure has been successfully used for the beta-thalassemia, which is a well known Mendelian disease, and also to the common asthma where we have identified candidate genes that underlie to the susceptibility of the asthma. Some of such candidate genes have been also found related to common asthma in the current literature. Conclusions The data analysis approach, based on selecting the most related cases and controls along with the Random Forest model, is a powerful tool for detecting genetic variants associated to a disease in isolated populations. Moreover, this method provides also a prediction model that has accuracy in estimating the unknown disease status and that can be generally used to build kit tests for a wide class of Mendelian diseases.
Collapse
Affiliation(s)
- Stefano Cabras
- Department of Mathematics and Informatics, University of Cagliari, Cagliari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Begriche K, Massart J, Robin MA, Borgne-Sanchez A, Fromenty B. Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver. J Hepatol 2011; 54:773-94. [PMID: 21145849 DOI: 10.1016/j.jhep.2010.11.006] [Citation(s) in RCA: 383] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/05/2010] [Accepted: 11/09/2010] [Indexed: 02/08/2023]
Abstract
Numerous investigations have shown that mitochondrial dysfunction is a major mechanism of drug-induced liver injury, which involves the parent drug or a reactive metabolite generated through cytochromes P450. Depending of their nature and their severity, the mitochondrial alterations are able to induce mild to fulminant hepatic cytolysis and steatosis (lipid accumulation), which can have different clinical and pathological features. Microvesicular steatosis, a potentially severe liver lesion usually associated with liver failure and profound hypoglycemia, is due to a major inhibition of mitochondrial fatty acid oxidation (FAO). Macrovacuolar steatosis, a relatively benign liver lesion in the short term, can be induced not only by a moderate reduction of mitochondrial FAO but also by an increased hepatic de novo lipid synthesis and a decreased secretion of VLDL-associated triglycerides. Moreover, recent investigations suggest that some drugs could favor lipid deposition in the liver through primary alterations of white adipose tissue (WAT) homeostasis. If the treatment is not interrupted, steatosis can evolve toward steatohepatitis, which is characterized not only by lipid accumulation but also by necroinflammation and fibrosis. Although the mechanisms involved in this aggravation are not fully characterized, it appears that overproduction of reactive oxygen species by the damaged mitochondria could play a salient role. Numerous factors could favor drug-induced mitochondrial and metabolic toxicity, such as the structure of the parent molecule, genetic predispositions (in particular those involving mitochondrial enzymes), alcohol intoxication, hepatitis virus C infection, and obesity. In obese and diabetic patients, some drugs may induce acute liver injury more frequently while others may worsen the pre-existent steatosis (or steatohepatitis).
Collapse
Affiliation(s)
- Karima Begriche
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | | | | | |
Collapse
|
38
|
Sukumaran S, Jusko WJ, Dubois DC, Almon RR. Light-dark oscillations in the lung transcriptome: implications for lung homeostasis, repair, metabolism, disease, and drug action. J Appl Physiol (1985) 2011; 110:1732-47. [PMID: 21436464 DOI: 10.1152/japplphysiol.00079.2011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diurnal-nocturnal, or circadian-like, rhythms are 24-h variations in biological processes, evolved for the efficient functioning of living organisms. Such oscillations and their regulation in many peripheral tissues are still unclear. In this study, we used Affymetrix gene chips in a rich time-series experiment involving 54 animals killed at 18 time points within the 24-h cycle to examine light-dark cycle patterns of gene expression in rat lungs. Data mining identified 646 genes (represented by 1,006 probe sets) showing robust oscillations in expression in lung that were parsed into 8 distinct temporal clusters. Surprisingly, more than two-thirds of the probe sets showing cyclic expression peaked during the animal's light/inactive period. Six core clock genes and nine clock-related genes showed rhythmic oscillations in their expression in lung. Many of the genes that peaked during the inactive period included genes related to extracellular matrix, cytoskeleton, and protein processing and trafficking, which appear to be mainly involved in the repair and remodeling of the organ. Genes coding for growth factor ligands and their receptors, which play important roles in maintaining normal lung function, also showed rhythmic expression. In addition, genes involved in the metabolism and transport of endogenous compounds, xenobiotics, and therapeutic drugs, along with genes that are biomarkers or potential therapeutic targets for many lung diseases, also exhibited 24-h cyclic oscillations, suggesting an important role for such rhythms in regulating various aspects of the physiology and pathophysiology of lung.
Collapse
Affiliation(s)
- Siddharth Sukumaran
- Dept. of Biological Sciences, 107 Hochstetter Hall, State Univ. of New York at Buffalo, Buffalo, NY 14260, USA
| | | | | | | |
Collapse
|
39
|
Xue B, Sukumaran S, Nie J, Jusko WJ, DuBois DC, Almon RR. Adipose tissue deficiency and chronic inflammation in diabetic Goto-Kakizaki rats. PLoS One 2011; 6:e17386. [PMID: 21364767 PMCID: PMC3045458 DOI: 10.1371/journal.pone.0017386] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 02/02/2011] [Indexed: 12/31/2022] Open
Abstract
Type 2 diabetes (T2DM) is a heterogeneous group of diseases that is progressive and involves multiple tissues. Goto-Kakizaki (GK) rats are a polygenic model with elevated blood glucose, peripheral insulin resistance, a non-obese phenotype, and exhibit many degenerative changes observed in human T2DM. As part of a systems analysis of disease progression in this animal model, this study characterized the contribution of adipose tissue to pathophysiology of the disease. We sacrificed subgroups of GK rats and appropriate controls at 4, 8, 12, 16 and 20 weeks of age and carried out a gene array analysis of white adipose tissue. We expanded our physiological analysis of the animals that accompanied our initial gene array study on the livers from these animals. The expanded analysis included adipose tissue weights, HbA1c, additional hormonal profiles, lipid profiles, differential blood cell counts, and food consumption. HbA1c progressively increased in the GK animals. Altered corticosterone, leptin, and adiponectin profiles were also documented in GK animals. Gene array analysis identified 412 genes that were differentially expressed in adipose tissue of GKs relative to controls. The GK animals exhibited an age-specific failure to accumulate body fat despite their relatively higher calorie consumption which was well supported by the altered expression of genes involved in adipogenesis and lipogenesis in the white adipose tissue of these animals, including Fasn, Acly, Kklf9, and Stat3. Systemic inflammation was reflected by chronically elevated white blood cell counts. Furthermore, chronic inflammation in adipose tissue was evident from the differential expression of genes involved in inflammatory responses and activation of natural immunity, including two interferon regulated genes, Ifit and Iipg, as well as MHC class II genes. This study demonstrates an age specific failure to accumulate adipose tissue in the GK rat and the presence of chronic inflammation in adipose tissue from these animals.
Collapse
Affiliation(s)
- Bai Xue
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Siddharth Sukumaran
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Jing Nie
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - William J. Jusko
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York, United States of America
| | - Debra C. DuBois
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Richard R. Almon
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
40
|
Effect of agomelatine and its interaction with the daily corticosterone rhythm on progenitor cell proliferation in the dentate gyrus of the adult rat. Neuropharmacology 2010; 59:375-9. [DOI: 10.1016/j.neuropharm.2010.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 05/11/2010] [Accepted: 05/19/2010] [Indexed: 11/22/2022]
|
41
|
Ovacik MA, Sukumaran S, Almon RR, DuBois DC, Jusko WJ, Androulakis IP. Circadian signatures in rat liver: from gene expression to pathways. BMC Bioinformatics 2010; 11:540. [PMID: 21040584 PMCID: PMC2990769 DOI: 10.1186/1471-2105-11-540] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 11/01/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Circadian rhythms are 24 hour oscillations in many behavioural, physiological, cellular and molecular processes that are controlled by an endogenous clock which is entrained to environmental factors including light, food and stress. Transcriptional analyses of circadian patterns demonstrate that genes showing circadian rhythms are part of a wide variety of biological pathways.Pathway activity method can identify the significant pattern of the gene expression levels within a pathway. In this method, the overall gene expression levels are translated to a reduced form, pathway activity levels, via singular value decomposition (SVD). A given pathway represented by pathway activity levels can then be as analyzed using the same approaches used for analyzing gene expression levels. We propose to use pathway activity method across time to identify underlying circadian pattern of pathways. RESULTS We used synthetic data to demonstrate that pathway activity analysis can evaluate the underlying circadian pattern within a pathway even when circadian patterns cannot be captured by the individual gene expression levels. In addition, we illustrated that pathway activity formulation should be coupled with a significance analysis to distinguish biologically significant information from random deviations. Next, we performed pathway activity level analysis on a rich time series of transcriptional profiling in rat liver. The over-represented five specific patterns of pathway activity levels, which cannot be explained by random event, exhibited circadian rhythms. The identification of the circadian signatures at the pathway level identified 78 pathways related to energy metabolism, amino acid metabolism, lipid metabolism and DNA replication and protein synthesis, which are biologically relevant in rat liver. Further, we observed tight coordination between cholesterol biosynthesis and bile acid biosynthesis as well as between folate biosynthesis, one carbon pool by folate and purine-pyrimidine metabolism. These coupled pathways are parts of a sequential reaction series where the product of one pathway is the substrate of another pathway. CONCLUSIONS Rather than assessing the importance of a single gene beforehand and map these genes onto pathways, we instead examined the orchestrated change within a pathway. Pathway activity level analysis could reveal the underlying circadian dynamics in the microarray data with an unsupervised approach and biologically relevant results were obtained.
Collapse
Affiliation(s)
- Meric A Ovacik
- Chemical and Biochemical Engineering Department, Rutgers University Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
42
|
Scheff JD, Almon RR, DuBois DC, Jusko WJ, Androulakis IP. A new symbolic representation for the identification of informative genes in replicated microarray experiments. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:239-48. [PMID: 20455749 DOI: 10.1089/omi.2010.0005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Microarray experiments generate massive amounts of data, necessitating innovative algorithms to distinguish biologically relevant information from noise. Because the variability of gene expression data is an important factor in determining which genes are differentially expressed, analysis techniques that take into account repeated measurements are critically important. Additionally, the selection of informative genes is typically done by searching for the individual genes that vary the most across conditions. Yet because genes tend to act in groups rather than individually, it may be possible to glean more information from the data by searching specifically for concerted behavior in a set of genes. Applying a symbolic transformation to the gene expression data allows the detection overrepresented patterns in the data, in contrast to looking only for genes that exhibit maximal differential expression. These challenges are approached by introducing an algorithm based on a new symbolic representation that searches for concerted gene expression patterns; furthermore, the symbolic representation takes into account the variance in multiple replicates and can be applied to long time series data. The proposed algorithm's ability to discover biologically relevant signals in gene expression data is exhibited by applying it to three datasets that measure gene expression in the rat liver.
Collapse
Affiliation(s)
- Jeremy D Scheff
- Biomedical Engineering Department, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
43
|
Sukumaran S, Xue B, Jusko WJ, Dubois DC, Almon RR. Circadian variations in gene expression in rat abdominal adipose tissue and relationship to physiology. Physiol Genomics 2010; 42A:141-52. [PMID: 20682845 DOI: 10.1152/physiolgenomics.00106.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Circadian rhythms occur in all levels of organization from expression of genes to complex physiological processes. Although much is known about the mechanism of the central clock in the suprachiasmatic nucleus, the regulation of clocks present in peripheral tissues as well as the genes regulated by those clocks is still unclear. In this study, the circadian regulation of gene expression was examined in rat adipose tissue. A rich time series involving 54 animals euthanized at 18 time points within the 24-h cycle (12:12 h light-dark) was performed. mRNA expression was examined with Affymetrix gene array chips and quantitative real-time PCR, along with selected physiological measurements. Transcription factors involved in the regulation of central rhythms were examined, and 13 showed circadian oscillations. Mining of microarray data identified 190 probe sets that showed robust circadian oscillations. Circadian regulated probe sets were further parsed into seven distinct temporal clusters, with >70% of the genes showing maximum expression during the active/dark period. These genes were grouped into eight functional categories, which were examined within the context of their temporal expression. Circadian oscillations were also observed in plasma leptin, corticosterone, insulin, glucose, triglycerides, free fatty acids, and LDL cholesterol. Circadian oscillation in these physiological measurements along with the functional categorization of these genes suggests an important role for circadian rhythms in controlling various functions in white adipose tissue including adipogenesis, energy metabolism, and immune regulation.
Collapse
Affiliation(s)
- Siddharth Sukumaran
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | | | | | | | | |
Collapse
|
44
|
Sukumaran S, Almon RR, DuBois DC, Jusko WJ. Circadian rhythms in gene expression: Relationship to physiology, disease, drug disposition and drug action. Adv Drug Deliv Rev 2010; 62:904-17. [PMID: 20542067 PMCID: PMC2922481 DOI: 10.1016/j.addr.2010.05.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 05/10/2010] [Accepted: 05/26/2010] [Indexed: 12/26/2022]
Abstract
Circadian rhythms (24h cycles) are observed in virtually all aspects of mammalian function from expression of genes to complex physiological processes. The master clock is present in the suprachiasmatic nucleus (SCN) in the anterior part of the hypothalamus and controls peripheral clocks present in other parts of the body. Components of this core clock mechanism regulate the circadian rhythms in genome-wide mRNA expression, which in turn regulate various biological processes. Disruption of circadian rhythms can be either the cause or the effect of various disorders including metabolic syndrome, inflammatory diseases and cancer. Furthermore, circadian rhythms in gene expression regulate both the action and disposition of various drugs and affect therapeutic efficacy and toxicity based on dosing time. Understanding the regulation of circadian rhythms in gene expression plays an important role in both optimizing the dosing time for existing drugs and in the development of new therapeutics targeting the molecular clock.
Collapse
Affiliation(s)
- Siddharth Sukumaran
- Department of Biological Sciences, State University of New York at Buffalo, 14260, United States
| | | | | | | |
Collapse
|
45
|
Monfrinotti A, Ambros L, Montoya L, Prados AP, Rebuelto M. Chronokinetics of ceftazidime after intramuscular administration to dogs. Chronobiol Int 2010; 27:549-59. [PMID: 20524800 DOI: 10.3109/07420521003664239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ceftazidime, a third-generation cephalosporin, is widely used for the treatment of Pseudomonas aeruginosa infections. The aims of the present study were to characterize the pharmacokinetics of ceftazidime and to estimate the T > MIC against P. aeruginosa, after its intramuscular (i.m.) administration at two different dosing times (08:30 h and 20:30 h) to dogs, in order to determine whether time-of-day administration modifies ceftazidime pharmacokinetics and/or predicted clinical antipseudomonal efficacy. Six female healthy beagle dogs were administered ceftazidime pentahydrate by the intramuscular route in a single dose of 25 mg/kg at both 08:30 and 20:30 h, two weeks apart. Plasma ceftazidime concentrations were determined by microbiological assay. Pharmacokinetic parameters and time above the minimum inhibitory concentration (T > MIC) and 4xMIC for Pseudomonas aeruginosa were calculated from the disposition curve of each dog. No differences between the daytime and nighttime administrations were found for the main pharmacokinetic parameters, including C(max), t(max), t((1/2) lambda), AUC, and MRT; however, the high interindividual variability shown by these values and the small number of individuals may account for this lack of difference. Rate of absorption (k(a)) was significantly higher after the 20:30 h than 08:30 h administration. No significant differences between T > MIC were found when comparing the 08:30 h and 20:30 h administrations. Mean T > MIC values predicted a favorable bacteriostatic effect for all susceptible strains of P. aeruginosa for the 12 h dosing interval at both dosing times. Our results suggest that similar antipseudomonal activity may be expected when ceftazidime is administered at 8:30 and 20:30 h; however, as only two timepoints of drug administration were explored, we are unable to draw any conclusions for other treatment times during the 24 h.
Collapse
Affiliation(s)
- Agustina Monfrinotti
- Department of Pharmacology, School of Veterinary Science, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
46
|
Importance of replication in analyzing time-series gene expression data: corticosteroid dynamics and circadian patterns in rat liver. BMC Bioinformatics 2010; 11:279. [PMID: 20500897 PMCID: PMC2889936 DOI: 10.1186/1471-2105-11-279] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 05/26/2010] [Indexed: 11/14/2022] Open
Abstract
Background Microarray technology is a powerful and widely accepted experimental technique in molecular biology that allows studying genome wide transcriptional responses. However, experimental data usually contain potential sources of uncertainty and thus many experiments are now designed with repeated measurements to better assess such inherent variability. Many computational methods have been proposed to account for the variability in replicates. As yet, there is no model to output expression profiles accounting for replicate information so that a variety of computational models that take the expression profiles as the input data can explore this information without any modification. Results We propose a methodology which integrates replicate variability into expression profiles, to generate so-called 'true' expression profiles. The study addresses two issues: (i) develop a statistical model that can estimate 'true' expression profiles which are more robust than the average profile, and (ii) extend our previous micro-clustering which was designed specifically for clustering time-series expression data. The model utilizes a previously proposed error model and the concept of 'relative difference'. The clustering effectiveness is demonstrated through synthetic data where several methods are compared. We subsequently analyze in vivo rat data to elucidate circadian transcriptional dynamics as well as liver-specific corticosteroid induced changes in gene expression. Conclusions We have proposed a model which integrates the error information from repeated measurements into the expression profiles. Through numerous synthetic and real time-series data, we demonstrated the ability of the approach to improve the clustering performance and assist in the identification and selection of informative expression motifs.
Collapse
|
47
|
Thompson K. Toxicogenomics and studies of genomic effects of dietary components. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2010; 3:251-8. [PMID: 21474956 DOI: 10.1159/000324361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Karol Thompson
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|