1
|
Arsha S, Tripathi A, Kangarlu J, Rehman B, Frishman WH, Aronow WS. Chemotherapy-Induced Cardiomyopathy: A Focus on the Utility of Statins. Cardiol Rev 2025:00045415-990000000-00492. [PMID: 40358411 DOI: 10.1097/crd.0000000000000942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Chemotherapy-induced cardiomyopathy (CICM) is a critical adverse consequence associated with chemotherapeutic treatments such as anthracyclines, taxanes, and alkylating agents. Cardiac dysfunction, characterized by left ventricular systolic dysfunction, is the primary effect found in these patients. This may result in heart failure, with heart failure related to chemotherapy resulting in a 3.5-fold increased risk of mortality compared with idiopathic cardiomyopathy alone. Multiple factors, including oxidative stress, inflammation, and disruption of key cellular pathways, are involved in cardiomyocyte damage and influence CICM pathophysiology. So far, dexrazoxane is the sole FDA-approved preventive therapy, but alternative interventions, such as beta-blockers, angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, and statins, have been studied for their cardioprotective potential. Statins, beyond their cholesterol-lowering capabilities, stand out for their pleiotropic effects, including antioxidant, anti-inflammatory, and endothelial-protective actions, which counteract inflammatory effects. Multiple studies and meta-analyses suggest that statin therapy may decrease both the incidence and severity of chemotherapy-related cardiotoxicity (CTX), as evidenced by smaller declines in left ventricular ejection fraction and lower rates of heart failure in statin-treated patients. However, not all investigations confirm these protective benefits; for instance, some trials, including SPARE-HF, reported no significant differences in cardiac outcomes. While these conflicting findings underscore the need for larger randomized trials, they also reflect the heterogeneity of cancer types, chemotherapy regimens, and patient profiles. Statins show promise as a cardioprotective strategy for individuals at risk of CICM. Enhancing patient selection and specifying the timing and duration of statin therapy are essential steps for incorporating these agents into standard care. Optimizing these parameters may reduce chemotherapy-related cardiac damage, improve long-term cardiac function, and enhance overall survival in cancer survivors.
Collapse
Affiliation(s)
- Sanjana Arsha
- From the Department of Internal Medicine, Westchester Medical Center, Vallhala, NY
| | - Ashish Tripathi
- From the Department of Internal Medicine, Westchester Medical Center, Vallhala, NY
| | - John Kangarlu
- From the Department of Internal Medicine, Westchester Medical Center, Vallhala, NY
| | - Bilal Rehman
- From the Department of Internal Medicine, Westchester Medical Center, Vallhala, NY
| | - William H Frishman
- Department of Cardiology, Westchester Medical Center, Valhalla, NY
- Department of Medicine, New York Medical College, Valhalla, NY
| | - Wilbert S Aronow
- Department of Cardiology, Westchester Medical Center, Valhalla, NY
- Department of Medicine, New York Medical College, Valhalla, NY
| |
Collapse
|
2
|
Maneechote C, Khuanjing T, Ongnok B, Arinno A, Prathumsap N, Chunchai T, Arunsak B, Nawara W, Chattipakorn SC, Chattipakorn N. Targeting mitochondrial dynamics emerges as an effective strategy of cardioprotection against trastuzumab-induced mitochondrial functional aberrations and cardiotoxicity in rats. Eur J Pharmacol 2025; 999:177685. [PMID: 40288556 DOI: 10.1016/j.ejphar.2025.177685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 04/29/2025]
Abstract
Trastuzumab (Trz) is a targeted anticancer therapy that specifically acts on tumors overexpressing the human epidermal growth factor receptor 2 (HER2) protein. Previous research has shown that Trz can induce cardiotoxicity by altering mitochondrial function. While modulating mitochondrial dynamics with Mdivi-1 and M1 has shown cardioprotective effects in various cardiac conditions, their impact on Trz-induced cardiotoxicity in rats remains unclear. In this study, thirty-two male Wistar rats were divided into a control group (CON, n = 8) and a Trz-treated group (4 mg/kg/day, i.p. for 7 days, n = 24). The Trz group was further randomized into subgroups receiving either: 1) vehicle (VEH, 3 % DMSO, i.p., n = 8), 2) the mitochondrial fission inhibitor Mdivi-1 (MDV, 1.2 mg/kg/day, i.p., n = 8), or 3) the mitochondrial fusion promoter M1 (2 mg/kg/day, i.p., n = 8). All interventions began on the first day of Trz administration and continued for 7 days. At the end, cardiac function was then assessed, and heart tissue was collected for biochemical analysis. Trz-treated rats exhibited cardiotoxicity, including cardiac dysfunction and injury, as well as disrupted mitochondrial and autophagic processes, increased inflammation, oxidative stress, apoptosis, ferroptosis, and pyroptosis. Co-administration of either Mdivi-1 or M1 with Trz alleviated these harmful effects, suggesting that modulating mitochondrial dynamics might offer a novel therapeutic strategy to mitigate Trz-induced cardiotoxicity.
Collapse
Affiliation(s)
- Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thawatchai Khuanjing
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Benjamin Ongnok
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Apiwan Arinno
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nanthip Prathumsap
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Titikorn Chunchai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wichwara Nawara
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
3
|
Duan Y, Liu J, Li A, Liu C, Shu G, Yin G. The Role of the CPT Family in Cancer: Searching for New Therapeutic Strategies. BIOLOGY 2024; 13:892. [PMID: 39596847 PMCID: PMC11592116 DOI: 10.3390/biology13110892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024]
Abstract
Along with abnormalities in glucose metabolism, disturbances in the balance of lipid catabolism and synthesis have emerged as a new area of cancer metabolism that needs to be studied in depth. Disturbances in lipid metabolic homeostasis, represented by fatty acid oxidation (FAO) imbalance, leading to activation of pro-cancer signals and abnormalities in the expression and activity of related metabolically critical rate-limiting enzymes, have become an important part of metabolic remodeling in cancer. The FAO process is a metabolic pathway that facilitates the breakdown of fatty acids into CO2 and H2O and releases large amounts of energy in the body under aerobic conditions. More and more studies have shown that FAO provides an important energy supply for the development of cancer cells. At the same time, the CPT family, including carnitine palmitoyltransferase 1 (CPT1) and carnitine palmitoyltransferase 2 (CPT2), are key rate-limiting enzymes for FAO that exert a pivotal influence on the genesis and progression of neoplastic growth. Therefore, we look at molecular structural properties of the CPT family, the roles they play in tumorigenesis and development, the target drugs, and the possible regulatory roles of CPTs in energy metabolism reprogramming to help understand the current state of CPT family research and to search for new therapeutic strategies.
Collapse
Affiliation(s)
- Yanxia Duan
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
| | - Jiaxin Liu
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
| | - Ailin Li
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
| | - Chang Liu
- School of Basic Medical Sciences, Central South University, Changsha 410000, China;
| | - Guang Shu
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China
- China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha 410000, China
| |
Collapse
|
4
|
Camilli M, Cipolla CM, Dent S, Minotti G, Cardinale DM. Anthracycline Cardiotoxicity in Adult Cancer Patients: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:655-677. [PMID: 39479333 PMCID: PMC11520218 DOI: 10.1016/j.jaccao.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 11/02/2024] Open
Abstract
Since their introduction in the 1960s, anthracyclines have been a significant breakthrough in oncology, introducing dramatic changes in the treatment of solid and hematologic malignancies. Although new-generation targeted drugs and cellular therapies are revolutionizing contemporary oncology, anthracyclines remain the cornerstone of treatment for lymphomas, acute leukemias, and soft tissue sarcomas. However, their clinical application is limited by a dose-dependent cardiotoxicity that can reduce cardiac performance and eventually lead to overt heart failure. The field of cardio-oncology has emerged to safeguard the cardiovascular health of cancer patients receiving these therapies. It focuses on controlling risk factors, implementing preventive strategies, ensuring appropriate surveillance, and managing complications. This state-of-the-art review summarizes the current indications for anthracyclines in modern oncology, explores recent evidence on pathophysiology and epidemiology, and discusses advances in cardioprotection measures in the anthracycline-treated patient. Additionally, it highlights key clinical challenges and research gaps in this area.
Collapse
Affiliation(s)
- Massimiliano Camilli
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Carlo Maria Cipolla
- Cardioncology Unit, Cardioncology and Second Opinion Division, European Institute of Oncology IRCCS, Milan, Italy
| | - Susan Dent
- Duke Cancer Institute, Duke University, Durham, North Carolina, USA
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, North Carolina, USA
| | - Giorgio Minotti
- Università e Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Daniela Maria Cardinale
- Cardioncology Unit, Cardioncology and Second Opinion Division, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
5
|
Camilli M, Ferdinandy P, Salvatorelli E, Menna P, Minotti G. Anthracyclines, Diastolic Dysfunction and the road to Heart Failure in Cancer survivors: An untold story. Prog Cardiovasc Dis 2024; 86:38-47. [PMID: 39025347 DOI: 10.1016/j.pcad.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
Many cardiovascular diseases are characterized by diastolic dysfunction, which associates with worse clinical outcomes like overall mortality and hospitalization for heart failure (HF). Diastolic dysfunction has also been suspected to represent an early manifestation of cardiotoxicity induced by cancer drugs, with most of the information deriving from patients treated with anthracyclines; however, the prognostic implications of diastolic dysfunction in the anthracycline-treated patient have remained poorly explored or neglected. Here the molecular, pathophysiologic and diagnostic aspects of anthracycline-related diastolic dysfunction are reviewed in the light of HF incidence and phenotype in cancer survivors. We describe that the trajectories of diastolic dysfunction toward HF are influenced by a constellation of patient- or treatment- related factors, such as comorbidities and exposure to other cardiotoxic drugs or treatments, but also by prospective novel opportunities to treat diastolic dysfunction. The importance of a research-oriented multidimensional approach to patient surveillance or treatment is discussed within the framework of what appears to be a distinct pathophysiologic entity that develops early during anthracycline treatment and gradually worsens over the years.
Collapse
Affiliation(s)
- Massimiliano Camilli
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary; MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | | | - Pierantonio Menna
- Unit of Drug Sciences, University Campus Bio-Medico, Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Giorgio Minotti
- Unit of Drug Sciences, University Campus Bio-Medico, Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy.
| |
Collapse
|
6
|
Rajaeinejad M, Parhizkar-Roudsari P, Khoshfetrat M, Kazemi-Galougahi MH, Mosaed R, Arjmand R, Mohsenizadeh SA, Arjmand B. Management of Fluoropyrimidine-Induced Cardiac Adverse Outcomes Following Cancer Treatment. Cardiovasc Toxicol 2024; 24:184-198. [PMID: 38324115 DOI: 10.1007/s12012-024-09834-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 01/20/2024] [Indexed: 02/08/2024]
Abstract
Advancements in cancer treatments have improved survival rates but have also led to increased cardiotoxicities, which can cause adverse cardiovascular events or worsen pre-existing conditions. Herein, cardiotoxicity is a severe adverse effect of 5-fluorouracil (5-FU) therapy in cancer patients, with reported incidence rates ranging from 1 to 20%. Some studies have also suggested subclinical effects and there are reports which have documented instances of cardiac arrest or sudden death during 5-FU treatment, highlighting the importance of timely management of cardiovascular symptoms. However, despite being treated with conventional medical approaches for this cardiotoxicity, a subset of patients has demonstrated suboptimal or insufficient responses. The frequent use of 5-FU in chemotherapy and its association with significant morbidity and mortality indicates the need for a greater understanding of 5-FU-associated cardiotoxicity. It is essential to reduce the adverse effects of anti-tumor medications while preserving their efficacy, which can be achieved through drugs that mitigate toxicity associated with these drugs. Underpinning cardiotoxicity associated with 5-FU therapy also has the potential to offer valuable guidance in pinpointing pharmacological approaches that can be employed to prevent or ameliorate these effects. The present study provides an overview of management strategies for cardiac events induced by fluoropyrimidine-based cancer treatments. The review encompasses the underlying molecular and cellular mechanisms of cardiotoxicity, associated risk factors, and diagnostic methods. Additionally, we provide information on several available treatments and drug choices for angina resulting from 5-FU exposure, including nicorandil, ranolazine, trimetazidine, ivabradine, and sacubitril-valsartan, which have demonstrated potential in mitigating or protecting against chemotherapy-induced adverse cardiac effects.
Collapse
Affiliation(s)
- Mohsen Rajaeinejad
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar-Roudsari
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
- Iranian Cancer Control Center, Tehran, Iran
| | - Mehran Khoshfetrat
- Department of Cardiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | | | - Reza Mosaed
- Infection Diseases Research Center, AJA University of Medical Sciences, Tehran, Iran
- Student Research Committee, AJA University of Medical Sciences, Tehran, Iran
| | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Babak Arjmand
- Department of Internal Medicine, School of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Minotti G, Menna P, Camilli M, Salvatorelli E, Levi R. Beyond hypertension: Diastolic dysfunction associated with cancer treatment in the era of cardio-oncology. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 94:365-409. [PMID: 35659376 DOI: 10.1016/bs.apha.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cancer patients are at an increased risk of cardiovascular events. Both old-generation cytostatics/cytotoxics and new-generation "targeted" drugs can in fact damage cardiomyocytes, endothelial cells of veins and arteries, specialized cells of the conduction system, pericardium, and valves. A new discipline, cardio-oncology, has therefore developed with the aim of protecting cancer patients from cardiovascular events, while also providing them with the best possible oncologic treatment. Anthracyclines have long been known to elicit cardiotoxicity that, depending on treatment- or patient-related factors, may progress with a variable velocity toward cardiomyopathy and systolic heart failure. However, early compromise of diastolic function may precede systolic dysfunction, and a progression of early diastolic dysfunction to diastolic rather than systolic heart failure has been documented in long-term cancer survivors. This chapter first describes general notions about hypertension in the cancer patient and then moves on reviewing the pathophysiology and clinical trajectories of diastolic dysfunction, and the molecular mechanisms of anthracycline-induced diastolic dysfunction. Diastolic dysfunction can in fact be caused and/or aggravated by hypertension. Pharmacologic foundations and therapeutic opportunities to prevent or treat diastolic dysfunction before it progresses toward heart failure are also reviewed, with a special emphasis on the mechanisms of action of drugs that raised hopes to treat diastolic dysfunction in the general population (sacubitril/valsartan, guanylyl cyclase activators, phosphodiesterase inhibitors, ranolazine, inhibitors of type-2 sodium-glucose-inked transporter). Cardio-oncologists will be confronted with the risk:benefit ratio of using these drugs in the cancer patient.
Collapse
Affiliation(s)
- Giorgio Minotti
- Department of Medicine, Campus Bio-Medico University and Fondazione Policlinico, Rome, Italy.
| | - Pierantonio Menna
- Department of Health Sciences, Campus Bio-Medico University and Fondazione Policlinico, Rome, Italy
| | - Massimiliano Camilli
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome
| | - Emanuela Salvatorelli
- Department of Medicine, Campus Bio-Medico University and Fondazione Policlinico, Rome, Italy
| | - Roberto Levi
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
8
|
Djamgoz MBA. Combinatorial Therapy of Cancer: Possible Advantages of Involving Modulators of Ionic Mechanisms. Cancers (Basel) 2022; 14:2703. [PMID: 35681682 PMCID: PMC9179511 DOI: 10.3390/cancers14112703] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer is a global health problem that 1 in 2-3 people can expect to experience during their lifetime. Several different modalities exist for cancer management, but all of these suffer from significant shortcomings in both diagnosis and therapy. Apart from developing completely new therapies, a viable way forward is to improve the efficacy of the existing modalities. One way is to combine these with each other or with other complementary approaches. An emerging latter approach is derived from ionic mechanisms, mainly ion channels and exchangers. We evaluate the evidence for this systematically for the main treatment methods: surgery, chemotherapy, radiotherapy and targeted therapies (including monoclonal antibodies, steroid hormones, tyrosine kinase inhibitors and immunotherapy). In surgery, the possible systemic use of local anesthetics to suppress subsequent relapse is still being discussed. For all the other methods, there is significant positive evidence for several cancers and a range of modulators of ionic mechanisms. This applies also to some of the undesirable side effects of the treatments. In chemotherapy, for example, there is evidence for co-treatment with modulators of the potassium channel (Kv11.1), pH regulation (sodium-hydrogen exchanger) and Na+-K+-ATPase (digoxin). Voltage-gated sodium channels, shown previously to promote metastasis, appear to be particularly useful for co-targeting with inhibitors of tyrosine kinases, especially epidermal growth factor. It is concluded that combining current orthodox treatment modalities with modulators of ionic mechanisms can produce beneficial effects including (i) making the treatment more effective, e.g., by lowering doses; (ii) avoiding the onset of resistance to therapy; (iii) reducing undesirable side effects. However, in many cases, prospective clinical trials are needed to put the findings firmly into clinical context.
Collapse
Affiliation(s)
- Mustafa B. A. Djamgoz
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; ; Tel.: +44-796-181-6959
- Biotechnology Research Centre, Cyprus International University, Haspolat, Mersin 10, Turkey
| |
Collapse
|
9
|
Gabani M, Castañeda D, Nguyen QM, Choi SK, Chen C, Mapara A, Kassan A, Gonzalez AA, Khataei T, Ait-Aissa K, Kassan M. Association of Cardiotoxicity With Doxorubicin and Trastuzumab: A Double-Edged Sword in Chemotherapy. Cureus 2021; 13:e18194. [PMID: 34589374 PMCID: PMC8459919 DOI: 10.7759/cureus.18194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 11/05/2022] Open
Abstract
Anticancer drugs play an important role in reducing mortality rates and increasing life expectancy in cancer patients. Treatments include monotherapy and/or a combination of radiation therapy, chemotherapy, hormone therapy, or immunotherapy. Despite great advances in drug development, some of these treatments have been shown to induce cardiotoxicity directly affecting heart function and structure, as well as accelerating the development of cardiovascular disease. Such side effects restrict treatment options and can negatively affect disease management. Consequently, when managing cancer patients, it is vital to understand the mechanisms causing cardiotoxicity to better monitor heart function, develop preventative measures against cardiotoxicity, and treat heart failure when it occurs in this patient population. This review discusses the role and mechanism of major chemotherapy agents with principal cardiovascular complications in cancer patients.
Collapse
Affiliation(s)
- Mohanad Gabani
- Internal Medicine, Harlem Hospital Center, New York, USA
| | - Diana Castañeda
- Basic Sciences, California State University, Los Angeles, USA
| | - Quynh My Nguyen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, USA
| | | | - Cheng Chen
- Department of Emergency and Critical Care, Shanghai General Hospital, Shanghai, CHN
| | - Ayesha Mapara
- Biological Sciences, Northeastern Illinois University, Chicago, USA
| | - Adam Kassan
- School of Pharmacy, West Coast University, Los Angeles, USA
| | - Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, CHL
| | | | | | - Modar Kassan
- Physiology, The University of Tennessee Health Science Center, Memphis, USA
| |
Collapse
|
10
|
Cadeddu Dessalvi C, Deidda M, Noto A, Madeddu C, Cugusi L, Santoro C, López-Fernández T, Galderisi M, Mercuro G. Antioxidant Approach as a Cardioprotective Strategy in Chemotherapy-Induced Cardiotoxicity. Antioxid Redox Signal 2021; 34:572-588. [PMID: 32151144 DOI: 10.1089/ars.2020.8055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Chemotherapy-induced cardiotoxicity (CTX) has been associated with redox signaling imbalance. In fact, redox reactions are crucial for normal heart physiology, whereas excessive oxidative stress can cause cardiomyocyte structural damage. Recent Advances: An antioxidant approach as a cardioprotective strategy in this setting has shown encouraging results in preventing anticancer drug-induced CTX. Critical Issues: In fact, traditional heart failure drugs as well as many other compounds and nonpharmacological strategies, with a partial effect in reducing oxidative stress, have been shown to counterbalance chemotherapy-induced CTX in this setting to some extent. Future Directions: Given the various pathways of toxicity involved in different chemotherapeutic schemes, interactions with redox balance need to be fine-tuned and a personalized cardioprotective approach seems to be required.
Collapse
Affiliation(s)
| | - Martino Deidda
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Antonio Noto
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Clelia Madeddu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Lucia Cugusi
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Ciro Santoro
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Teresa López-Fernández
- Cardiology Service, Cardio-Oncology Unit, La Paz University Hospital, IdiPAz Research Institute, Ciber CV, Madrid, Spain
| | - Maurizio Galderisi
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
11
|
Zhabyeyev P, Chen X, Vanhaesebroeck B, Oudit GY. PI3Kα in cardioprotection: Cytoskeleton, late Na + current, and mechanism of arrhythmias. Channels (Austin) 2020; 13:520-532. [PMID: 31790629 PMCID: PMC6930018 DOI: 10.1080/19336950.2019.1697127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PI 3-kinase α (PI3Kα) is a lipid kinase that converts phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-3,4,5-triphosphate (PIP3). PI3Kα regulates a variety of cellular processes such as nutrient sensing, cell cycle, migration, and others. Heightened activity of PI3Kα in many types of cancer made it a prime oncology drug target, but also raises concerns of possible adverse effects on the heart. Indeed, recent advances in preclinical models demonstrate an important role of PI3Kα in the control of cytoskeletal integrity, Na+ channel activity, cardioprotection, and prevention of arrhythmias.
Collapse
Affiliation(s)
- Pavel Zhabyeyev
- Department of Medicine, University of Alberta, Edmonton, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Xueyi Chen
- Department of Medicine, University of Alberta, Edmonton, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | | | - Gavin Y Oudit
- Department of Medicine, University of Alberta, Edmonton, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
12
|
Chu X, Zhang Y, Xue Y, Li Z, Shi J, Wang H, Chu L. Crocin protects against cardiotoxicity induced by doxorubicin through TLR-2/NF-κB signal pathway in vivo and vitro. Int Immunopharmacol 2020; 84:106548. [PMID: 32388215 DOI: 10.1016/j.intimp.2020.106548] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/31/2022]
Abstract
Doxorubicin (DOX) is widely used to treat multiple of tumors, but its clinical trials are allied with some serious adverse events mainly cardiac functional abnormalities. So the objective of our investigation is to identify the cardioprotective action of crocin (CRO), a natural compound derived from saffron, against DOX-induced cardiotoxicity. CRO was injected intraperitoneally (i.p.) to rats for sixconsecutive days and DOX (i.p.) was administered on the fourth day. H9c2 cells were treated with DOX for 24 h after being pre-treated by CRO for 2 h. CROreduced tachycardiaand J-point elevation,decreased the levelsof serum creatine kinase, lactate dehydrogenase,glutamic-oxalacetic transaminase and glutamic-pyruvic transaminase.CRO exerted positive effect on DOX-induced ROS productionand changes of oxidative stress biomarkers. CRO significantlydecreased intracellular Ca2+ concentration andincreased mitochondria membrane potentialin H9c2 cells. CRO also resisted the DOX-induced high expressionof tumor necrosis factor-αand interleukin-6, inhibitedapoptosisand improved the abnormal expression levels of Bcl-2, Bax and Caspase-3 proteins.CRO obviously restrained DOX-mediatedhigh expression of toll-like receptor-2 (TLR-2) and nuclear factor kappa-B (NF-κB) in ventricular tissue. Inbrief,CRO distinctly restrained DOX-mediated cardiotoxicity by inhibiting oxidative stress, inflammation, apoptoticandredressingcardiomyocyte calcium dyshomeostasis and mitochondria damage.These cardioprotective effects may berelated closely with the TLR2/NF-κB pathway.
Collapse
Affiliation(s)
- Xi Chu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Yuanyuan Zhang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Yucong Xue
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Ziliang Li
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Jing Shi
- The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China.
| | - Hongfang Wang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China.
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China.
| |
Collapse
|
13
|
Djamgoz MBA, Fraser SP, Brackenbury WJ. In Vivo Evidence for Voltage-Gated Sodium Channel Expression in Carcinomas and Potentiation of Metastasis. Cancers (Basel) 2019; 11:E1675. [PMID: 31661908 PMCID: PMC6895836 DOI: 10.3390/cancers11111675] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 12/16/2022] Open
Abstract
A wide body of evidence suggests that voltage-gated sodium channels (VGSCs) are expressed de novo in several human carcinomas where channel activity promotes a variety of cellular behaviours integral to the metastatic cascade. These include directional motility (including galvanotaxis), pH balance, extracellular proteolysis, and invasion. Contrary to the substantial in vitro data, however, evidence for VGSC involvement in the cancer process in vivo is limited. Here, we critically assess, for the first time, the available in vivo evidence, hierarchically from mRNA level to emerging clinical aspects, including protein-level studies, electrolyte content, animal tests, and clinical imaging. The evidence strongly suggests that different VGSC subtypes (mainly Nav1.5 and Nav1.7) are expressed de novo in human carcinoma tissues and generally parallel the situation in vitro. Consistent with this, tissue electrolyte (sodium) levels, quantified by clinical imaging, are significantly higher in cancer vs. matched non-cancer tissues. These are early events in the acquisition of metastatic potential by the cancer cells. Taken together, the multi-faceted evidence suggests that the VGSC expression has clinical (diagnostic and therapeutic) potential as a prognostic marker, as well as an anti-metastatic target. The distinct advantages offered by the VGSC include especially (1) its embryonic nature, demonstrated most clearly for the predominant neonatal Nav1.5 expression in breast and colon cancer, and (2) the specifically druggable persistent current that VGSCs develop under hypoxic conditions, as in growing tumours, which promotes invasiveness and metastasis.
Collapse
Affiliation(s)
- Mustafa B A Djamgoz
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Scott P Fraser
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - William J Brackenbury
- Department of Biology and York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
14
|
Korzeniowska K, Jankowski J, Cieślewicz A, Jabłecka A. Is it possible to prevent chemotherapy-induced heart failure with cardiovascular drugs - the review of the current clinical evidence. Ther Clin Risk Manag 2019; 15:1095-1110. [PMID: 31564887 PMCID: PMC6743633 DOI: 10.2147/tcrm.s215857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/25/2019] [Indexed: 01/26/2023] Open
Abstract
Cardiovascular diseases and cancer are the most common death causes in the USA and Europe. Moreover, many patients suffer from both of these conditions - a situation which may result from cardiotoxicity of anticancer treatment. In order to reduce the severity of this adverse effect, various methods have been proposed, including the usage of new drug forms and less toxic analogs, omitting the combinations of potentially cardiotoxic drugs and introducing potential cardioprotective agents to the therapy. However, prevention of cardiotoxicity still seems to be insufficient. The article reviews the results of current studies on the use of cardiovascular drugs in the prevention of cardiotoxicity. Based on this knowledge, the most promising cardioprotective drugs seem to be carvedilol, nebivolol, enalapril, and candesartan, as they prevent heart remodeling and correct elevated resting heart rate, which directly affects mortality. Alternatively, in case of adverse reactions, statins might be considered.
Collapse
Affiliation(s)
- Katarzyna Korzeniowska
- Department of Clinical Pharmacology, Poznan University of Medical Sciences, Poznan61-848, Poland
| | - Jerzy Jankowski
- Department of Clinical Pharmacology, Poznan University of Medical Sciences, Poznan61-848, Poland
| | - Artur Cieślewicz
- Department of Clinical Pharmacology, Poznan University of Medical Sciences, Poznan61-848, Poland
| | - Anna Jabłecka
- Department of Clinical Pharmacology, Poznan University of Medical Sciences, Poznan61-848, Poland
| |
Collapse
|
15
|
Minotti G, Menna P, Calabrese V, Greco C, Armento G, Annibali O, Marchesi F, Salvatorelli E, Reggiardo G. Pharmacology of Ranolazine versus Common Cardiovascular Drugs in Patients with Early Diastolic Dysfunction Induced by Anthracyclines or Nonanthracycline Chemotherapeutics: A Phase 2b Minitrial. J Pharmacol Exp Ther 2019; 370:197-205. [PMID: 31101682 DOI: 10.1124/jpet.119.258178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022] Open
Abstract
We have reported that anthracyclines and nonanthracycline chemotherapeutics caused diastolic dysfunction in cancer patients without cardiovascular risk factors. Diastolic dysfunction occurred as early as 1 week after the last chemotherapy cycle and manifested as impaired myocardial relaxation at echocardiography or persistent elevations of B-type natriuretic peptide (BNP) or troponin. The antianginal drug ranolazine shows cardiac relaxant effects that we considered of value to treat early diastolic dysfunction induced by cancer drugs; therefore, 24 low-risk patients with post-chemotherapy diastolic dysfunction were randomized (1:1) to ranolazine or the investigator's choice of common cardiovascular drugs, such as β-blockers and/or angiotensin-converting enzyme inhibitors or loop diuretics (best standard therapy, BST). After 5 weeks, 12 of 12 patients on ranolazine recovered from diastolic dysfunction, whereas 3 of 12 patients on BST did not improve; however, adverse events (not serious) were apparently more frequent for ranolazine than for BST (4/12 vs. 1/12). Ranolazine did not lower blood pressure, whereas BST reduced systolic pressure and caused a trend toward a reduced diastolic pressure. Most patients at randomization showed tachycardia resulting from chemotherapy-related anemia. Hemoglobin recovery contributed to normalizing heart rate in these patients; however, some patients in the ranolazine arm developed tachycardia through chronotropic effects of high BNP levels and returned to a normal heart rate through the effects of ranolazine on decreasing BNP levels. This minitrial describes the potential effects of ranolazine on relieving chemotherapy-related diastolic dysfunction; however, clinical implications of these findings need to be characterized by studies with an adequate sample size. SIGNIFICANCE STATEMENT: The antianginal drug ranolazine causes cardiac relaxant effects that might relieve diastolic dysfunction. In a clinical pharmacology study, 24 patients were randomized (1:1) to receive ranolazine or common cardiovascular drugs to treat early diastolic dysfunction induced by anthracycline-based or nonanthracycline chemotherapy. Ranolazine relieved diastolic dysfunction in these patients. The safety profile of ranolazine in cancer patients is similar to that of the general population. Compared with common cardiovascular drugs, ranolazine relieved diastolic dysfunction without lowering blood pressure. The sample size of this study was nonetheless too small to permit considerations about the potential clinical value of ranolazine for oncologic patients with early diastolic dysfunction induced by anthracyclines or nonanthracycline chemotherapeutics. This information should be obtained by studies with an adequate sample size.
Collapse
Affiliation(s)
- Giorgio Minotti
- Clinical Pharmacology Unit (G.M., P.M.) and Cardio Center (V.C.), Campus Bio-Medico University Hospital, Rome; Units of Drug Sciences (G.M., E.S.), Radiation Oncology (C.G.), Oncology (G.A.), and Hematology (O.A.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza) (G.R.), Italy
| | - Pierantonio Menna
- Clinical Pharmacology Unit (G.M., P.M.) and Cardio Center (V.C.), Campus Bio-Medico University Hospital, Rome; Units of Drug Sciences (G.M., E.S.), Radiation Oncology (C.G.), Oncology (G.A.), and Hematology (O.A.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza) (G.R.), Italy
| | - Vito Calabrese
- Clinical Pharmacology Unit (G.M., P.M.) and Cardio Center (V.C.), Campus Bio-Medico University Hospital, Rome; Units of Drug Sciences (G.M., E.S.), Radiation Oncology (C.G.), Oncology (G.A.), and Hematology (O.A.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza) (G.R.), Italy
| | - Carlo Greco
- Clinical Pharmacology Unit (G.M., P.M.) and Cardio Center (V.C.), Campus Bio-Medico University Hospital, Rome; Units of Drug Sciences (G.M., E.S.), Radiation Oncology (C.G.), Oncology (G.A.), and Hematology (O.A.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza) (G.R.), Italy
| | - Grazia Armento
- Clinical Pharmacology Unit (G.M., P.M.) and Cardio Center (V.C.), Campus Bio-Medico University Hospital, Rome; Units of Drug Sciences (G.M., E.S.), Radiation Oncology (C.G.), Oncology (G.A.), and Hematology (O.A.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza) (G.R.), Italy
| | - Ombretta Annibali
- Clinical Pharmacology Unit (G.M., P.M.) and Cardio Center (V.C.), Campus Bio-Medico University Hospital, Rome; Units of Drug Sciences (G.M., E.S.), Radiation Oncology (C.G.), Oncology (G.A.), and Hematology (O.A.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza) (G.R.), Italy
| | - Francesco Marchesi
- Clinical Pharmacology Unit (G.M., P.M.) and Cardio Center (V.C.), Campus Bio-Medico University Hospital, Rome; Units of Drug Sciences (G.M., E.S.), Radiation Oncology (C.G.), Oncology (G.A.), and Hematology (O.A.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza) (G.R.), Italy
| | - Emanuela Salvatorelli
- Clinical Pharmacology Unit (G.M., P.M.) and Cardio Center (V.C.), Campus Bio-Medico University Hospital, Rome; Units of Drug Sciences (G.M., E.S.), Radiation Oncology (C.G.), Oncology (G.A.), and Hematology (O.A.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza) (G.R.), Italy
| | - Giorgio Reggiardo
- Clinical Pharmacology Unit (G.M., P.M.) and Cardio Center (V.C.), Campus Bio-Medico University Hospital, Rome; Units of Drug Sciences (G.M., E.S.), Radiation Oncology (C.G.), Oncology (G.A.), and Hematology (O.A.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza) (G.R.), Italy
| |
Collapse
|
16
|
Tocchetti CG, Cadeddu C, Di Lisi D, Femminò S, Madonna R, Mele D, Monte I, Novo G, Penna C, Pepe A, Spallarossa P, Varricchi G, Zito C, Pagliaro P, Mercuro G. From Molecular Mechanisms to Clinical Management of Antineoplastic Drug-Induced Cardiovascular Toxicity: A Translational Overview. Antioxid Redox Signal 2019; 30:2110-2153. [PMID: 28398124 PMCID: PMC6529857 DOI: 10.1089/ars.2016.6930] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: Antineoplastic therapies have significantly improved the prognosis of oncology patients. However, these treatments can bring to a higher incidence of side-effects, including the worrying cardiovascular toxicity (CTX). Recent Advances: Substantial evidence indicates multiple mechanisms of CTX, with redox mechanisms playing a key role. Recent data singled out mitochondria as key targets for antineoplastic drug-induced CTX; understanding the underlying mechanisms is, therefore, crucial for effective cardioprotection, without compromising the efficacy of anti-cancer treatments. Critical Issues: CTX can occur within a few days or many years after treatment. Type I CTX is associated with irreversible cardiac cell injury, and it is typically caused by anthracyclines and traditional chemotherapeutics. Type II CTX is generally caused by novel biologics and more targeted drugs, and it is associated with reversible myocardial dysfunction. Therefore, patients undergoing anti-cancer treatments should be closely monitored, and patients at risk of CTX should be identified before beginning treatment to reduce CTX-related morbidity. Future Directions: Genetic profiling of clinical risk factors and an integrated approach using molecular, imaging, and clinical data may allow the recognition of patients who are at a high risk of developing chemotherapy-related CTX, and it may suggest methodologies to limit damage in a wider range of patients. The involvement of redox mechanisms in cancer biology and anticancer treatments is a very active field of research. Further investigations will be necessary to uncover the hallmarks of cancer from a redox perspective and to develop more efficacious antineoplastic therapies that also spare the cardiovascular system.
Collapse
Affiliation(s)
| | - Christian Cadeddu
- 2 Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Daniela Di Lisi
- 3 Biomedical Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Saveria Femminò
- 4 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Rosalinda Madonna
- 5 Center of Aging Sciences and Translational Medicine - CESI-MeT, "G. d'Annunzio" University, Chieti, Italy.,6 Department of Internal Medicine, The Texas Heart Institute and Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Donato Mele
- 7 Cardiology Unit, Emergency Department, University Hospital of Ferrara, Ferrara, Italy
| | - Ines Monte
- 8 Department of General Surgery and Medical-Surgery Specialities, University of Catania, Catania, Italy
| | - Giuseppina Novo
- 3 Biomedical Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Claudia Penna
- 4 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Alessia Pepe
- 9 U.O.C. Magnetic Resonance Imaging, Fondazione Toscana G. Monasterio C.N.R., Pisa, Italy
| | - Paolo Spallarossa
- 10 Clinic of Cardiovascular Diseases, IRCCS San Martino IST, Genova, Italy
| | - Gilda Varricchi
- 1 Department of Translational Medical Sciences, Federico II University, Naples, Italy.,11 Center for Basic and Clinical Immunology Research (CISI) - Federico II University, Naples, Italy
| | - Concetta Zito
- 12 Division of Cardiology, Clinical and Experimental Department of Medicine and Pharmacology, Policlinico "G. Martino" University of Messina, Messina, Italy
| | - Pasquale Pagliaro
- 4 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Giuseppe Mercuro
- 2 Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
17
|
Zhabyeyev P, McLean B, Chen X, Vanhaesebroeck B, Oudit GY. Inhibition of PI3Kinase-α is pro-arrhythmic and associated with enhanced late Na + current, contractility, and Ca 2+ release in murine hearts. J Mol Cell Cardiol 2019; 132:98-109. [PMID: 31095940 DOI: 10.1016/j.yjmcc.2019.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/11/2019] [Accepted: 05/09/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Phosphoinositide 3-kinase α (PI3Kα) is a proto-oncogene with high activity in the heart. BYL719 (BYL) is a PI3Kα-selective small molecule inhibitor and a prospective drug for advanced solid tumors. We investigated whether acute pharmacological inhibition of PI3Kα has pro-arrhythmic effects. METHODS & RESULTS In isolated wild-type (WT) cardiomyocytes, pharmacological inhibition of PI3Kα (BYL719) increased contractility by 28%, Ca2+ release by 20%, and prolonged action potential (AP) repolarization by 10-15%. These effects of BYL719 were abolished by inhibition of reverse-mode Na+/Ca2+ exchanger (NCX) (KB-R7943) or by inhibition of late Na+ current (INa-L) (ranolazine). BYL719 had no effect on PI3Kα-deficient cardiomyocytes, suggesting BYL719 effects were PI3Kα-dependent and mediated via NCX and INa-L. INa-L was suppressed by activation of PI3Kα, application of exogenous intracellular PIP3, or ranolazine. Investigation of AP and Ca2+ release in whole heart preparations using epicardial optical mapping showed that inhibition of PI3Kα similarly led to prolongation of AP and enhancement of Ca2+ release. In hearts of PI3Kα-deficient mice, β-adrenergic stimulation in the presence of high Ca2+ concentrations and 12-Hz burst pacing led to delayed afterdepolarizations and ventricular fibrillation. In vivo, administration of BYL719 prolonged QT interval [QTcF (Fridericia) increased by 15%] in WT, but not in PI3Kα-deficient mice. CONCLUSIONS Pharmacological inhibition of PI3Kα is arrhythmogenic due to activation of INa-L leading to increased sarcoplasmic reticulum Ca2+ load and prolonged QT interval. Therefore, monitoring of cardiac electrical activity in patients receiving PI3K inhibitors may provide further insights into the arrhythmogenic potential of PI3Ka inhibition.
Collapse
Affiliation(s)
- Pavel Zhabyeyev
- Department of Medicine, University of Alberta, Edmonton, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Brent McLean
- Department of Medicine, University of Alberta, Edmonton, Canada; Department of Physiology, University of Alberta, Edmonton, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Xueyi Chen
- Department of Medicine, University of Alberta, Edmonton, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | | | - Gavin Y Oudit
- Department of Medicine, University of Alberta, Edmonton, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada.
| |
Collapse
|
18
|
Ghosh GC, Ghosh RK, Bandyopadhyay D, Chatterjee K, Aneja A. Ranolazine: Multifaceted Role beyond Coronary Artery Disease, a Recent Perspective. Heart Views 2019; 19:88-98. [PMID: 31007857 PMCID: PMC6448470 DOI: 10.4103/heartviews.heartviews_18_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ranolazine is a piperazine derivative approved as an antianginal. Primarily used as a second-line antianginal in stable coronary artery disease. Ranolazine blocks the late Na + current and prevents the rise of cytosolic calcium. It decreases myocardial wall tension and improves coronary blood flow. Ranolazine is effective in atrial fibrillation (AF) as an adjunct to electrical or pharmacological cardioversion. It can be used in combination with amiodarone or dronedarone. It has also been used in AF arising after coronary artery bypass grafting surgery. Role of ranolazine is also being evaluated in pulmonary arterial hypertension, diastolic dysfunction, and chemotherapy-induced cardiotoxicity. Ranolazine has some anti-glycemic effect and has shown a reduction of hemoglobin A1c in multiple trials. The antianginal effect of ranolazine has also been seen to be more in patients with diabetes compared to those without diabetes. Ranolazine is being evaluated in patients with the peripheral arterial disease with intermittent claudication and hypertrophic cardiomyopathy. Pilot studies have shown that ranolazine may be beneficial in neurological conditions with myotonia. The evidence-base on the use of ranolazine in various conditions is rapidly increasing with results of further trials eagerly awaited. Accumulating evidence may see ranolazine in routine clinical use for many conditions beyond its traditional role as an antianginal.
Collapse
Affiliation(s)
- Gopal Chandra Ghosh
- Department of Cardiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Raktim Kumar Ghosh
- MetroHealth Medical Center, Case Western Reserve University, Heart and Vascular Institute, Cleveland, OH, USA
| | | | - Krishnarpan Chatterjee
- Department of Cardiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Ashish Aneja
- MetroHealth Medical Center, Case Western Reserve University, Heart and Vascular Institute, Cleveland, OH, USA
| |
Collapse
|
19
|
Menna P, Salvatorelli E, Armento G, Annibali O, Greco C, Marchesi F, Calabrese V, Reggiardo G, Minotti G. The Endogenous Lusitropic and Chronotropic Agent, B-Type Natriuretic Peptide, Limits Cardiac Troponin Release in Cancer Patients with an Early Impairment of Myocardial Relaxation Induced by Anthracyclines. J Pharmacol Exp Ther 2018; 367:518-527. [PMID: 30275150 DOI: 10.1124/jpet.118.253104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/27/2018] [Indexed: 11/22/2022] Open
Abstract
We have reported that cancer patients treated with anthracycline-based or nonanthracycline chemotherapy developed an early impairment of myocardial relaxation at echocardiography or persistent elevations of the cardiac hormone B-type natriuretic peptide (BNP). Post-hoc pharmacologic analyses showed that BNP elevations were induced by impaired relaxation and caused positive lusitropic effects that maintained normal relaxation. High BNP levels and impaired relaxation were therefore characterized as mutually exclusive manifestations of diastolic dysfunction, but high BNP levels resulted in positive chronotropism and inappropriate tachycardia. Some patients developed increased circulating levels of cardiac troponin I isoform (cTnI), a marker of cardiomyocyte necrosis. Here we have characterized whether cTnI elevations correlated with diastolic dysfunction that manifested as impaired relaxation or a high level of BNP. The effects of high BNP levels on cTnI elevations were also characterized. We show that impaired relaxation or high BNP levels were significantly more frequent in patients with cTnI elevations. High BNP levels diminished the plasma peak and area under the curve of cTnI, but this result was accompanied by inappropriate tachycardia. cTnI elevations occurred only in patients treated with anthracyclines; moreover, the association of impaired relaxation or high BNP levels with cTnI elevations was significantly more frequent in doxorubicin-treated patients compared with patients treated with its analog, epirubicin. These findings describe cause-and-effect relations between impaired relaxation and cardiomyocyte necrosis, illuminate the role of anthracycline analogs, denote that the beneficial effects of BNP in relieving impaired relaxation and cardiomyocyte necrosis are counterbalanced by inappropriate tachycardia. Patients showing troponin elevations and impaired relaxation or high BNP levels should be treated with lusitropic drugs that lack a positive chronotropism.
Collapse
Affiliation(s)
- Pierantonio Menna
- Units of Drug Sciences (P.M., E.S., G.M.), Oncology (G.A.), Hematology (O.A.), Radiation Oncology (C.G.), and Cardiovascular Sciences (V.C.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza), Italy (G.R.)
| | - Emanuela Salvatorelli
- Units of Drug Sciences (P.M., E.S., G.M.), Oncology (G.A.), Hematology (O.A.), Radiation Oncology (C.G.), and Cardiovascular Sciences (V.C.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza), Italy (G.R.)
| | - Grazia Armento
- Units of Drug Sciences (P.M., E.S., G.M.), Oncology (G.A.), Hematology (O.A.), Radiation Oncology (C.G.), and Cardiovascular Sciences (V.C.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza), Italy (G.R.)
| | - Ombretta Annibali
- Units of Drug Sciences (P.M., E.S., G.M.), Oncology (G.A.), Hematology (O.A.), Radiation Oncology (C.G.), and Cardiovascular Sciences (V.C.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza), Italy (G.R.)
| | - Carlo Greco
- Units of Drug Sciences (P.M., E.S., G.M.), Oncology (G.A.), Hematology (O.A.), Radiation Oncology (C.G.), and Cardiovascular Sciences (V.C.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza), Italy (G.R.)
| | - Francesco Marchesi
- Units of Drug Sciences (P.M., E.S., G.M.), Oncology (G.A.), Hematology (O.A.), Radiation Oncology (C.G.), and Cardiovascular Sciences (V.C.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza), Italy (G.R.)
| | - Vito Calabrese
- Units of Drug Sciences (P.M., E.S., G.M.), Oncology (G.A.), Hematology (O.A.), Radiation Oncology (C.G.), and Cardiovascular Sciences (V.C.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza), Italy (G.R.)
| | - Giorgio Reggiardo
- Units of Drug Sciences (P.M., E.S., G.M.), Oncology (G.A.), Hematology (O.A.), Radiation Oncology (C.G.), and Cardiovascular Sciences (V.C.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza), Italy (G.R.)
| | - Giorgio Minotti
- Units of Drug Sciences (P.M., E.S., G.M.), Oncology (G.A.), Hematology (O.A.), Radiation Oncology (C.G.), and Cardiovascular Sciences (V.C.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome (F.M.); and Mediservice S.r.l., Agrate Brianza (Monza), Italy (G.R.)
| |
Collapse
|
20
|
Cadeddu Dessalvi C, Deidda M, Mele D, Bassareo PP, Esposito R, Santoro C, Lembo M, Galderisi M, Mercuro G. Chemotherapy-induced cardiotoxicity. J Cardiovasc Med (Hagerstown) 2018; 19:315-323. [DOI: 10.2459/jcm.0000000000000667] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Menna P, Calabrese V, Armento G, Annibali O, Greco C, Salvatorelli E, Marchesi F, Reggiardo G, Minotti G. Pharmacology of Cardio-Oncology: Chronotropic and Lusitropic Effects of B-Type Natriuretic Peptide in Cancer Patients with Early Diastolic Dysfunction Induced by Anthracycline or Nonanthracycline Chemotherapy. J Pharmacol Exp Ther 2018; 366:158-168. [PMID: 29720563 DOI: 10.1124/jpet.118.249235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/30/2018] [Indexed: 03/08/2025] Open
Abstract
B-type natriuretic peptide (BNP) is widely used as a diagnostic marker of systolic dysfunction. We previously conducted a clinical study in which anthracycline or nonanthracycline chemotherapy did not cause systolic dysfunction in cancer patients; however, some patients showed asymptomatic alterations in diastolic relaxation, whereas others showed persistent elevations of BNP, measured as prohormone BNP amino-terminal fragment. Here we describe post hoc pharmacologic analyses showing that: 1) impaired relaxation and persistent elevations of BNP were mutually exclusive manifestations of diastolic dysfunction; 2) in some patients, BNP elevations were induced by an early compromise of myocardial relaxation; 3) BNP elevations then halted further deterioration of relaxation in a concentration-dependent manner; and 4) high BNP increased heart rate (HR). BNP elevations therefore caused positive lusitropy and chronotropism, which might be explained by activation of natriuretic receptor-associated guanylyl cyclase and production of cGMP in ventricular myocytes and sinoatrial node, respectively. BNP levels also influenced responses to a lusitropic drug, ranolazine, that was given to treat diastolic dysfunction. For patients with impaired relaxation and normal or only transiently high levels of BNP, ranolazine improved myocardial relaxation without inducing chronotropic effects. For patients in whom relaxation abnormalities were corrected by persistently high BNP levels, ranolazine substituted for BNP and decreased HR by diminishing BNP levels. These findings describe a pharmacologic scenario in which cancer drugs cause an early diastolic dysfunction that in some patients is both heralded and modulated by BNP elevations. Patients showing BNP elevations should therefore receive the adequate pharmacologic treatment of correcting diastolic dysfunction and tachycardia.
Collapse
Affiliation(s)
- Pierantonio Menna
- Units of Drug Sciences (P.M., E.S., G.M.), Cardiovascular Sciences (V.C.), Oncology (G.A.), Hematology (O.A.), and Radiation Oncology (C.G.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome, Italy; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy, (F.M.); and Mediservice S.r.l., Agrate Brianza, Monza, Italy (G.R.)
| | - Vito Calabrese
- Units of Drug Sciences (P.M., E.S., G.M.), Cardiovascular Sciences (V.C.), Oncology (G.A.), Hematology (O.A.), and Radiation Oncology (C.G.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome, Italy; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy, (F.M.); and Mediservice S.r.l., Agrate Brianza, Monza, Italy (G.R.)
| | - Grazia Armento
- Units of Drug Sciences (P.M., E.S., G.M.), Cardiovascular Sciences (V.C.), Oncology (G.A.), Hematology (O.A.), and Radiation Oncology (C.G.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome, Italy; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy, (F.M.); and Mediservice S.r.l., Agrate Brianza, Monza, Italy (G.R.)
| | - Ombretta Annibali
- Units of Drug Sciences (P.M., E.S., G.M.), Cardiovascular Sciences (V.C.), Oncology (G.A.), Hematology (O.A.), and Radiation Oncology (C.G.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome, Italy; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy, (F.M.); and Mediservice S.r.l., Agrate Brianza, Monza, Italy (G.R.)
| | - Carlo Greco
- Units of Drug Sciences (P.M., E.S., G.M.), Cardiovascular Sciences (V.C.), Oncology (G.A.), Hematology (O.A.), and Radiation Oncology (C.G.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome, Italy; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy, (F.M.); and Mediservice S.r.l., Agrate Brianza, Monza, Italy (G.R.)
| | - Emanuela Salvatorelli
- Units of Drug Sciences (P.M., E.S., G.M.), Cardiovascular Sciences (V.C.), Oncology (G.A.), Hematology (O.A.), and Radiation Oncology (C.G.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome, Italy; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy, (F.M.); and Mediservice S.r.l., Agrate Brianza, Monza, Italy (G.R.)
| | - Francesco Marchesi
- Units of Drug Sciences (P.M., E.S., G.M.), Cardiovascular Sciences (V.C.), Oncology (G.A.), Hematology (O.A.), and Radiation Oncology (C.G.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome, Italy; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy, (F.M.); and Mediservice S.r.l., Agrate Brianza, Monza, Italy (G.R.)
| | - Giorgio Reggiardo
- Units of Drug Sciences (P.M., E.S., G.M.), Cardiovascular Sciences (V.C.), Oncology (G.A.), Hematology (O.A.), and Radiation Oncology (C.G.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome, Italy; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy, (F.M.); and Mediservice S.r.l., Agrate Brianza, Monza, Italy (G.R.)
| | - Giorgio Minotti
- Units of Drug Sciences (P.M., E.S., G.M.), Cardiovascular Sciences (V.C.), Oncology (G.A.), Hematology (O.A.), and Radiation Oncology (C.G.), Department of Medicine and Center for Integrated Research, University Campus Bio-Medico, Rome, Italy; Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy, (F.M.); and Mediservice S.r.l., Agrate Brianza, Monza, Italy (G.R.)
| |
Collapse
|
22
|
Varricchi G, Ameri P, Cadeddu C, Ghigo A, Madonna R, Marone G, Mercurio V, Monte I, Novo G, Parrella P, Pirozzi F, Pecoraro A, Spallarossa P, Zito C, Mercuro G, Pagliaro P, Tocchetti CG. Antineoplastic Drug-Induced Cardiotoxicity: A Redox Perspective. Front Physiol 2018; 9:167. [PMID: 29563880 PMCID: PMC5846016 DOI: 10.3389/fphys.2018.00167] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/20/2018] [Indexed: 12/28/2022] Open
Abstract
Antineoplastic drugs can be associated with several side effects, including cardiovascular toxicity (CTX). Biochemical studies have identified multiple mechanisms of CTX. Chemoterapeutic agents can alter redox homeostasis by increasing the production of reactive oxygen species (ROS) and reactive nitrogen species RNS. Cellular sources of ROS/RNS are cardiomyocytes, endothelial cells, stromal and inflammatory cells in the heart. Mitochondria, peroxisomes and other subcellular components are central hubs that control redox homeostasis. Mitochondria are central targets for antineoplastic drug-induced CTX. Understanding the mechanisms of CTX is fundamental for effective cardioprotection, without compromising the efficacy of anticancer treatments. Type 1 CTX is associated with irreversible cardiac cell injury and is typically caused by anthracyclines and conventional chemotherapeutic agents. Type 2 CTX, associated with reversible myocardial dysfunction, is generally caused by biologicals and targeted drugs. Although oxidative/nitrosative reactions play a central role in CTX caused by different antineoplastic drugs, additional mechanisms involving directly and indirectly cardiomyocytes and inflammatory cells play a role in cardiovascular toxicities. Identification of cardiologic risk factors and an integrated approach using molecular, imaging, and clinical data may allow the selection of patients at risk of developing chemotherapy-related CTX. Although the last decade has witnessed intense research related to the molecular and biochemical mechanisms of CTX of antineoplastic drugs, experimental and clinical studies are urgently needed to balance safety and efficacy of novel cancer therapies.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy
| | - Pietro Ameri
- Clinic of Cardiovascular Diseases, IRCCS San Martino IST, Genova, Italy
| | - Christian Cadeddu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Rosalinda Madonna
- Institute of Cardiology, Center of Excellence on Aging, Università degli Studi “G. d'Annunzio” Chieti – Pescara, Chieti, Italy
- Department of Internal Medicine, Texas Heart Institute and Center for Cardiovascular Biology and Atherosclerosis Research, University of Texas Health Science Center, Houston, TX, United States
| | - Giancarlo Marone
- Section of Hygiene, Department of Public Health, University of Naples Federico II, Naples, Italy
- Monaldi Hospital Pharmacy, Naples, Italy
| | - Valentina Mercurio
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Ines Monte
- Department of General Surgery and Medical-Surgery Specialities, University of Catania, Catania, Italy
| | - Giuseppina Novo
- U.O.C. Magnetic Resonance Imaging, Fondazione Toscana G. Monasterio C.N.R., Pisa, Italy
| | - Paolo Parrella
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Flora Pirozzi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Antonio Pecoraro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Paolo Spallarossa
- Clinic of Cardiovascular Diseases, IRCCS San Martino IST, Genova, Italy
| | - Concetta Zito
- Division of Clinical and Experimental Cardiology, Department of Medicine and Pharmacology, Policlinico “G. Martino” University of Messina, Messina, Italy
| | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Carlo G. Tocchetti
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
23
|
Gast KC, Viscuse PV, Nowsheen S, Haddad TC, Mutter RW, Wahner Hendrickson AE, Couch FJ, Ruddy KJ. Cardiovascular Concerns in BRCA1 and BRCA2 Mutation Carriers. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2018; 20:18. [PMID: 29497862 DOI: 10.1007/s11936-018-0609-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW BRCA1 and BRCA2 mutation carriers can be at increased cardiovascular risk. The goal of this review is to provide information about factors associated with increased cardiovascular risk, methods to prevent cardiovascular toxicities, and recommended screening guidelines. RECENT FINDINGS BRCA1/2 mutation carriers who are diagnosed with cancer are often exposed to chemotherapy, chest radiotherapy, and/or HER2 directed therapies, all of which can be cardiotoxic. In addition, BRCA1/2 carriers often undergo prophylactic salpingoopherectomies, which may also increase cardiovascular risks. Understanding the potential for increased cardiovascular risk in individuals with a BRCA1 or BRCA2 mutation, as well as gold standard practices for prevention, detection, and treatment of cardiac concerns in this population, is important.
Collapse
Affiliation(s)
- Kelly C Gast
- Department of Internal Medicine, Mayo Clinic School of Graduate Medical Education, Rochester, MN, USA
| | - Paul V Viscuse
- Department of Internal Medicine, Mayo Clinic School of Graduate Medical Education, Rochester, MN, USA
| | - Somaira Nowsheen
- Mayo Clinic Graduate School of Biomedical Sciences, Medical Scientist Training Program, Mayo Clinic School of Medicine, Rochester, MN, USA
| | - Tufia C Haddad
- Department of Oncology, Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55095, USA
| | - Robert W Mutter
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Andrea E Wahner Hendrickson
- Department of Oncology, Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55095, USA
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kathryn J Ruddy
- Department of Oncology, Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55095, USA.
| |
Collapse
|
24
|
Calabrese V, Menna P, Annibali O, Armento G, Carpino A, Cerchiara E, Greco C, Marchesi F, Spallarossa P, Toglia G, Reggiardo G, Minotti G. Early Diastolic Dysfunction after Cancer Chemotherapy: Primary Endpoint Results of a Multicenter Cardio-Oncology Study. Chemotherapy 2018; 63:55-63. [PMID: 29428939 DOI: 10.1159/000486761] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 01/14/2023]
Abstract
Asymptomatic diastolic dysfunction (DD) with preserved left ventricular ejection fraction (LVEF) is suspected to precede late cardiac events in cancer survivors treated by chemotherapy. We conducted the first multicenter study of early DD induced by chemotherapy. Patients who were candidates for standard dose chemotherapy were screened for the absence of cardiovascular risk factors, LVEF ≥50%, normal-for-age diastolic function at echocardiography (E/A ratio, E wave deceleration time; DT), normal levels of potential DD biomarkers like Nt-proBNP (≤125 pg/mL), and cardiac troponin I (cTnI, ≤0.05 ng/mL). Mitral Doppler (E/E') was left at the investigator's discretion. Chemotherapy-induced DD with preserved LVEF was diagnosed for patients showing LVEF ≥50% and any of the following: Nt-proBNP > 125 pg/mL, cTnI > 0.05 ng/mL, and out-of-range E/A and DT. Eighty patients (68 females, 12 males, median age 49 years) were evaluated at 1 week after chemotherapy (T1) [corrected]. Thirty-three protocol-defined diastolic events were observed (15 Nt-proBNP > 125 pg/mL, 14 grade I DD by E/A and DT, 4 cTnI > 0.05 ng/mL). The events occurred in 29 asymptomatic patients with LVEF ≥50% (36% incidence of DD with preserved LVEF). Interactions occurred between biomarkers and grade I DD. E/E' abnormalities were not observed. Both anthracycline-based and nonanthracycline regimens induced DD. These findings show that biomarkers and echocardiography intercept early DD in otherwise asymptomatic low-risk cancer patients treated by standard dose chemotherapy. These findings therefore call for the adequate cardiac management of cancer patients.
Collapse
Affiliation(s)
- Vito Calabrese
- Units of Cardiology, Hematology, Oncology, Radiation Therapy and Clinical Pharmacology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Pierantonio Menna
- Units of Cardiology, Hematology, Oncology, Radiation Therapy and Clinical Pharmacology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Ombretta Annibali
- Units of Cardiology, Hematology, Oncology, Radiation Therapy and Clinical Pharmacology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Grazia Armento
- Units of Cardiology, Hematology, Oncology, Radiation Therapy and Clinical Pharmacology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Armando Carpino
- Department of Cardiology, National Cancer Institute "Regina Elena", Rome, Italy
| | - Elisabetta Cerchiara
- Units of Cardiology, Hematology, Oncology, Radiation Therapy and Clinical Pharmacology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Carlo Greco
- Units of Cardiology, Hematology, Oncology, Radiation Therapy and Clinical Pharmacology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Francesco Marchesi
- Department of Cardiology, National Cancer Institute "Regina Elena", Rome, Italy
| | - Paolo Spallarossa
- Department of Cardiology, San Martino Hospital and IRCCS, Genoa, Italy
| | - Giuseppe Toglia
- Department of Cardiology, National Cancer Institute "Regina Elena", Rome, Italy
| | | | - Giorgio Minotti
- Units of Cardiology, Hematology, Oncology, Radiation Therapy and Clinical Pharmacology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | | |
Collapse
|
25
|
Riccio G, Antonucci S, Coppola C, D'Avino C, Piscopo G, Fiore D, Maurea C, Russo M, Rea D, Arra C, Condorelli G, Di Lisa F, Tocchetti CG, De Lorenzo C, Maurea N. Ranolazine Attenuates Trastuzumab-Induced Heart Dysfunction by Modulating ROS Production. Front Physiol 2018; 9:38. [PMID: 29467663 PMCID: PMC5808165 DOI: 10.3389/fphys.2018.00038] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/10/2018] [Indexed: 12/31/2022] Open
Abstract
The ErbB2 blocker trastuzumab improves survival in oncologic patients, but can cause cardiotoxicity. The late Na+ current inhibitor ranolazine has been shown to counter experimental HF, including doxorubicin cardiotoxicity (a condition characterized by derangements in redox balance), by lowering the levels of reactive oxygen species (ROS). Since ErbB2 can modulate ROS signaling, we tested whether trastuzumab cardiotoxicity could be blunted by ranolazine via redox-mediated mechanisms. Trastuzumab decreased fractional shortening and ejection fraction in mice, but ranolazine prevented heart dysfunction when co-administered with trastuzumab. Trastuzumab cardiotoxicity was accompanied by elevations in natriuretic peptides and matrix metalloproteinase 2 (MMP2) mRNAs, which were not elevated with co-treatment with ranolazine. Trastuzumab also increased cleavage of caspase-3, indicating activation of the proapoptotic machinery. Again, ranolazine prevented this activation. Interestingly, Neonatal Rat Ventricular Myocytes (NRVMs), labeled with MitoTracker Red and treated with trastuzumab, showed only a small increase in ROS compared to baseline conditions. We then stressed trastuzumab-treated cells with the beta-agonist isoproterenol to increase workload, and we observed a significant increase of probe fluorescence, compared with cells treated with isoproterenol alone, reflecting induction of oxidative stress. These effects were blunted by ranolazine, supporting a role for INa inhibition in the regulation of redox balance also in trastuzumab cardiotoxicity.
Collapse
Affiliation(s)
- Gennaro Riccio
- Department of Pharmacy, Federico II University, Naples, Italy
| | - Salvatore Antonucci
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy
| | - Carmela Coppola
- Division of Cardiology, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - Chiara D'Avino
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Giovanna Piscopo
- Division of Cardiology, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - Danilo Fiore
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Carlo Maurea
- Division of Cardiology, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - Michele Russo
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Domenica Rea
- Department of Animal Experimental Research, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - Claudio Arra
- Department of Animal Experimental Research, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Fabio Di Lisa
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Claudia De Lorenzo
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Nicola Maurea
- Division of Cardiology, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| |
Collapse
|
26
|
Cappetta D, Rossi F, Piegari E, Quaini F, Berrino L, Urbanek K, De Angelis A. Doxorubicin targets multiple players: A new view of an old problem. Pharmacol Res 2018; 127:4-14. [DOI: 10.1016/j.phrs.2017.03.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 01/22/2023]
|
27
|
Layoun ME, Wickramasinghe CD, Peralta MV, Yang EH. Fluoropyrimidine-Induced Cardiotoxicity: Manifestations, Mechanisms, and Management. Curr Oncol Rep 2017; 18:35. [PMID: 27113369 DOI: 10.1007/s11912-016-0521-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Fluoropyrimidines-5-fluorouracil (5-FU) and capecitabine-have been implicated as cardiotoxic chemotherapy agents. This rare, albeit potentially serious toxicity has been described in nearly four decades of case reports, case series, and in vitro modeling; however, there is a paucity in clinical trials and prospective analyses focused on cardioprotective strategies and cardiotoxic surveillance of these agents. While much attention has focused on the well-known cardiac toxicity of anthracyclines and monoclonal antibody agents such as trastuzumab, fluoropyrimidines remain one of the most common causes of chemotherapy-associated cardiotoxicity. The introduction of capecitabine, an oral prodrug of 5-FU, has made the treatment of solid tumors more convenient along with a subsequent rise in documented cardiotoxic cases. This review discusses the symptomatology, clinical manifestations, and proposed molecular mechanisms that attempt to describe the heterogeneous spectrum of fluoropyrimidine-induced cardiotoxicity. Four case examples showcasing the varied manifestations of cardiotoxicity are presented. Finally, several proposed management strategies for cardiotoxicity and post-hospital course precautions are discussed.
Collapse
Affiliation(s)
- Michael E Layoun
- Department of Medicine, UCLA Medical Center, University of California at Los Angeles, Los Angeles, CA, USA
| | - Chanaka D Wickramasinghe
- Division of Cardiology, Department of Medicine, UCLA Medical Center, University of California at Los Angeles, Los Angeles, CA, USA
| | - Maria V Peralta
- Division of Internal Medicine, Department of Medicine, Beaumont Hospital-Dearborn, Dearborn, MI, USA
| | - Eric H Yang
- Division of Cardiology, Department of Medicine, UCLA Medical Center, University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Cappetta D, Esposito G, Coppini R, Piegari E, Russo R, Ciuffreda LP, Rivellino A, Santini L, Rafaniello C, Scavone C, Rossi F, Berrino L, Urbanek K, De Angelis A. Effects of ranolazine in a model of doxorubicin-induced left ventricle diastolic dysfunction. Br J Pharmacol 2017; 174:3696-3712. [PMID: 28320043 DOI: 10.1111/bph.13791] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Doxorubicin is a highly effective anticancer drug, but its clinical application is hampered by cardiotoxicity. Asymptomatic diastolic dysfunction can be the earliest manifestation of doxorubicin cardiotoxicity. Therefore, a search for therapeutic intervention that can interfere with early manifestations and possibly prevent later development of cardiotoxicity is warranted. Increased doxorubicin-dependent ROS may explain, in part, Ca2+ and Na+ overload that contributes to diastolic dysfunction and development of heart failure. Therefore, we tested whether the administration of ranolazine, a selective blocker of late Na+ current, immediately after completing doxorubicin therapy, could affect diastolic dysfunction and interfere with the progression of functional decline. EXPERIMENTAL APPROACH Fischer 344 rats received a cumulative dose of doxorubicin of 15 mg·kg-1 over a period of 2 weeks. After the assessment of diastolic dysfunction, the animals were treated with ranolazine (80 mg·kg-1 , daily) for the following 4 weeks. KEY RESULTS While diastolic and systolic function progressively deteriorated in doxorubicin-treated animals, treatment with ranolazine relieved diastolic dysfunction and prevented worsening of systolic function, decreasing mortality. Ranolazine lowered myocardial NADPH oxidase 2 expression and oxidative/nitrative stress. Expression of the Na+ /Ca2+ exchanger 1 and Nav 1.5 channels was reduced and of the sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase 2 protein was increased. In addition, ranolazine lowered doxorubicin-induced hyper-phosphorylation and oxidation of Ca2+ /calmodulin-dependent protein kinase II, and decreased myocardial fibrosis. CONCLUSIONS AND IMPLICATIONS Ranolazine, by the increased Na+ influx, induced by doxorubicin, altered cardiac Ca2+ and Na+ handling and attenuated diastolic dysfunction induced by doxorubicin, thus preventing the progression of cardiomyopathy. LINKED ARTICLES This article is part of a themed section on New Insights into Cardiotoxicity Caused by Chemotherapeutic Agents. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.21/issuetoc.
Collapse
Affiliation(s)
- Donato Cappetta
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Grazia Esposito
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Raffaele Coppini
- Department of Neuroscience, Drug Research and Child's Health (NeuroFarBa), Division of Pharmacology, University of Florence, Florence, Italy
| | - Elena Piegari
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosa Russo
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Loreta Pia Ciuffreda
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessia Rivellino
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lorenzo Santini
- Department of Neuroscience, Drug Research and Child's Health (NeuroFarBa), Division of Pharmacology, University of Florence, Florence, Italy
| | - Concetta Rafaniello
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Cristina Scavone
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Konrad Urbanek
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
29
|
Role of Ranolazine in cardiovascular disease and diabetes: Exploring beyond angina. Int J Cardiol 2016; 227:556-564. [PMID: 27838121 DOI: 10.1016/j.ijcard.2016.10.102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/25/2016] [Accepted: 10/30/2016] [Indexed: 12/11/2022]
Abstract
Ranolazine was FDA approved for chronic angina in 2006. Since then, there has been extensive research involving this drug. The mechanism of action, debatable at the time of approval, has been demonstrated. Ranolazine acts via inhibition of late sodium channel current in the myocardium. This acts by lowering abnormally high cytosolic calcium levels. Other possible clinical applications of Ranolazine have also been explored. Out of many lines of investigation, its effects in atrial fibrillation, especially post-CABG and recurrent atrial fibrillation show promise. It has also shown definite HbA1c lowering effects when used in diabetics with coronary artery disease. Other possible indications for the drug include pulmonary arterial hypertension, diastolic dysfunction and chemotherapy-induced cardiotoxicity. This review aims to summarize major research regarding Ranolazine in potential applications beyond chronic angina. There are few dedicated large, randomized, phase III trials exploring the newer effects of Ranolazine. There are a few such trials underway, but more are needed.
Collapse
|
30
|
Cheuk DKL, Sieswerda E, van Dalen EC, Postma A, Kremer LCM. Medical interventions for treating anthracycline-induced symptomatic and asymptomatic cardiotoxicity during and after treatment for childhood cancer. Cochrane Database Syst Rev 2016; 2016:CD008011. [PMID: 27552363 PMCID: PMC8626738 DOI: 10.1002/14651858.cd008011.pub3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Anthracyclines are frequently used chemotherapeutic agents for childhood cancer that can cause cardiotoxicity during and after treatment. Although several medical interventions in adults with symptomatic or asymptomatic cardiac dysfunction due to other causes are beneficial, it is not known if the same treatments are effective for childhood cancer patients and survivors with anthracycline-induced cardiotoxicity. This review is an update of a previously published Cochrane review. OBJECTIVES To compare the effect of medical interventions on anthracycline-induced cardiotoxicity in childhood cancer patients or survivors with the effect of placebo, other medical interventions, or no treatment. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library, 2015, Issue 8), MEDLINE/PubMed (1949 to September 2015), and EMBASE/Ovid (1980 to September 2015) for potentially relevant articles. In addition, we searched reference lists of relevant articles, conference proceedings of the International Society for Paediatric Oncology (SIOP), the American Society of Clinical Oncology (ASCO), the American Society of Hematology (ASH), the International Conference on Long-Term Complications of Treatment of Children & Adolescents for Cancer, and the European Symposium on Late Complications from Childhood Cancer (from 2005 to 2015), and ongoing trial databases (the ISRCTN Register, the National Institutes of Health (NIH) Register, and the trials register of the World Health Organization (WHO); all searched in September 2015). SELECTION CRITERIA Randomised controlled trials (RCTs) or controlled clinical trials (CCTs) comparing the effectiveness of medical interventions to treat anthracycline-induced cardiotoxicity with either placebo, other medical interventions, or no treatment. DATA COLLECTION AND ANALYSIS Two review authors independently performed the study selection. One review author performed the data extraction and 'Risk of bias' assessments, which another review author checked. We performed analyses according to the guidelines in the Cochrane Handbook for Systematic Reviews of Interventions. MAIN RESULTS In the original version of the review we identified two RCTs; in this update we identified no additional studies. One trial (135 participants) compared enalapril with placebo in childhood cancer survivors with asymptomatic anthracycline-induced cardiac dysfunction. The other trial (68 participants) compared a two-week treatment of phosphocreatine with a control treatment (vitamin C, adenosine triphosphate, vitamin E, oral coenzyme Q10) in leukaemia patients with anthracycline-induced cardiotoxicity. Both studies had methodological limitations.The RCT on enalapril showed no statistically significant differences in overall survival, mortality due to heart failure, development of clinical heart failure, and quality of life between treatment and control groups. A post-hoc analysis showed a decrease (that is improvement) in one measure of cardiac function (left ventricular end-systolic wall stress (LVESWS): -8.62% change) compared with placebo (+1.66% change) in the first year of treatment (P = 0.036), but not afterwards. Participants treated with enalapril had a higher risk of dizziness or hypotension (risk ratio 7.17, 95% confidence interval 1.71 to 30.17) and fatigue (Fisher's exact test, P = 0.013).The RCT on phosphocreatine found no differences in overall survival, mortality due to heart failure, echocardiographic cardiac function, and adverse events between treatment and control groups. AUTHORS' CONCLUSIONS Only one trial evaluated the effect of enalapril in childhood cancer survivors with asymptomatic cardiac dysfunction. Although there is some evidence that enalapril temporarily improves one parameter of cardiac function (LVESWS), it is unclear whether it improves clinical outcomes. Enalapril was associated with a higher risk of dizziness or hypotension and fatigue. Clinicians should weigh the possible benefits with the known side effects of enalapril in childhood cancer survivors with asymptomatic anthracycline-induced cardiotoxicity.Only one trial evaluated the effect of phosphocreatine in childhood cancer patients with anthracycline-induced cardiotoxicity. Limited data with a high risk of bias showed no significant difference between phosphocreatine and control treatments on echocardiographic function and clinical outcomes.We did not identify any RCTs or CCTs studying other medical interventions for symptomatic or asymptomatic cardiotoxicity in childhood cancer patients or survivors.High-quality studies should be performed.
Collapse
Affiliation(s)
- Daniel KL Cheuk
- The University of Hong Kong, Queen Mary HospitalDepartment of Pediatrics and Adolescent MedicinePokfulam RoadHong KongChina
| | - Elske Sieswerda
- Emma Children's Hospital/Academic Medical CenterDepartment of Paediatric OncologyPO Box 22660AmsterdamNetherlands1100 DD
| | - Elvira C van Dalen
- Emma Children's Hospital/Academic Medical CenterDepartment of Paediatric OncologyPO Box 22660AmsterdamNetherlands1100 DD
| | - Aleida Postma
- University Medical Center Groningen and University of Groningen, Beatrix Children's HospitalDepartment of Paediatric OncologyPostbus 30.000GroningenNetherlands9700 RB
| | - Leontien CM Kremer
- Emma Children's Hospital/Academic Medical CenterDepartment of Paediatric OncologyPO Box 22660AmsterdamNetherlands1100 DD
| | | |
Collapse
|
31
|
Cadeddu C, Mercurio V, Spallarossa P, Nodari S, Triggiani M, Monte I, Piras R, Madonna R, Pagliaro P, Tocchetti CG, Mercuro G. Preventing antiblastic drug-related cardiomyopathy: old and new therapeutic strategies. J Cardiovasc Med (Hagerstown) 2016; 17 Suppl 1:e64-e75. [PMID: 27183527 DOI: 10.2459/jcm.0000000000000382] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Because of the recent advances in chemotherapeutic protocols, cancer survival has improved significantly, although cardiovascular disease has become a major cause of morbidity and mortality among cancer survivors: in addition to the well-known cardiotoxicity (CTX) from anthracyclines, biologic drugs that target molecules that are active in cancer biology also interfere with cardiovascular homeostasis.Pharmacological and non-pharmacological strategies to protect the cardiovascular structure and function are the best approaches to reducing the prevalence of cardiomyopathy linked to anticancer drugs. Extensive efforts have been devoted to identifying and testing strategies to achieve this end, but little consensus has been reached on a common and shared operability.Timing, dose and mode of chemotherapy administration play a crucial role in the development of acute or late myocardial dysfunction. Primary prevention initiatives cover a wide area that ranges from conventional heart failure drugs, such as β-blockers and renin-angiotensin-aldosterone system antagonists to nutritional supplementation and physical training. Additional studies on the pathophysiology and cellular mechanisms of anticancer-drug-related CTX will enable the introduction of novel therapies.We present various typologies of prevention strategies, describing the approaches that have already been used and those that could be effective on the basis of a better understanding of pharmacokinetic and pharmacodynamic CTX mechanisms.
Collapse
Affiliation(s)
- Christian Cadeddu
- aDepartment of Medical Sciences 'Mario Aresu', University of Cagliari, Cagliari bDepartment of Translational Medical Sciences, Division of Internal Medicine, Federico II University, Naples cClinic of Cardiovascular Diseases, IRCCS San Martino IST, Genoa dDepartment of Clinical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia eDepartment of General Surgery and Medical-Surgery Specialities, University of Catania, Catania fInstitute of Cardiology, Center of Excellence on Aging, 'G. d'Annunzio' University, Chieti gDepartment of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Deidda M, Madonna R, Mango R, Pagliaro P, Bassareo PP, Cugusi L, Romano S, Penco M, Romeo F, Mercuro G. Novel insights in pathophysiology of antiblastic drugs-induced cardiotoxicity and cardioprotection. J Cardiovasc Med (Hagerstown) 2016; 17 Suppl 1:e76-e83. [PMID: 27183528 DOI: 10.2459/jcm.0000000000000373] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Despite advances in supportive and protective therapy for myocardial function, heart failure caused by various clinical conditions, including cardiomyopathy due to antineoplastic therapy, remains a major cause of morbidity and mortality. Because of the limitations associated with current therapies, investigators have been searching for alternative treatments that can effectively repair the damaged heart and permanently restore its function. Damage to the heart can result from both traditional chemotherapeutic agents, such as anthracyclines, and new targeted therapies, such as trastuzumab. Because of this unresolved issue, investigators are searching for alternative therapeutic strategies. In this article, we present state-of-the-art technology with regard to the genomic and epigenetic mechanisms underlying cardiotoxicity and cardioprotection, the role of anticancer in influencing the redox (reduction/oxidation) balance and the function of stem cells in the repair/regeneration of the adult heart. These findings, although not immediately transferable to clinical applications, form the basis for the development of personalized medicine based on the prevention of cardiotoxicity with the use of genetic testing. Proteomics, metabolomics and investigations on reactive oxygen species-dependent pathways, particularly those that interact with the production of NO and energy metabolism, appear to be promising for the identification of early markers of cardiotoxicity and for the development of cardioprotective agents. Finally, autologous cardiac stem and progenitor cells may represent future contributions in the field of myocardial protection and recovery in the context of antiblastic therapy.
Collapse
Affiliation(s)
- Martino Deidda
- aDepartment of Medical Sciences 'M. Aresu', University of Cagliari, Cagliari bInstitute of Cardiology, Center of Excellence on Aging, 'G. d'Annunzio' University, Chieti cDepartment of Systems Medicine, University of Rome 'Tor Vergata', Rome dDepartment of Clinical and Biological Sciences, University of Turin, Orbassano eDepartment of Clinical Medicine, Public Health, Life and Environment Sciences, University of L'Aquila, L'Aquila, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lee JC, Kim KC, Choe SY, Hong YM. Reduced immunoreactivities of B-type natriuretic peptide in pulmonary arterial hypertension rats after ranolazine treatment. Anat Cell Biol 2016; 49:7-14. [PMID: 27051563 PMCID: PMC4819080 DOI: 10.5115/acb.2016.49.1.7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 01/25/2016] [Accepted: 03/07/2016] [Indexed: 02/05/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe pulmonary vascular disease characterized by sustained increase in the pulmonary arterial pressure and excessive thickening and remodeling of the distal small pulmonary arteries. During disease progression, structural remodeling of the right ventricular (RV) impairs pump function, creates pro-arrhythmic substrates and triggers for arrhythmias. Notably, RV failure and lethal arrhythmias are major contributors to cardiac death in PAH that are not directly addressed by currently available therapies. Ranolazine (RAN) is an anti-anginal, anti-ischemic drug that has cardioprotective effects of heart dysfunction. RAN also has anti-arrhythmic effects due to inhibition of the late sodium current in cardiomyocytes. Therefore, we hypothesized that RAN could reduce the mal-adaptive structural remodeling of the RV, and prevent triggered ventricular arrhythmias in the monocrotaline-induced rat model of PAH. RAN reduced ventricular hypertrophy, reduced levels of B-type natriuretic peptide, and decreased the expression of fibrosis. In addition, RAN prevented cardiovascular death in rat model of PAH. These results support the notion that RAN can improve the functional properties of the RV, highlighting its potential benefits in the setting of heart impairment.
Collapse
Affiliation(s)
- Jae Chul Lee
- Department of Biology, School of Life Sciences, Chungbuk National University, Cheongju, Korea.; Department of Surgery, Brain Korea 21 PLUS Project for Medical Sciences and HBP Surgery and Liver Transplantation, Korea University College of Medicine, Seoul, Korea.; Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea.; Department of Pediatrics, Ewha Womans University School of Medicine, Seoul, Korea
| | - Kwan Chang Kim
- Department of Thoracic and Cardiovascular Surgery, Ewha Womans University School of Medicine, Seoul, Korea
| | - Soo Young Choe
- Department of Biology, School of Life Sciences, Chungbuk National University, Cheongju, Korea
| | - Young Mi Hong
- Department of Pediatrics, Ewha Womans University School of Medicine, Seoul, Korea
| |
Collapse
|
34
|
Ahmad S, Ahmad A, Hendry-Hofer TB, Loader JE, Claycomb WC, Mozziconacci O, Schöneich C, Reisdorph N, Powell RL, Chandler JD, Day BJ, Veress LA, White CW. Sarcoendoplasmic reticulum Ca(2+) ATPase. A critical target in chlorine inhalation-induced cardiotoxicity. Am J Respir Cell Mol Biol 2016; 52:492-502. [PMID: 25188881 DOI: 10.1165/rcmb.2014-0005oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Autopsy specimens from human victims or experimental animals that die due to acute chlorine gas exposure present features of cardiovascular pathology. We demonstrate acute chlorine inhalation-induced reduction in heart rate and oxygen saturation in rats. Chlorine inhalation elevated chlorine reactants, such as chlorotyrosine and chloramine, in blood plasma. Using heart tissue and primary cardiomyocytes, we demonstrated that acute high-concentration chlorine exposure in vivo (500 ppm for 30 min) caused decreased total ATP content and loss of sarcoendoplasmic reticulum calcium ATPase (SERCA) activity. Loss of SERCA activity was attributed to chlorination of tyrosine residues and oxidation of an important cysteine residue, cysteine-674, in SERCA, as demonstrated by immunoblots and mass spectrometry. Using cardiomyocytes, we found that chlorine-induced cell death and damage to SERCA could be decreased by thiocyanate, an important biological antioxidant, and by genetic SERCA2 overexpression. We also investigated a U.S. Food and Drug Administration-approved drug, ranolazine, used in treatment of cardiac diseases, and previously shown to stabilize SERCA in animal models of ischemia-reperfusion. Pretreatment with ranolazine or istaroxime, another SERCA activator, prevented chlorine-induced cardiomyocyte death. Further investigation of responsible mechanisms showed that ranolazine- and istaroxime-treated cells preserved mitochondrial membrane potential and ATP after chlorine exposure. Thus, these studies demonstrate a novel critical target for chlorine in the heart and identify potentially useful therapies to mitigate toxicity of acute chlorine exposure.
Collapse
Affiliation(s)
- Shama Ahmad
- 1 Pediatric Airway Research Center, Department of Pediatrics, University of Colorado, Denver, Aurora, Colorado
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mihos CG, Krishna RK, Kherada N, Larrauri-Reyes M, Tolentino A, Santana O. The use of ranolazine in non-anginal cardiovascular disorders: A review of current data and ongoing randomized clinical trials. Pharmacol Res 2016; 103:49-55. [PMID: 26546970 DOI: 10.1016/j.phrs.2015.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/05/2015] [Accepted: 10/23/2015] [Indexed: 12/19/2022]
Abstract
Ranolazine has characteristic properties of a selective inhibitor of the inward sodium current. It is primarily indicated as an anti-anginal agent in patients with coronary artery disease and chronic stable angina. Recently, ranolazine has been noted to possibly impart beneficial effects in various other cardiac conditions, including new-onset, paroxysmal, and chronic atrial fibrillation, post-operative atrial fibrillation, ventricular arrhythmias, post-revascularization coronary artery disease, chemotherapeutic cardiotoxicity, and diastolic and microvascular dysfunction. Herein, we present a review of the current clinical evidence describing the adjunctive or synergistic effects of ranolazine in non-angina related cardiovascular disorders, and include a discussion of the ongoing randomized trials investigating the therapeutic potential of ranolazine in a variety of cardiovascular diseases.
Collapse
Affiliation(s)
- Christos G Mihos
- Cardiac Ultrasound Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Rama K Krishna
- Columbia University Division of Cardiology, Mount Sinai Heart Institute, Miami Beach, FL, United States
| | - Nisharahmed Kherada
- Columbia University Division of Cardiology, Mount Sinai Heart Institute, Miami Beach, FL, United States
| | - Maiteder Larrauri-Reyes
- Columbia University Division of Cardiology, Mount Sinai Heart Institute, Miami Beach, FL, United States
| | - Alfonso Tolentino
- Columbia University Division of Cardiology, Mount Sinai Heart Institute, Miami Beach, FL, United States
| | - Orlando Santana
- Columbia University Division of Cardiology, Mount Sinai Heart Institute, Miami Beach, FL, United States.
| |
Collapse
|
36
|
Gomberg-Maitland M, Schilz R, Mediratta A, Addetia K, Coslet S, Thomeas V, Gillies H, Oudiz RJ. Phase I safety study of ranolazine in pulmonary arterial hypertension. Pulm Circ 2015; 5:691-700. [PMID: 26697176 DOI: 10.1086/683813] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Pulmonary arterial hypertension (PAH) causes right ventricular ischemia, dysfunction, and failure. PAH patients may benefit from antianginal agents based on a shared pathophysiology with left ventricular ischemia. A single-center, randomized, placebo-controlled trial (1∶1) to assess the acute vasoreactivity and safety of ranolazine in PAH was conducted. Plasma samples for pharmacokinetic (PK) studies were drawn during hemodynamic measurements at 0, 60, 90, 120, 240, and 360 minutes from a Swan-Ganz catheter. All patients received 500-mg doses, uptitrated to 1,000 mg at week 4, monthly evaluations, and a complete objective assessment after 12 weeks, followed by an open-label extension. Thirteen patients were randomized and 12 enrolled (6 ranolazine, 6 placebo). All patients completed the acute phase; 10 completed the 12-week study. There were no acute changes in invasive hemodynamics. At 12 weeks ranolazine was well tolerated. Only 1 of the 5 patients on ranolazine had a serum concentration considered to be in the therapeutic range. Two serious adverse events required early withdrawal (both in the ranolazine group); gastrointestinal complaints were the most common adverse event. Efficacy measures did not demonstrate any differences between treatment groups. During the open-label trial, 2 additional patients reached a therapeutic concentration. Ranolazine in PAH appears safe, without acute hemodynamic effects after a 500-mg dose. Ranolazine administrated to PAH patients receiving background PAH therapies did not consistently reach therapeutic levels. Future studies should first perform PK analysis in PAH patients receiving PAH therapies and explore the safety and tolerability of the higher doses perhaps necessary to achieve therapeutic levels in PAH patients. ( TRIAL REGISTRATION Clinicaltrials.gov identifier NCT01757808.).
Collapse
Affiliation(s)
- Mardi Gomberg-Maitland
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, Illinois, USA ; Committee on Clinical Pharmacology and Pharmacogenomics, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Robert Schilz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, Case Western University, Cleveland, Ohio, USA
| | - Anuj Mediratta
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Karima Addetia
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Sandra Coslet
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Vasiliki Thomeas
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, Illinois, USA ; Committee on Clinical Pharmacology and Pharmacogenomics, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | - Ronald J Oudiz
- Division of Cardiology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| |
Collapse
|
37
|
Cappetta D, Esposito G, Piegari E, Russo R, Ciuffreda LP, Rivellino A, Berrino L, Rossi F, De Angelis A, Urbanek K. SIRT1 activation attenuates diastolic dysfunction by reducing cardiac fibrosis in a model of anthracycline cardiomyopathy. Int J Cardiol 2015; 205:99-110. [PMID: 26730840 DOI: 10.1016/j.ijcard.2015.12.008] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/04/2015] [Accepted: 12/12/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Doxorubicin (DOXO) is an effective anti-neoplastic drug but its clinical benefits are hampered by cardiotoxicity. Oxidative stress, apoptosis and myocardial fibrosis mediate the anthracycline cardiomyopathy. ROS trigger TGF-β pathway that activates cardiac fibroblasts promoting fibrosis. Myocardial stiffness contributes to diastolic dysfunction, less studied aspect of anthracycline cardiomyopathy. Considering the role of SIRT1 in the inhibition of the TGF-β/SMAD3 pathway, resveratrol (RES), a SIRT1 activator, might improve cardiac function by interfering with the development of cardiac fibrosis in a model of DOXO-induced cardiomyopathy. METHODS F344 rats received a cumulative dose of 15 mg/kg of DOXO in 2 weeks or DOXO+RES (DOXO and RES, 2.5mg/kg/day, concomitantly for 2 weeks and then RES alone for 1 more week). The effects of RES on cardiac fibroblasts were also tested in vitro. RESULTS Along with systolic dysfunction, DOXO was also responsible of diastolic abnormalities. Myocardial stiffness correlated with fibroblast activation and collagen deposition. DOXO+RES co-treatment significantly improved ± dP/dt and, more interestingly, ameliorated end-diastolic pressure/volume relationship. Treatment with RES resulted in reduced fibrosis and fibroblast activation and, most importantly, the mortality rate was significantly reduced in DOXO+RES group. Fibroblasts isolated from DOXO+RES-treated rats, in which SIRT1 was upregulated, showed decreased levels of TGF-β and pSMAD3/SMAD3 when compared to cells isolated from DOXO-exposed hearts. CONCLUSIONS Our findings reveal a key role of SIRT1 in supporting animal survival and functional parameters of the heart. SIRT1 activation by interfering with fibrogenesis can improve relaxation properties of myocardium and attenuate myocardial remodeling related to chemotherapy.
Collapse
Affiliation(s)
- Donato Cappetta
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Grazia Esposito
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Elena Piegari
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Rosa Russo
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Loreta Pia Ciuffreda
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Alessia Rivellino
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy.
| | - Konrad Urbanek
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| |
Collapse
|
38
|
Tocchetti CG, Carpi A, Coppola C, Quintavalle C, Rea D, Campesan M, Arcari A, Piscopo G, Cipresso C, Monti MG, De Lorenzo C, Arra C, Condorelli G, Di Lisa F, Maurea N. Ranolazine protects from doxorubicin-induced oxidative stress and cardiac dysfunction. Eur J Heart Fail 2015; 16:358-66. [PMID: 24464789 DOI: 10.1002/ejhf.50] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/18/2013] [Accepted: 11/22/2013] [Indexed: 12/18/2022] Open
Abstract
AIMS Doxorubicin is widely used against cancer; however, it can produce heart failure (HF). Among other hallmarks, oxidative stress is a major contributor to HF pathophysiology. The late INa inhibitor ranolazine has proven effective in treating experimental HF. Since elevated [Na+]i is present in failing myocytes, and has been recently linked with reactive oxygen species (ROS) production, our aim was to assess whether ranolazine prevents doxorubicin-induced cardiotoxicity, and whether blunted oxidative stress is a mechanism accounting for such protection. METHODS AND RESULT In C57BL6 mice, doxorubicin treatment for 7 days produced LV dilation and decreased echo-measured fractional shortening (FS). Ranolazine (305 mg/kg/day) prevented LV dilation and dysfunction when co-administered with doxorubicin. Doxorubicin-induced cardiotoxicity was accompanied instead by elevations in atrial natriuretic peptide (ANP), BNP, connective tissue growth factor (CTGF), and matrix metalloproteinase 2 (MMP2) mRNAs, which were not elevated on co-treatment with ranolazine. Alterations in extracellular matrix remodelling were confirmed by an increase in interstitial collagen, which did not rise in ranolazine-co-treated hearts. Levels of poly(ADP-ribose) polymerase (PARP) and pro-caspase-3 measured by western blotting were lowered with doxorubicin, with increased cleavage of caspase-3, indicating activation of the proapoptotic machinery. Again, ranolazine prevented this activation. Furthermore, in HL-1 cardiomyocytes transfected with HyPer to monitor H2O2 emission, besides reducing the extent of cell death, ranolazine prevented the occurrence of oxidative stress caused by doxorubicin. Interestingly, similar protective results were obtained with the Na+/Ca2+ exchanger (NCX) inhibitor KB-R7943. CONCLUSIONS Ranolazine protects against experimental doxorubicin cardiotoxicity. Such protection is accompanied by a reduction in oxidative stress, suggesting that INa modulates cardiac redox balance, resulting in functional and morphological derangements.
Collapse
|
39
|
An update on the risk prediction and prevention of anticancer therapy-induced cardiotoxicity. Curr Opin Oncol 2015; 26:590-9. [PMID: 25233068 DOI: 10.1097/cco.0000000000000132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Cardiotoxicity is a well established complication of anticancer therapy. As cancer survivorship and life expectancy for cancer patients improves, the morbidity and mortality of anticancer therapy-related cardiotoxicity has become more problematic. It is of utmost importance to identify patients at the highest risk for the development of cardiotoxicity and to determine strategies for prevention, early detection and treatment. RECENT FINDINGS Clinical risk factors, biomarkers, advanced cardiac imaging and pharmacogenomics may be used to classify patients at risk for therapy-induced cardiotoxicity. A much broader armamentarium of imaging modalities for risk prediction, in addition to simple two-dimensional echocardiogram and radionucleotide angiography, has also shown clinical utility in identifying early-onset cardiotoxicity and areas of reversible myocardial injury. Exciting new research aimed at predicting cardiotoxicity and developing cardioprotective strategies may lead to changes in the administration of cardiotoxic chemotherapies. SUMMARY Personalized assessments of the risks and benefits of therapy should be used as opposed to standardized dosing and schedules. Patients at higher risk for cardiotoxicity should receive closer monitoring, cardioprotective agents, dose adjustment or alternative regimens in an effort to reduce cardiovascular morbidity and mortality. Future research will hopefully define specific risk prediction tools and clinical protocols to prevent irreversible cardiotoxicity.
Collapse
|
40
|
Salvatorelli E, Menna P, Minotti G. Managing anthracycline-induced cardiotoxicity: beginning with the end in mind. Future Cardiol 2015; 11:363-6. [DOI: 10.2217/fca.15.35] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Emanuela Salvatorelli
- Unit of Drug Sciences, Department of Medicine, University Campus Bio-Medico, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Pierantonio Menna
- Unit of Drug Sciences, Department of Medicine, University Campus Bio-Medico, Via Alvaro del Portillo 21, 00128 Rome, Italy
- Unit of Clinical Pharmacology, Campus Bio-Medico University Hospital, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Giorgio Minotti
- Unit of Drug Sciences, Department of Medicine, University Campus Bio-Medico, Via Alvaro del Portillo 21, 00128 Rome, Italy
- Unit of Clinical Pharmacology, Campus Bio-Medico University Hospital, Via Alvaro del Portillo 200, 00128 Rome, Italy
| |
Collapse
|
41
|
Liles JT, Hoyer K, Oliver J, Chi L, Dhalla AK, Belardinelli L. Ranolazine reduces remodeling of the right ventricle and provoked arrhythmias in rats with pulmonary hypertension. J Pharmacol Exp Ther 2015; 353:480-9. [PMID: 25770134 DOI: 10.1124/jpet.114.221861] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/12/2015] [Indexed: 01/22/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease that often results in right ventricular (RV) failure and death. During disease progression, structural and electrical remodeling of the right ventricle impairs pump function, creates proarrhythmic substrates, and triggers for arrhythmias. Notably, RV failure and lethal arrhythmias are major contributors to cardiac death in patients with PAH that are not directly addressed by currently available therapies. Ranolazine (RAN) is an antianginal, anti-ischemic drug that has cardioprotective effects in experimental and clinical settings of left-sided heart dysfunction. RAN also has antiarrhythmic effects due to inhibition of the late sodium current in cardiomyocytes. We therefore hypothesized that RAN could reduce the maladaptive structural and electrical remodeling of the right ventricle and could prevent triggered ventricular arrhythmias in the monocrotaline rat model of PAH. Indeed, in both in vivo and ex vivo experimental settings, chronic RAN treatment reduced electrical heterogeneity (right ventricular-left ventricular action potential duration dispersion), shortened heart-rate corrected QT intervals in the right ventricle, and normalized RV dysfunction. Chronic RAN treatment also dose-dependently reduced ventricular hypertrophy, reduced circulating levels of B-type natriuretic peptide, and decreased the expression of fibrotic markers. In addition, the acute administration of RAN prevented isoproterenol-induced ventricular tachycardia/ventricular fibrillation and subsequent cardiovascular death in rats with established PAH. These results support the notion that RAN can improve the electrical and functional properties of the right ventricle, highlighting its potential benefits in the setting of RV impairment.
Collapse
Affiliation(s)
- John T Liles
- Department of Biology, Gilead Sciences, Inc., Fremont, California
| | - Kirsten Hoyer
- Department of Biology, Gilead Sciences, Inc., Fremont, California
| | - Jason Oliver
- Department of Biology, Gilead Sciences, Inc., Fremont, California
| | - Liguo Chi
- Department of Biology, Gilead Sciences, Inc., Fremont, California
| | | | | |
Collapse
|
42
|
Salvatorelli E, Menna P, Cantalupo E, Chello M, Covino E, Wolf FI, Minotti G. The concomitant management of cancer therapy and cardiac therapy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2727-37. [PMID: 25596534 DOI: 10.1016/j.bbamem.2015.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 12/29/2014] [Accepted: 01/05/2015] [Indexed: 12/12/2022]
Abstract
Antitumor drugs have long been known to introduce a measurable risk of cardiovascular events. Cardio-Oncology is the discipline that builds on collaboration between cardiologists and oncologists and aims at screening, preventing or minimizing such a risk. Overt concern about "possible" cardiovascular toxicity might expose cancer patients to the risk of tumor undertreatment and poor oncologic outcome. Careful analysis of risk:benefit balance is therefore central to the management of patients exposed to potentially cardiotoxic drugs. Concomitant or sequential management of cardiac and cancer therapies should also be tailored to the following strengths and weaknesses: i) molecular mechanisms and clinical correlates of cardiotoxicity have been characterized to some extent for anthracyclines but not for other chemotherapeutics or new generation "targeted" drugs, ii) anthracyclines and targeted drugs cause different mechanisms of cardiotoxicity (type I versus type II), and this classification should guide strategies of primary or secondary prevention, iii) with anthracyclines and nonanthracycline chemotherapeutics, cardiovascular events may occur on treatment as well as years or decades after completing chemotherapy, iv) some patients may be predisposed to a higher risk of cardiac events but there is a lack of prospective studies that characterized optimal genetic tests and pharmacologic measures to minimize excess risk, v) clinical toxicity may be preceded by asymptomatic systolic and/or diastolic dysfunction that necessitates innovative mechanism-based pharmacologic treatment, and vi) patient-tailored pharmacologic correction of comorbidities is important for both primary and secondary prevention. Active collaboration of physicians with laboratory scientists is much needed for improving management of cardiovascular sequelae of antitumor therapy. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
| | | | - Emilia Cantalupo
- Unit of Drug Sciences, University Campus Bio-Medico of Rome, Italy
| | - Massimo Chello
- Unit of Cardiovascular Surgery, University Campus Bio-Medico of Rome, Italy
| | - Elvio Covino
- Unit of Cardiovascular Surgery, University Campus Bio-Medico of Rome, Italy
| | - Federica I Wolf
- Institute of General Pathology, Catholic University School of Medicine, Rome, Italy
| | - Giorgio Minotti
- Unit of Drug Sciences, University Campus Bio-Medico of Rome, Italy.
| |
Collapse
|
43
|
Asteggiano R. Physiopathology and Toxic Heart Effects of Chemotherapy Drugs. CARDIAC MANAGEMENT OF ONCOLOGY PATIENTS 2015:23-97. [DOI: 10.1007/978-3-319-15808-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
44
|
Patanè S. HERG-targeted therapy in both cancer and cardiovascular system with cardiovascular drugs. Int J Cardiol 2014; 176:1082-5. [DOI: 10.1016/j.ijcard.2014.07.129] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/26/2014] [Indexed: 01/16/2023]
|
45
|
Corradi F, Paolini L, De Caterina R. Ranolazine in the prevention of anthracycline cardiotoxicity. Pharmacol Res 2014; 79:88-102. [DOI: 10.1016/j.phrs.2013.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 11/06/2013] [Accepted: 11/06/2013] [Indexed: 12/19/2022]
|