1
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
2
|
Huang W, Hao Z, Mao F, Guo D. Small Molecule Inhibitors in Adult High-Grade Glioma: From the Past to the Future. Front Oncol 2022; 12:911876. [PMID: 35785151 PMCID: PMC9247310 DOI: 10.3389/fonc.2022.911876] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common primary malignant tumor in the brain and has a dismal prognosis despite patients accepting standard therapies. Alternation of genes and deregulation of proteins, such as receptor tyrosine kinase, PI3K/Akt, PKC, Ras/Raf/MEK, histone deacetylases, poly (ADP-ribose) polymerase (PARP), CDK4/6, branched-chain amino acid transaminase 1 (BCAT1), and Isocitrate dehydrogenase (IDH), play pivotal roles in the pathogenesis and progression of glioma. Simultaneously, the abnormalities change the cellular biological behavior and microenvironment of tumor cells. The differences between tumor cells and normal tissue become the vulnerability of tumor, which can be taken advantage of using targeted therapies. Small molecule inhibitors, as an important part of modern treatment for cancers, have shown significant efficacy in hematologic cancers and some solid tumors. To date, in glioblastoma, there have been more than 200 clinical trials completed or ongoing in which trial designers used small molecules as monotherapy or combination regimens to correct the abnormalities. In this review, we summarize the dysfunctional molecular mechanisms and highlight the outcomes of relevant clinical trials associated with small-molecule targeted therapies. Based on the outcomes, the main findings were that small-molecule inhibitors did not bring more benefit to newly diagnosed glioblastoma, but the clinical studies involving progressive glioblastoma usually claimed “noninferiority” compared with historical results. However, as to the clinical inferiority trial, similar dosing regimens should be avoided in future clinical trials.
Collapse
Affiliation(s)
- Wenda Huang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaonian Hao
- Department of Neurosurgery, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Feng Mao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Dongsheng Guo, ; Feng Mao,
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Dongsheng Guo, ; Feng Mao,
| |
Collapse
|
3
|
Oliveira HA, Bueno AC, Pugliesi RS, da Silva Júnior RMP, de Castro M, Martins CS. PI3K inhibition by BKM120 results in anti-proliferative effects on corticotroph tumor cells. J Endocrinol Invest 2022; 45:999-1009. [PMID: 34988938 DOI: 10.1007/s40618-021-01735-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE Cushing's disease is associated with significant morbidity; thus, additional tumor-directed drugs with the potential to exert antineoplastic effects on corticotroph adenoma cells are desired. The phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT) pathway, which plays regulatory role in cell survival and proliferation, is activated in pituitary adenomas. The present study evaluated the effects of BKM120 (Buparlisib), an oral PI3K inhibitor, on cell viability, apoptosis, cell cycle phase distribution, and ACTH production in mouse corticotroph tumor cells. METHODS AtT-20/D16v-F2 mouse pituitary corticotroph tumor cells were treated with increasing concentrations of BKM120 or vehicle. Cell viability was measured using an MTS-based assay. Apoptosis was evaluated by Annexin V staining. Cell cycle analysis was performed by propidium iodide DNA staining and flow cytometry. Gene expression of cell cycle regulators (Cdkn1b, Ccnd1, Ccne1, Cdk2, Cdk4, Myc, and Rb1) was assessed by qPCR. Protein expression of p27, total and phosphorylated Akt was assessed by Western blot. ACTH levels were measured in the culture supernatants by chemiluminescent immunometric assay. RESULTS Treatment with BKM120 decreased AtT-20/D16v-F2 cell viability, induced a G0/G1 cell cycle arrest, reduced the phosphorylation of Akt at Serine 473, and increased p27 expression. Furthermore, BKM120 treatment diminished ACTH levels in the cell culture supernatants. CONCLUSION In vitro inhibition of PI3K/AKT pathway by BKM120 resulted in anti-proliferative effects on corticotroph tumor cells, decreasing cell viability and ACTH production. These encouraging findings shape the path for further experiments with the inhibition of PI3K/AKT pathway in Cushing's disease.
Collapse
Affiliation(s)
- H A Oliveira
- Molecular Biology Laboratory, Endocrinology Division, Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo. Av Bandeirantes, 3900 Bloco G, Ribeirão Preto, SP, 14049-900, Brazil
| | - A C Bueno
- Departments of Pediatrics of Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - R S Pugliesi
- Molecular Biology Laboratory, Endocrinology Division, Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo. Av Bandeirantes, 3900 Bloco G, Ribeirão Preto, SP, 14049-900, Brazil
| | - R M P da Silva Júnior
- Molecular Biology Laboratory, Endocrinology Division, Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo. Av Bandeirantes, 3900 Bloco G, Ribeirão Preto, SP, 14049-900, Brazil
| | - M de Castro
- Molecular Biology Laboratory, Endocrinology Division, Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo. Av Bandeirantes, 3900 Bloco G, Ribeirão Preto, SP, 14049-900, Brazil
| | - C S Martins
- Molecular Biology Laboratory, Endocrinology Division, Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo. Av Bandeirantes, 3900 Bloco G, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
4
|
Cirsilineol inhibits cell growth and induces apoptosis in glioma C6 cells via inhibiting MAPK and PI3K/Akt/mTOR signaling pathways. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-02229-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Alemi F, Raei Sadigh A, Malakoti F, Elhaei Y, Ghaffari SH, Maleki M, Asemi Z, Yousefi B, Targhazeh N, Majidinia M. Molecular mechanisms involved in DNA repair in human cancers: An overview of PI3k/Akt signaling and PIKKs crosstalk. J Cell Physiol 2021; 237:313-328. [PMID: 34515349 DOI: 10.1002/jcp.30573] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022]
Abstract
The cellular genome is frequently subjected to abundant endogenous and exogenous factors that induce DNA damage. Most of the Phosphatidylinositol 3-kinase-related kinases (PIKKs) family members are activated in response to DNA damage and are the most important DNA damage response (DDR) proteins. The DDR system protects the cells against the wrecking effects of these genotoxicants and repairs the DNA damage caused by them. If the DNA damage is severe, such as when DNA is the goal of chemo-radiotherapy, the DDR drives cells toward cell cycle arrest and apoptosis. Some intracellular pathways, such as PI3K/Akt, which is overactivated in most cancers, could stimulate the DDR process and failure of chemo-radiotherapy with the increasing repair of damaged DNA. This signaling pathway induces DNA repair through the regulation of proteins that are involved in DDR like BRCA1, HMGB1, and P53. In this review, we will focus on the crosstalk of the PI3K/Akt and PIKKs involved in DDR and then discuss current achievements in the sensitization of cancer cells to chemo-radiotherapy by PI3K/Akt inhibitors.
Collapse
Affiliation(s)
- Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aydin Raei Sadigh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yusuf Elhaei
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Hamed Ghaffari
- Department of Orthopedics, Shohada Medical Research & Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masomeh Maleki
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Bahman Yousefi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Targhazeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
6
|
Colardo M, Segatto M, Di Bartolomeo S. Targeting RTK-PI3K-mTOR Axis in Gliomas: An Update. Int J Mol Sci 2021; 22:4899. [PMID: 34063168 PMCID: PMC8124221 DOI: 10.3390/ijms22094899] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Gliomas are the most common and challenging malignancies of the central nervous system (CNS), due to their infiltrative nature, tendency to recurrence, and poor response to treatments. Indeed, despite the advances in neurosurgical techniques and in radiation therapy, the modest effects of therapy are still challenging. Moreover, tumor recurrence is associated with the onset of therapy resistance; it is therefore critical to identify effective and well-tolerated pharmacological approaches capable of inducing durable responses in the appropriate patient groups. Molecular alterations of the RTK/PI3K/Akt/mTOR signaling pathway are typical hallmarks of glioma, and several clinical trials targeting one or more players of this axis have been launched, showing disappointing results so far, due to the scarce BBB permeability of certain compounds or to the occurrence of resistance/tolerance mechanisms. However, as RTK/PI3K/mTOR is one of the pivotal pathways regulating cell growth and survival in cancer biology, targeting still remains a strong rationale for developing strategies against gliomas. Future rigorous clinical studies, aimed at addressing the tumor heterogeneity, the interaction with the microenvironment, as well as diverse posology adjustments, are needed-which might unravel the therapeutic efficacy and response prediction of an RTK/PI3K/mTOR-based approach.
Collapse
Affiliation(s)
| | | | - Sabrina Di Bartolomeo
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, IS, Italy; (M.C.); (M.S.)
| |
Collapse
|
7
|
Shi L, Sun G, Zhang Y. Demethoxycurcumin analogue DMC-BH exhibits potent anticancer effects on orthotopic glioblastomas. Aging (Albany NY) 2020; 12:23795-23807. [PMID: 33221748 PMCID: PMC7762498 DOI: 10.18632/aging.103981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/30/2020] [Indexed: 12/23/2022]
Abstract
Demethoxycurcumin (DMC) has anti-glioma effects in vitro and in subcutaneous xenotransplanted tumors. Our previous study confirmed that the molecule also has mild anti-glioma effects on orthotopic glioblastomas in vivo. In this study, we found that DMC-BH, a DMC analogue, exhibited more potent in vitro and in vivo activities than did DMC. DMC-BH was cytotoxic against various glioma cells including SHG-44, C6, U251, U87, A172 and primary glioma cells. DMC-BH activity was characterized by low acute toxicity and an appropriate pharmacokinetic profile. We evaluated the anti-tumor effects of DMC-BH in an ectopic xenograft model, an orthotopic glioblastoma xenograft model and a patient-derived tumor xenograft (PDTX) model. DMC-BH exhibited potent anti-tumor activity in both the ectopic xenograft and PDTX models. Indeed, bioluminescence measurements showed that DMC-BH exerted a significantly greater anti-tumor effect on orthotopic glioma growth than DMC. Immunohistochemical analysis revealed that DMC-BH inhibited expression of Ki67 and increased the incidence of TUNEL-positive cells. Western blotting showed that DMC-BH significantly decreased p-Akt and p-mTOR expression in orthotopic glioma tissues. These results suggest that the DMC analogue DMC-BH has potent anti-tumor properties that warrant further study.
Collapse
Affiliation(s)
- Lei Shi
- Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, Suzhou 215300, P.R. China
| | - Guan Sun
- Department of Neurosurgery, The Fourth Affiliated Hospital of Nantong University, Yancheng City First People's Hospital, Yancheng 224000, P. R. China
| | - Yong Zhang
- Department of Neurosurgery, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210029, P.R. China
| |
Collapse
|
8
|
Glorieux M, Dok R, Nuyts S. The influence of PI3K inhibition on the radiotherapy response of head and neck cancer cells. Sci Rep 2020; 10:16208. [PMID: 33004905 PMCID: PMC7529775 DOI: 10.1038/s41598-020-73249-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/07/2020] [Indexed: 01/18/2023] Open
Abstract
Radiotherapy has a central role in the treatment of head and neck squamous cell carcinoma (HNSCC). Activation of the PI3K/AKT/mTOR pathway can decrease the efficiency of radiotherapy via the promotion of cell survival and DNA repair. Here, the influence of PI3K pathway inhibition on radiotherapy response was investigated. Two PI3K inhibitors were investigated and both BKM120 and GDC0980 effectively inhibited cellular and clonogenic growth in 6 HNSCC cells, both HPV-positive as well as HPV-negative. Despite targeted inhibition of the pathway and slight increase in DNA damage, PI3K inhibition did not show significant radiosensitization. Currently only one clinical trial is assessing the effectiveness of combining BKM120 with RT in HNSCC (NCT02113878) of which the results are eagerly awaited.
Collapse
Affiliation(s)
- Mary Glorieux
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, University of Leuven, 3000, Leuven, Belgium
| | - Rüveyda Dok
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, University of Leuven, 3000, Leuven, Belgium
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, University of Leuven, 3000, Leuven, Belgium.
- Department of Radiation Oncology, Leuven Cancer Institute, UZ Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
9
|
de Gooijer MC, Zhang P, Buil LCM, Çitirikkaya CH, Thota N, Beijnen JH, van Tellingen O. Buparlisib is a brain penetrable pan-PI3K inhibitor. Sci Rep 2018; 8:10784. [PMID: 30018387 PMCID: PMC6050274 DOI: 10.1038/s41598-018-29062-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/04/2018] [Indexed: 01/16/2023] Open
Abstract
Characterization of the genomic landscapes of intracranial tumours has revealed a clear role for the PI3K-AKT-mTOR pathway in tumorigenesis and tumour maintenance of these malignancies, making phosphatidylinositol 3-kinase (PI3K) inhibition a promising therapeutic strategy for these tumours. Buparlisib is a novel pan-PI3K inhibitor that is currently in clinical development for various cancers, including primary and secondary brain tumours. Importantly however, earlier studies have revealed that sufficient brain penetration is a prerequisite for antitumor efficacy against intracranial tumours. We therefore investigated the brain penetration of buparlisib using a comprehensive set of in vitro and in vivo mouse models. We demonstrate that buparlisib has an excellent brain penetration that is unaffected by efflux transporters at the blood-brain barrier, complete oral bioavailability and efficient intracranial target inhibition at clinically achievable plasma concentrations. Together, these characteristics make buparlisib the ideal candidate for intracranially-targeted therapeutic strategies that involve PI3K inhibition.
Collapse
Affiliation(s)
- Mark C de Gooijer
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Mouse Cancer Clinic, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Ping Zhang
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Mouse Cancer Clinic, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Department of Neurosurgery, Qilu Hospital, Shandong University, Wenhua Xi Road 107, 250012, Jinan, P.R. China
| | - Levi C M Buil
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Mouse Cancer Clinic, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Ceren H Çitirikkaya
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Mouse Cancer Clinic, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Nishita Thota
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Mouse Cancer Clinic, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute / MC Slotervaart Hospital, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands.,Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands. .,Mouse Cancer Clinic, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Cell death-based treatment of glioblastoma. Cell Death Dis 2018; 9:121. [PMID: 29371590 PMCID: PMC5833770 DOI: 10.1038/s41419-017-0021-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/19/2017] [Accepted: 09/26/2017] [Indexed: 12/26/2022]
Abstract
Cancer cells including glioblastoma have typically evolved multiple mechanisms to escape programmed cell death in order to maintain their survival. Defects in cell death mechanisms not only facilitate tumorigenesis but also ensure resistance to current anticancer therapies. This emphasizes that targeting cell death pathways may provide a means to tackle one of the Achilles' heels of cancer. Over the last decades several approaches have been developed to selectively target cell death pathways for therapeutic purposes. Some of these concepts have already been transferred into clinical application in oncology and may open new perspectives for the treatment of cancer.
Collapse
|
11
|
Premkumar DR, Jane EP, Thambireddy S, Sutera PA, Cavaleri JM, Pollack IF. Mitochondrial dysfunction RAD51, and Ku80 proteolysis promote apoptotic effects of Dinaciclib in Bcl-xL silenced cells. Mol Carcinog 2017; 57:469-482. [PMID: 29240261 DOI: 10.1002/mc.22771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/17/2017] [Accepted: 12/07/2017] [Indexed: 01/08/2023]
Abstract
In the present study, we investigated the effect of CDK inhibitors (ribociclib, palbociclib, seliciclib, AZD5438, and dinaciclib) on malignant human glioma cells for cell viability, apoptosis, oxidative stress, and mitochondrial function using various assays. None of the CDK inhibitors induced cell death at a clinically relevant concentration. However, low nanomolar concentrations of dinaciclib showed higher cytotoxic activity against Bcl-xL silenced cells in a time- and concentration-dependent manner. This effect was not seen with other CDK inhibitors. The apoptosis-inducing capability of dinaciclib in Bcl-xL silenced cells was evidenced by cell shrinkage, mitochondrial dysfunction, DNA damage, and increased phosphatidylserine externalization. Dinaciclib was found to disrupt mitochondrial membrane potential, resulting in the release of cytochrome c, AIF, and smac/DIABLO into the cytoplasm. This was accompanied by the downregulation of cyclin-D1, D3, and total Rb. Dinaciclib caused cell cycle arrest in a time- and concentration-dependent manner and with accumulation of cells in the sub-G1 phase. Our results also revealed that dinaciclib, but not ribociclib or palbociclib or seliciclib or AZD5438 induced intrinsic apoptosis via upregulation of the levels of pro-apoptotic proteins (Bax and Bak), resulting in the activation of caspases and cleavage of PARP. We also found an additional mechanism for the dinaciclib-induced augmentation of apoptosis due to abrogation RAD51-cyclin D1 interaction, specifically proteolysis of the DNA repair proteins RAD51 and Ku80. Our results suggest that successfully interfering with Bcl-xL function may restore sensitivity to dinaciclib and could hold the promise for an effective combination therapeutic strategy.
Collapse
Affiliation(s)
- Daniel R Premkumar
- Department of Neurosurgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,University of Pittsburgh Cancer Institute Brain Tumor Center, Pittsburgh, Pennsylvania
| | - Esther P Jane
- Department of Neurosurgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Swetha Thambireddy
- Department of Neurosurgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Philip A Sutera
- Department of Neurosurgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jonathon M Cavaleri
- Department of Neurosurgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ian F Pollack
- Department of Neurosurgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,University of Pittsburgh Cancer Institute Brain Tumor Center, Pittsburgh, Pennsylvania
| |
Collapse
|
12
|
Black GE, Sokol KK, Moe DM, Simmons JD, Muscat D, Pastukh V, Capley G, Gorodnya O, Ruchko M, Roth MB, Gillespie M, Martin MJ. Impact of a novel phosphoinositol-3 kinase inhibitor in preventing mitochondrial DNA damage and damage-associated molecular pattern accumulation: Results from the Biochronicity Project. J Trauma Acute Care Surg 2017; 83:683-689. [PMID: 28930961 PMCID: PMC5938741 DOI: 10.1097/ta.0000000000001593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Despite improvements in the management of severely injured patients, development of multiple organ dysfunction syndrome (MODS) remains a morbid complication of traumatic shock. One of the key attributes of MODS is a profound bioenergetics crisis, for which the mediators and mechanisms are poorly understood. We hypothesized that metabolic uncoupling using an experimental phosphoinositol-3 kinase (PI3-K) inhibitor, LY294002 (LY), may prevent mitochondrial abnormalities that lead to the generation of mitochondrial DNA (mtDNA) damage and the release of mtDNA damage-associated molecular patterns (DAMPs). METHODS Sixteen swine were studied using LY, a nonselective PI3-K inhibitor. Animals were assigned to trauma only (TO, n = 3), LY drug only (LYO, n = 3), and experimental (n = 10), trauma + drug (LY + T) groups. Both trauma groups underwent laparotomy, 35% hemorrhage, severe ischemia-reperfusion injury, and protocolized resuscitation. A battery of hemodynamic, laboratory, histological, and bioenergetics parameters were monitored. Mitochondrial DNA damage was determined in lung, liver, and kidney using Southern blot analyses, whereas plasma mtDNA DAMP analysis used polymerase chain reaction amplification of a 200-bp sequence of the mtDNA D-loop region. RESULTS Relative to control animals, H + I/R (hemorrhage and ischemia/reperfusion) produced severe, time-dependent decrements in hepatic, renal, cardiovascular, and pulmonary function accompanied by severe acidosis and lactate accumulation indicative of bioenergetics insufficiency. The H-I/R animals displayed prominent oxidative mtDNA damage in all organs studied, with the most prominent damage in the liver. Mitochondrial DNA damage was accompanied by accumulation of mtDNA DAMPs in plasma. Pretreatment of H + I/R animals with LY resulted in profound metabolic suppression, with approximately 50% decreases in O2 consumption and CO2 production. In addition, it prevented organ and bioenergetics dysfunction and was associated with a significant decrease in plasma mtDNA DAMPs to the levels of control animals. CONCLUSIONS These findings show that H + I/R injury in anesthetized swine is accompanied by MODS and by significant mitochondrial bioenergetics dysfunction, including oxidative mtDNA damage and accumulation in plasma of mtDNA DAMPs. Suppression of these changes with the PI3-K inhibitor LY indicates that pharmacologically induced metabolic uncoupling may comprise a new pharmacologic strategy to prevent mtDNA damage and DAMP release and prevent or treat trauma-related MODS. LEVEL OF EVIDENCE Therapeutic study, level III.
Collapse
Affiliation(s)
- George Edward Black
- From the Department of Surgery (G.E.B., K.K.S., D.M.M., M.J.M.), Madigan Army Medical Center, Joint Base Lewis-McChord, Washington; Department of Surgery (J.S.), University of South Alabama, Mobile, Alabama; Department of Pharmacology (D.M., V.P., G.C., O.G., M.R., M.G.), University of South Alabama, Mobile, Alabama; Basic Sciences Division (M.B.R.), Fred Hutchinson Cancer Research Center, Seattle, Washington; and Trauma and Acute Care Surgery Service (M.J.M.), Legacy Emanuel Medical Center, Portland, Oregon
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wang Y, Jin F, Wang R, Li F, Wu Y, Kitazato K, Wang Y. HSP90: a promising broad-spectrum antiviral drug target. Arch Virol 2017; 162:3269-3282. [PMID: 28780632 DOI: 10.1007/s00705-017-3511-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 06/27/2017] [Indexed: 12/13/2022]
Abstract
The emergence of antiviral drug-resistant mutants is the most important issue in current antiviral therapy. As obligate parasites, viruses require host factors for efficient replication. An ideal therapeutic target to prevent drug-resistance development is represented by host factors that are crucial for the viral life cycle. Recent studies have indicated that heat shock protein 90 (HSP90) is a crucial host factor that is required by many viruses for multiple phases of their life cycle including viral entry, nuclear import, transcription, and replication. In this review, we summarize the most recent advances regarding HSP90 function, mechanisms of action, and molecular pathways that are associated with viral infection, and provide a comprehensive understanding of the role of HSP90 in the immune response and exosome-mediated viral transmission. In addition, several HSP90 inhibitors have entered clinical trials for specific cancers that are associated with viral infection, which further implies a crucial role for HSP90 in the malignant transformation of virus-infected cells; as such, HSP90 inhibitors exhibit excellent therapeutic potential. Finally, we describe the challenge of developing HSP90 inhibitors as anti-viral drugs.
Collapse
Affiliation(s)
- Yiliang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China.,College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Fujun Jin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Rongze Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China.,College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Feng Li
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China.,College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Yanting Wu
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Kaio Kitazato
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China. .,Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China.
| |
Collapse
|
14
|
BKM120 induces apoptosis and inhibits tumor growth in medulloblastoma. PLoS One 2017; 12:e0179948. [PMID: 28662162 PMCID: PMC5491106 DOI: 10.1371/journal.pone.0179948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/07/2017] [Indexed: 11/19/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children, accounting for nearly 20 percent of all childhood brain tumors. New treatment strategies are needed to improve patient survival outcomes and to reduce adverse effects of current therapy. The phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) intracellular signaling pathway plays a key role in cellular metabolism, proliferation, survival and angiogenesis, and is often constitutively activated in human cancers, providing unique opportunities for anticancer therapeutic intervention. The aim of this study was to evaluate the pre-clinical activity of BKM120, a selective pan-class I PI3K inhibitor, on MB cell lines and primary samples. IC50 values of BKM120 in the twelve MB cell lines tested ranged from 0.279 to 4.38 μM as determined by cell viability assay. IncuCyte ZOOM Live-Cell Imaging system was used for kinetic monitoring of cytotoxicity of BKM120 and apoptosis in MB cells. BKM120 exhibited cytotoxicity in MB cells in a dose and time-dependent manner by inhibiting activation of downstream signaling molecules AKT and mTOR, and activating caspase-mediated apoptotic pathways. Furthermore, BKM120 decreased cellular glycolytic metabolic activity in MB cell lines in a dose-dependent manner demonstrated by ATP level per cell. In MB xenograft mouse study, DAOY cells were implanted in the flank of nude mice and treated with vehicle, BKM120 at 30 mg/kg and 60 mg/kg via oral gavage daily. BKM120 significantly suppressed tumor growth and prolonged mouse survival. These findings help to establish a basis for clinical trials of BKM120, which could be a novel therapy for the treatment of medulloblastoma patients.
Collapse
|
15
|
Zhao HF, Wang J, Shao W, Wu CP, Chen ZP, To SST, Li WP. Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: current preclinical and clinical development. Mol Cancer 2017; 16:100. [PMID: 28592260 PMCID: PMC5463420 DOI: 10.1186/s12943-017-0670-3] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/26/2017] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary tumor in the central nervous system. One of the most widely used chemotherapeutic drugs for GBM is temozolomide, which is a DNA-alkylating agent and its efficacy is dependent on MGMT methylation status. Little progress in improving the prognosis of GBM patients has been made in the past ten years, urging the development of more effective molecular targeted therapies. Hyper-activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway is frequently found in a variety of cancers including GBM, and it plays a central role in the regulation of tumor cell survival, growth, motility, angiogenesis and metabolism. Numerous PI3K inhibitors including pan-PI3K, isoform-selective and dual PI3K/mammalian target of rapamycin (mTOR) inhibitors have exhibited favorable preclinical results and entered clinical trials in a range of hematologic malignancies and solid tumors. Furthermore, combination of inhibitors targeting PI3K and other related pathways may exert synergism on suppressing tumor growth and improving patients' prognosis. Currently, only a handful of PI3K inhibitors are in phase I/II clinical trials for GBM treatment. In this review, we focus on the importance of PI3K/Akt pathway in GBM, and summarize the current development of PI3K inhibitors alone or in combination with other inhibitors for GBM treatment from preclinical to clinical studies.
Collapse
Affiliation(s)
- Hua-fu Zhao
- Department of Neurosurgery & Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 China
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 China
| | - Jing Wang
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 China
| | - Wei Shao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chang-peng Wu
- Department of Neurosurgery & Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 China
- College of Clinical Medicine, Anhui Medical University, Hefei, 230032 China
| | - Zhong-ping Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 China
| | - Shing-shun Tony To
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wei-ping Li
- Department of Neurosurgery & Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 China
| |
Collapse
|
16
|
Jane EP, Premkumar DR, Sutera PA, Cavaleri JM, Pollack IF. Survivin inhibitor YM155 induces mitochondrial dysfunction, autophagy, DNA damage and apoptosis in Bcl-xL silenced glioma cell lines. Mol Carcinog 2017; 56:1251-1265. [PMID: 27805285 PMCID: PMC6844150 DOI: 10.1002/mc.22587] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 10/20/2016] [Accepted: 10/28/2016] [Indexed: 01/07/2023]
Abstract
Because the anti-apoptotic protein Bcl-xL is overexpressed in glioma, one might expect that inhibiting or silencing this gene would promote tumor cell killing. However, our studies have shown that this approach has limited independent activity, but may tip the balance in favor of apoptosis induction in response to other therapeutic interventions. To address this issue, we performed a pharmacological screen using a panel of signaling inhibitors and chemotherapeutic agents in Bcl-xL silenced cells. Although limited apoptosis induction was observed with a series of inhibitors for receptor tyrosine kinases, PKC inhibitors, Src family members, JAK/STAT, histone deacetylase, the PI3K/Akt/mTOR pathway, MAP kinase, CDK, heat shock proteins, proteasomal processing, and various conventional chemotherapeutic agents, we observed a dramatic potentiation of apoptosis in Bcl-xL silenced cells with the survivin inhibitor, YM155. Treatment with YM155 increased the release of cytochrome c, smac/DIABLO and apoptosis inducing-factor, and promoted loss of mitochondrial membrane potential, activation of Bax, recruitment of LC3-II to the autophagosomes and apoptosis in Bcl-xL silenced cells. We also found an additional mechanism for the augmentation of apoptosis due to abrogation of DNA double-strand break repair mediated by Rad51 repression and enhanced accumulation of γH2AX. In summary, our observations may provide a new insight into the link between Bcl-xL and survivin inhibition for the development of novel therapies for glioma. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Esther P. Jane
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Daniel R. Premkumar
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,University of Pittsburgh Cancer Institute Brain Tumor Center, Pittsburgh, Pennsylvania,Correspondence to: Department of Neurosurgery, Children’s Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224
| | - Philip A. Sutera
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Ian F. Pollack
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,University of Pittsburgh Cancer Institute Brain Tumor Center, Pittsburgh, Pennsylvania,Correspondence to: Department of Neurosurgery, Children’s Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224
| |
Collapse
|
17
|
Bohnacker T, Prota AE, Beaufils F, Burke JE, Melone A, Inglis AJ, Rageot D, Sele AM, Cmiljanovic V, Cmiljanovic N, Bargsten K, Aher A, Akhmanova A, Díaz JF, Fabbro D, Zvelebil M, Williams RL, Steinmetz MO, Wymann MP. Deconvolution of Buparlisib's mechanism of action defines specific PI3K and tubulin inhibitors for therapeutic intervention. Nat Commun 2017; 8:14683. [PMID: 28276440 PMCID: PMC5347140 DOI: 10.1038/ncomms14683] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/19/2017] [Indexed: 12/17/2022] Open
Abstract
BKM120 (Buparlisib) is one of the most advanced phosphoinositide 3-kinase (PI3K) inhibitors for the treatment of cancer, but it interferes as an off-target effect with microtubule polymerization. Here, we developed two chemical derivatives that differ from BKM120 by only one atom. We show that these minute changes separate the dual activity of BKM120 into discrete PI3K and tubulin inhibitors. Analysis of the compounds cellular growth arrest phenotypes and microtubule dynamics suggest that the antiproliferative activity of BKM120 is mainly due to microtubule-dependent cytotoxicity rather than through inhibition of PI3K. Crystal structures of BKM120 and derivatives in complex with tubulin and PI3K provide insights into the selective mode of action of this class of drugs. Our results raise concerns over BKM120's generally accepted mode of action, and provide a unique mechanistic basis for next-generation PI3K inhibitors with improved safety profiles and flexibility for use in combination therapies. Buparlisib/BKM120 is in phase 3 clinical trials as a phosphoinositide 3-kinase (PI3K) inhibitor. Here, Bohnacker et al. combine chemical biology and structural biology approaches to segregate BKM120's biological actions, and suggest that it causes mitotic arrest predominantly by binding microtubules and disrupting their dynamics.
Collapse
Affiliation(s)
- Thomas Bohnacker
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Andrea E Prota
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Florent Beaufils
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia BC V8W 2Y2, Canada
| | - Anna Melone
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | | | - Denise Rageot
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Alexander M Sele
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | | | | | - Katja Bargsten
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Amol Aher
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - J Fernando Díaz
- CIB Centro de Investigaciones Biológicas, 28040 Madrid, Spain
| | | | | | | | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Matthias P Wymann
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| |
Collapse
|
18
|
Netland IA, Førde HE, Sleire L, Leiss L, Rahman MA, Skeie BS, Miletic H, Enger PØ, Goplen D. Treatment with the PI3K inhibitor buparlisib (NVP-BKM120) suppresses the growth of established patient-derived GBM xenografts and prolongs survival in nude rats. J Neurooncol 2016; 129:57-66. [PMID: 27283525 PMCID: PMC4972854 DOI: 10.1007/s11060-016-2158-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 06/01/2016] [Indexed: 12/03/2022]
Abstract
Glioblastomas (GBMs) are aggressive brain tumours with a dismal prognosis, despite combined surgery, radio- and chemotherapy. Close to 90 % of all GBMs harbour a deregulated PI3K pathway, which is essential in regulating central cellular functions such as proliferation, cell growth, motility and survival. Thus, PI3K represents a potential target for molecular therapy in GBM. We investigated the anti-tumour efficacy of the PI3K inhibitor buparlisib (NVP-BKM120) in GBM cell lines in vitro and in vivo, when treatment was initiated after MRI-confirmed tumour engraftment. We found that buparlisib inhibited glioma cell proliferation in a dose dependent manner, demonstrated by MTS assay, manual cell count and BrdU incorporation. A dose dependent increase in apoptosis was observed through flow cytometric analysis. Furthermore, by immunocytochemistry and western blot, we found a dose dependent inhibition of Akt phosphorylation. Moreover, buparlisib prolonged survival of nude rats harboring human GBM xenografts in three independent studies and reduced the tumours’ volumetric increase, as determined by MRI. In addition, histological analyses of xenograft rat brains showed necrotic areas and change in tumour cell nuclei in buparlisib-treated animals. The rats receiving buparlisib maintained their weight, activity level and food- and water intake. In conclusion, buparlisib effectively inhibits glioma cell proliferation in vitro and growth of human GBM xenografts in nude rats. Moreover, the compound is well tolerated when administered at doses providing anti-tumour efficacy. Thus, buparlisib may have a future role in glioma therapy, and further studies are warranted to validate this compound for human use.
Collapse
Affiliation(s)
- I A Netland
- Oncomatrix Research Lab, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - H E Førde
- Oncomatrix Research Lab, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - L Sleire
- Oncomatrix Research Lab, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - L Leiss
- Oncomatrix Research Lab, Department of Biomedicine, University of Bergen, Bergen, Norway.,Neuro Clinic, Haukeland University Hospital, Bergen, Norway
| | - M A Rahman
- Oncomatrix Research Lab, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - B S Skeie
- Department of Clinical Medicine, K1, University of Bergen, Bergen, Norway
| | - H Miletic
- Department of Biomedicine, Kristian Gerhard Jebsen Brain Tumour Research Center, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - P Ø Enger
- Oncomatrix Research Lab, Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Biomedicine, Kristian Gerhard Jebsen Brain Tumour Research Center, University of Bergen, Bergen, Norway.,Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway
| | - D Goplen
- Department of Biomedicine, Kristian Gerhard Jebsen Brain Tumour Research Center, University of Bergen, Bergen, Norway. .,Department of Oncology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
19
|
YU FENG, ZHAO JING, HU YUNHUI, ZHOU YANG, GUO RONG, BAI JINGCHAO, ZHANG SHENG, ZHANG HUILAI, ZHANG JIN. The combination of NVP-BKM120 with trastuzumab or RAD001 synergistically inhibits the growth of breast cancer stem cells in vivo. Oncol Rep 2016; 36:356-64. [DOI: 10.3892/or.2016.4799] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/28/2016] [Indexed: 11/06/2022] Open
|
20
|
Wang D, Wang M, Jiang N, Zhang Y, Bian X, Wang X, Roberts TM, Zhao JJ, Liu P, Cheng H. Effective use of PI3K inhibitor BKM120 and PARP inhibitor Olaparib to treat PIK3CA mutant ovarian cancer. Oncotarget 2016; 7:13153-66. [PMID: 26909613 PMCID: PMC4914348 DOI: 10.18632/oncotarget.7549] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/23/2016] [Indexed: 12/19/2022] Open
Abstract
Recent preclinical studies revealed the efficacy of combined use of PI3K inhibitor BKM120 and PARP inhibitor Olaparib in breast and prostate cancers. The current study investigated the effect of such drug combination on ovarian cancer. Here we showed that combined inhibition of PI3K and PARP effectively synergized to inhibit proliferation, survival and invasion in the majority of ovarian cancer cell lines harboring PIK3CA mutations, including SKOV3, HEYA8, and IGROV1. Mechanistically, combined treatment of PARP and PI3K inhibitors resulted in an exacerbated DNA damage response and more substantially reduced AKT/mTOR signaling when compared to single-agent. Notably, ovarian cancer cells responsive to the PI3K/PARP combination displayed decreased BRCA1/2 expression upon drug treatment. Furthermore, the effect of the drug combination was corroborated in an intraperitoneal dissemination xenograft mouse model in which SKOV3 ovarian cancer cells responded with significantly decreased BRCA1 expression, suppressed PI3K/AKT signaling and reduced tumor burden. Collectively, our data suggested that combined inhibition of PI3K and PARP may be an effective therapeutic strategy for ovarian cancers with PIK3CA mutations and that the accompanied BRCA downregulation following PI3K inhibition could serve as a biomarker for the effective response to PARP inhibition.
Collapse
Affiliation(s)
- Dong Wang
- Cancer Institute, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
- Department of Histology and Embryology, Binzhou Medical College, Yantai 264000, China
| | - Min Wang
- Cancer Institute, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Nan Jiang
- Cancer Institute, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Yuan Zhang
- Cancer Institute, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Xing Bian
- Cancer Institute, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Xiaoqing Wang
- Cancer Institute, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Thomas M. Roberts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jean J. Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Pixu Liu
- Cancer Institute, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Hailing Cheng
- Cancer Institute, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
21
|
Wang D, Wang M, Jiang N, Zhang Y, Bian X, Wang X, Roberts TM, Zhao JJ, Liu P, Cheng H. Effective use of PI3K inhibitor BKM120 and PARP inhibitor Olaparib to treat PIK3CA mutant ovarian cancer. Oncotarget 2016. [PMID: 26909613 DOI: 10.18632/oncotarget.7549] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Recent preclinical studies revealed the efficacy of combined use of PI3K inhibitor BKM120 and PARP inhibitor Olaparib in breast and prostate cancers. The current study investigated the effect of such drug combination on ovarian cancer. Here we showed that combined inhibition of PI3K and PARP effectively synergized to inhibit proliferation, survival and invasion in the majority of ovarian cancer cell lines harboring PIK3CA mutations, including SKOV3, HEYA8, and IGROV1. Mechanistically, combined treatment of PARP and PI3K inhibitors resulted in an exacerbated DNA damage response and more substantially reduced AKT/mTOR signaling when compared to single-agent. Notably, ovarian cancer cells responsive to the PI3K/PARP combination displayed decreased BRCA1/2 expression upon drug treatment. Furthermore, the effect of the drug combination was corroborated in an intraperitoneal dissemination xenograft mouse model in which SKOV3 ovarian cancer cells responded with significantly decreased BRCA1 expression, suppressed PI3K/AKT signaling and reduced tumor burden. Collectively, our data suggested that combined inhibition of PI3K and PARP may be an effective therapeutic strategy for ovarian cancers with PIK3CA mutations and that the accompanied BRCA downregulation following PI3K inhibition could serve as a biomarker for the effective response to PARP inhibition.
Collapse
Affiliation(s)
- Dong Wang
- Cancer Institute, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China.,Department of Histology and Embryology, Binzhou Medical College, Yantai 264000, China
| | - Min Wang
- Cancer Institute, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Nan Jiang
- Cancer Institute, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Yuan Zhang
- Cancer Institute, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Xing Bian
- Cancer Institute, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Xiaoqing Wang
- Cancer Institute, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Thomas M Roberts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jean J Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Pixu Liu
- Cancer Institute, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Hailing Cheng
- Cancer Institute, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
22
|
Jane EP, Premkumar DR, Cavaleri JM, Sutera PA, Rajasekar T, Pollack IF. Dinaciclib, a Cyclin-Dependent Kinase Inhibitor Promotes Proteasomal Degradation of Mcl-1 and Enhances ABT-737-Mediated Cell Death in Malignant Human Glioma Cell Lines. J Pharmacol Exp Ther 2016; 356:354-65. [PMID: 26585571 PMCID: PMC6047232 DOI: 10.1124/jpet.115.230052] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/17/2014] [Indexed: 02/04/2023] Open
Abstract
The prognosis for malignant glioma, the most common brain tumor, is still poor, underscoring the need to develop novel treatment strategies. Because glioma cells commonly exhibit genomic alterations involving genes that regulate cell-cycle control, there is a strong rationale for examining the potential efficacy of strategies to counteract this process. In this study, we examined the antiproliferative effects of the cyclin-dependent kinase inhibitor dinaciclib in malignant human glioma cell lines, with intact, deleted, or mutated p53 or phosphatase and tensin homolog on chromosome 10; intact or deleted or p14ARF or wild-type or amplified epidermal growth factor receptor. Dinaciclib inhibited cell proliferation and induced cell-cycle arrest at the G2/M checkpoint, independent of p53 mutational status. In a standard 72-hour 3-[4,5-dimethylthiazol- 2yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H, tetrazolium (MTS) assay, at clinically relevant concentrations, dose-dependent antiproliferative effects were observed, but cell death was not induced. Moreover, the combination of conventional chemotherapeutic agents and various growth-signaling inhibitors with dinaciclib did not yield synergistic cytotoxicity. In contrast, combination of the Bcl-2/Bcl-xL inhibitors ABT-263 (4-[4-[[2-(4-chlorophenyl)-5,5-dimethylcyclohexen-1-yl]methyl]piperazin-1-yl]-N-[4-[[(2R)-4-morpholin-4-yl-1-phenylsulfanylbutan-2-yl]amino]-3-(trifluoromethylsulfonyl)phenyl]sulfonylbenzamide) or ABT-737 (4-[4-[[2-(4-chlorophenyl)phenyl]methyl]piperazin-1-yl]-N-[4-[[(2R)-4-(dimethylamino)-1-phenylsulfanylbutan-2-yl]amino]-3-nitrophenyl]sulfonylbenzamide) with dinaciclib potentiated the apoptotic response induced by each single drug. The synergistic killing by ABT-737 with dinaciclib led to cell death accompanied by the hallmarks of apoptosis, including an early loss of the mitochondrial transmembrane potential; the release of cytochrome c, smac/DIABLO, and apoptosis-inducing factor; phosphatidylserine exposure on the plasma membrane surface and activation of caspases and poly ADP-ribose polymerase. Mechanistic studies revealed that dinaciclib promoted proteasomal degradation of Mcl-1. These observations may have important clinical implications for the design of experimental treatment protocols for malignant human glioma.
Collapse
Affiliation(s)
- Esther P Jane
- Department of Neurologic Surgery, Children's Hospital of Pittsburgh (E.P.J., D.R.P., I.F.P.), University of Pittsburgh, School of Medicine (E.P.J., D.R.P., J.M.C., P.A.S., T.R., I.F.P), and University of Pittsburgh Brain Tumor Center (D.R.P., I.F.P.), Pittsburgh, Pennsylvania
| | - Daniel R Premkumar
- Department of Neurologic Surgery, Children's Hospital of Pittsburgh (E.P.J., D.R.P., I.F.P.), University of Pittsburgh, School of Medicine (E.P.J., D.R.P., J.M.C., P.A.S., T.R., I.F.P), and University of Pittsburgh Brain Tumor Center (D.R.P., I.F.P.), Pittsburgh, Pennsylvania
| | - Jonathon M Cavaleri
- Department of Neurologic Surgery, Children's Hospital of Pittsburgh (E.P.J., D.R.P., I.F.P.), University of Pittsburgh, School of Medicine (E.P.J., D.R.P., J.M.C., P.A.S., T.R., I.F.P), and University of Pittsburgh Brain Tumor Center (D.R.P., I.F.P.), Pittsburgh, Pennsylvania
| | - Philip A Sutera
- Department of Neurologic Surgery, Children's Hospital of Pittsburgh (E.P.J., D.R.P., I.F.P.), University of Pittsburgh, School of Medicine (E.P.J., D.R.P., J.M.C., P.A.S., T.R., I.F.P), and University of Pittsburgh Brain Tumor Center (D.R.P., I.F.P.), Pittsburgh, Pennsylvania
| | - Thatchana Rajasekar
- Department of Neurologic Surgery, Children's Hospital of Pittsburgh (E.P.J., D.R.P., I.F.P.), University of Pittsburgh, School of Medicine (E.P.J., D.R.P., J.M.C., P.A.S., T.R., I.F.P), and University of Pittsburgh Brain Tumor Center (D.R.P., I.F.P.), Pittsburgh, Pennsylvania
| | - Ian F Pollack
- Department of Neurologic Surgery, Children's Hospital of Pittsburgh (E.P.J., D.R.P., I.F.P.), University of Pittsburgh, School of Medicine (E.P.J., D.R.P., J.M.C., P.A.S., T.R., I.F.P), and University of Pittsburgh Brain Tumor Center (D.R.P., I.F.P.), Pittsburgh, Pennsylvania
| |
Collapse
|
23
|
Effects of PI3K inhibitor NVP-BKM120 on overcoming drug resistance and eliminating cancer stem cells in human breast cancer cells. Cell Death Dis 2015; 6:e2020. [PMID: 26673665 PMCID: PMC4720896 DOI: 10.1038/cddis.2015.363] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/30/2015] [Accepted: 11/12/2015] [Indexed: 01/16/2023]
Abstract
The multidrug resistance (MDR) phenotype often accompanies activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, which renders a survival signal to withstand cytotoxic anticancer drugs and enhances cancer stem cell (CSC) characteristics. As a result, PI3K/AKT-blocking approaches have been proposed as antineoplastic strategies, and inhibitors of PI3K/AKT are currently being trailed clinically in breast cancer patients. However, the effects of PI3K inhibitors on MDR breast cancers have not yet been elucidated. In the present study, the tumorigenic properties of three MDR breast cancer cell lines to a selective inhibitor of PI3K, NVP-BKM120 (BKM120), were assessed. We found that BKM120 showed a significant cytotoxic activity on MDR breast cancer cells both in vitro and in vivo. When doxorubicin (DOX) was combined with BKM120, strong synergistic antiproliferative effect was observed. BKM120 activity induced the blockage of PI3K/AKT signaling and NF-κB expression, which in turn led to activate caspase-3/7 and caspase-9 and changed the expression of several apoptosis-related gene expression. Furthermore, BKM120 effectively eliminated CSC subpopulation and reduced sphere formation of these drug-resistant cells. Our findings indicate that BKM120 partially overcomes the MDR phenotype in chemoresistant breast cancer through cell apoptosis induction and CSC abolishing, which appears to be mediated by the inhibition of the PI3K/AKT/NF-κB axis. This offers a strong rationale to explore the therapeutic strategy of using BKM120 alone or in combination for chemotherapy-nonresponsive breast cancer patients.
Collapse
|
24
|
Allegretti M, Ricciardi MR, Licchetta R, Mirabilii S, Orecchioni S, Reggiani F, Talarico G, Foà R, Bertolini F, Amadori S, Torrisi MR, Tafuri A. The pan-class I phosphatidyl-inositol-3 kinase inhibitor NVP-BKM120 demonstrates anti-leukemic activity in acute myeloid leukemia. Sci Rep 2015; 5:18137. [PMID: 26674543 PMCID: PMC4682184 DOI: 10.1038/srep18137] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/16/2015] [Indexed: 12/14/2022] Open
Abstract
Aberrant activation of the PI3K/Akt/mTOR pathway is a common feature of acute myeloid leukemia (AML) patients contributing to chemoresistance, disease progression and unfavourable outcome. Therefore, inhibition of this pathway may represent a potential therapeutic approach in AML. The aim of this study was to evaluate the pre-clinical activity of NVP-BKM120 (BKM120), a selective pan-class I PI3K inhibitor, on AML cell lines and primary samples. Our results demonstrate that BKM120 abrogates the activity of the PI3K/Akt/mTOR signaling, promoting cell growth arrest and significant apoptosis in a dose- and time-dependent manner in AML cells but not in the normal counterpart. BKM120-induced cytotoxicity is associated with a profound modulation of metabolic behaviour in both cell lines and primary samples. In addition, BKM120 synergizes with the glycolitic inhibitor dichloroacetate enhancing apoptosis induction at lower doses. Finally, in vivo administration of BKM120 to a xenotransplant mouse model of AML significantly inhibited leukemia progression and improved the overall survival of treated mice. Taken together, our findings indicate that BKM120, alone or in combination with other drugs, has a significant anti-leukemic activity supporting its clinical development as a novel therapeutic agent in AML.
Collapse
MESH Headings
- Adult
- Aged
- Aminopyridines/pharmacology
- Animals
- Blotting, Western
- Cell Line, Tumor
- Cell Survival/drug effects
- Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors
- Class I Phosphatidylinositol 3-Kinases/metabolism
- Dose-Response Relationship, Drug
- Female
- HL-60 Cells
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Middle Aged
- Morpholines/pharmacology
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases/metabolism
- Time Factors
- U937 Cells
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Matteo Allegretti
- Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy
| | - Maria Rosaria Ricciardi
- Department of Clinical and Molecular Medicine, “Sant’Andrea” Hospital, Sapienza University of Rome, Rome, Italy
| | - Roberto Licchetta
- Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy
| | - Simone Mirabilii
- Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy
| | - Stefania Orecchioni
- Division of Clinical Haematology-Oncology, European Institute of Oncology, Milan, Italy
| | - Francesca Reggiani
- Division of Clinical Haematology-Oncology, European Institute of Oncology, Milan, Italy
| | - Giovanna Talarico
- Division of Clinical Haematology-Oncology, European Institute of Oncology, Milan, Italy
| | - Roberto Foà
- Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy
| | - Francesco Bertolini
- Division of Clinical Haematology-Oncology, European Institute of Oncology, Milan, Italy
| | - Sergio Amadori
- Department of Hematology, Tor Vergata University Hospital, Rome, Italy
| | - Maria Rosaria Torrisi
- Department of Clinical and Molecular Medicine, “Sant’Andrea” Hospital, Sapienza University of Rome, Rome, Italy
| | - Agostino Tafuri
- Department of Clinical and Molecular Medicine, “Sant’Andrea” Hospital, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
25
|
Popescu AM, Purcaru SO, Alexandru O, Dricu A. New perspectives in glioblastoma antiangiogenic therapy. Contemp Oncol (Pozn) 2015; 20:109-18. [PMID: 27358588 PMCID: PMC4925727 DOI: 10.5114/wo.2015.56122] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/15/2015] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GB) is highly vascularised tumour, known to exhibit enhanced infiltrative potential. One of the characteristics of glioblastoma is microvascular proliferation surrounding necrotic areas, as a response to a hypoxic environment, which in turn increases the expression of angiogenic factors and their signalling pathways (RAS/RAF/ERK/MAPK pathway, PI3K/Akt signalling pathway and WTN signalling cascade). Currently, a small number of anti-angiogenic drugs, extending glioblastoma patients survival, are available for clinical use. Most medications are ineffective in clinical therapy of glioblastoma due to acquired malignant cells or intrinsic resistance, angiogenic receptors cross-activation and redundant intracellular signalling, or the inability of the drug to cross the blood-brain barrier and to reach its target in vivo. Researchers have also observed that GB tumours are different in many aspects, even when they derive from the same tissue, which is the reason for personalised therapy. An understanding of the molecular mechanisms regulating glioblastoma angiogenesis and invasion may be important in the future development of curative therapeutic approaches for the treatment of this devastating disease.
Collapse
Affiliation(s)
| | - Stefana Oana Purcaru
- Unit of Biochemistry, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Oana Alexandru
- Department of Neurology, University of Medicine and Pharmacy of Craiova and Clinical Hospital of Neuropsychiatry Craiova, Craiova, Romania
| | - Anica Dricu
- Unit of Biochemistry, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
26
|
Premkumar DR, Jane EP, Pollack IF. Cucurbitacin-I inhibits Aurora kinase A, Aurora kinase B and survivin, induces defects in cell cycle progression and promotes ABT-737-induced cell death in a caspase-independent manner in malignant human glioma cells. Cancer Biol Ther 2015; 16:233-43. [PMID: 25482928 DOI: 10.4161/15384047.2014.987548] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Because STAT signaling is commonly activated in malignant gliomas as a result of constitutive EGFR activation, strategies for inhibiting the EGFR/JAK/STAT cascade are of significant interest. We, therefore, treated a panel of established glioma cell lines, including EGFR overexpressors, and primary cultures derived from patients diagnosed with glioblastoma with the JAK/STAT inhibitor cucurbitacin-I. Treatment with cucurbitacin-I depleted p-STAT3, p-STAT5, p-JAK1 and p-JAK2 levels, inhibited cell proliferation, and induced G2/M accumulation, DNA endoreduplication, and multipolar mitotic spindles. Longer exposure to cucurbitacin-I significantly reduced the number of viable cells and this decrease in viability was associated with cell death, as confirmed by an increase in the subG1 fraction. Our data also demonstrated that cucurbitacin-I strikingly downregulated Aurora kinase A, Aurora kinase B and survivin. We then searched for agents that exhibited a synergistic effect on cell death in combination with cucurbitacin-I. We found that cotreatment with cucurbitacin-I significantly increased Bcl(-)2/Bcl(-)xL family member antagonist ABT-737-induced cell death regardless of EGFR/PTEN/p53 status of malignant human glioma cell lines. Although >50% of the cucurbitacin-I plus ABT-737 treated cells were annexin V and propidium iodide positive, PARP cleavage or caspase activation was not observed. Pretreatment of z-VAD-fmk, a pan caspase inhibitor did not inhibit cell death, suggesting a caspase-independent mechanism of cell death. Genetic inhibition of Aurora kinase A or Aurora kinase B or survivin by RNA interference also sensitized glioma cells to ABT-737, suggesting a link between STAT activation and Aurora kinases in malignant gliomas.
Collapse
Key Words
- Aurora kinases
- BSA, bovine serum albumin
- DMSO, dimethyl sulfoxide
- EGFR, epidermal growth factor receptor
- FITC, fluorescein isothiocyanate
- Glioma
- MTS, 3-[4, 5-dimethylthiazol- 2yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H, tetrazolium
- NF-кB, nuclear factor кB
- PAGE, polyacrylamide gel electrophoresis
- PBS, phosphate-buffered saline
- PDGFR, platelet derived growth factor receptor
- PI, propidium iodide
- PI3K, Phosphatidylinositol 3-Kinase
- TBS, Tris-buffered saline
- TRAIL, tumor necrosis factor–related apoptosis inducing ligand
- caspase-independent cell death
- cell cycle arrest
Collapse
Affiliation(s)
- Daniel R Premkumar
- a Department of Neurosurgery ; University of Pittsburgh School of Medicine ; Pittsburgh , PA USA
| | | | | |
Collapse
|
27
|
Pereira JKN, Machado-Neto JA, Lopes MR, Morini BC, Traina F, Costa FF, Saad STO, Favaro P. Molecular effects of the phosphatidylinositol-3-kinase inhibitor NVP-BKM120 on T and B-cell acute lymphoblastic leukaemia. Eur J Cancer 2015; 51:2076-85. [PMID: 26238016 DOI: 10.1016/j.ejca.2015.07.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 06/19/2015] [Accepted: 07/16/2015] [Indexed: 01/17/2023]
Abstract
BACKGROUND Constitutive activation of the PI3K pathway in T cell acute lymphoblastic leukaemia (T-ALL) has been reported and in a mouse model, PI3K activation, together with MYC, cooperates in Burkitt lymphoma (BL) pathogenesis. We investigated the effects of NVP-BKM120, a potent pan-class I PI3K inhibitor, in lymphoblastic leukaemia cell lines. METHODS Effects of NVP-BKM120 on cell viability, clonogenicity, apoptosis, cell cycle, cell signalling and autophagy were assessed in vitro on T-ALL (Jurkat and MOLT-4) and BL (Daudi and NAMALWA) cell lines. RESULTS NVP-BKM120 treatment decreased cell viability and clonogenic growth in all tested cells. Moreover, the drug arrested cell cycling in association with a decrease in Cyclin B1 protein levels, and increased apoptosis. Immunoblotting analysis of cells treated with the drug revealed decreased phosphorylation, in a dose-dependent manner, of AKT, mTOR, P70S6K and 4EBP1, with stable total protein levels. Additionally, we observed a dose-dependent decrease in BAD phosphorylation, in association with augmented BAX:BCL2 ratio. Quantification of autophagy showed a dose-dependent increase in acidic vesicular organelles in all cells tested. CONCLUSION In summary, our present study establishes that NVP-BKM120 presents an effective antitumour activity against T-ALL and BL cell lines.
Collapse
Affiliation(s)
- João Kleber Novais Pereira
- Haematology and Hemotherapy Centre-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo 13083-970, Brazil
| | - João Agostinho Machado-Neto
- Haematology and Hemotherapy Centre-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo 13083-970, Brazil
| | - Matheus Rodrigues Lopes
- Haematology and Hemotherapy Centre-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo 13083-970, Brazil
| | - Beatriz Corey Morini
- Haematology and Hemotherapy Centre-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo 13083-970, Brazil
| | - Fabiola Traina
- Haematology and Hemotherapy Centre-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo 13083-970, Brazil; Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
| | - Fernando Ferreira Costa
- Haematology and Hemotherapy Centre-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo 13083-970, Brazil
| | - Sara Teresinha Olalla Saad
- Haematology and Hemotherapy Centre-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo 13083-970, Brazil
| | - Patricia Favaro
- Haematology and Hemotherapy Centre-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo 13083-970, Brazil; Department of Biological Sciences, Federal University of São Paulo, Diadema, São Paulo 09913-030, Brazil.
| |
Collapse
|
28
|
The role of BH3-mimetic drugs in the treatment of pediatric hepatoblastoma. Int J Mol Sci 2015; 16:4190-208. [PMID: 25690034 PMCID: PMC4346952 DOI: 10.3390/ijms16024190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 02/01/2015] [Accepted: 02/09/2015] [Indexed: 12/20/2022] Open
Abstract
Pediatric hepatoblastoma (HB) is commonly treated by neoadjuvant chemotherapy and surgical tumor resection according to international multicenter trial protocols. Complete tumor resection is essential and survival rates up to 95% have now been achieved in those tumors classified as standard-risk HB. Drug resistance and occurrence of metastases remain the major challenges in the treatment of HB, especially in high-risk tumors. These conditions urgently require the development of alternative therapeutic strategies. One of those alternatives is the modulation of apoptosis in HB cells. HBs regularly overexpress anti-apoptotic proteins of the Bcl-family in comparison to healthy liver tissue. This fact may contribute to the development of chemoresistance of HB cells. Synthetic small inhibitory molecules with BH3-mimetic effects, such as ABT-737 and obatoclax, enhance the susceptibility of tumor cells to different cytotoxic drugs and thereby affect initiator proteins of the apoptosis cascade via the intrinsic pathway. Besides additive effects on HB cell viability when used in combination with cytotoxic drugs, BH3-mimetics also play a role in preventing metastasation by reducing adhesion and inhibiting cell migration abilities. Presumably, including additive BH3-mimetic drugs into existing therapeutic regimens in HB patients might allow dose reduction of established cytotoxic drugs and thereby associated immanent side effects, while maintaining the antitumor activity. Furthermore, reduction of tumor growth and inhibition of tumor cell dissemination may facilitate complete surgical tumor resection, which is mandatory in this tumor type resulting in improved survival rates in high-risk HB. Currently, there are phase I and phase II clinical trials in several cancer entities using this potential target. This paper reviews the available literature regarding the use of BH3-mimetic drugs as single agents or in combination with chemotherapy in various malignancies and focuses on results in HB cells.
Collapse
|
29
|
Huang LG, Li JP, Pang XM, Chen CY, Xiang HY, Feng LB, Su SY, Li SH, Zhang L, Liu JL. MicroRNA-29c Correlates with Neuroprotection Induced by FNS by Targeting Both Birc2 and Bak1 in Rat Brain after Stroke. CNS Neurosci Ther 2015; 21:496-503. [PMID: 25678279 DOI: 10.1111/cns.12383] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 11/26/2022] Open
Abstract
AIMS Studies showed fastigial nucleus stimulation (FNS) reduced brain damage, but the mechanisms of neuroprotection induced by FNS were not entirely understood; MicroRNAs are noncoding RNA molecules that regulate gene expression in a posttranscriptional manner, but their functional consequence in response to ischemia-reperfusion (IR) remains unknown. We investigated the role of microRNA-29c in the neuroprotection induced by FNS in rat. METHODS The IR rat models were conducted 1 day after FNS. Besides, miR-29c antagomir (or agomir or control) was infused to the left intracerebroventricular 1 day before IR models were conducted. We detected differential expression of Birc2 mRNA (also Bak1mRNA and miR-29c) level among different groups by RT-qPCR. The differential expression of Birc2 protein (also Bak1 protein) level among different groups was surveyed via Western blot. The neuroprotective effects were assessed by infarct volume, neurological deficit, and apoptosis. RESULTS MiR-29c was decreased after FNS. Moreover, miR-29c directly bound to the predicted 3'-UTR target sites of Birc2 and Bak1 genes. Furthermore, over-expression of miR-29c effectively reduced Birc2 (also Bak1) mRNA and protein levels, increased infarct volume and apoptosis, and deteriorated neurological outcomes, whereas down-regulation played a neuroprotective role. CONCLUSIONS MiR-29c correlates with the neuroprotection induced by FNS by negatively regulating Birc2 and Bak1.
Collapse
Affiliation(s)
- Li-Gang Huang
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Jin-Pin Li
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xiao-Min Pang
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Chun-Yong Chen
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Hui-Yao Xiang
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Ling-Bo Feng
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Sheng-You Su
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Sheng-Hua Li
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Lei Zhang
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Jing-Li Liu
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| |
Collapse
|
30
|
Berghauser Pont LME, Spoor JKH, Venkatesan S, Swagemakers S, Kloezeman JJ, Dirven CMF, van der Spek PJ, Lamfers MLM, Leenstra S. The Bcl-2 inhibitor Obatoclax overcomes resistance to histone deacetylase inhibitors SAHA and LBH589 as radiosensitizers in patient-derived glioblastoma stem-like cells. Genes Cancer 2015; 5:445-59. [PMID: 25568669 PMCID: PMC4279441 DOI: 10.18632/genesandcancer.42] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/22/2014] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma has shown resistance to histone deacetylase inhibitors (HDACi) as radiosensitizers in cultures with Bcl-XL over-expression. We study the efficacy of SAHA/RTx and LBH589/RTx when manipulating Bcl-2 family proteins using the Bcl-2 inhibitor Obatoclax in patient-derived glioblastoma stem-like cell (GSC) cultures. GSC cultures in general have a deletion in phosphatase and tensin homolog (PTEN). Synergy was determined by the Chou Talalay method. The effects on apoptosis and autophagy were studied by measuring caspase-3/7, Bcl-XL, Mcl-1 and LC3BI/II proteins. The relation between treatment response and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status, recurrence and gene expression levels of the tumors were studied. Obatoclax synergized with SAHA and LBH589 and sensitized cells to HDACi/RTx. Over 50% of GSC cultures were responsive to Obatoclax with either single agent. Combined with HDACi/RTx treatment, Obatoclax increased caspase-3/7 and inhibited Bcl-2 family proteins Bcl-XL and Mcl-1 more effectively than other treatments. Genes predictive for treatment response were identified, including the F-box/WD repeat-containing protein-7, which was previously related to Bcl-2 inhibition and HDACi sensitivity. We emphasize the functional relation between Bcl-2 proteins and radiosensitization by HDACi and provide a target for increasing responsiveness in glioblastoma by using the Bcl-2 inhibitor Obatoclax.
Collapse
Affiliation(s)
| | - Jochem K H Spoor
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Jenneke J Kloezeman
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, Rotterdam, The Netherlands
| | - Clemens M F Dirven
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, Rotterdam, The Netherlands
| | | | - Martine L M Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, Rotterdam, The Netherlands
| | - Sieger Leenstra
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, Rotterdam, The Netherlands ; Department of Neurosurgery, Elisabeth Medical Hospital, Tilburg, The Netherlands
| |
Collapse
|
31
|
Foster KA, Jane EP, Premkumar DR, Morales A, Pollack IF. Co-administration of ABT-737 and SAHA induces apoptosis, mediated by Noxa upregulation, Bax activation and mitochondrial dysfunction in PTEN-intact malignant human glioma cell lines. J Neurooncol 2014; 120:459-72. [PMID: 25139025 DOI: 10.1007/s11060-014-1575-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 08/03/2014] [Indexed: 01/27/2023]
Abstract
We previously observed that glioma cells are differentially sensitive to ABT-737 and, when used as a single-agent, this drug failed to induce apoptosis. Identification of therapeutic strategies to enhance the efficacy of the Bcl-2 inhibitor ABT-737 in human glioma is of interest. Histone deacetylation inhibitors (HDACI) are currently being assessed clinically in patients with glioma, as regulation of epigenetic abnormalities is expected to produce pro-apoptotic effects. We hypothesized that co-treatment of glioma with a BH3-mimetic and HDACI may induce cellular death. We assessed the combination of ABT-737 and HDACI SAHA in established and primary cultured glioma cells. We found combination treatment led to significant cellular death when compared to either drug as single agent and demonstrated activation of the caspase cascade. This enhanced apoptosis also appears dependent upon the loss of mitochondrial membrane potential and the release of cytochrome c and AIF into the cytosol. The upregulation of Noxa, truncation of Bid, and activation of Bax caused by this combination were important factors for cell death and the increased levels of Noxa functioned to sequester Mcl-1. This combination was less effective in PTEN-deficient glioma cells. Both genetic and pharmacologic inactivation of the PI3K/Akt signaling pathway sensitized PTEN-deleted glioma cells to the combination. This study demonstrates that antagonizing apoptosis-resistance pathways, such as targeting the Bcl-2 family in combination with epigenetic modifiers, may induce cell death. These findings extend our previous observations that targeting the PI3K/Akt pathway may be additionally necessary to promote apoptosis in cancers lacking PTEN functionality.
Collapse
Affiliation(s)
- Kimberly A Foster
- Department of Neurosurgery, Children's Hospital of Pittsburgh, 4401 Penn Ave., Pittsburgh, PA, 15224, USA,
| | | | | | | | | |
Collapse
|