1
|
Jones AT, Marwan Abu Taha A, Miller GP. The resurgence of synthetic cannabinoid receptor agonists as adulterants in the Era of Cannabis legalization: Lessons from prior epidemics and clinical implications. Neurosci Biobehav Rev 2025; 170:106043. [PMID: 39922438 PMCID: PMC11870277 DOI: 10.1016/j.neubiorev.2025.106043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Momentum towards legalization of medical and recreational cannabis drives a convergence between natural cannabinoids and their synthetic counterparts, creating new clinical challenges in a second wave of exposures. This review critically examines the emerging challenges posed by synthetic cannabinoid receptor agonists (SCRAs) and semi-synthetic cannabinoids, emphasizing their clinical implications. SCRAs are potent full agonist activity that have been identified as adulterants in several recreational substances, including cannabis and opioids. Adulteration often leads to unpredictable clinical outcomes and exacerbates the potential for drug interactions. Drawing parallels with other drug epidemics, this paper highlights the urgent need for clinical preparedness to address the nuanced presentations of cannabinoid toxicity, stressing the importance of patient history, physical examination, and judicious use of supportive laboratory tests. This review serves as a cautionary tale and call to action for researchers and policymakers. There is a clear need for robust quality control measures, enhanced public awareness campaigns, and development of evidence-based clinical guidelines to mitigate the health risks associated with intentional and unintentional use of synthetic cannabinoids.
Collapse
Affiliation(s)
- Austin T Jones
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Alaa Marwan Abu Taha
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Grover P Miller
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
2
|
Faiz MB, Naeem F, Irfan M, Aslam MA, Estevinho LM, Ateşşahin DA, Alshahrani AM, Calina D, Khan K, Sharifi-Rad J. Exploring the therapeutic potential of cannabinoids in cancer by modulating signaling pathways and addressing clinical challenges. Discov Oncol 2024; 15:490. [PMID: 39331301 PMCID: PMC11436528 DOI: 10.1007/s12672-024-01356-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
For centuries, cannabinoids have been utilized for their medicinal properties, particularly in Asian and South-Asian countries. Cannabis plants, known for their psychoactive and non-psychoactive potential, were historically used for spiritual and remedial healing. However, as cannabis became predominantly a recreational drug, it faced prohibition. Recently, the therapeutic potential of cannabinoids has sparked renewed research interest, extending their use to various medical conditions, including cancer. This review aims to highlight current data on the involvement of cannabinoids in cancer signaling pathways, emphasizing their potential in cancer therapy and the need for further investigation into the underlying mechanisms. A comprehensive literature review was conducted using databases such as PubMed/MedLine, Google Scholar, Web of Science, Scopus, and Embase. The search focused on peer-reviewed articles, review articles, and clinical trials discussing the anticancer properties of cannabinoids. Inclusion criteria included studies in English on the mechanisms of action and clinical efficacy of cannabinoids in cancer. Cannabinoids, including Δ9-THC, CBD, and CBG, exhibit significant anticancer activities such as apoptosis induction, autophagy stimulation, cell cycle arrest, anti-proliferation, anti-angiogenesis, and metastasis inhibition. Clinical trials have demonstrated cannabinoids' efficacy in tumor regression and health improvement in palliative care. However, challenges such as variability in cannabinoid composition, psychoactive effects, regulatory barriers, and lack of standardized dosing remain. Cannabinoids show promising potential as anticancer agents through various mechanisms. Further large-scale, randomized controlled trials are essential to validate these findings and establish standardized therapeutic protocols. Future research should focus on elucidating detailed mechanisms, optimizing dosing, and exploring cannabinoids as primary chemotherapeutic agents.
Collapse
Affiliation(s)
- Manal Bint Faiz
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Faiza Naeem
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Irfan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Muhammad Adeel Aslam
- Department of Forensic Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Leticia M Estevinho
- Mountain Research Center, CIMO, Polytechnic Institute of Bragança, Campus Santa Apolónia, 5300-253, Bragança, Portugal
| | - Dilek Arslan Ateşşahin
- Baskil Vocational School, Department of Plant and Animal Production, Fırat University, 23100, Elazıg, Turkey
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, College of Pharmacy, Shaqra University, Dawadimi, Saudi Arabia
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Khushbukhat Khan
- Cancer Clinical Research Unit, Trials360, Lahore, 54000, Pakistan.
| | - Javad Sharifi-Rad
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
3
|
Patel M, Zheng X, Akinfiresoye LR, Prioleau C, Walker TD, Glass M, Marusich JA. Pharmacological evaluation of new generation OXIZID synthetic cannabinoid receptor agonists. Eur J Pharmacol 2024; 971:176549. [PMID: 38561104 PMCID: PMC11132922 DOI: 10.1016/j.ejphar.2024.176549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) remain one the largest classes of new psychoactive substances, and are increasingly associated with severe adverse effects and death compared to the phytocannabinoid Δ9-tetrahydrocannabinol (THC). In the attempt to circumvent the rapid emergence of novel SCRAs, several nations have implemented 'generic' legislations, or 'class-wide' bans based on common structural scaffolds. However, this has only encouraged the incorporation of new chemical entities, including distinct core and linker structures, for which there is a dearth of pharmacological data. The current study evaluated five emergent OXIZID SCRAs for affinity and functional activity at the cannabinoid CB1 receptor (CB1) in HEK 293 cells, as well as pharmacological equivalence with THC in drug discrimination in mice. All OXIZID compounds behaved as agonists in Gαi protein activation and β-arrestin 2 translocation assays, possessing low micromolar affinity at CB1. All ligands also substituted for THC in drug discrimination, where potencies broadly correlated with in vitro activity, with the methylcyclohexane analogue BZO-CHMOXIZID being the most potent. Notably, MDA-19 (BZO-HEXOXIZID) exhibited partial efficacy in vitro, generating an activity profile most similar to that of THC, and partial substitution in vivo. Overall, the examined OXIZIDs were comparatively less potent and efficacious than previous generations of SCRAs. Further toxicological data will elucidate whether the moderate cannabimimetic activity for this series of SCRAs will translate to severe adverse health effects as seen with previous generations of SCRAs.
Collapse
Affiliation(s)
- Monica Patel
- Department of Pharmacology & Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Xiaoxi Zheng
- Department of Pharmacology & Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Institute of Environmental Science and Research Ltd (ESR), New Zealand
| | - Luli R Akinfiresoye
- United States Department of Justice, Drug Enforcement Administration, Diversion Control Division, Drug and Chemical Evaluation Section, 8701 Morrissette Drive, Springfield, VA, USA
| | - Cassandra Prioleau
- United States Department of Justice, Drug Enforcement Administration, Diversion Control Division, Drug and Chemical Evaluation Section, 8701 Morrissette Drive, Springfield, VA, USA
| | - Teneille D Walker
- United States Department of Justice, Drug Enforcement Administration, Diversion Control Division, Drug and Chemical Evaluation Section, 8701 Morrissette Drive, Springfield, VA, USA
| | - Michelle Glass
- Department of Pharmacology & Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Institute of Environmental Science and Research Ltd (ESR), New Zealand.
| | - Julie A Marusich
- RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
4
|
AL-Eitan L, Abusirdaneh R. The synthetic cannabinoid 5-fluoro ABICA upregulates angiogenic markers and stimulates tube formation in human brain microvascular endothelial cells. J Taibah Univ Med Sci 2024; 19:359-371. [PMID: 38357583 PMCID: PMC10864802 DOI: 10.1016/j.jtumed.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/11/2023] [Accepted: 01/21/2024] [Indexed: 02/16/2024] Open
Abstract
Objective Synthetic cannabinoids (SCs), a class of psychoactive compounds emulating the effects of natural cannabis, have prompted addiction and psychosis concerns. However, recent research has suggested potential pharmacological applications, particularly in brain angiogenesis-an essential physiological process for growth, repair, and tissue maintenance, in which new blood vasculature is formed from existing vasculature. This study explored the in vitro ability of the SC 5-fluoro ABICA to enhance new blood formation processes in human brain microvascular endothelial cells (HBMECs). Methods HBMECs were treated with various concentrations of 5-fluoro ABICA (1 μM, 0.1 μM, 0.01 μM, 0.001 μM, and 0.0001 μM). A comprehensive analysis was conducted, including MTT assays indicating cell viability, wound healing assays indicating migration ability, and tube formation assays indicating the angiogenesis potential of endothelial cells. Additionally, mRNA expression and protein levels of specific pro-angiogenic factors were measured, and the phosphorylation levels of glycogen synthase kinase-3β were detected in treated HBMECs through ELISA, real-time PCR, and western blotting. Results Treatment with 5-fluoro ABICA effectively stimulated proliferation, migration, and tube formation in HBMECs in a dose-dependent manner; markedly increased the expression of pro-angiogenic factors; and upregulated levels of phosphorylated-GSK-3β. Conclusion Our findings demonstrate that 5-fluoro ABICA stimulates angiogenesis in endothelial cells, thus potentially offering therapeutic options for diseases associated with angiogenesis. However, further research is needed to fully understand the molecular mechanism of 5-fluoro ABICA in angiogenesis, including ethical considerations regarding its use in medical research.
Collapse
Affiliation(s)
- Laith AL-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Rawan Abusirdaneh
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
5
|
Marusich JA, Wiley JL. Δ 9-tetrahydrocannabinol discrimination: Effects of route of administration in mice. DRUG AND ALCOHOL DEPENDENCE REPORTS 2023; 9:100205. [PMID: 38045495 PMCID: PMC10690562 DOI: 10.1016/j.dadr.2023.100205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023]
Abstract
Background Route of administration is an important pharmacokinetic variable in development of translationally relevant preclinical models. Humans primarily administer cannabis through smoking, vaping, and edibles. In contrast, preclinical research has historically utilized injected Δ9-tetrahydrocannabinol (THC). The present study sought to examine how route of administration affected the potency and time course of THC's discriminative stimulus properties. Methods Adult female and male C57BL/6 mice were trained to discriminate intraperitoneal (i.p.) THC from vehicle in a drug discrimination procedure. After discrimination was acquired, a dose-effect curve was determined for i.p., oral (p.o.), subcutaneous (s.c.), and aerosolized THC. Subsequently, the time course of effects of each route of administration was determined. Results THC administered i.p., p.o., s.c., or via aerosolization fully substituted for i.p. THC. The potency of THC's psychoactive effects was similar for i.p., p.o., and s.c., except that THC was more potent when administered s.c. vs p.o. in females. All routes of administration had a similar potency in both sexes. The duration of THC's psychoactive effects was similar across i.p., s.c., and p.o. routes of administration, whereas aerosolized THC produced a faster onset and shorter duration of effects compared to the other routes. Conclusion THC administered via multiple routes of administration, including those commonly used in preclinical research (i.p. and s.c.) and more translationally relevant routes (aerosol and p.o.), produced THC-like discriminative stimulus effects in mice trained to discriminate i.p. THC. More precise predictions of THC's effects in humans may result from use of these translationally relevant routes of administration.
Collapse
Affiliation(s)
- Julie A. Marusich
- Center for Drug Discovery, RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA
| | - Jenny L. Wiley
- Center for Drug Discovery, RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA
| |
Collapse
|
6
|
Wang Z, Leow EYQ, Moy HY, Chan ECY. Advances in urinary biomarker research of synthetic cannabinoids. Adv Clin Chem 2023; 115:1-32. [PMID: 37673518 DOI: 10.1016/bs.acc.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
New psychoactive substances (NPS) are chemical compounds designed to mimic the action of existing illicit recreational drugs. Synthetic cannabinoids (SCs) are a subclass of NPS which bind to the cannabinoid receptors, CB1 and CB2, and mimic the action of cannabis. SCs have dominated recent NPS seizure reports worldwide. While urine is the most common matrix for drug-of-abuse testing, SCs undergo extensive Phase I and Phase II metabolism, resulting in almost undetectable parent compounds in urine samples. Therefore, the major urinary metabolites of SCs are usually investigated as surrogate biomarkers to identify their consumption. Since seized urine samples after consuming novel SCs may be unavailable in a timely manner, human hepatocytes, human liver microsomes and human transporter overexpressed cell lines are physiologically-relevant in vitro systems for performing metabolite identification, metabolic stability, reaction phenotyping and transporter experiments to establish the disposition of SC and its metabolites. Coupling these in vitro experiments with in vivo verification using limited authentic urine samples, such a two-pronged approach has proven to be effective in establishing urinary metabolites as biomarkers for rapidly emerging SCs.
Collapse
Affiliation(s)
- Ziteng Wang
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Eric Yu Quan Leow
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Hooi Yan Moy
- Analytical Toxicology Laboratory, Applied Sciences Group, Health Sciences Authority, Singapore, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
7
|
Marusich JA, Gamage TF, Zhang Y, Akinfiresoye LR, Wiley JL. In vitro and in vivo pharmacology of nine novel synthetic cannabinoid receptor agonists. Pharmacol Biochem Behav 2022; 220:173467. [PMID: 36154844 PMCID: PMC9837865 DOI: 10.1016/j.pbb.2022.173467] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 01/17/2023]
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) are novel psychoactive substances that bind to and activate CB1 receptors in the brain. The structural manipulations observed in newer SCRAs suggest that manufacturers have incorporated modern drug development techniques into their repertoire, often producing higher CB1 receptor affinity than Δ9-tetrahydrocannabinol (Δ9-THC). This study examined nine SCRAs recently detected by forensic surveillance, some of which caused fatalities: 5F-MDMB-PICA, FUB-144, 5F-MMB-PICA, MMB-4en-PICA, MMB-FUBICA, 5F-EDMB-PINACA, APP-BINACA, MDMB-4en-PINACA, and FUB-AKB48. Compounds were evaluated for CB1 and CB2 receptor binding affinity and functional activation and for their effects on body temperature, time course, and pharmacological equivalence with Δ9-THC in Δ9-THC drug discrimination in mice. All SCRAs bound to and activated CB1 and CB2 receptors with high affinity, with similar or greater affinity for CB2 than CB1 receptors and stimulated [35S]GTPγS binding in CB1 and CB2 expressing cell membranes. All compounds produced hypothermia, with shorter latency to peak effects for SCRAs than Δ9-THC. All SCRAs fully substituted for Δ9-THC in drug discrimination at one or more doses. Rank order potency in producing in vivo effects mostly aligned with rank order CB1 receptor affinities. Potencies for Δ9-THC-like discriminative stimulus effects were similar across sex except Δ9-THC was more potent in females and 5F-MMB-PICA was more potent in males. In summary, 5F-EMDB-PINACA, 5F-MDMB-PICA, MDMB-4en-PINACA, FUB-144, FUB-AKB48, 5F-MMB-PICA, MMB-4en-PICA, and MMB-FUBICA are potent and efficacious SCRAs with pharmacology like that of past SCRAs that have been abused in humans. In contrast, APP-BINACA was efficacious, but had lower potency than most past SCRAs.
Collapse
Affiliation(s)
- Julie A Marusich
- RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA.
| | - Thomas F Gamage
- RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA
| | - Yanan Zhang
- RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA
| | - Luli R Akinfiresoye
- United States Department of Justice, Drug Enforcement Administration, Diversion Control Division, Drug and Chemical Evaluation Section, 8701 Morrissette Drive, Springfield, VA 22152, USA
| | - Jenny L Wiley
- RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA
| |
Collapse
|
8
|
Wilson CD, Hiranita T, Fantegrossi WE. Cannabimimetic effects of abused indazole-carboxamide synthetic cannabinoid receptor agonists AB-PINACA, 5F-AB-PINACA and 5F-ADB-PINACA in mice: Tolerance, dependence and withdrawal. Drug Alcohol Depend 2022; 236:109468. [PMID: 35643039 DOI: 10.1016/j.drugalcdep.2022.109468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/16/2022] [Accepted: 04/16/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Chronic abuse of synthetic cannabinoid receptor agonists (SCRAs), known as "K2″ or "Spice", threatens public health and safety. Recently, SCRAs of the indazole-carboxamide structural class have become more prevalent. Preclinical studies investigating the tolerance and dependence potentially involved in chronic SCRA abuse is limited. The present study determined the in vivo effects of chronic exposure to indazole-carboxamide SCRAs, AB-PINACA, 5F-AB-PINACA and 5F-ADB-PINACA compared to the first-generation SCRA, JWH-018. METHODS Adult male C57Bl/6 mice were used for dose-effect determinations of hypothermic effects. Adult male NIH Swiss mice were used in biotelemetry studies to assess tolerance to hypothermic effects following repeated SCRA administration over 5 consecutive days, and to determine the role of Phase I drug metabolism via acute CYP450 inhibition in the presence of 1-ABT, a nonspecific CYP450 inhibitor. SCRA dependence was determined in adult male NIH Swiss mice via assessment of rimonabant-precipitated observable sign of withdrawal (i.e., front paw tremors). RESULTS All SCRAs elicited dose-dependent hypothermia mediated through cannabinoid CB1 receptors (CB1Rs). 1-ABT increased duration of hypothermia for all SCRAs tested, and increased the magnitude of hypothermia for all SCRAs except 5F-ADB-PINACA. Upon repeated administration, tolerance to hypothermic effects of AB-PINACA, 5F-AB-PINACA and 5F-ADB-PINACA was much less than that of JWH-018. Similarly, rimonabant-precipitated front paw tremors were much less frequent in mice treated with 5F-AB-PINACA and 5F-ADB-PINACA than in mice treated with JWH-018. CONCLUSIONS These findings suggest a decreased potential for tolerance and withdrawal among indazole-carboxamide SCRAs, and may imply structural class-dependent profiles of in vivo effects among SCRAs.
Collapse
Affiliation(s)
- Catheryn D Wilson
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Takato Hiranita
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| |
Collapse
|
9
|
Barbieri M, Tirri M, Bilel S, Arfè R, Corli G, Marchetti B, Caruso L, Soukupova M, Cristofori V, Serpelloni G, Marti M. Synthetic cannabinoid JWH-073 alters both acute behavior and in vivo/vitro electrophysiological responses in mice. Front Psychiatry 2022; 13:953909. [PMID: 36339851 PMCID: PMC9634257 DOI: 10.3389/fpsyt.2022.953909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022] Open
Abstract
JWH-073 is a synthetic cannabinoid (SCB) that is illegally marketed within an "herbal blend", causing psychoactive effects more intense than those produced by Cannabis. Users report that JWH-073 causes less harmful effects than other SCBs, misrepresenting it as a "safe JWH-018 alternative", which in turn prompts its recreational use. The present study is aimed to investigate the in vivo pharmacological activity on physiological and neurobehavioral parameters in male CD-1 mice after acute 1 mg/kg JWH-073 administration. To this aim we investigate its effect on sensorimotor (visual, acoustic, and tactile), motor (spontaneous motor activity and catalepsy), and memory functions (novel object recognition; NOR) in mice coupling behavioral and EEG data. Moreover, to clarify how memory function is affected by JWH-073, we performed in vitro electrophysiological studies in hippocampal preparations using a Long-Term Potentiation (LTP) stimulation paradigm. We demonstrated that acute administration of JWH-073 transiently decreased motor activity for up to 25 min and visual sensorimotor responses for up to 105 min, with the highest effects at 25 min (~48 and ~38%, respectively), while the memory function was altered up to 24 h (~33%) in treated-mice as compared to the vehicle. EEG in the somatosensory cortex showed a maximal decrease of α (~23%) and γ (~26%) bands at 15 min, β (~26%) band at 25 min, a maximal increase of θ (~14%) band at 25 min and δ (~35%) band at 2 h, and a significant decrease of θ (~18%), α (~26%), and β (~10%) bands during 24 h. On the other hand, EEG in the hippocampus showed a significant decrease of all bands from 10 min to 2 h, with the maximal effect at 30 min for θ (~34%) and γ (~26%) bands and 2 h for α (~36%), β (~29%), and δ (~15%) bands. Notably, the δ band significant increase both at 5 min (~12%) and 24 h (~19%). Moreover, in vitro results support cognitive function impairment (~60% of decrease) by interfering with hippocampal synaptic transmission and LTP generation. Our results suggest that JWH-073 deeply alters brain electrical responsiveness with minor behavioral symptoms. Thus, it poses a subtle threat to consumers who mistakenly consider it safer than other SCBs.
Collapse
Affiliation(s)
- Mario Barbieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Raffaella Arfè
- Department of Translational Medicine, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Beatrice Marchetti
- Department of Translational Medicine, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Lorenzo Caruso
- Department of Environment and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Marie Soukupova
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Virginia Cristofori
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Serpelloni
- Neuroscience Clinical Center and Transcranial Magnetic Stimulation (TMS) Unit, Verona, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy.,Department for Anti-Drug Policies, Collaborative Center of the National Early Warning System, Presidency of the Council of Ministers, Rome, Italy
| |
Collapse
|
10
|
Drug Interactions. Forensic Toxicol 2022. [DOI: 10.1016/b978-0-12-819286-3.00003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Bukke VN, Archana M, Villani R, Serviddio G, Cassano T. Pharmacological and Toxicological Effects of Phytocannabinoids and Recreational Synthetic Cannabinoids: Increasing Risk of Public Health. Pharmaceuticals (Basel) 2021; 14:ph14100965. [PMID: 34681189 PMCID: PMC8541640 DOI: 10.3390/ph14100965] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 01/01/2023] Open
Abstract
Synthetic Cannabinoids (CBs) are a novel class of psychoactive substances that have rapidly evolved around the world with the addition of diverse structural modifications to existing molecules which produce new structural analogues that can be associated with serious adverse health effects. Synthetic CBs represent the largest class of drugs detected by the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) with a total of 207 substances identified from 2008 to October 2020, and 9 compounds being reported for the first time. Synthetic CBs are sprayed on natural harmless herbs with an aim to mimic the euphoric effect of Cannabis. They are sold under different brand names including Black mamba, spice, K2, Bombay Blue, etc. As these synthetic CBs act as full agonists at the CB receptors, they are much more potent than natural Cannabis and have been increasingly associated with acute to chronic intoxications and death. Due to their potential toxicity and abuse, the US government has listed some synthetic CBs under schedule 1 classification. The present review aims to provide a focused overview of the literature concerning the development of synthetic CBs, their abuse, and potential toxicological effects including renal toxicity, respiratory depression, hyperemesis syndrome, cardiovascular effects, and a range of effects on brain function.
Collapse
|
12
|
Brown JD, Rivera Rivera KJ, Hernandez LYC, Doenges MR, Auchey I, Pham T, Goodin AJ. Natural and Synthetic Cannabinoids: Pharmacology, Uses, Adverse Drug Events, and Drug Interactions. J Clin Pharmacol 2021; 61 Suppl 2:S37-S52. [PMID: 34396558 DOI: 10.1002/jcph.1871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/01/2021] [Indexed: 01/15/2023]
Abstract
The purpose of this narrative review is to describe the current use environment of both natural and synthetic cannabinoids while providing context for cannabinoid chemistry and pharmacology. In addition to a long history of recreational and nonmedical use, natural cannabinoids are increasingly used as prescription products, through medical cannabis programs, and as consumer health products. Despite anecdotal safety evidence, cannabis and cannabinoids are pharmacologically complex and pose risks for adverse drug events and drug-drug interactions. Synthetic cannabinoids, particularly agonists of cannabinoid receptors, are more potent than natural cannabinoids and can lead to more severe reactions and medical emergencies. This review provides a summary of approved uses and an overview of mechanisms of action for adverse drug events with natural and synthetic cannabinoids. Clinical considerations for special populations that may be at heightened risk for drug-drug interactions and adverse drug events while using natural or synthetic cannabinoids are examined, and recommendations are provided.
Collapse
Affiliation(s)
- Joshua D Brown
- Center for Drug Evaluation & Safety, University of Florida, Gainesville, Florida, USA.,Consortium for Medical Marijuana Clinical Outcomes Research, University of Florida, Gainesville, Florida, USA.,Department of Pharmaceutical Outcomes & Policy, University of Florida College of Pharmacy, Gainesville, Florida, USA
| | | | | | - Matthew R Doenges
- University of Florida College of Pharmacy, Gainesville, Florida, USA
| | - India Auchey
- University of Florida College of Pharmacy, Gainesville, Florida, USA
| | - Thanh Pham
- University of Florida College of Pharmacy, Gainesville, Florida, USA
| | - Amie J Goodin
- Center for Drug Evaluation & Safety, University of Florida, Gainesville, Florida, USA.,Consortium for Medical Marijuana Clinical Outcomes Research, University of Florida, Gainesville, Florida, USA.,Department of Pharmaceutical Outcomes & Policy, University of Florida College of Pharmacy, Gainesville, Florida, USA
| |
Collapse
|
13
|
Hakimian D, Benson AA, Khoury T, Massarwa M, Israel S, Salameh S, Gershinsky Y, Shapira B, Muszkat M. Gastrointestinal manifestations of synthetic cannabinoids: a retrospective cohort study. BMC Gastroenterol 2021; 21:274. [PMID: 34229620 PMCID: PMC8259032 DOI: 10.1186/s12876-021-01847-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Synthetic cannabinoids (SC) are chemical substances which activate cannabinoid receptors similarly to tetrahydrocannabinol, but with a higher efficacy. These substances are used as illicit recreational drugs, often smoked as herbal mixtures. The continuing availability and rapid evolution of SC is an ongoing health risk. The adverse effects of SC are wide ranging, and span from mild behavioral changes to death. Knowledge regarding gastrointestinal (GI) manifestations of SC use is sparse. METHODS Single tertiary-care referral medical center retrospective study. RESULTS The medical records of patients presented to hospital emergency care due to SC use between January 2014 and February 2018 were retrieved from Hadassah Mount Scopus Hospital's computerized database. The records were reviewed for clinical outcomes and laboratory tests. Fifty-five (55) patients were identified with a hospital presentation due to SC use. Twenty-one (21) out of 55 patients (38%) reported gastrointestinal complaints. The most common complaints were abdominal pain and vomiting. Of those, 28% had recurrent emergency department presentations due to abdominal pain and 66% presented with leukocytosis. Serum lactate was elevated in 66% of patients with GI manifestations. One patient had an abnormal computerized tomography (CT) abdominal angiography scan, which was compatible with intestinal ischemia. CONCLUSIONS The clinical spectrum of gastrointestinal manifestations in SC intoxication ranges from mild symptoms, such as abdominal pain and vomiting, to even more severe symptoms suggestive of intestinal ischemia. Clinicians should be aware that abdominal pain and other gastrointestinal complaints can be associated with SC use.
Collapse
Affiliation(s)
- David Hakimian
- Institute of Gastroenterology and Liver Diseases, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, 91240, Ein Kerem, Jerusalem, Israel.
| | - Ariel A Benson
- Institute of Gastroenterology and Liver Diseases, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, 91240, Ein Kerem, Jerusalem, Israel
| | - Tawfik Khoury
- Department of Gastroenterology, Galilee Medical Center, Nahariya, Israel
- Bar-Ilan Faculty of Medicine, Safed, Israel
| | - Muhammad Massarwa
- Institute of Gastroenterology and Liver Diseases, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, 91240, Ein Kerem, Jerusalem, Israel
| | - Sarah Israel
- Department of Internal Medicine, Hadassah Medical Center Mt Scopus and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shaden Salameh
- Department of Emergency Medicine, Mt Scopus and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yonatan Gershinsky
- Department of Emergency Medicine, Mt Scopus and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Barak Shapira
- Braun School of Public Health and Community Medicine, Hebrew University Ein Kerem Medical Campus, Jerusalem, Israel
- Division of Enforcement and Inspection, Israel Ministry of Health, Jerusalem, Israel
| | - Mordechai Muszkat
- Department of Internal Medicine, Hadassah Medical Center Mt Scopus and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
14
|
Trexler KR, Vanegas SO, Poklis JL, Kinsey SG. The short-acting synthetic cannabinoid AB-FUBINACA induces physical dependence in mice. Drug Alcohol Depend 2020; 214:108179. [PMID: 32688070 PMCID: PMC7461724 DOI: 10.1016/j.drugalcdep.2020.108179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Recent years have seen a rise in the diversity and use of synthetic cannabinoids. The present study evaluated the behavioral effects of the third-generation indazole-3-carboxamide-type synthetic cannabinoid, AB-FUBINACA. METHODS Adult male and female C57BL/6J mice were treated with AB-FUBINACA (0-3 mg/kg, i.p.) and tested repeatedly in the tetrad battery measuring catalepsy, antinociception, hypothermia, and locomotor activity. Mice treated with AB-FUBINACA (≥2 mg/kg, i.p.) displayed classic cannabinoid effects in the tetrad that were blocked by the CB1 receptor selective antagonist rimonabant. To address tolerance and withdrawal effects, a second group of mice was injected with AB-FUBINACA (3 mg/kg, s.c.) or vehicle consisting of 5% ethanol, 5% Kolliphor EL, and 90 % saline every 12 h and tested daily in modified tetrad over the course of 5 days. On the 6th day, withdrawal was precipitated using rimonabant (3 mg/kg, s.c.), and somatic signs of withdrawal (i.e., head twitches and paw tremors) were quantified. RESULTS Although mice did not develop tolerance to AB-FUBINACA or cross-tolerance to Δ9-tetrahydrocannabinol (THC; 50 mg/kg, i.p.), somatic precipitated withdrawal signs were observed. Repeated tetrad testing up to 48 h post injection indicated that AB-FUBINACA effects are relatively short-lived, as compared with THC. Brain levels of AB-FUBINACA, as quantified by UHPLC-MS/MS, were undetectable 4 h post injection. CONCLUSIONS These data indicate that the cannabinoid effects of AB-FUBINACA are relatively short-lived, yet sufficient to induce dependence in mice.
Collapse
Affiliation(s)
- Kristen R. Trexler
- Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - S. Olivia Vanegas
- Department of Psychology, West Virginia University, Morgantown, WV, United States,Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States,School of Nursing, University of Connecticut, Storrs, CT, United States
| | - Justin L. Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Steven G. Kinsey
- Department of Psychology, West Virginia University, Morgantown, WV, United States,School of Nursing, University of Connecticut, Storrs, CT, United States,Corresponding author at: 231 Glenbrook Rd., Unit 4026, University of Connecticut, Storrs, CT, 06269-3237, United States. (S.G. Kinsey)
| |
Collapse
|
15
|
Gamage TF, Barrus DG, Kevin RC, Finlay DB, Lefever TW, Patel PR, Grabenauer MA, Glass M, McGregor IS, Wiley JL, Thomas BF. In vitro and in vivo pharmacological evaluation of the synthetic cannabinoid receptor agonist EG-018. Pharmacol Biochem Behav 2020. [PMID: 32247816 DOI: 10.1016/j.pbb.2020.172918.in] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) possess high abuse liability and complex toxicological profiles, making them serious threats to public health. EG-018 is a SCRA that has been detected in both illicit products and human samples, but it has received little attention to date. The current studies investigated EG-018 at human CB1 and CB2 receptors expressed in HEK293 cells in [3H]CP55,940 competition binding, [35S]GTPγS binding and forskolin-stimulated cAMP production. EG-018 was also tested in vivo for its ability to produce cannabimimetic and abuse-related effects in the cannabinoid tetrad and THC drug discrimination, respectively. EG-018 exhibited high affinity at CB1 (21 nM) and at CB2 (7 nM), but in contrast to typical SCRAs, behaved as a weak partial agonist in [35S]GTPγS binding, exhibiting lower efficacy but greater potency, than that of THC at CB1 and similar potency and efficacy at CB2. EG-018 inhibited forskolin-stimulated cAMP with similar efficacy but lower potency, compared to THC, which was likely due to high receptor density facilitating saturation of this signaling pathway. In mice, EG-018 (100 mg/kg, 30 min) administered intraperitoneally (i.p.) did not produce effects in the tetrad or drug discrimination nor did it shift THC's ED50 value in drug discrimination when administered before THC, suggesting EG-018 has negligible occupancy of brain CB1 receptors following i.p. administration. Following intravenous (i.v.) administration, EG-018 (56 mg/kg) produced hypomotility, catalepsy, and hypothermia, but only catalepsy was blocked by the selective CB1 antagonist rimonabant (3 mg/kg, i.v.). Additional studies of EG-018 and its structural analogues could provide further insight into how cannabinoids exert efficacy through the cannabinoid receptors.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Body Temperature/drug effects
- Cannabinoid Receptor Agonists/pharmacokinetics
- Cannabinoid Receptor Agonists/pharmacology
- Carbazoles/pharmacokinetics
- Carbazoles/pharmacology
- Cyclic AMP/metabolism
- Dronabinol/pharmacology
- HEK293 Cells
- Humans
- Liver/cytology
- Locomotion/drug effects
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Microsomes/drug effects
- Naphthalenes/pharmacokinetics
- Naphthalenes/pharmacology
- Rats
- Rats, Long-Evans
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/metabolism
- Signal Transduction/drug effects
- Synthetic Drugs/metabolism
- Synthetic Drugs/pharmacokinetics
Collapse
Affiliation(s)
- Thomas F Gamage
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Daniel G Barrus
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Richard C Kevin
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia; Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| | - David B Finlay
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Timothy W Lefever
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Purvi R Patel
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Megan A Grabenauer
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Michelle Glass
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Iain S McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia; Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jenny L Wiley
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA.
| | - Brian F Thomas
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA
| |
Collapse
|
16
|
Metabolism, CB1 cannabinoid receptor binding and in vivo activity of synthetic cannabinoid 5F-AKB48: Implications for toxicity. Pharmacol Biochem Behav 2020; 195:172949. [PMID: 32413436 DOI: 10.1016/j.pbb.2020.172949] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/11/2020] [Indexed: 11/20/2022]
Abstract
AKB48 and its fluorinated derivative 5F-AKB48 are synthetic cannabinoids (SCs) which have caused hospitalizations and deaths in human users. Abuse of SCs is dangerous because users may mistake them for natural cannabis, which is generally considered to be unlikely to elicit adverse effects. The present studies were designed to investigate the in vitro oxidative metabolism of 5F-AKB48 by human microsomal fractions from different organs and sexes as well as recombinant human cytochrome P450s (P450s). Mass spectrometry data tentatively provides evidence for the existence of mono-, di-, and trihydroxylated metabolites in a successive metabolism. Experiments utilizing P450s revealed that the most active enzymes (CYP2D6, CYP2J2, CYP3A4, and CYP3A5) effectively produced mono- and dihydroxylated metabolites, while CYP3A4/5 also produced significant amounts of the trihydroxylated metabolite. Moreover, although the affinity and potency of Phase I metabolite 4OH-5F-AKB48 is reduced when compared to that of the parent drug, this metabolite nevertheless retains similar high affinity for CB1 receptors, and greater efficacy for G protein activation, when compared to THC. Finally, 5F-AKB48 produced time- and dose-dependent cannabimimetic effects in mice which were more potent, but shorter acting, than those of Δ9-THC, and were attenuated by prior treatment with the CB1 antagonist rimonabant. Based on our data, we hypothesize that while many cases of toxicity result from genetic mutations, which can lead to a decrease or even absence of activity for Phase I drug-metabolizing enzymes, other P450s could potentially increase their role in the metabolism of these SCs. Because many metabolites of SCs remain biologically active, they could contribute to the deleterious effects of these substances.
Collapse
|
17
|
Gamage TF, Barrus DG, Kevin RC, Finlay DB, Lefever TW, Patel PR, Grabenauer MA, Glass M, McGregor IS, Wiley JL, Thomas BF. In vitro and in vivo pharmacological evaluation of the synthetic cannabinoid receptor agonist EG-018. Pharmacol Biochem Behav 2020; 193:172918. [PMID: 32247816 DOI: 10.1016/j.pbb.2020.172918] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/26/2020] [Indexed: 01/08/2023]
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) possess high abuse liability and complex toxicological profiles, making them serious threats to public health. EG-018 is a SCRA that has been detected in both illicit products and human samples, but it has received little attention to date. The current studies investigated EG-018 at human CB1 and CB2 receptors expressed in HEK293 cells in [3H]CP55,940 competition binding, [35S]GTPγS binding and forskolin-stimulated cAMP production. EG-018 was also tested in vivo for its ability to produce cannabimimetic and abuse-related effects in the cannabinoid tetrad and THC drug discrimination, respectively. EG-018 exhibited high affinity at CB1 (21 nM) and at CB2 (7 nM), but in contrast to typical SCRAs, behaved as a weak partial agonist in [35S]GTPγS binding, exhibiting lower efficacy but greater potency, than that of THC at CB1 and similar potency and efficacy at CB2. EG-018 inhibited forskolin-stimulated cAMP with similar efficacy but lower potency, compared to THC, which was likely due to high receptor density facilitating saturation of this signaling pathway. In mice, EG-018 (100 mg/kg, 30 min) administered intraperitoneally (i.p.) did not produce effects in the tetrad or drug discrimination nor did it shift THC's ED50 value in drug discrimination when administered before THC, suggesting EG-018 has negligible occupancy of brain CB1 receptors following i.p. administration. Following intravenous (i.v.) administration, EG-018 (56 mg/kg) produced hypomotility, catalepsy, and hypothermia, but only catalepsy was blocked by the selective CB1 antagonist rimonabant (3 mg/kg, i.v.). Additional studies of EG-018 and its structural analogues could provide further insight into how cannabinoids exert efficacy through the cannabinoid receptors.
Collapse
Affiliation(s)
- Thomas F Gamage
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Daniel G Barrus
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Richard C Kevin
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia; Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| | - David B Finlay
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Timothy W Lefever
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Purvi R Patel
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Megan A Grabenauer
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Michelle Glass
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Iain S McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia; Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jenny L Wiley
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA.
| | - Brian F Thomas
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA
| |
Collapse
|
18
|
Amin MR, Ali DW. Pharmacology of Medical Cannabis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1162:151-165. [DOI: 10.1007/978-3-030-21737-2_8] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Abstract
Synthetic cannabinoid (SC) products have gained popularity as abused drugs over the past decade in many countries. The SCs broadly impact psychological state (e.g., mood, suicidal thoughts and psychosis) and physiological functions (e.g., cardiovascular, gastrointestinal and urinary). This review is about the effects of SCs on psychotic symptoms in clinical settings and the potentially relevant chemistry and mechanisms of action for SCs. Induction of psychotic symptoms after consuming SC products were reported, including new-onset psychosis and psychotic relapses. The role of SCs in psychosis is more complex than any single chemical component might explain, and these effects may not be a simple extension of the typical effects of cannabis or natural cannabinoids.
Collapse
|
20
|
Trexler KR, Nass SR, Crowe MS, Gross JD, Jones MS, McKitrick AW, Siderovski DP, Kinsey SG. Novel behavioral assays of spontaneous and precipitated THC withdrawal in mice. Drug Alcohol Depend 2018; 191:14-24. [PMID: 30071445 PMCID: PMC6404969 DOI: 10.1016/j.drugalcdep.2018.05.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/15/2018] [Accepted: 05/28/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND A subset of cannabis users develop some degree of Cannabis Use Disorder (CUD). Although behavioral therapy has some success in treating CUD, many users relapse, often citing altered sleep, mood, and irritability. Preclinical animal tests of cannabinoid withdrawal focus primarily on somatic-related behaviors precipitated by a cannabinoid receptor antagonist. The goal of the present study was to develop novel cannabinoid withdrawal assays that are either antagonist-precipitated or spontaneously induced by abstinence. METHODS C57BL/6 J mice were repeatedly administered the phytocannabinoid Δ9-tetrahydrocannabinol (THC; 1, 10 or 50 mg/kg, s.c.), the synthetic cannabinoid receptor agonist JWH-018 (1 mg/kg, s.c.), or vehicle (1:1:18 parts ethanol:Kolliphor EL:saline, s.c.) for 6 days. Withdrawal was precipitated with the cannabinoid receptor inverse agonist rimonabant (3 mg/kg, i.p.) or elicited via abstinence (i.e., spontaneous withdrawal), and putative stress-related behavior was scored. Classic somatic signs of cannabinoid withdrawal were also quantified. RESULTS Precipitated THC withdrawal significantly increased plasma corticosterone. Precipitated withdrawal from either THC or JWH-018 suppressed marble burying, increased struggling in the tail suspension test, and elicited somatic withdrawal behaviors. The monoacylglycerol lipase inhibitor JZL184 attenuated somatic precipitated withdrawal but had no effect on marble burying or struggling. Spontaneous THC or JWH-018 withdrawal-induced paw tremors, head twitches, and struggled in the tail suspension test after 24-48 h abstinence. JZL184 or THC attenuated these spontaneous withdrawal-induced behaviors. CONCLUSION Outcomes from tail suspension and marble burying tests reveal that THC withdrawal is multifaceted, eliciting and suppressing behaviors in these tests, in addition to inducing well-documented somatic signs of withdrawal.
Collapse
Affiliation(s)
| | - Sara R. Nass
- Department of Psychology, West Virginia University; Department of Pharmacology & Toxicology, Virginia Commonwealth University
| | - Molly S. Crowe
- Department of Psychology, West Virginia University; Department of Physiology & Biophysics, Virginia Commonwealth University
| | - Joshua D. Gross
- Department of Physiology, Pharmacology and Neuroscience, West Virginia University
| | | | | | - David P. Siderovski
- Department of Physiology, Pharmacology and Neuroscience, West Virginia University
| | | |
Collapse
|
21
|
Cordeiro SK, Daro RC, Seung H, Klein-Schwartz W, Kim HK. Evolution of clinical characteristics and outcomes of synthetic cannabinoid receptor agonist exposure in the United States: analysis of National Poison Data System data from 2010 to 2015. Addiction 2018; 113:1850-1861. [PMID: 29806885 DOI: 10.1111/add.14281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/22/2018] [Accepted: 05/23/2018] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND AIMS New synthetic cannabinoid receptor agonists (SCRAs) are synthesized each year to evade US governmental regulation and sold for recreational use. Our aim was to estimate the changes in the clinical effects and patient disposition associated with SCRA exposure from 2010 to 2015. DESIGN A retrospective observational cohort study. SETTING National Poison Data System that collects data on reports of poisonings from US poison centers. PARTICIPANTS A total of 19 388 isolated SCRA cases between 1 January 2010 and 31 December 2015 were identified. The mean age was 24.6 years and 77.8% were male. MEASUREMENTS Primary outcome was the change in the trend of patient disposition, i.e. treated and released versus hospitalization (e.g. non-critical care, critical care unit or psychiatry) between 2010 and 2015. Secondary outcomes included the trends in the clinical effects and their duration, and therapeutic interventions nationally and regionally. FINDINGS Reports of SCRA exposure peaked in 2011 (n = 5305) and 2015 (n = 5475). The majority of patients required supportive care and were treated and released from an emergency department. Hospitalization increased by annual percentage change in the log odds (APCO) of 21.0% (P < 0.0001) during the 6 years, with significant increases in admissions to critical care units and non-critical care units. Overall, tachycardia (32.1%), agitation/irritation (25.6%) and drowsiness/lethargy (20.4%) were the most frequently reported clinical effects from SCRA exposure. Clinical effects resolved within 2-8 hours in 52.8% of cases, but their duration increased markedly by 2015. Regionally, the largest number of SCRA cases was reported in the South (n = 9374, 48.6%). SCRA cases in the Northeast were hospitalized more frequently (27.4%), with cases in the Midwest being admitted more frequently to critical care units (15.3%). However, there were no significant differences in clinical toxicity or disposition among the regions. CONCLUSION Hospitalization resulting from toxicity from synthetic cannabinoid receptor agonists exposure in the United States increased significantly between 2010 and 2015.
Collapse
Affiliation(s)
- Samuel K Cordeiro
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ryan C Daro
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hyunuk Seung
- Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Wendy Klein-Schwartz
- Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, MD, USA.,Maryland Poison Center, Baltimore, MD, USA
| | - Hong K Kim
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Maryland Poison Center, Baltimore, MD, USA
| |
Collapse
|
22
|
Hutchison RD, Ford BM, Franks LN, Wilson CD, Yarbrough AL, Fujiwara R, Su MK, Fernandez D, James LP, Moran JH, Patton AL, Fantegrossi WE, Radominska-Pandya A, Prather PL. Atypical Pharmacodynamic Properties and Metabolic Profile of the Abused Synthetic Cannabinoid AB-PINACA: Potential Contribution to Pronounced Adverse Effects Relative to Δ 9-THC. Front Pharmacol 2018; 9:1084. [PMID: 30319418 PMCID: PMC6168621 DOI: 10.3389/fphar.2018.01084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/06/2018] [Indexed: 01/12/2023] Open
Abstract
Recreational use of marijuana is associated with few adverse effects, but abuse of synthetic cannabinoids (SCBs) can result in anxiety, psychosis, chest pain, seizures and death. To potentially explain higher toxicity associated with SCB use, we hypothesized that AB-PINACA, a common second generation SCB, exhibits atypical pharmacodynamic properties at CB1 cannabinoid receptors (CB1Rs) and/or a distinct metabolic profile when compared to Δ9-tetrahydrocannabinol (Δ9-THC), the principal psychoactive cannabinoid present in marijuana. Liquid chromatography tandem mass spectrometry (LC/MS) identified AB-PINACA and monohydroxy metabolite(s) as primary phase I metabolites (4OH-AB-PINACA and/or 5OH-AB-PINACA) in human urine and serum obtained from forensic samples. In vitro experiments demonstrated that when compared to Δ9-THC, AB-PINACA exhibits similar affinity for CB1Rs, but greater efficacy for G-protein activation and higher potency for adenylyl cyclase inhibition. Chronic treatment with AB-PINACA also results in greater desensitization of CB1Rs (e.g., tolerance) than Δ9-THC. Importantly, monohydroxy metabolites of AB-PINACA retain affinity and full agonist activity at CB1Rs. Incubation of 4OH-AB-PINACA and 5OH-AB-PINACA with human liver microsomes (HLMs) results in limited glucuronide formation when compared to that of JWH-018-M2, a major monohydroxylated metabolite of the first generation SCB JWH-018. Finally, AB-PINACA and 4OH-AB-PINACA are active in vivo, producing CB1R-mediated hypothermia in mice. Taken collectively, the atypical pharmacodynamic properties of AB-PINACA at CB1Rs relative to Δ9-THC (e.g., higher potency/efficacy and greater production of desensitization), coupled with an unusual metabolic profile (e.g., production of metabolically stable active phase I metabolites) may contribute to the pronounced adverse effects observed with abuse of this SCB compared to marijuana.
Collapse
Affiliation(s)
- Rachel D Hutchison
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Benjamin M Ford
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Lirit N Franks
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Catheryn D Wilson
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Azure L Yarbrough
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ryoichi Fujiwara
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Mark K Su
- New York City Poison Control Center, New York, NY, United States
| | | | - Laura P James
- Translational Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Amy L Patton
- PinPoint Testing, LLC, Little Rock, AR, United States
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Anna Radominska-Pandya
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Paul L Prather
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
23
|
Affiliation(s)
- Mary Tresa Zanda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Liana Fattore
- Institute of Neuroscience-Cagliari, National Research Council of Italy, Cittadella Universitaria di Monserrato, Monserrato, Italy
| |
Collapse
|
24
|
Elmore JS, Baumann MH. Repeated Exposure to the "Spice" Cannabinoid JWH-018 Induces Tolerance and Enhances Responsiveness to 5-HT 1A Receptor Stimulation in Male Rats. Front Psychiatry 2018; 9:55. [PMID: 29535650 PMCID: PMC5835089 DOI: 10.3389/fpsyt.2018.00055] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) is a synthetic compound found in psychoactive "spice" products that activates cannabinoid receptors. Preclinical evidence suggests that exposure to synthetic cannabinoids increases 5-HT2A/2C receptor function in the brain, an effect which might contribute to psychotic symptoms. Here, we hypothesized that repeated exposures to JWH-018 would enhance behavioral responsiveness to the 5-HT2A/2C receptor agonist DOI. Male Sprague-Dawley rats fitted with subcutaneously (sc) temperature transponders received daily injections of JWH-018 (1.0 mg/kg, sc) or its vehicle for seven consecutive days. Body temperature and catalepsy scores were determined at 1, 2, and 4 h post-injection each day. At 1 and 7 days after the final repeated treatment, rats received a challenge injection of either DOI (0.1 mg/kg, sc) or the 5-HT1A receptor agonist 8-OH-DPAT (0.3 mg/kg, sc), then temperature and behavioral responses were assessed. Behaviors induced by DOI included wet dog shakes and back muscle contractions (i.e., skin jerks), while behaviors induced by 8-OH-DPAT included ambulation, forepaw treading, and flat body posture. On the first day of repeated treatment, JWH-018 produced robust hypothermia and catalepsy which lasted up to 4 h, and these effects were significantly blunted by day 7 of treatment. Repeated exposure to JWH-018 did not affect behaviors induced by DOI, but behavioral and hypothermic responses induced by 8-OH-DPAT were significantly augmented 1 day after cessation of JWH-018 treatment. Collectively, our findings show that repeated treatment with JWH-018 produces tolerance to its hypothermic and cataleptic effects, which is accompanied by transient enhancement of 5-HT1A receptor sensitivity in vivo.
Collapse
Affiliation(s)
- Joshua S Elmore
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Michael H Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
25
|
Hondebrink L, Zwartsen A, Westerink RHS. Effect fingerprinting of new psychoactive substances (NPS): What can we learn from in vitro data? Pharmacol Ther 2017; 182:193-224. [PMID: 29097307 DOI: 10.1016/j.pharmthera.2017.10.022] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of new psychoactive substances (NPS) is increasing and currently >600 NPS have been reported. However, limited information on neuropharmacological and toxicological effects of NPS is available, hampering risk characterization. We reviewed the literature on the in vitro neuronal modes of action to obtain effect fingerprints of different classes of illicit drugs and NPS. The most frequently reported NPS were selected for review: cathinones (MDPV, α-PVP, mephedrone, 4-MEC, pentedrone, methylone), cannabinoids (JWH-018), (hallucinogenic) phenethylamines (4-fluoroamphetamine, benzofurans (5-APB, 6-APB), 2C-B, NBOMes (25B-NBOMe, 25C-NBOMe, 25I-NBOMe)), arylcyclohexylamines (methoxetamine) and piperazine derivatives (mCPP, TFMPP, BZP). Our effect fingerprints highlight the main modes of action for the different NPS studied, including inhibition and/or reversal of monoamine reuptake transporters (cathinones and non-hallucinogenic phenethylamines), activation of 5-HT2receptors (hallucinogenic phenethylamines and piperazines), activation of cannabinoid receptors (cannabinoids) and inhibition of NDMA receptors (arylcyclohexylamines). Importantly, we identified additional targets by relating reported effect concentrations to the estimated human brain concentrations during recreational use. These additional targets include dopamine receptors, α- and β-adrenergic receptors, GABAAreceptors and acetylcholine receptors, which may all contribute to the observed clinical symptoms following exposure. Additional data is needed as the number of NPS continues to increase. Also, the effect fingerprints we have obtained are still incomplete and suffer from a large variation in the reported effects and effect sizes. Dedicated in vitro screening batteries will aid in complementing specific effect fingerprints of NPS. These fingerprints can be implemented in the risk assessments of NPS that are necessary for eventual control measures to reduce Public Health risks.
Collapse
Affiliation(s)
- Laura Hondebrink
- Dutch Poisons Information Center (DPIC), University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Anne Zwartsen
- Dutch Poisons Information Center (DPIC), University Medical Center Utrecht, Utrecht University, The Netherlands; Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 TD, Utrecht, The Netherlands
| | - Remco H S Westerink
- Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 TD, Utrecht, The Netherlands.
| |
Collapse
|
26
|
Schindler CW, Gramling BR, Justinova Z, Thorndike EB, Baumann MH. Synthetic cannabinoids found in "spice" products alter body temperature and cardiovascular parameters in conscious male rats. Drug Alcohol Depend 2017; 179:387-394. [PMID: 28846955 PMCID: PMC5599362 DOI: 10.1016/j.drugalcdep.2017.07.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/16/2017] [Accepted: 07/25/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND The misuse of synthetic cannabinoids is a persistent public health concern. Because these drugs target the same cannabinoid receptors as the active ingredient of marijuana, Δ9-tetrahydrocannabinol (THC), we compared the effects of synthetic cannabinoids and THC on body temperature and cardiovascular parameters. METHODS Biotelemetry transmitters for the measurement of body temperature or blood pressure (BP) were surgically implanted into separate groups of male rats. THC and the synthetic cannabinoids CP55,940, JWH-018, AM2201 and XLR-11 were injected s.c., and rats were placed into isolation cubicles for 3h. RESULTS THC and synthetic cannabinoids produced dose-related decreases in body temperature that were most prominent in the final 2h of the session. The rank order of potency was CP55,940>AM2201=JWH-018>THC=XLR-11. The cannabinoid inverse agonist rimonabant antagonized the hypothermic effect of all compounds. Synthetic cannabinoids elevated BP in comparison to vehicle treatment during the first h of the session, while heart rate was unaffected. The rank order of potency for BP increases was similar to that seen for hypothermia. Hypertensive effects of CP55,940 and JWH-018 were not antagonized by rimonabant or the neutral antagonist AM4113. However, the BP responses to both drugs were antagonized by pretreatment with either the ganglionic blocker hexamethonium or the α1 adrenergic antagonist prazosin. CONCLUSIONS Our results show that synthetic cannabinoids produce hypothermia in rats by a mechanism involving cannabinoid receptors, while they increase BP by a mechanism independent of these sites. The hypertensive effect appears to involve central sympathetic outflow.
Collapse
Affiliation(s)
- Charles W. Schindler
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD,Preclinical Pharmacology Section, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD
| | - Benjamin R. Gramling
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD
| | - Zuzana Justinova
- Preclinical Pharmacology Section, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD
| | - Eric B. Thorndike
- Preclinical Pharmacology Section, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD
| | - Michael H. Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD
| |
Collapse
|
27
|
|
28
|
Ford BM, Tai S, Fantegrossi WE, Prather PL. Synthetic Pot: Not Your Grandfather's Marijuana. Trends Pharmacol Sci 2017; 38:257-276. [PMID: 28162792 PMCID: PMC5329767 DOI: 10.1016/j.tips.2016.12.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/08/2016] [Accepted: 12/13/2016] [Indexed: 01/05/2023]
Abstract
In the early 2000s in Europe and shortly thereafter in the USA, it was reported that 'legal' forms of marijuana were being sold under the name K2 and/or Spice. Active ingredients in K2/Spice products were determined to be synthetic cannabinoids (SCBs), producing psychotropic actions via CB1 cannabinoid receptors, similar to those of Δ9-tetrahydrocannabinol (Δ9-THC), the primary active constituent in marijuana. Often abused by adolescents and military personnel to elude detection in drug tests due to their lack of structural similarity to Δ9-THC, SCBs are falsely marketed as safe marijuana substitutes. Instead, SCBs are a highly structural diverse group of compounds, easily synthesized, which produce very dangerous adverse effects occurring by, as of yet, unknown mechanisms. Therefore, available evidence indicates that K2/Spice products are clearly not safe marijuana alternatives.
Collapse
Affiliation(s)
- Benjamin M Ford
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sherrica Tai
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paul L Prather
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
29
|
Järbe TUC, Raghav JG. Tripping with Synthetic Cannabinoids ("Spice"): Anecdotal and Experimental Observations in Animals and Man. Curr Top Behav Neurosci 2017; 32:263-281. [PMID: 27753006 DOI: 10.1007/7854_2016_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The phenomenon of consuming synthetic cannabinoids ("Spice") for recreational purposes is a fairly recent trend. However, consumption of cannabis dates back millennia, with numerous accounts written on the experience of its consumption, and thousands of scientific reports published on the effects of its constituents in laboratory animals and humans. Here, we focus on consolidating the scientific literature on the effects of "Spice" compounds in various behavioral assays, including assessing abuse liability, tolerance, dependence, withdrawal, and potential toxicity. In most cases, the behavioral effects of "Spice" compounds are compared with those of Δ9-tetrahydrocannabinol. Methodological aspects, such as modes of administration and other logistical issues, are also discussed. As the original "Spice" molecules never were intended for human consumption, scientifically based information about potential toxicity and short- and long-term behavioral effects are very limited. Consequently, preclinical behavioral studies with "Spice" compounds are still in a nascent stage. Research is needed to address the addiction potential and other effects, including propensity for producing tissue/organ toxicity, of these synthetic cannabimimetic "Spice" compounds.
Collapse
Affiliation(s)
- Torbjörn U C Järbe
- Department of Pharmaceutical Sciences, Center for Drug Discovery (CDD), Northeastern University, 116 Mugar Hall, 360 Huntington Ave, Boston, MA, 02115, USA.
| | - Jimit Girish Raghav
- Department of Pharmaceutical Sciences, Center for Drug Discovery (CDD), Northeastern University, 116 Mugar Hall, 360 Huntington Ave, Boston, MA, 02115, USA
| |
Collapse
|
30
|
Tai S, Fantegrossi WE. Pharmacological and Toxicological Effects of Synthetic Cannabinoids and Their Metabolites. Curr Top Behav Neurosci 2017; 32:249-262. [PMID: 28012093 PMCID: PMC5392241 DOI: 10.1007/7854_2016_60] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Commercial preparations containing synthetic cannabinoids (SCBs) are rapidly emerging as drugs of abuse. Although often assumed to be "safe" and "legal" alternatives to cannabis, reports indicate that SCBs induce toxicity not often associated with the primary psychoactive component of marijuana, Δ9-tetrahydrocannabinol (Δ9-THC). This chapter will summarize the evidence that use of SCBs poses greater health risks relative to marijuana and suggest that distinct pharmacological properties and metabolism of SCBs relative to Δ9-THC may contribute to this increased toxicity. Studies reviewed will indicate that in contrast to partial agonist properties of Δ9-THC typically observed in vitro, SCBs act as full CB1 and CB2 receptor agonists both in cellular assays and animal studies. Furthermore, unlike Δ9-THC metabolism, several SCB metabolites retain high affinity for and exhibit a range of intrinsic activities at CB1 and CB2 receptors. Finally, the potential for SCBs to cause adverse drug-drug interactions with other drugs of abuse, as well as with common therapeutic agents, will be discussed. Collectively, the evidence provided in this chapter indicates that SCBs should not be considered safe and legal alternatives to marijuana. Instead, the enhanced toxicity of SCBs relative to marijuana, perhaps resulting from the combined actions of a complex mixture of different SCBs present and their active metabolites that retain high affinity for CB1 and CB2 receptors, highlights the inherent danger that may accompany use of these substances.
Collapse
Affiliation(s)
- Sherrica Tai
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences College of Medicine, Mail Slot 638, 4301 West Markham Street, Little Rock, AR, 72207, USA
- Department of Pharmacology, University of Michigan Medical School, 2301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences College of Medicine, Mail Slot 638, 4301 West Markham Street, Little Rock, AR, 72207, USA.
| |
Collapse
|
31
|
Synthetic Cannabis Overdose and Withdrawal in a Young Adult: A Case Report, Commentary on Regulation, and Review of the Literature. Case Rep Psychiatry 2016; 2016:3640549. [PMID: 27777807 PMCID: PMC5061947 DOI: 10.1155/2016/3640549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/22/2016] [Accepted: 09/08/2016] [Indexed: 11/18/2022] Open
Abstract
Introduction. Marijuana has been used for its psychotropic effects including enhanced relaxation and perceptual alterations. However, the use of synthetic marijuana (SM) leads to more frequent and drastic side effects than the typical use of regular marijuana, owing to the fact that SM has a shorter duration and an earlier peak of action. Despite all the potential adverse health effects associated with SM use, current health policies on SM are very limited. It is believed that the popularity of SM has increased, due to its easy accessibility in the US and lack of detection in typical urine drug screens for THC. Case Report. One case presented is of a young adult patient, with histories of recurrent synthetic cannabis and recreational cannabis use, who had developed drastic physiological and psychiatric symptoms, including the development of acute-onset psychosis. Conclusion/Discussion. This case, as many others nationwide, exemplifies the impact of synthetic cannabinoid use and abuse in adolescents. Side effects and adverse health consequences of synthetic cannabinoid use warrant stricter regulations and policies in order to decrease psychiatric hospital admissions and associated healthcare costs.
Collapse
|
32
|
Ossato A, Canazza I, Trapella C, Vincenzi F, De Luca MA, Rimondo C, Varani K, Borea PA, Serpelloni G, Marti M. Effect of JWH-250, JWH-073 and their interaction on "tetrad", sensorimotor, neurological and neurochemical responses in mice. Prog Neuropsychopharmacol Biol Psychiatry 2016; 67:31-50. [PMID: 26780169 DOI: 10.1016/j.pnpbp.2016.01.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 10/22/2022]
Abstract
JWH-250 and JWH-073 are two synthetic cannabinoid agonists with nanomolar affinity at CB1 and CB2 receptors. They are illegally marketed within "herbal blend" for theirs psychoactive effects greater than those produced by Cannabis. Recently, we analyzed an "herbal" preparation containing a mixture of both JWH-250 and JWH-073. The present study was aimed at investigating the in vitro and in vivo pharmacological activity of JWH-250 and JWH-073 in male CD-1 mice. In vitro competition binding experiments performed on mouse and human CB1 and CB2 receptors revealed a nanomolar affinity and potency of the JWH-250 and JWH-073. In vivo studies showed that JWH-250 and JWH-073, administered separately, induced a marked hypothermia, increased pain threshold to both noxious mechanical and thermal stimuli, caused catalepsy, reduced motor activity, impaired sensorimotor responses (visual, acoustic and tactile), caused seizures, myoclonia, hyperreflexia and promote aggressiveness in mice. Moreover, microdialysis study in freely moving mice showed that systemic administration of JWH-250 and JWH-073 stimulated dopamine release in the nucleus accumbens in a dose-dependent manner. Behavioral, neurological and neurochemical effects were fully prevented by the selective CB1 receptor antagonist/inverse agonist AM 251. Co-administration of ineffective doses of JWH-250 and JWH-073 impaired visual sensorimotor responses, improved mechanical pain threshold and stimulated mesolimbic DA transmission in mice, living unchanged all other behavioral and physiological parameters. For the first time the present study demonstrates the overall pharmacological effects induced by the administration of JWH-250 and JWH-073 in mice and it reveals their potentially synergistic action suggesting that co-administration of different synthetic cannabinoids may potentiate the detrimental effects of individual compounds increasing their dangerousness and abuse potential.
Collapse
Affiliation(s)
- Andrea Ossato
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Italy
| | - Isabella Canazza
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Italy
| | - Claudio Trapella
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Italy
| | | | | | - Claudia Rimondo
- Department of Public Health and Community Medicine, University of Verona, Italy
| | - Katia Varani
- Department of Medical Sciences, University of Ferrara, Italy
| | | | - Giovanni Serpelloni
- Department of Neuroscience, Psychology, Medicine and Child Health (NEUROFARBA), University of Florence, Italy
| | - Matteo Marti
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Italy; Center for Neuroscience and Istituto Nazionale di Neuroscienze, Italy.
| |
Collapse
|
33
|
Abstract
Synthetic cannabinoids (SCBs), also known under the brand names of "Spice," "K2," "herbal incense," "Cloud 9," "Mojo" and many others, are becoming a large public health concern due not only to their increasing use but also to their unpredictable toxicity and abuse potential. There are many types of SCBs, each having a unique binding affinity for cannabinoid receptors. Although both Δ-tetrahydrocannabinol (THC) and SCBs stimulate the same receptors, cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2), studies have shown that SCBs are associated with higher rates of toxicity and hospital admissions than is natural cannabis. This is likely due to SCBs being direct agonists of the cannabinoid receptors, whereas THC is a partial agonist. Furthermore, the different chemical structures of SCBs found in Spice or K2 may interact in unpredictable ways to elicit previously unknown, and the commercial products may have unknown contaminants. The largest group of users is men in their 20s who participate in polydrug use. The most common reported toxicities with SCB use based on studies using Texas Poison Control records are tachycardia, agitation and irritability, drowsiness, hallucinations, delusions, hypertension, nausea, confusion, dizziness, vertigo and chest pain. Acute kidney injury has also been strongly associated with SCB use. Treatment mostly involves symptom management and supportive care. More research is needed to identify which contaminants are typically found in synthetic marijuana and to understand the interactions between different SBCs to better predict adverse health outcomes.
Collapse
|
34
|
Δ9-Tetrahydrocannabinol-like discriminative stimulus effects of compounds commonly found in K2/Spice. Behav Pharmacol 2015; 25:750-7. [PMID: 25325289 DOI: 10.1097/fbp.0000000000000093] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A number of cannabinoid compounds are being sold in the form of incense as 'legal' alternatives to marijuana. The purpose of these experiments was to determine whether the most common of these compounds have discriminative stimulus effects similar to Δ-tetrahydrocannabinol (Δ-THC), the main active component in marijuana. Locomotor depressant effects of JWH-018, JWH-073, JWH-200, JWH-203, JWH-250, AM-2201, and CP 47,497-C8-homolog were tested in mice. The compounds were then tested for substitution in rats trained to discriminate Δ-THC (3 mg/kg, intraperitoneally). The time course of the peak dose of each compound was also tested. Each of the synthetic cannabinoids dose-dependently decreased locomotor activity for 1-2 h. Each of the compounds fully substituted for the discriminative stimulus effects of Δ-THC, mostly at doses that produced only marginal amounts of rate suppression. JWH-250 and CP 47,497-C8-homolog suppressed response rates at doses that fully substituted for Δ-THC. The time courses varied markedly between compounds. Most of the compounds had a shorter onset than Δ-THC, and the effects of three of the compounds lasted substantially longer (JWH-073, JWH-250, and CP 47,497-C8-homolog). Several of the most commonly used synthetic cannabinoids produce behavioral effects comparable with those of Δ-THC, which suggests that these compounds may share the psychoactive effects of marijuana responsible for abuse liability. The extremely long time course of the discriminative stimulus effects and adverse effects of CP 47,497-C8-homolog suggest that CP 47,497-C8-homolog may be associated with increased hazards among humans.
Collapse
|
35
|
Walentiny DM, Vann RE, Wiley JL. Phenotypic assessment of THC discriminative stimulus properties in fatty acid amide hydrolase knockout and wildtype mice. Neuropharmacology 2015; 93:237-42. [PMID: 25698527 DOI: 10.1016/j.neuropharm.2015.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 12/05/2014] [Accepted: 02/01/2015] [Indexed: 01/17/2023]
Abstract
A number of studies have examined the ability of the endogenous cannabinoid anandamide to elicit Δ(9)-tetrahydrocannabinol (THC)-like subjective effects, as modeled through the THC discrimination paradigm. In the present study, we compared transgenic mice lacking fatty acid amide hydrolase (FAAH), the enzyme primarily responsible for anandamide catabolism, to wildtype counterparts in a THC discrimination procedure. THC (5.6 mg/kg) served as a discriminative stimulus in both genotypes, with similar THC dose-response curves between groups. Anandamide fully substituted for THC in FAAH knockout, but not wildtype, mice. Conversely, the metabolically stable anandamide analog O-1812 fully substituted in both groups, but was more potent in knockouts. The CB1 receptor antagonist rimonabant dose-dependently attenuated THC generalization in both groups and anandamide substitution in FAAH knockouts. Pharmacological inhibition of monoacylglycerol lipase (MAGL), the primary catabolic enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG), with JZL184 resulted in full substitution for THC in FAAH knockout mice and nearly full substitution in wildtypes. Quantification of brain endocannabinoid levels revealed expected elevations in anandamide in FAAH knockout mice compared to wildtypes and equipotent dose-dependent elevations in 2-AG following JZL184 administration. Dual inhibition of FAAH and MAGL with JZL195 resulted in roughly equipotent increases in THC-appropriate responding in both groups. While the notable similarity in THC's discriminative stimulus effects across genotype suggests that the increased baseline brain anandamide levels (as seen in FAAH knockout mice) do not alter THC's subjective effects, FAAH knockout mice are more sensitive to the THC-like effects of pharmacologically induced increases in anandamide and MAGL inhibition (e.g., JZL184).
Collapse
Affiliation(s)
- D Matthew Walentiny
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Robert E Vann
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Jenny L Wiley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA; Research Triangle Institute, Research Triangle Park, NC, USA
| |
Collapse
|
36
|
Δ9-THC exposure attenuates aversive effects and reveals appetitive effects of K2/'Spice' constituent JWH-018 in mice. Behav Pharmacol 2014; 25:253-7. [PMID: 24625557 DOI: 10.1097/fbp.0000000000000034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The emergence of high-efficacy synthetic cannabinoids as drugs of abuse in readily available K2/'Spice' smoking blends has exposed users to much more potent and effective substances than the phytocannabinoids present in cannabis. Increasing reports of adverse reactions, including dependence and withdrawal, are appearing in the clinical literature. Here we investigated whether the effects of one such synthetic cannabinoid, 1-pentyl-3-(1-naphthoyl)indole (JWH-018), would be altered by a prior history of Δ9-tetrahydrocannabinol (Δ9-THC) exposure, in assays of conditioned taste aversion and conditioned place preference. In the conditioned taste aversion procedure, JWH-018 induced marked and persistent aversive effects in mice with no previous cannabinoid history, but the magnitude and duration of these aversive effects were significantly blunted in mice previously treated with an ascending dose regimen of Δ9-THC. Similarly, in the conditioned place preference procedure, JWH-018 induced dose-dependent aversive effects in mice with no previous drug history, but mice exposed to Δ9-THC before place conditioning showed reduced aversions at a high JWH-018 dose and apparent rewarding effects at a low dose of JWH-018. These findings suggest that a history of Δ9-THC exposure 'protects' against aversive effects and 'unmasks' appetitive effects of the high-efficacy synthetic cannabinoid JWH-018 in mice. This pattern of results implies that cannabinoid-naive individuals administering K2/'Spice' products for the first-time may be at an increased risk for adverse reactions, whereas those with a history of marijuana use may be particularly sensitive to the reinforcing effects of high-efficacy cannabinoids present in these commercial smoking blends.
Collapse
|
37
|
Castaneto MS, Gorelick DA, Desrosiers NA, Hartman RL, Pirard S, Huestis MA. Synthetic cannabinoids: epidemiology, pharmacodynamics, and clinical implications. Drug Alcohol Depend 2014; 144:12-41. [PMID: 25220897 PMCID: PMC4253059 DOI: 10.1016/j.drugalcdep.2014.08.005] [Citation(s) in RCA: 451] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND Synthetic cannabinoids (SC) are a heterogeneous group of compounds developed to probe the endogenous cannabinoid system or as potential therapeutics. Clandestine laboratories subsequently utilized published data to develop SC variations marketed as abusable designer drugs. In the early 2000s, SC became popular as "legal highs" under brand names such as Spice and K2, in part due to their ability to escape detection by standard cannabinoid screening tests. The majority of SC detected in herbal products have greater binding affinity to the cannabinoid CB1 receptor than does Δ(9)-tetrahydrocannabinol (THC), the primary psychoactive compound in the cannabis plant, and greater affinity at the CB1 than the CB2 receptor. In vitro and animal in vivo studies show SC pharmacological effects 2-100 times more potent than THC, including analgesic, anti-seizure, weight-loss, anti-inflammatory, and anti-cancer growth effects. SC produce physiological and psychoactive effects similar to THC, but with greater intensity, resulting in medical and psychiatric emergencies. Human adverse effects include nausea and vomiting, shortness of breath or depressed breathing, hypertension, tachycardia, chest pain, muscle twitches, acute renal failure, anxiety, agitation, psychosis, suicidal ideation, and cognitive impairment. Long-term or residual effects are unknown. Due to these public health consequences, many SC are classified as controlled substances. However, frequent structural modification by clandestine laboratories results in a stream of novel SC that may not be legally controlled or detectable by routine laboratory tests. METHODS We present here a comprehensive review, based on a systematic electronic literature search, of SC epidemiology and pharmacology and their clinical implications.
Collapse
Affiliation(s)
- Marisol S Castaneto
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD, United States; Program in Toxicology, University of Maryland Baltimore, Baltimore, MD, United States
| | - David A Gorelick
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nathalie A Desrosiers
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD, United States; Program in Toxicology, University of Maryland Baltimore, Baltimore, MD, United States
| | - Rebecca L Hartman
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD, United States; Program in Toxicology, University of Maryland Baltimore, Baltimore, MD, United States
| | - Sandrine Pirard
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD, United States
| | - Marilyn A Huestis
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD, United States.
| |
Collapse
|
38
|
Abstract
Health care providers are seeing an increased number of patients under the influence of several new psychoactive drug classes. Synthetic cannabinoids, cathinones, and piperazines are sought by users for their psychoactive effects, perceived safety profile, minimal legal regulations, and lack of detection on routine urine drug screening. However, these drugs are beginning to be recognized by the medical community for their toxic effects. The neuropsychiatric and cardiovascular toxicities are among the most common reasons for emergency medical treatment, which in some cases, can be severe and even life-threatening. Management strategies are often limited to supportive and symptomatic care due to the limited published data on alternative treatment approaches. The purpose of this article is to offer health care providers, emergency medical personnel in particular, an awareness and understanding of the dangers related to some of the new psychoactive drugs of abuse. The background, pharmacology, toxicity, management, detection, and legal status of each class will be discussed.
Collapse
Affiliation(s)
- Brian P. Kersten
- Pharmacy Department, Buffalo General Medical Center, Buffalo, NY, USA
| | | |
Collapse
|
39
|
Papanti D, Orsolini L, Francesconi G, Schifano F. “Noids” in a nutshell: everything you (don’t) want to know about synthetic cannabimimetics. ADVANCES IN DUAL DIAGNOSIS 2014. [DOI: 10.1108/add-02-2014-0006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
– “Spice” products are synthetic cannabimimetics (SC; also called “synthetic cannabinoids”)-based designer drugs used as a legal alternative to cannabis for their very strong tetrahydrocannabinol (THC)-like effects. The purpose of this paper is to provide an analysis of more recent clinical and pharmacology/toxicology findings relating to SC and describe how they could impact on health, with a particular focus on mental health.
Design/methodology/approach
– A systematic search and descriptive analysis of the available evidence on psychopathological issues related to misuse was performed here, whilst taking into account the Pubmed/Medline databases, a range of conference proceedings and national/international agencies’ reports.
Findings
– While THC is a partial agonist, SC are full agonists on the cannabinoid receptors (CB-rs) and the administration of multiple SC can produce additive and/or synergistic agonistic interaction effects on the endocannabinoid system. These levels of strong CB-rs’ activation may be high enough to produce severe physiological and psychological disturbances. The available evidence suggests an existing relationship between SC use and psychosis (“Spiceophrenia”). The acute SC intoxication is usually characterized by tachycardia/hypertension; visual/auditory hallucinations; mydriasis; agitation/anxiety; tachypnoea; nausea/vomiting; and seizures.
Research limitations/implications
– The absence of clinical trials and longitudinal studies, together with the heterogeneity of SC compounds does not facilitate a precise assessment of the health risks related to their use, with long-term effects being of particular concern.
Originality/value
– Appropriate, non-judgemental, prevention campaigns with a special focus on the differences between SC and cannabis may need to be organized on a large scale. At the same time, clinicians need to be regularly updated about novel psychoactive substances, including SC, to promptly recognize signs/symptoms of intoxication.
Collapse
|
40
|
Understanding the risks associated with the use of new psychoactive substances (NPS): high variability of active ingredients concentration, mislabelled preparations, multiple psychoactive substances in single products. Toxicol Lett 2014; 229:220-8. [PMID: 24910986 DOI: 10.1016/j.toxlet.2014.06.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 11/24/2022]
Abstract
New psychoactive substances (NPS), are now a large group of substances of abuse not yet completely controlled by international drug conventions, which may pose a public health threat. Anxiety, paranoia, hallucinations, seizures, hyperthermia and cardiotoxicity are some of the common adverse effects associated with these compounds. In this paper, three case reports taken from the archive of processed cases of the authors' laboratory are presented and discussed to stress the risks of possible adverse consequences for NPS users: in particular, (i) the risk deriving from the difficulty of predicting the actual consumed dose, due to variability of active ingredients concentration in consumed products, (ii) the risk deriving from the difficulty of predicting the actual active ingredients present in consumed products, as opposed to those claimed by the manufacturer, and (iii) the risk deriving from the difficulty of predicting the actual pharmacological and toxicological effects related to the simultaneous consumption of different psychoactive ingredients contained in single products, whose interactions are mostly unknown. Each of them individually provide a source of concern for possible serious health related consequences. However, they should be considered in conjunction with each others, with the worldwide availability of NPS through the web and also with the incessantly growing business derived from the manipulation and synthesis of new substances. The resulting scenario is that of a cultural challenge which demands a global approach from different fields of knowledge.
Collapse
|
41
|
Wiley JL, Lefever TW, Cortes RA, Marusich JA. Cross-substitution of Δ9-tetrahydrocannabinol and JWH-018 in drug discrimination in rats. Pharmacol Biochem Behav 2014; 124:123-8. [PMID: 24887450 DOI: 10.1016/j.pbb.2014.05.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/07/2014] [Accepted: 05/22/2014] [Indexed: 11/25/2022]
Abstract
Synthetic indole-derived cannabinoids, originally developed to probe cannabinoid CB1 and CB2 receptors, have become widely abused for their marijuana-like intoxicating properties. The present study examined the effects of indole-derived cannabinoids in rats trained to discriminate Δ(9)-tetrahydrocannabinol (Δ(9)-THC) from vehicle. In addition, the effects of Δ(9)-THC in rats trained to discriminate JWH-018 from vehicle were assessed. Adult male Sprague-Dawley rats were trained to discriminate 3mg/kg Δ(9)-THC or 0.3mg/kg JWH-018 from vehicle. JWH-018, JWH-073, and JWH-210 fully substituted in Δ(9)-THC-trained rats and Δ(9)-THC substituted in JWH-018-trained rats. In contrast, JWH-320, an indole-derived cannabinoid without affinity for CB1 receptors, failed to substitute for Δ(9)-THC. Pre-treatment with 1mg/kg rimonabant significantly reduced responding on the JWH-018-associated lever in JWH-018-trained rats. These results support the conclusion that the interoceptive effects of Δ(9)-THC and synthetic indole-derived cannabinoids show a large degree of overlap, which is predictive of their use for their marijuana-like intoxicating properties. Characterization of the extent of pharmacological differences among structural classes of cannabinoids, and determination of their mechanisms remain important goals.
Collapse
Affiliation(s)
- Jenny L Wiley
- RTI International, 3040 Cornwallis Rd., Research Triangle Park, NC 27709, USA.
| | - Timothy W Lefever
- RTI International, 3040 Cornwallis Rd., Research Triangle Park, NC 27709, USA
| | - Ricardo A Cortes
- RTI International, 3040 Cornwallis Rd., Research Triangle Park, NC 27709, USA
| | - Julie A Marusich
- RTI International, 3040 Cornwallis Rd., Research Triangle Park, NC 27709, USA
| |
Collapse
|
42
|
Marshell R, Kearney-Ramos T, Brents LK, Hyatt WS, Tai S, Prather PL, Fantegrossi WE. In vivo effects of synthetic cannabinoids JWH-018 and JWH-073 and phytocannabinoid Δ9-THC in mice: inhalation versus intraperitoneal injection. Pharmacol Biochem Behav 2014; 124:40-7. [PMID: 24857780 DOI: 10.1016/j.pbb.2014.05.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/06/2014] [Accepted: 05/14/2014] [Indexed: 11/20/2022]
Abstract
Human users of synthetic cannabinoids (SCBs) JWH-018 and JWH-073 typically smoke these drugs, but preclinical studies usually rely on injection for drug delivery. We used the cannabinoid tetrad and drug discrimination to compare in vivo effects of inhaled drugs with injected doses of these two SCBs, as well as with the phytocannabinoid Δ(9)-tetrahydrocannabinol (Δ(9)-THC). Mice inhaled various doses of Δ(9)-THC, JWH-018 or JWH-073, or were injected intraperitoneally (IP) with these same compounds. Rectal temperature, tail flick latency in response to radiant heat, horizontal bar catalepsy, and suppression of locomotor activity were assessed in each animal. In separate studies, mice were trained to discriminate Δ(9)-THC (IP) from saline, and tests were performed with inhaled or injected doses of the SCBs. Both SCBs elicited Δ(9)-THC-like effects across both routes of administration, and effects following inhalation were attenuated by pretreatment with the CB1 antagonist/inverse agonist rimonabant. No cataleptic effects were observed following inhalation, but all compounds induced catalepsy following injection. Injected JWH-018 and JWH-073 fully substituted for Δ(9)-THC, but substitution was partial (JWH-073) or required relatively higher doses (JWH-018) when drugs were inhaled. These studies demonstrate that the SCBs JWH-018 and JWH-073 elicit dose-dependent, CB1 receptor-mediated Δ(9)-THC-like effects in mice when delivered via inhalation or via injection. Across these routes of administration, differences in cataleptic effects and, perhaps, discriminative stimulus effects, may implicate the involvement of active metabolites of these compounds.
Collapse
Affiliation(s)
- R Marshell
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W, Markham Street - Mail 638, Little Rock, AR 72205-7199, United States
| | - T Kearney-Ramos
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W, Markham Street - Mail 638, Little Rock, AR 72205-7199, United States
| | - L K Brents
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W, Markham Street - Mail 638, Little Rock, AR 72205-7199, United States
| | - W S Hyatt
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W, Markham Street - Mail 638, Little Rock, AR 72205-7199, United States
| | - S Tai
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W, Markham Street - Mail 638, Little Rock, AR 72205-7199, United States
| | - P L Prather
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W, Markham Street - Mail 638, Little Rock, AR 72205-7199, United States
| | - W E Fantegrossi
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W, Markham Street - Mail 638, Little Rock, AR 72205-7199, United States.
| |
Collapse
|
43
|
Abstract
Smokeable herbal mixtures containing synthetic agonists of cannabinoid receptors, known under brand names such as Spice, K2 and Kronic, represent a relatively new type of designer psychoactive drugs that has recently emerged on the recreational drug market. Although the Spice packages are labelled 'not for human consumption' or 'for aromatherapy only' and declared to be purely herbal, these herbal mixtures produce cannabis-like effects after smoking. This review surveys the current state of knowledge regarding the pharmacological properties of synthetic cannabimimetics and the prevalence and pattern of their use. Special emphasis is given to the negative consequences of using these products, including, among others, hallucinations, psychoses with delusions, seizures, cardiovascular symptoms and acute kidney injury.
Collapse
|
44
|
Fantegrossi WE, Moran JH, Radominska-Pandya A, Prather PL. Distinct pharmacology and metabolism of K2 synthetic cannabinoids compared to Δ(9)-THC: mechanism underlying greater toxicity? Life Sci 2013; 97:45-54. [PMID: 24084047 DOI: 10.1016/j.lfs.2013.09.017] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/10/2013] [Accepted: 09/19/2013] [Indexed: 02/01/2023]
Abstract
K2 or Spice products are emerging drugs of abuse that contain synthetic cannabinoids (SCBs). Although assumed by many teens and first time drug users to be a "safe" and "legal" alternative to marijuana, many recent reports indicate that SCBs present in K2 produce toxicity not associated with the primary psychoactive component of marijuana, ∆(9)-tetrahydrocannabinol (Δ(9)-THC). This mini-review will summarize recent evidence that use of K2 products poses greater health risks relative to marijuana, and suggest that distinct pharmacological properties and metabolism of SCBs relative to Δ(9)-THC may contribute to the observed toxicity. Studies reviewed will indicate that in contrast to partial agonist properties of Δ(9)-THC typically observed in vitro, SCBs in K2 products act as full cannabinoid receptor type 1 (CB1R) and type 2 (CB2R) agonists in both cellular assays and animal studies. Furthermore, unlike Δ(9)-THC metabolism, several SCB metabolites retain high affinity for, and exhibit a range of intrinsic activities at, CB1 and CB2Rs. Finally, several reports indicate that although quasi-legal SCBs initially evaded detection and legal consequences, these presumed "advantages" have been limited by new legislation and development of product and human testing capabilities. Collectively, evidence reported in this mini-review suggests that K2 products are neither safe nor legal alternatives to marijuana. Instead, enhanced toxicity of K2 products relative to marijuana, perhaps resulting from the combined actions of a complex mixture of different SCBs present and their active metabolites that retain high affinity for CB1 and CB2Rs, highlights the inherent danger that may accompany use of these substances.
Collapse
Affiliation(s)
- William E Fantegrossi
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jeffery H Moran
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Arkansas Department of Public Health, Public Health Laboratory, Little Rock, AR 72205, USA
| | - Anna Radominska-Pandya
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Paul L Prather
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
45
|
Brents LK, Prather PL. The K2/Spice phenomenon: emergence, identification, legislation and metabolic characterization of synthetic cannabinoids in herbal incense products. Drug Metab Rev 2013; 46:72-85. [PMID: 24063277 DOI: 10.3109/03602532.2013.839700] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In 2008, the European Monitoring Center for Drugs and Drug Addiction (EMCDDA) detected unregulated, psychoactive synthetic cannabinoids (SCBs) in purportedly all-natural herbal incense products (often known as K2 or Spice) that were being covertly abused as marijuana substitutes. These drugs, which include JWH-018, JWH-073 and CP-47,497, bind and activate the cannabinoid receptors CB1R and CB2R with remarkable potency and efficacy. Serious adverse effects that often require medical attention, including severe cardiovascular, gastrointestinal and psychiatric sequelae, are highly prevalent with SCB abuse. Consequently, progressively restrictive legislation in the US and Europe has banned the distribution, sale and use of prevalent SCBs, initiating cycles in which herbal incense manufacturers replace banned SCBs with newer unregulated SCBs. The contents of the numerous, diverse herbal incense products was unknown when SCB abuse first emerged. Furthermore, the pharmacology of the active components was largely uncharacterized, and confirmation of SCB use was hindered by a lack of known biomarkers. These knowledge gaps prompted scientists across multiple disciplines to rapidly (1) monitor, identify and quantify with chromatography/mass spectrometry the ever-changing contents of herbal incense products, (2) determine the metabolic pathways and major urinary metabolites of several commonly abused SCBs and (3) identify active metabolites that possibly contribute to the severe adverse effect profile of SCBs. This review comprehensively describes the emergence of SCB abuse and provides a historical account of the major case reports, legal decisions and scientific discoveries of the "K2/Spice Phenomenon". Hypotheses concerning potential mechanisms SCB adverse effects are proposed in this review.
Collapse
Affiliation(s)
- Lisa K Brents
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences , Little Rock, AR , USA and
| | | |
Collapse
|