1
|
Kennedy RC, Smith AK, Ropella GEP, McGill MR, Jaeschke H, Hunt CA. Propagation of Pericentral Necrosis During Acetaminophen-Induced Liver Injury: Evidence for Early Interhepatocyte Communication and Information Exchange. Toxicol Sci 2019; 169:151-166. [PMID: 30698817 PMCID: PMC6484890 DOI: 10.1093/toxsci/kfz029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Acetaminophen (APAP)-induced liver injury is clinically significant, and APAP overdose in mice often serves as a model for drug-induced liver injury in humans. By specifying that APAP metabolism, reactive metabolite formation, glutathione depletion, and mitigation of mitochondrial damage within individual hepatocytes are functions of intralobular location, an earlier virtual model mechanism provided the first concrete multiattribute explanation for how and why early necrosis occurs close to the central vein (CV). However, two characteristic features could not be simulated consistently: necrosis occurring first adjacent to the CV, and subsequent necrosis occurring primarily adjacent to hepatocytes that have already initiated necrosis. We sought parsimonious model mechanism enhancements that would manage spatiotemporal heterogeneity sufficiently to enable meeting two new target attributes and conducted virtual experiments to explore different ideas for model mechanism improvement at intrahepatocyte and multihepatocyte levels. For the latter, evidence supports intercellular communication via exosomes, gap junctions, and connexin hemichannels playing essential roles in the toxic effects of chemicals, including facilitating or counteracting cell death processes. Logic requiring hepatocytes to obtain current information about whether downstream and lateral neighbors have triggered necrosis enabled virtual hepatocytes to achieve both new target attributes. A virtual hepatocyte that is glutathione-depleted uses that information to determine if it will initiate necrosis. When a less-stressed hepatocyte is flanked by at least two neighbors that have triggered necrosis, it too will initiate necrosis. We hypothesize that the resulting intercellular communication-enabled model mechanism is analogous to the actual explanation for APAP-induced hepatotoxicity at comparable levels of granularity.
Collapse
Affiliation(s)
- Ryan C Kennedy
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| | - Andrew K Smith
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| | | | - Mitchell R McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arizona
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - C Anthony Hunt
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| |
Collapse
|
2
|
Smith AK, Xu Y, Ropella GEP, Hunt CA. A Model Mechanism-Based Explanation of an In Vitro-In Vivo Disconnect for Improving Extrapolation and Translation. J Pharmacol Exp Ther 2018; 365:127-138. [PMID: 29434053 DOI: 10.1124/jpet.117.245019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 02/05/2018] [Indexed: 11/22/2022] Open
Abstract
An improved understanding of in vivo-to-in vitro hepatocyte changes is crucial to interpreting in vitro data correctly and further improving hepatocyte-based in vitro-to-in vivo extrapolations to human targets. We demonstrate using virtual experiments as a means of helping to untangle plausible causes of inaccurate extrapolations. We start with virtual mice that use biomimetic software livers. Previously, using these mice, we discovered model mechanisms that enabled achieving quantitative validation targets while also providing plausible causal explanations for temporal characteristics of acetaminophen hepatotoxicity. We isolated virtual hepatocytes, created a virtual culture, and then conducted dose-response experiments in both culture and mice. We expected to see differences between the two dose-response curves but were somewhat surprised that they crossed because it evidenced that simulated acetaminophen metabolism and toxicity are different for virtual culture and mouse contexts even though individual hepatocyte mechanisms were unchanged. Differences in dose-response curves provide a virtual example of an in vivo-to-in vitro disconnect. We use detailed results of experiments to explain this disconnect. Individual hepatocytes contribute differently to system-level phenomena. In liver, hepatocytes are exposed to acetaminophen sequentially. Relative production of the reactive acetaminophen metabolite is largest (smallest) in pericentral (periportal) hepatocytes. Because that sequential exposure is absent in culture, hepatocytes from different lobular locations do not respond the same. A virtual culture-to-mouse translation can stand as a scientifically challengeable hypothesis explaining an in vivo-to-in vitro disconnect. It provides a framework to develop more reliable interpretations of in vitro observations, which then may be used to improve extrapolations.
Collapse
Affiliation(s)
- Andrew K Smith
- Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (A.K.S., Y.X., C.A.H.); and Tempus Dictum, Inc., Milwaukie, Oregon (G.E.P.R.)
| | - Yanli Xu
- Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (A.K.S., Y.X., C.A.H.); and Tempus Dictum, Inc., Milwaukie, Oregon (G.E.P.R.)
| | - Glen E P Ropella
- Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (A.K.S., Y.X., C.A.H.); and Tempus Dictum, Inc., Milwaukie, Oregon (G.E.P.R.)
| | - C Anthony Hunt
- Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (A.K.S., Y.X., C.A.H.); and Tempus Dictum, Inc., Milwaukie, Oregon (G.E.P.R.)
| |
Collapse
|
3
|
Smith AK, Petersen BK, Ropella GEP, Kennedy RC, Kaplowitz N, Ookhtens M, Hunt CA. Competing Mechanistic Hypotheses of Acetaminophen-Induced Hepatotoxicity Challenged by Virtual Experiments. PLoS Comput Biol 2016; 12:e1005253. [PMID: 27984590 PMCID: PMC5161305 DOI: 10.1371/journal.pcbi.1005253] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 11/18/2016] [Indexed: 01/16/2023] Open
Abstract
Acetaminophen-induced liver injury in mice is a model for drug-induced liver injury in humans. A precondition for improved strategies to disrupt and/or reverse the damage is a credible explanatory mechanism for how toxicity phenomena emerge and converge to cause hepatic necrosis. The Target Phenomenon in mice is that necrosis begins adjacent to the lobule's central vein (CV) and progresses outward. An explanatory mechanism remains elusive. Evidence supports that location dependent differences in NAPQI (the reactive metabolite) formation within hepatic lobules (NAPQI zonation) are necessary and sufficient prerequisites to account for that phenomenon. We call that the NZ-mechanism hypothesis. Challenging that hypothesis in mice is infeasible because 1) influential variables cannot be controlled, and 2) it would require sequential intracellular measurements at different lobular locations within the same mouse. Virtual hepatocytes use independently configured periportal-to-CV gradients to exhibit lobule-location dependent behaviors. Employing NZ-mechanism achieved quantitative validation targets for acetaminophen clearance and metabolism but failed to achieve the Target Phenomenon. We posited that, in order to do so, at least one additional feature must exhibit zonation by decreasing in the CV direction. We instantiated and explored two alternatives: 1) a glutathione depletion threshold diminishes in the CV direction; and 2) ability to repair mitochondrial damage diminishes in the CV direction. Inclusion of one or the other feature into NZ-mechanism failed to achieve the Target Phenomenon. However, inclusion of both features enabled successfully achieving the Target Phenomenon. The merged mechanism provides a multilevel, multiscale causal explanation of key temporal features of acetaminophen hepatotoxicity in mice. We discovered that variants of the merged mechanism provide plausible quantitative explanations for the considerable variation in 24-hour necrosis scores among 37 genetically diverse mouse strains following a single toxic acetaminophen dose.
Collapse
Affiliation(s)
- Andrew K. Smith
- Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States of America
| | - Brenden K. Petersen
- UCSF/UCB Joint Graduate Group in Bioengineering, University of California, Berkeley, Berkeley, CA, United States of America
| | | | - Ryan C. Kennedy
- Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States of America
| | - Neil Kaplowitz
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Murad Ookhtens
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - C. Anthony Hunt
- Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
4
|
Dutta-Moscato J, Solovyev A, Mi Q, Nishikawa T, Soto-Gutierrez A, Fox IJ, Vodovotz Y. A Multiscale Agent-Based in silico Model of Liver Fibrosis Progression. Front Bioeng Biotechnol 2014; 2:18. [PMID: 25152891 PMCID: PMC4126446 DOI: 10.3389/fbioe.2014.00018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/14/2014] [Indexed: 01/06/2023] Open
Abstract
Chronic hepatic inflammation involves a complex interplay of inflammatory and mechanical influences, ultimately manifesting in a characteristic histopathology of liver fibrosis. We created an agent-based model (ABM) of liver tissue in order to computationally examine the consequence of liver inflammation. Our liver fibrosis ABM (LFABM) is comprised of literature-derived rules describing molecular and histopathological aspects of inflammation and fibrosis in a section of chemically injured liver. Hepatocytes are modeled as agents within hexagonal lobules. Injury triggers an inflammatory reaction, which leads to activation of local Kupffer cells and recruitment of monocytes from circulation. Portal fibroblasts and hepatic stellate cells are activated locally by the products of inflammation. The various agents in the simulation are regulated by above-threshold concentrations of pro- and anti-inflammatory cytokines and damage-associated molecular pattern molecules. The simulation progresses from chronic inflammation to collagen deposition, exhibiting periportal fibrosis followed by bridging fibrosis, and culminating in disruption of the regular lobular structure. The ABM exhibited key histopathological features observed in liver sections from rats treated with carbon tetrachloride (CCl4). An in silico “tension test” for the hepatic lobules predicted an overall increase in tissue stiffness, in line with clinical elastography literature and published studies in CCl4-treated rats. Therapy simulations suggested differential anti-fibrotic effects of neutralizing tumor necrosis factor alpha vs. enhancing M2 Kupffer cells. We conclude that a computational model of liver inflammation on a structural skeleton of physical forces can recapitulate key histopathological and macroscopic properties of CCl4-injured liver. This multiscale approach linking molecular and chemomechanical stimuli enables a model that could be used to gain translationally relevant insights into liver fibrosis.
Collapse
Affiliation(s)
- Joyeeta Dutta-Moscato
- Department of Biomedical Informatics, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Surgery, University of Pittsburgh , Pittsburgh, PA , USA ; Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, PA , USA
| | - Alexey Solovyev
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Mathematics, University of Pittsburgh , Pittsburgh, PA , USA
| | - Qi Mi
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Sports Medicine and Nutrition, University of Pittsburgh , Pittsburgh, PA , USA
| | - Taichiro Nishikawa
- McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Surgery, Children's Hospital of Pittsburgh , Pittsburgh, PA , USA
| | - Alejandro Soto-Gutierrez
- McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Pathology, University of Pittsburgh , Pittsburgh, PA , USA ; Thomas E. Starzl Transplantation Institute, University of Pittsburgh , Pittsburgh, PA , USA
| | - Ira J Fox
- McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Surgery, Children's Hospital of Pittsburgh , Pittsburgh, PA , USA ; Thomas E. Starzl Transplantation Institute, University of Pittsburgh , Pittsburgh, PA , USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh , Pittsburgh, PA , USA ; Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, PA , USA
| |
Collapse
|
5
|
Kirschner DE, Hunt CA, Marino S, Fallahi-Sichani M, Linderman JJ. Tuneable resolution as a systems biology approach for multi-scale, multi-compartment computational models. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2014; 6:289-309. [PMID: 24810243 PMCID: PMC4102180 DOI: 10.1002/wsbm.1270] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 03/14/2014] [Accepted: 03/19/2014] [Indexed: 01/19/2023]
Abstract
The use of multi-scale mathematical and computational models to study complex biological processes is becoming increasingly productive. Multi-scale models span a range of spatial and/or temporal scales and can encompass multi-compartment (e.g., multi-organ) models. Modeling advances are enabling virtual experiments to explore and answer questions that are problematic to address in the wet-lab. Wet-lab experimental technologies now allow scientists to observe, measure, record, and analyze experiments focusing on different system aspects at a variety of biological scales. We need the technical ability to mirror that same flexibility in virtual experiments using multi-scale models. Here we present a new approach, tuneable resolution, which can begin providing that flexibility. Tuneable resolution involves fine- or coarse-graining existing multi-scale models at the user's discretion, allowing adjustment of the level of resolution specific to a question, an experiment, or a scale of interest. Tuneable resolution expands options for revising and validating mechanistic multi-scale models, can extend the longevity of multi-scale models, and may increase computational efficiency. The tuneable resolution approach can be applied to many model types, including differential equation, agent-based, and hybrid models. We demonstrate our tuneable resolution ideas with examples relevant to infectious disease modeling, illustrating key principles at work. WIREs Syst Biol Med 2014, 6:225–245. doi:10.1002/wsbm.1270 How to cite this article:WIREs Syst Biol Med 2014, 6:289–309. doi:10.1002/wsbm.1270
Collapse
Affiliation(s)
- Denise E Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | | | | |
Collapse
|
6
|
Hunt CA, Kennedy RC, Kim SHJ, Ropella GEP. Agent-based modeling: a systematic assessment of use cases and requirements for enhancing pharmaceutical research and development productivity. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 5:461-80. [PMID: 23737142 PMCID: PMC3739932 DOI: 10.1002/wsbm.1222] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A crisis continues to brew within the pharmaceutical research and development (R&D) enterprise: productivity continues declining as costs rise, despite ongoing, often dramatic scientific and technical advances. To reverse this trend, we offer various suggestions for both the expansion and broader adoption of modeling and simulation (M&S) methods. We suggest strategies and scenarios intended to enable new M&S use cases that directly engage R&D knowledge generation and build actionable mechanistic insight, thereby opening the door to enhanced productivity. What M&S requirements must be satisfied to access and open the door, and begin reversing the productivity decline? Can current methods and tools fulfill the requirements, or are new methods necessary? We draw on the relevant, recent literature to provide and explore answers. In so doing, we identify essential, key roles for agent-based and other methods. We assemble a list of requirements necessary for M&S to meet the diverse needs distilled from a collection of research, review, and opinion articles. We argue that to realize its full potential, M&S should be actualized within a larger information technology framework—a dynamic knowledge repository—wherein models of various types execute, evolve, and increase in accuracy over time. We offer some details of the issues that must be addressed for such a repository to accrue the capabilities needed to reverse the productivity decline. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- C Anthony Hunt
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
| | | | | | | |
Collapse
|
7
|
Niklas J, Diaz Ochoa JG, Bucher J, Mauch K. Quantitative Evaluation and Prediction of Drug Effects and Toxicological Risk Using Mechanistic Multiscale Models. Mol Inform 2012; 32:14-23. [DOI: 10.1002/minf.201200043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 09/21/2012] [Indexed: 01/06/2023]
|
8
|
Hepatocellular necrosis, fibrosis and microsomal activity determine the hepatic pharmacokinetics of basic drugs in right-heart-failure-induced liver damage. Pharm Res 2012; 29:1658-69. [PMID: 22302523 DOI: 10.1007/s11095-012-0690-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 01/17/2012] [Indexed: 10/14/2022]
Abstract
PURPOSE To explore how liver damage arising from cardio-hepatic syndromes in RHF affect the hepatic pharmacokinetics of basic drugs. METHODS The hepatic pharmacokinetics of five selected basic drugs with different physicochemical properties were studied in IPRL from control rats and rats with RHF. Hepatic pharmacokinetic modelling was performed with a two-phase physiologically-based organ pharmacokinetic model with the vascular space and dispersion evaluated with the MID technique. The liver damage arising from RHF was assessed by changes in liver biochemistry and histopathology. The expression of various CYP isoforms was evaluated by real-time RT-PCR analysis. RESULTS Four of the five basic drugs had a significantly lower E in RHF rat livers compared to the control rat livers. Hepatic pharmacokinetic analysis showed that both the CL int and PS were significantly decreased in the RHF rat livers. Stepwise regression analysis showed that the alterations in the pharmacokinetic parameters (E, CL int and PS) can be correlated to the observed histopathological changes (NI, CYP concentration and FI) as well as to the lipophilicity of the basic drugs (logP app). CONCLUSIONS Serious hepatocellular necrosis and fibrosis induced by RHF affects both hepatic microsomal activity and hepatocyte wall permeability, leading to significant impairment in the hepatic pharmacokinetics of basic drugs.
Collapse
|
9
|
Sheikh-Bahaei S, Hunt CA. Enabling clearance predictions to emerge from in silico actions of quasi-autonomous hepatocyte components. Drug Metab Dispos 2011; 39:1910-20. [PMID: 21768275 DOI: 10.1124/dmd.111.038703] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We demonstrate the feasibility of using in silico hepatocyte cultures (ISHCs) to provide predictions of the intrinsic clearance (CL) of compounds in hepatocyte cultures. We compare results with predictions obtained using a multiple linear regression method. Our expectation is that the method can be extended to predict in vivo clearance of new compounds in humans. Within ISHCs, mobile "compounds" carry information describing referent compound properties. We used an iterative refinement protocol for ISHC refinement and development of parameterization methods. Quasi-autonomous "hepatocytes" and their components (including "transporters" and "enzymes") use a small, event-specific subset of compound properties to decide how to interact with encountered compounds each simulation cycle. The probability of occurrence for each event is specified by a rule that uses a subset of compound properties known to influence that event in vitro. ISHC experiments mimic in vitro counterparts. In silico clearance is measured the same as in vitro clearance and is used to predict a corresponding CL value. For 39 of 73 compounds having calculated CL S.D.s, 79% of ISHC predictions and 23% of regression predictions were within CL ± 2 S.D. For all 73 compounds, 38% of ISHC predictions and 32% of regression predictions were within a factor of 2 of the referent CL values. ISHC details during simulations stand as a mechanistic hypothesis of how clearance phenomena emerge during in vitro experiments.
Collapse
Affiliation(s)
- Shahab Sheikh-Bahaei
- Joint Graduate Group in Bioengineering, University of California, Berkeley, California, USA
| | | |
Collapse
|
10
|
Thorling CA, Dancik Y, Hupple CW, Medley G, Liu X, Zvyagin AV, Robertson TA, Burczynski FJ, Roberts MS. Multiphoton microscopy and fluorescence lifetime imaging provide a novel method in studying drug distribution and metabolism in the rat liver in vivo. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:086013. [PMID: 21895325 DOI: 10.1117/1.3614473] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Multiphoton microscopy has been shown to be a useful tool in studying drug distribution in biological tissues. In addition, fluorescence lifetime imaging provides information about the structure and dynamics of fluorophores based on their fluorescence lifetimes. Fluorescein, a commonly used fluorescent probe, is metabolized within liver cells to fluorescein mono-glucuronide, which is also fluorescent. Fluorescein and its glucuronide have similar excitation and emission spectra, but different fluorescence lifetimes. In this study, we employed multiphoton fluorescence lifetime imaging to study the distribution and metabolism of fluorescein and its metabolite in vivo in rat liver. Fluorescence lifetime values in vitro were used to interpret in vivo data. Our results show that the mean fluorescence lifetimes of fluorescein and its metabolite decrease over time after injection of fluorescein in three different regions of the liver. In conclusion, we have demonstrated a novel method to study a fluorescent compound and metabolite in vivo using multiphoton fluorescence lifetime imaging.
Collapse
Affiliation(s)
- Camilla A Thorling
- University of Queensland, School of Medicine, Woolloongabba, Queensland, 4102, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hunt CA, Ropella GE. Moving beyond in silico tools to in silico science in support of drug development research. Drug Dev Res 2010. [DOI: 10.1002/ddr.20412] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Ropella GEP, Hunt CA. Cloud computing and validation of expandable in silico livers. BMC SYSTEMS BIOLOGY 2010; 4:168. [PMID: 21129207 PMCID: PMC3016276 DOI: 10.1186/1752-0509-4-168] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 12/03/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND In Silico Livers (ISLs) are works in progress. They are used to challenge multilevel, multi-attribute, mechanistic hypotheses about the hepatic disposition of xenobiotics coupled with hepatic responses. To enhance ISL-to-liver mappings, we added discrete time metabolism, biliary elimination, and bolus dosing features to a previously validated ISL and initiated re-validated experiments that required scaling experiments to use more simulated lobules than previously, more than could be achieved using the local cluster technology. Rather than dramatically increasing the size of our local cluster we undertook the re-validation experiments using the Amazon EC2 cloud platform. So doing required demonstrating the efficacy of scaling a simulation to use more cluster nodes and assessing the scientific equivalence of local cluster validation experiments with those executed using the cloud platform. RESULTS The local cluster technology was duplicated in the Amazon EC2 cloud platform. Synthetic modeling protocols were followed to identify a successful parameterization. Experiment sample sizes (number of simulated lobules) on both platforms were 49, 70, 84, and 152 (cloud only). Experimental indistinguishability was demonstrated for ISL outflow profiles of diltiazem using both platforms for experiments consisting of 84 or more samples. The process was analogous to demonstration of results equivalency from two different wet-labs. CONCLUSIONS The results provide additional evidence that disposition simulations using ISLs can cover the behavior space of liver experiments in distinct experimental contexts (there is in silico-to-wet-lab phenotype similarity). The scientific value of experimenting with multiscale biomedical models has been limited to research groups with access to computer clusters. The availability of cloud technology coupled with the evidence of scientific equivalency has lowered the barrier and will greatly facilitate model sharing as well as provide straightforward tools for scaling simulations to encompass greater detail with no extra investment in hardware.
Collapse
|
13
|
Roberts MS. Drug structure-transport relationships. J Pharmacokinet Pharmacodyn 2010; 37:541-73. [PMID: 21107662 PMCID: PMC3005109 DOI: 10.1007/s10928-010-9174-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 10/22/2010] [Indexed: 11/29/2022]
Abstract
Malcolm Rowland has greatly facilitated an understanding of drug structure–pharmacokinetic relationships using a physiological perspective. His view points, covering a wide range of activities, have impacted on my own work and on my appreciation and understanding of our science. This overview summarises some of our parallel activities, beginning with Malcolm’s work on the pH control of amphetamine excretion, his work on the disposition of aspirin and on the application of clearance concepts in describing the disposition of lidocaine. Malcolm also spent a considerable amount of time developing principles that define solute structure and transport/pharmacokinetic relationships using in situ organ studies, which he then extended to involve the whole body. Together, we developed a physiological approach to studying hepatic clearance, introducing the convection–dispersion model in which there was a spread in blood transit times through the liver accompanied by permeation into hepatocytes and removal by metabolism or excretion into the bile. With a range of colleagues, we then further developed the model and applied it to various organs in the body. One of Malcolm’s special interests was in being able to apply this knowledge, together with an understanding of physiological differences in scaling up pharmacokinetics from animals to man. The description of his many other activities, such as the development of clearance concepts, application of pharmacokinetics to the clinical situation and using pharmacokinetics to develop new compounds and delivery systems, has been left to others.
Collapse
Affiliation(s)
- Michael S Roberts
- School of Pharmacy and Medical Science and Sansom Institute for Health Research, University of South Australia, Adelaide, Australia.
| |
Collapse
|
14
|
Park S, Kim SHJ, Ropella GEP, Roberts MS, Hunt CA. Tracing multiscale mechanisms of drug disposition in normal and diseased livers. J Pharmacol Exp Ther 2010; 334:124-36. [PMID: 20406856 DOI: 10.1124/jpet.110.168526] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hepatic drug disposition is different in normal and diseased livers. Different disease types alter disposition differently. What are the responsible micromechanistic changes and how do they influence drug movement within the liver? We provide plausible, concrete answers for two compounds, diltiazem and sucrose, in normal livers and two different types of cirrhotic rat livers: chronic pretreatment of rats with carbon tetrachloride (CCl(4)) and alcohol caused different types of cirrhosis. We started with simulated disposition data from normal, multilevel, physiologically based, object-oriented, discrete event in silico livers (normal ISLs) that validated against diltiazem and sucrose disposition data from normal livers. We searched the parameter space of the mechanism and found three parameter vectors that enabled matching the three wet-lab data sets. They specified micromechanistic transformations that enabled converting the normal ISL into two different types of diseased ISLs. Disease caused lobular changes at three of six levels. The latter provided in silico disposition data that achieved a prespecified degree of validation against wet-lab data. The in silico transformations from normal to diseased ISLs stand as concrete theories for disease progression from the disposition perspective. We also developed and implemented methods to trace objects representing diltiazem and sucrose during disposition experiments. This allowed valuable insight into plausible disposition details in normal and diseased livers. We posit that changes in ISL micromechanistic details may have disease-causing counterparts.
Collapse
Affiliation(s)
- Sunwoo Park
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143-0446, USA
| | | | | | | | | |
Collapse
|
15
|
Sheikh-Bahaei S, Maher JJ, Anthony Hunt C. Computational experiments reveal plausible mechanisms for changing patterns of hepatic zonation of xenobiotic clearance and hepatotoxicity. J Theor Biol 2010; 265:718-33. [PMID: 20541559 DOI: 10.1016/j.jtbi.2010.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 05/12/2010] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
Abstract
No concrete, causal, mechanistic theory is available to explain how different hepatic zonation patterns of P450 isozyme levels and hepatotoxicity emerge following dosing with different compounds. We used the synthetic method of modeling and simulation to discover, explore, and experimentally challenge concrete mechanisms that show how and why biomimetic zonation patterns can emerge and change within agent-based analogues, expecting that those mechanisms may have counterparts in rats. Mobile objects map to compounds. One analogue represents a cross-section through a lobule. It is comprised of 460 identical, quasi-autonomous functional units called sinusoidal segments (SSs). SSs detect and respond to compound-generated response signals and the local level of an endogenous gradient. Each SS adapts by using those signals to adjust (or not) the probability that it will clear a detected compound during the next simulation cycle. The adjustment decision is based on the value of a biomimetic algorithm that is based on an assumed, evolution imposed, genetic mandate that normal hepatocytes resist increasing the cost of their actions. The algorithm estimates the long-term, discounted cost to a given SS of continuing to use its current clearance effort. Upon compound exposure, lobular analogues developed a variety of clearance and hepatotoxicity patterns that were strikingly similar to those reported in the literature. A degree of quantitative validation was achieved against data on hepatic zonation of CYP1A2 mRNA expression caused by three different doses of TCDD (2,3,7,8-tetracholorodibenzo-p-dioxone).
Collapse
Affiliation(s)
- Shahab Sheikh-Bahaei
- UCSF/UCB Joint Graduate Group in Bioengineering, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
16
|
Lam TN, Hunt CA. Mechanistic insight from in silico pharmacokinetic experiments: roles of P-glycoprotein, Cyp3A4 enzymes, and microenvironments. J Pharmacol Exp Ther 2010; 332:398-412. [PMID: 19864617 DOI: 10.1124/jpet.109.160739] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Saquinavir exhibits paradoxical transport across modified Caco-2 cell monolayers (doi: 10.1124/jpet.103.056390) expressing P-glycoprotein and Cyp3A4. The data implicate complicated intracellular transport mechanisms. Drawing on recent discrete event modeling and simulation advances, we built an in silico analog of the confluent, asymmetric cell monolayer used in the cited work. We call it in silico experimental Caco-2 (cell monolayer) culture (ISECC). Concrete, working, hypothesized spatial mechanisms were implemented. Validation was achieved when in silico experimental results met similarity measure (SM) expectations that targeted 16 wet-lab experimental conditions. Initial mechanistic hypotheses turned out to be necessary parts of a more complicated explanation. We progressed through four stages of an iterative refinement and validation protocol that enabled and facilitated discovery of plausible, new mechanistic details. The process exercised abductive reasoning, a primary means of scientific knowledge creation and creative cognition. The ISECC that survived the most stringent SM challenge produced transport data that was statistically indistinguishable from referent wet-lab observations. It required a 7:1 ratio of apical transporters to metabolizing enzymes, a 97% reduction of efflux activity by an inhibitor, a biased distribution of metabolizing enzymes, heterogeneous intracellular spaces, and restrictions on intracellular drug movement. Experimenting on synthetic analogs such as ISECC provides a former unavailable means of discovering new mechanistic details and testing their plausibility. The approach thus provides a powerful new expansion of the scientific method: an independent, scientific means to challenge, explore, better understand, and improve any inductive mechanism and, importantly, the assumptions on which it rests.
Collapse
Affiliation(s)
- Tai Ning Lam
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143-0446, USA
| | | |
Collapse
|
17
|
Hunt CA, Ropella GEP, Lam TN, Tang J, Kim SHJ, Engelberg JA, Sheikh-Bahaei S. At the biological modeling and simulation frontier. Pharm Res 2009; 26:2369-400. [PMID: 19756975 PMCID: PMC2763179 DOI: 10.1007/s11095-009-9958-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 08/13/2009] [Indexed: 01/03/2023]
Abstract
We provide a rationale for and describe examples of synthetic modeling and simulation (M&S) of biological systems. We explain how synthetic methods are distinct from familiar inductive methods. Synthetic M&S is a means to better understand the mechanisms that generate normal and disease-related phenomena observed in research, and how compounds of interest interact with them to alter phenomena. An objective is to build better, working hypotheses of plausible mechanisms. A synthetic model is an extant hypothesis: execution produces an observable mechanism and phenomena. Mobile objects representing compounds carry information enabling components to distinguish between them and react accordingly when different compounds are studied simultaneously. We argue that the familiar inductive approaches contribute to the general inefficiencies being experienced by pharmaceutical R&D, and that use of synthetic approaches accelerates and improves R&D decision-making and thus the drug development process. A reason is that synthetic models encourage and facilitate abductive scientific reasoning, a primary means of knowledge creation and creative cognition. When synthetic models are executed, we observe different aspects of knowledge in action from different perspectives. These models can be tuned to reflect differences in experimental conditions and individuals, making translational research more concrete while moving us closer to personalized medicine.
Collapse
Affiliation(s)
- C Anthony Hunt
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Kim SHJ, Park S, Mostov K, Debnath J, Hunt CA. Computational investigation of epithelial cell dynamic phenotype in vitro. Theor Biol Med Model 2009; 6:8. [PMID: 19476639 PMCID: PMC2696420 DOI: 10.1186/1742-4682-6-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Accepted: 05/28/2009] [Indexed: 02/01/2023] Open
Abstract
Background When grown in three-dimensional (3D) cultures, epithelial cells typically form cystic organoids that recapitulate cardinal features of in vivo epithelial structures. Characterizing essential cell actions and their roles, which constitute the system's dynamic phenotype, is critical to gaining deeper insight into the cystogenesis phenomena. Methods Starting with an earlier in silico epithelial analogue (ISEA1) that validated for several Madin-Darby canine kidney (MDCK) epithelial cell culture attributes, we built a revised analogue (ISEA2) to increase overlap between analogue and cell culture traits. Both analogues used agent-based, discrete event methods. A set of axioms determined ISEA behaviors; together, they specified the analogue's operating principles. A new experimentation framework enabled tracking relative axiom use and roles during simulated cystogenesis along with establishment of the consequences of their disruption. Results ISEA2 consistently produced convex cystic structures in a simulated embedded culture. Axiom use measures provided detailed descriptions of the analogue's dynamic phenotype. Dysregulating key cell death and division axioms led to disorganized structures. Adhering to either axiom less than 80% of the time caused ISEA1 to form easily identified morphological changes. ISEA2 was more robust to identical dysregulation. Both dysregulated analogues exhibited characteristics that resembled those associated with an in vitro model of early glandular epithelial cancer. Conclusion We documented the causal chains of events, and their relative roles, responsible for simulated cystogenesis. The results stand as an early hypothesis–a theory–of how individual MDCK cell actions give rise to consistently roundish, cystic organoids.
Collapse
Affiliation(s)
- Sean H J Kim
- UCSF/UC Berkeley Joint Graduate Group in Bioengineering, University of California, Berkeley, California 94720, USA.
| | | | | | | | | |
Collapse
|