1
|
Li Y, Yu X, Liu Y, Miao S, Liu X, Wang Z, Zhou H. Pharmacodynamic components and molecular mechanism of Gastrodia elata Blume in treating hypertension: Absorbed components, network pharmacology analysis, molecular docking and in vivo experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119583. [PMID: 40058475 DOI: 10.1016/j.jep.2025.119583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/18/2025] [Accepted: 03/02/2025] [Indexed: 03/21/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhizome of Gastrodia elata Blume (RGE) is a valuable traditional Chinese Medicine (TCM) in the clinical practice. The Compendium of Materia Medica records that RGE has the effect of flatting liver wind out. It has sedative, analgesic, hypnotic, anticonvulsant, anti-hypertensive, anti-myocardial ischemia, anti-arrhythmic and anti-platelet aggregation effects. RGE is often used to relieve and treat vertigo, headache, hypertension, convulsions, and epilepsy in TCM clinic for thousands of years. Accumulated evidences have suggested that hypertension disease is related to the renin-angiotensin-aldosterone system (RAAS) disturbance. However, the potential pharmacodynamic components and anti-hypertensive mechanisms of RGE are unclear now. AIM OF THE STUDY The active component and mechanism of RGE in treating hypertension were elucidated to strengthen the quality control and development of anti-hypertensive drugs. MATERIALS AND METHODS The anti-hypertensive active components of RGE were analyzed by multi-dimensional qualitative analysis method including ethanol extract, in-vitro intestinal absorption, in-vivo plasma. The ultra high performance liquid chromatography-mass spectrometry (UPLC-Q-Exactive MS/MS) analysis technology was adopted to identify these components. Network pharmacology was applied to predicted anti-hypertensive active components, target proteins and pathways. Molecular docking was used to evaluate the potential molecular binding modes between 68 components and nine proteins. Spontaneously hypertensive rats (SHR) model was adopted to evaluate the activity of reducing systolic and diastolic blood pressure (SBP and DBP). Levels of renin, angiotcnsin II (Ang II) and aldosterone (ALD) in serum were determined by Elisa kit. Immunohistochemical were adopted to compare the changes of Ang II receptor 1 (AT1R) protein levels in SHR model and RGE groups. RESULTS The multi-dimensional components qualitative analysis method of RGE was established. The results showed that 79, 70 and 30 components were identified in RGE ethanol extract, in-vitro intestinal absorption and in-vivo plasma, respectively. These components were mainly parishins, nucleosides, amino acids, phenolic acids, flavonoids, organic acids et al. Network pharmacology results showed that anti-hypertensive active components were nucleosides and organic acids. It was speculated that RGE could exert its anti-hypertensive effect by regulating aldosterone-regulated sodium reabsorption, renin-angiotensin system pathways and related target proteins. Molecular docking results showed that 21 components including parishins, nucleosides and phenolic acids were potential active components of anti-hypertensive. Taking together, parishin A, B, E, C, D, adenosine, N6-(4-hydroxybenzyl) adenosine, guanosine, ferulic acid were the main anti-hypertensive active components of RGE. Pharmacodynamic results showed that RGE (0.7 g·kg-1) at low dosage could reduce SBP and DBP of SHR in vivo. Meanwhile, RGE (1.4 g·kg-1) markedly reduced the contents of renin, angiotcnsin II and ALD (p < 0.05) of SHR. Immunohistochemical data demonstrated that RGE (0.7 g·kg-1) could downregulate the protein expression of AT1R. In general, RGE can significantly reduce blood pressure of SHR by regulating RAAS. CONCLUSION The multi-dimensional components qualitative analysis combining network pharmacology and molecular docking technology provide a new perspective for discovering potential anti-hypertensive components of RGE. RGE possess anti-hypertensive activity by regulating multiple targets of RAAS. Thus, it has the potential to develop into the novel raw material of anti-hypertensive drugs.
Collapse
Affiliation(s)
- Yun Li
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Xiaofei Yu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Yezhi Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Shuxin Miao
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiaoqian Liu
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhimin Wang
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Honglei Zhou
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
2
|
Tasca CI, Zuccarini M, Di Iorio P, Ciruela F. Lessons from the physiological role of guanosine in neurodegeneration and cancer: Toward a multimodal mechanism of action? Purinergic Signal 2025; 21:133-148. [PMID: 39004650 PMCID: PMC11958862 DOI: 10.1007/s11302-024-10033-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Neurodegenerative diseases and brain tumours represent important health challenges due to their severe nature and debilitating consequences that require substantial medical care. Interestingly, these conditions share common physiological characteristics, namely increased glutamate, and adenosine transmission, which are often associated with cellular dysregulation and damage. Guanosine, an endogenous nucleoside, is safe and exerts neuroprotective effects in preclinical models of excitotoxicity, along with cytotoxic effects on tumour cells. However, the lack of well-defined mechanisms of action for guanosine hinders a comprehensive understanding of its physiological effects. In fact, the absence of specific receptors for guanosine impedes the development of structure-activity research programs to develop guanosine derivatives for therapeutic purposes. Alternatively, given its apparent interaction with the adenosinergic system, it is plausible that guanosine exerts its neuroprotective and anti-tumorigenic effects by modulating adenosine transmission through undisclosed mechanisms involving adenosine receptors, transporters, and purinergic metabolism. Here, several potential molecular mechanisms behind the protective actions of guanosine will be discussed. First, we explore its potential interaction with adenosine receptors (A1R and A2AR), including the A1R-A2AR heteromer. In addition, we consider the impact of guanosine on extracellular adenosine levels and the role of guanine-based purine-converting enzymes. Collectively, the diverse cellular functions of guanosine as neuroprotective and antiproliferative agent suggest a multimodal and complementary mechanism of action.
Collapse
Affiliation(s)
- Carla Inês Tasca
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
- Laboratory of Neurochemistry-4, Neuroscience Program/Biochemistry Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100, Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, 66100, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100, Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, 66100, Chieti, Italy
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907L'Hospitalet de Llobregat, Bellvitge, Spain
| |
Collapse
|
3
|
Li X, Zeng H, Zhang L, Zhang J, Guo Y, Leng J. An integrated LC-MS/MS platform for noninvasive urinary nucleus acid adductomics: A pilot study for tobacco exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134780. [PMID: 38861899 DOI: 10.1016/j.jhazmat.2024.134780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024]
Abstract
Tobacco smoke exposure significantly increases the level of global nucleoside damage. To evaluate all aspects of nucleic acid (NA) modifications, NA adductomics analyzes DNA, RNA and nucleobase adducts and provides comprehensive data. Liquid chromatography-tandem triple quadrupole mass spectrometry (LC-QQQ-MS/MS) and LC-Zeno-TOF-MS/MS were employed to screen for DNA, RNA and nucleobase adducts, as part of the analytical platform that was designed to combine high sensitivity and high resolution detection. We identified and distinguished urine nucleoside adducts via precursor ion and neutral loss scanning. A total of 245 potential adducts were detected, of which 28 were known adducts. The smoking group had significantly higher concentrations of nucleoside adducts in rat urine than the control group, based on MRM scanning, which was then used to perform relative quantitative analysis of these adducts. Urine nucleoside adducts were further confirmed using LC-Zeno-TOF-MS/MS. This highlights the potential of untargeted detection methods to provide comprehensive data on both known and unknown adducts. These approaches can be used to investigate the interactions among oxidative and alkylation stresses, and epigenetic modifications caused by exposure to tobacco smoke.
Collapse
Affiliation(s)
- Xiaoqing Li
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hui Zeng
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Li Zhang
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Jing Zhang
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Yinlong Guo
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China.
| | - Jiapeng Leng
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| |
Collapse
|
4
|
Ma P, Miao X, Li M, Kong X, Jiang Y, Wang P, Zhang P, Shang P, Chen Y, Zhou X, Wang W, Zhang Q, Liu H, Feng F. Lung proteomics combined with metabolomics reveals molecular characteristics of inflammation-related lung tumorigenesis induced by B(a)P and LPS. ENVIRONMENTAL TOXICOLOGY 2023; 38:2915-2925. [PMID: 37551664 DOI: 10.1002/tox.23926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/25/2023] [Accepted: 07/22/2023] [Indexed: 08/09/2023]
Abstract
Inflammatory microenvironment may take a promoting role in lung tumorigenesis. However, the molecular characteristics underlying inflammation-related lung cancer remains unknown. In this work, the inflammation-related lung tumorigenesis mouse model was established by treated with B(a)P (1 mg/mouse, once a week for 4 weeks), followed by LPS (2.5 μg/mouse, once every 3 weeks for five times), the mice were sacrificed 30 weeks after exposure. TMT-labeled quantitative proteomics and untargeted metabolomics were used to interrogate differentially expressed proteins and metabolites in different mouse cancer tissues, followed by integrated crosstalk between proteomics and metabolomics through Spearman's correlation analysis. The result showed that compared with the control group, 103 proteins and 37 metabolites in B(a)P/LPS group were identified as significantly altered. By searching KEGG pathway database, proteomics pathways such as Leishmaniasis, Asthma and Intestinal immune network for IgA production, metabolomics pathways such as Vascular smooth muscle contraction, Linoleic acid metabolism and cGMP-PKG signaling pathway were enriched. A total of 22 pathways were enriched after conjoint analysis of the proteomic and metabolomics, and purine metabolism pathway, the unique metabolism-related pathway, which included significantly altered protein (adenylate cyclase 4, ADCY4) and metabolites (L-Glutamine, guanosine monophosphate (GMP), adenosine and guanosine) was found. Results suggested purine metabolism may contribute to the inflammation-related lung tumorigenesis, which may provide novel clues for the therapeutic strategies of inflammation-related lung cancer.
Collapse
Affiliation(s)
- Pengwei Ma
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, Henan, China
| | - Xinyi Miao
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, Henan, China
| | - Mengyuan Li
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangbing Kong
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, Henan, China
| | - Yuting Jiang
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, Henan, China
| | - Pengpeng Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Zhang
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, China
| | - Pingping Shang
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute, CNC, Zhengzhou, Henan, China
| | - Yusong Chen
- Quality Supervision & Test Center, China National Tobacco Corporation Shandong Branch, Jinan, China
| | - Xiaolei Zhou
- Department of Pulmonary Medicine, Henan Provincial Chest Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiao Zhang
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, Henan, China
| | - Hong Liu
- Department of Pulmonary Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Feifei Feng
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Dos Santos RAL, de Lima Reis SR, Gibbert PC, de Arruda CM, Doneda DL, de Matos YAV, Viola GG, Rios Santos F, de Lima E, da Silva Buss Z, Vandresen-Filho S. Guanosine treatment prevents lipopolysaccharide-induced depressive-like behavior in mice. J Psychiatr Res 2023; 164:296-303. [PMID: 37392719 DOI: 10.1016/j.jpsychires.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/03/2023]
Abstract
Guanosine is a purinergic nucleoside that has been shown to have neuroprotective effects, mainly through its ability to modulate the glutamatergic system. An increase in pro-inflammatory cytokine levels triggers the activation of the enzyme indoleamine 2,3-dioxygenase 1 (IDO-1), leading to glutamatergic excitotoxicity, which has important roles in the pathophysiology of depression. The aim of this study was to investigate the possible antidepressant-like effects and underlying mechanisms of action of guanosine against lipopolysaccharide (LPS)-induced depression in a mouse model. Mice were orally pre-treated with saline (0.9% NaCl), guanosine (8 or 16 mg/kg), or fluoxetine (30 mg/kg) for 7 days before LPS (0.5 mg/kg, intraperitoneal) injection. One day after LPS injection, mice were subjected to the forced swim test (FST), tail suspension test (TST), and open field test (OFT). After the behavioral tests, mice were euthanized and the levels of tumor necrosis factor-α (TNF-α), IDO-1, glutathione, and malondialdehyde in the hippocampus were measured. Pretreatment with guanosine was able to prevent LPS- induced depressive-like behaviors in the TST and FST. In the OFT, no locomotor changes were observed with any treatment. Both guanosine (8 and 16 mg/kg/day) and fluoxetine treatment prevented the LPS-induced increase in TNF-α and IDO expression and lipid peroxidation as well as decrease of reduced glutathione levels in the hippocampus. Taken together, our findings suggest that guanosine may have neuroprotective effects against LPS-induced depressive-like behavior through preventing oxidative stress and the expression of IDO-1 and TNF-α in the hippocampus.
Collapse
Affiliation(s)
- Rozielly Aparecida Lemes Dos Santos
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Silvia Regina de Lima Reis
- Laboratório de Investigação, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Patrícia Cristiane Gibbert
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Cristina Maria de Arruda
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Diego Luiz Doneda
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Yohan Alves Victor de Matos
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | | | - Fabrício Rios Santos
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Eliângela de Lima
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Ziliani da Silva Buss
- Laboratório de Pesquisa em Imunologia, Departamento de Análises Clínicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Samuel Vandresen-Filho
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil.
| |
Collapse
|
6
|
Weese-Myers ME, Cryan MT, Witt CE, Caldwell KCN, Modi B, Ross AE. Dynamic and Rapid Detection of Guanosine during Ischemia. ACS Chem Neurosci 2023; 14:1646-1658. [PMID: 37040534 PMCID: PMC10265669 DOI: 10.1021/acschemneuro.3c00048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
Guanosine acts in both neuroprotective and neurosignaling pathways in the central nervous system; in this paper, we present the first fast voltammetric measurements of endogenous guanosine release during pre- and post-ischemic conditions. We discuss the metric of our measurements via analysis of event concentration, duration, and interevent time of rapid guanosine release. We observe changes across all three metrics from our normoxic to ischemic conditions. Pharmacological studies were performed to confirm that guanosine release is a calcium-dependent process and that the signaling observed is purinergic. Finally, we show the validity of our ischemic model via staining and fluorescent imaging. Overall, this paper sets the tone for rapid monitoring of guanosine and provides a platform to investigate the extent to which guanosine accumulates at the site of brain injury, i.e., ischemia.
Collapse
Affiliation(s)
- Moriah E. Weese-Myers
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172
- Co-first author
| | - Michael T. Cryan
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172
- Co-first author
| | - Colby E. Witt
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172
| | - Kaejaren C. N. Caldwell
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172
| | - Bindu Modi
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172
| | - Ashley E. Ross
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172
| |
Collapse
|
7
|
Park DR, Yeo CH, Yoon JE, Hong EY, Choi BR, Lee YJ, Ha IH. Polygonatum sibiricum improves menopause symptoms by regulating hormone receptor balance in an ovariectomized mouse model. Biomed Pharmacother 2022; 153:113385. [DOI: 10.1016/j.biopha.2022.113385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022] Open
|
8
|
Chojnowski K, Opielka M, Nazar W, Kowianski P, Smolenski RT. Neuroprotective Effects of Guanosine in Ischemic Stroke-Small Steps towards Effective Therapy. Int J Mol Sci 2021; 22:6898. [PMID: 34199004 PMCID: PMC8268871 DOI: 10.3390/ijms22136898] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Guanosine (Guo) is a nucleotide metabolite that acts as a potent neuromodulator with neurotrophic and regenerative properties in neurological disorders. Under brain ischemia or trauma, Guo is released to the extracellular milieu and its concentration substantially raises. In vitro studies on brain tissue slices or cell lines subjected to ischemic conditions demonstrated that Guo counteracts destructive events that occur during ischemic conditions, e.g., glutaminergic excitotoxicity, reactive oxygen and nitrogen species production. Moreover, Guo mitigates neuroinflammation and regulates post-translational processing. Guo asserts its neuroprotective effects via interplay with adenosine receptors, potassium channels, and excitatory amino acid transporters. Subsequently, guanosine activates several prosurvival molecular pathways including PI3K/Akt (PI3K) and MEK/ERK. Due to systemic degradation, the half-life of exogenous Guo is relatively low, thus creating difficulty regarding adequate exogenous Guo distribution. Nevertheless, in vivo studies performed on ischemic stroke rodent models provide promising results presenting a sustained decrease in infarct volume, improved neurological outcome, decrease in proinflammatory events, and stimulation of neuroregeneration through the release of neurotrophic factors. In this comprehensive review, we discuss molecular signaling related to Guo protection against brain ischemia. We present recent advances, limitations, and prospects in exogenous guanosine therapy in the context of ischemic stroke.
Collapse
Affiliation(s)
- Karol Chojnowski
- Faculty of Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland; (K.C.); (W.N.)
| | - Mikolaj Opielka
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
- International Research Agenda 3P—Medicine Laboratory, Medical University of Gdańsk, 3A Sklodowskiej-Curie Street, 80-210 Gdansk, Poland
| | - Wojciech Nazar
- Faculty of Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland; (K.C.); (W.N.)
| | - Przemyslaw Kowianski
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki Street, 80-211 Gdańsk, Poland;
- Institute of Health Sciences, Pomeranian University of Słupsk, Bohaterów Westerplatte 64, 76-200 Słupsk, Poland
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| |
Collapse
|
9
|
Belluardo N, Mudò G, Di Liberto V, Frinchi M, Condorelli DF, Traversa U, Ciruela F, Ciccarelli R, Di Iorio P, Giuliani P. Investigating the Role of Guanosine on Human Neuroblastoma Cell Differentiation and the Underlying Molecular Mechanisms. Front Pharmacol 2021; 12:658806. [PMID: 33986683 PMCID: PMC8111303 DOI: 10.3389/fphar.2021.658806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/19/2021] [Indexed: 01/20/2023] Open
Abstract
Neuroblastoma arises from neural crest cell precursors failing to complete the process of differentiation. Thus, agents helping tumor cells to differentiate into normal cells can represent a valid therapeutic strategy. Here, we evaluated whether guanosine (GUO), a natural purine nucleoside, which is able to induce differentiation of many cell types, may cause the differentiation of human neuroblastoma SH-SY5Y cells and the molecular mechanisms involved. We found that GUO, added to the cell culture medium, promoted neuron-like cell differentiation in a time- and concentration-dependent manner. This effect was mainly due to an extracellular GUO action since nucleoside transporter inhibitors reduced but not abolished it. Importantly, GUO-mediated neuron-like cell differentiation was independent of adenosine receptor activation as it was not altered by the blockade of these receptors. Noteworthy, the neuritogenic activity of GUO was not affected by blocking the phosphoinositide 3-kinase pathway, while it was reduced by inhibitors of protein kinase C or soluble guanylate cyclase. Furthermore, the inhibitor of the enzyme heme oxygenase-1 but not that of nitric oxide synthase reduced GUO-induced neurite outgrowth. Interestingly, we found that GUO was largely metabolized into guanine by the purine nucleoside phosphorylase (PNP) enzyme released from cells. Taken together, our results suggest that GUO, promoting neuroblastoma cell differentiation, may represent a potential therapeutic agent; however, due to its spontaneous extracellular metabolism, the role played by the GUO-PNP-guanine system needs to be further investigated.
Collapse
Affiliation(s)
- Natale Belluardo
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Giuseppa Mudò
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Valentina Di Liberto
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Monica Frinchi
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Daniele F Condorelli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, Italy
| | - Ugo Traversa
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Spain.,Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnological Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology, CAST, "G. D'Annunzio" University Foundation, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology, CAST, "G. D'Annunzio" University Foundation, Chieti, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology, CAST, "G. D'Annunzio" University Foundation, Chieti, Italy
| |
Collapse
|
10
|
Jackson EK, Mi Z, Kleyman TR, Cheng D. 8-Aminoguanine Induces Diuresis, Natriuresis, and Glucosuria by Inhibiting Purine Nucleoside Phosphorylase and Reduces Potassium Excretion by Inhibiting Rac1. J Am Heart Assoc 2019; 7:e010085. [PMID: 30608204 PMCID: PMC6404173 DOI: 10.1161/jaha.118.010085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background 8-Aminoguanosine and 8-aminoguanine are K+-sparing natriuretics that increase glucose excretion. Most effects of 8-aminoguanosine are due to its metabolism to 8-aminoguanine. However, the mechanism by which 8-aminoguanine affects renal function is unknown and is the focus of this investigation. Methods and Results Because 8-aminoguanine has structural similarities with inhibitors of the epithelial sodium channel (ENaC), Na+/H+ exchangers, and adenosine A1 receptors, we examined the effects of 8-aminoguanine on EN aC activity in mouse collecting duct cells, on intracellular pH of human proximal tubular epithelial cells, on responses to a selective A1-receptor agonist in vivo, and on renal excretory function in A1-receptor knockout rats. These experiments showed that 8-aminoguanine did not block EN aC, Na+/H+ exchangers, or A1 receptors. Because Rac1 enhances activity of mineralocorticoid receptors and some guanosine analogues inhibit Rac1, we examined the effects of 8-aminoguanine on Rac1 activity in mouse collecting duct cells. Rac1 activity was significantly inhibited by 8-aminoguanine. Because in vitro 8-aminoguanine is a purine nucleoside phosphorylase ( PNP ase) inhibitor, we examined the effects of a natriuretic dose of 8-aminoguanine on urinary excretion of PNP ase substrates and products. 8-Aminoguanine increased and decreased, respectively, urinary excretion of PNP ase substrates and products. Next we compared in rats the renal effects of intravenous doses of 9-deazaguanine ( PNP ase inhibitor) versus 8-aminoguanine. 8-Aminoguanine and 9-deazaguanine induced similar increases in urinary Na+ and glucose excretion, yet only 8-aminoguanine reduced K+ excretion. Nsc23766 (Rac1 inhibitor) mimicked the effects of 8-aminoguanine on K+ excretion. Conclusions 8-Aminoguanine increases Na+ and glucose excretion by blocking PNP ase and decreases K+ excretion by inhibiting Rac1.
Collapse
Affiliation(s)
- Edwin K Jackson
- 2 Department of Pharmacology and Chemical Biology University of Pittsburgh School of Medicine Pittsburgh PA
| | - Zaichuan Mi
- 2 Department of Pharmacology and Chemical Biology University of Pittsburgh School of Medicine Pittsburgh PA
| | - Thomas R Kleyman
- 1 Renal-Electrolyte Division Department of Medicine University of Pittsburgh School of Medicine Pittsburgh PA
| | - Dongmei Cheng
- 2 Department of Pharmacology and Chemical Biology University of Pittsburgh School of Medicine Pittsburgh PA
| |
Collapse
|
11
|
Heart Protection by Herb Formula BanXia BaiZhu TianMa Decoction in Spontaneously Hypertensive Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5612929. [PMID: 31827552 PMCID: PMC6885217 DOI: 10.1155/2019/5612929] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/02/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023]
Abstract
Modern research has shown that BanXia BaiZhu TianMa decoction (BBT) has the potential effect of lowering BP in vitro and in vivo. However, its therapeutic mechanism has not been clearly defined. The present study was designed to evaluate the protective effect of BBT on the heart by examining heart functioning and anti-inflammatory characteristics and to obtain scientific evidence for its further medical applications. BBT was extracted by decocting the herb extraction and analysed by HPLC. The left ventricular mass index (LVMI) was measured, and a histological examination of samples of the heart was performed. Inflammatory status was investigated by measuring tissue levels of interleukin-1 (IL-1), interleukin-6 (IL-6), tumour necrosis factor (TNF-α), inducible nitric oxide synthase (iNOS), and molecules of the nuclear factor κB (NF-κB) pathway. The BBT treatment significantly reversed the course of hypertension-derived heart damage. Meanwhile, the herb formula markedly reduced levels of IL-1, IL-6, TNF-α, and iNOS. In addition, the traditional compound suppressed the activity of the NF-κB pathway. The present study provides evidence of heart protection by BBT in SHRs. The action mechanisms may be partially attributable to the anti-inflammatory characteristic of the formula. Understanding the pharmacological action of BBT will benefit its impending use.
Collapse
|
12
|
Jackson EK, Mi Z, Janesko-Feldman K, Jackson TC, Kochanek PM. 2',3'-cGMP exists in vivo and comprises a 2',3'-cGMP-guanosine pathway. Am J Physiol Regul Integr Comp Physiol 2019; 316:R783-R790. [PMID: 30789788 PMCID: PMC6620655 DOI: 10.1152/ajpregu.00401.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/11/2019] [Accepted: 02/19/2019] [Indexed: 01/10/2023]
Abstract
The discovery in 2009 that 2',3'-cAMP exists in biological systems was rapidly followed by identification of 2',3'-cGMP in cell and tissue extracts. To determine whether 2',3'-cGMP exists in mammals under physiological conditions, we used ultraperformance LC-MS/MS to measure 2',3'-cAMP and 2',3'-cGMP in timed urine collections (via direct bladder cannulation) from 25 anesthetized mice. Urinary excretion rates (means ± SE) of 2',3'-cAMP (15.5 ± 1.8 ng/30 min) and 2',3'-cGMP (17.9 ± 1.9 ng/30 min) were similar. Mice also excreted 2'-AMP (3.6 ± 1.1 ng/20 min) and 3'-AMP (9.5 ± 1.2 ng/min), hydrolysis products of 2',3'-cAMP, and 2'-GMP (4.7 ± 1.7 ng/30 min) and 3'-GMP (12.5 ± 1.8 ng/30 min), hydrolysis products of 2',3'-cGMP. To validate that the chromatographic signals were from these endogenous noncanonical nucleotides, we repeated these experiments in mice (n = 18) lacking 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), an enzyme known to convert 2',3'-cyclic nucleotides to their corresponding 2'-nucleotides. In CNPase-knockout mice, urinary excretions of 2',3'-cAMP, 3'-AMP, 2',3'-cGMP, and 3'-GMP were increased, while urinary excretions of 2'-AMP and 2'-GMP were decreased. Infusions of exogenous 2',3'-cAMP increased urinary excretion of 2',3'-cAMP, 2'-AMP, 3'-AMP, and adenosine, whereas infusions of exogenous 2',3'-cGMP increased excretion of 2',3'-cGMP, 2'-GMP, 3'-GMP, and guanosine. Together, these data suggest the endogenous existence of not only a 2',3'-cAMP-adenosine pathway (2',3'-cAMP → 2'-AMP/3'-AMP → adenosine), which was previously identified, but also a 2',3'-cGMP-guanosine pathway (2',3'-cGMP → 2'-GMP/3'-GMP → guanosine), observed here for the first time. Because it is well known that adenosine and guanosine protect tissues from injury, our data support the concept that both pathways may work together to protect tissues from injury.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Zaichuan Mi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Keri Janesko-Feldman
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Travis C Jackson
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| |
Collapse
|
13
|
Cryan MT, Ross AE. Scalene Waveform for Codetection of Guanosine and Adenosine Using Fast-Scan Cyclic Voltammetry. Anal Chem 2019; 91:5987-5993. [DOI: 10.1021/acs.analchem.9b00450] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Michael T. Cryan
- Department of Chemistry, University of Cincinnati, 312 College Drive, 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| | - Ashley E. Ross
- Department of Chemistry, University of Cincinnati, 312 College Drive, 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
14
|
Cryan MT, Ross AE. Subsecond detection of guanosine using fast-scan cyclic voltammetry. Analyst 2019; 144:249-257. [PMID: 30484441 DOI: 10.1039/c8an01547c] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Guanosine is an important neuromodulator and neuroprotector in the brain and is involved in many pathological conditions, including ischemia and neuroinflammation. Traditional methods to detect guanosine in the brain, like HPLC, offer low limits of detection and are robust; however, subsecond detection is not possible. Here, we present a method for detecting rapid fluctuations of guanosine concentration in real-time using fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes. The optimized waveform scanned from -0.4 V to 1.3 V and back at a rate of 400 V s-1 and application frequency of 10 Hz. Potential limits were chosen to increase selectivity of guanosine over the structurally similar interferent adenosine. Two oxidation peaks were detected with the optimized waveform: the primary oxidation reaction occurred at 1.3 V and the secondary oxidation at 0.8 V. Guanosine detection was stable over time with a limit of detection of 30 ± 10 nM, which permits its use to monitor low nanomolar fluctuations in the brain. To demonstrate the feasibility of the method for in-tissue detection, guanosine was exogenously applied and detected within live rat brain slices. This paper demonstrates the first characterization of guanosine using FSCV, and will be a valuable method for measuring signaling dynamics during guanosine neuromodulation and protection.
Collapse
Affiliation(s)
- Michael T Cryan
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| | - Ashley E Ross
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| |
Collapse
|
15
|
Jackson EK. Discovery and Roles of 2',3'-cAMP in Biological Systems. Handb Exp Pharmacol 2017; 238:229-252. [PMID: 26721674 DOI: 10.1007/164_2015_40] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In 2009, investigators using ultra-performance liquid chromatography-tandem mass spectrometry to measure, by selected reaction monitoring, 3',5'-cAMP in the renal venous perfusate from isolated, perfused kidneys detected a large signal at the same m/z transition (330 → 136) as 3',5'-cAMP but at a different retention time. Follow-up experiments demonstrated that this signal was due to a positional isomer of 3',5'-cAMP, namely, 2',3'-cAMP. Soon thereafter, investigative teams reported the detection of 2',3'-cAMP and other 2',3'-cNMPs (2',3'-cGMP, 2',3'-cCMP, and 2',3'-cUMP) in biological systems ranging from bacteria to plants to animals to humans. Injury appears to be the major stimulus for the release of these unique noncanonical cNMPs, which likely are formed by the breakdown of RNA. In mammalian cells in culture, in intact rat and mouse kidneys, and in mouse brains in vivo, 2',3'-cAMP is metabolized to 2'-AMP and 3'-AMP; and these AMPs are subsequently converted to adenosine. In rat and mouse kidneys and mouse brains, injury releases 2',3'-cAMP, 2'-AMP, and 3'-AMP into the extracellular compartment; and in humans, traumatic brain injury is associated with large increases in 2',3'-cAMP, 2'-AMP, 3'-AMP, and adenosine in the cerebrospinal fluid. These findings motivate the extracellular 2',3'-cAMP-adenosine pathway hypothesis: intracellular production of 2',3'-cAMP → export of 2',3'-cAMP → extracellular metabolism of 2',3'-cAMP to 2'-AMP and 3'-AMP → extracellular metabolism of 2'-AMP and 3'-AMP to adenosine. Since 2',3'-cAMP has been shown to activate mitochondrial permeability transition pores (mPTPs) leading to apoptosis and necrosis and since adenosine is generally tissue protective, the extracellular 2',3'-cAMP-adenosine pathway may be a protective mechanism [i.e., removes 2',3'-cAMP (an intracellular toxin) and forms adenosine (a tissue protectant)]. This appears to be the case in the brain where deficiency in CNPase (the enzyme that metabolizes 2',3'-cAMP to 2-AMP) leads to increased susceptibility to brain injury and neurological diseases. Surprisingly, CNPase deficiency in the kidney actually protects against acute kidney injury, perhaps by preventing the formation of 2'-AMP (which turns out to be a renal vasoconstrictor) and by augmenting the mitophagy of damaged mitochondria. With regard to 2',3'-cNMPs and their downstream metabolites, there is no doubt much more to be discovered.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Drive, Room 514, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
16
|
The Adenosinergic System as a Therapeutic Target in the Vasculature: New Ligands and Challenges. Molecules 2017; 22:molecules22050752. [PMID: 28481238 PMCID: PMC6154114 DOI: 10.3390/molecules22050752] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/24/2017] [Accepted: 05/02/2017] [Indexed: 12/20/2022] Open
Abstract
Adenosine is an adenine base purine with actions as a modulator of neurotransmission, smooth muscle contraction, and immune response in several systems of the human body, including the cardiovascular system. In the vasculature, four P1-receptors or adenosine receptors—A1, A2A, A2B and A3—have been identified. Adenosine receptors are membrane G-protein receptors that trigger their actions through several signaling pathways and present differential affinity requirements. Adenosine is an endogenous ligand whose extracellular levels can reach concentrations high enough to activate the adenosine receptors. This nucleoside is a product of enzymatic breakdown of extra and intracellular adenine nucleotides and also of S-adenosylhomocysteine. Adenosine availability is also dependent on the activity of nucleoside transporters (NTs). The interplay between NTs and adenosine receptors’ activities are debated and a particular attention is given to the paramount importance of the disruption of this interplay in vascular pathophysiology, namely in hypertension., The integration of important functional aspects of individual adenosine receptor pharmacology (such as in vasoconstriction/vasodilation) and morphological features (within the three vascular layers) in vessels will be discussed, hopefully clarifying the importance of adenosine receptors/NTs for modulating peripheral mesenteric vascular resistance. In recent years, an increase interest in purine physiology/pharmacology has led to the development of new ligands for adenosine receptors. Some of them have been patented as having promising therapeutic activities and some have been chosen to undergo on clinical trials. Increased levels of endogenous adenosine near a specific subtype can lead to its activation, constituting an indirect receptor targeting approach either by inhibition of NT or, alternatively, by increasing the activity of enzymes responsible for ATP breakdown. These findings highlight the putative role of adenosinergic players as attractive therapeutic targets for cardiovascular pathologies, namely hypertension, heart failure or stroke. Nevertheless, several aspects are still to be explored, creating new challenges to be addressed in future studies, particularly the development of strategies able to circumvent the predicted side effects of these therapies.
Collapse
|
17
|
Tasca C, Lanznaster D. Targeting the guanine-based purinergic system in Alzheimer's disease. Neural Regen Res 2017; 12:212-213. [PMID: 28400799 PMCID: PMC5361501 DOI: 10.4103/1673-5374.200801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
18
|
Lanznaster D, Dal-Cim T, Piermartiri TCB, Tasca CI. Guanosine: a Neuromodulator with Therapeutic Potential in Brain Disorders. Aging Dis 2016; 7:657-679. [PMID: 27699087 PMCID: PMC5036959 DOI: 10.14336/ad.2016.0208] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/08/2016] [Indexed: 12/20/2022] Open
Abstract
Guanosine is a purine nucleoside with important functions in cell metabolism and a protective role in response to degenerative diseases or injury. The past decade has seen major advances in identifying the modulatory role of extracellular action of guanosine in the central nervous system (CNS). Evidence from rodent and cell models show a number of neurotrophic and neuroprotective effects of guanosine preventing deleterious consequences of seizures, spinal cord injury, pain, mood disorders and aging-related diseases, such as ischemia, Parkinson’s and Alzheimer’s diseases. The present review describes the findings of in vivo and in vitro studies and offers an update of guanosine effects in the CNS. We address the protein targets for guanosine action and its interaction with glutamatergic and adenosinergic systems and with calcium-activated potassium channels. We also discuss the intracellular mechanisms modulated by guanosine preventing oxidative damage, mitochondrial dysfunction, inflammatory burden and modulation of glutamate transport. New and exciting avenues for future investigation into the protective effects of guanosine include characterization of a selective guanosine receptor. A better understanding of the neuromodulatory action of guanosine will allow the development of therapeutic approach to brain diseases.
Collapse
Affiliation(s)
- Débora Lanznaster
- 2Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900, Florianópolis, SC, Brazil; 3CAPES Foundation, Ministry of Education of Brazil, Brasília - DF 70040-020, Brazil
| | - Tharine Dal-Cim
- 2Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900, Florianópolis, SC, Brazil; 3CAPES Foundation, Ministry of Education of Brazil, Brasília - DF 70040-020, Brazil
| | - Tetsadê C B Piermartiri
- 2Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900, Florianópolis, SC, Brazil; 3CAPES Foundation, Ministry of Education of Brazil, Brasília - DF 70040-020, Brazil
| | - Carla I Tasca
- 1Departamento de Bioquímica,; 2Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900, Florianópolis, SC, Brazil
| |
Collapse
|
19
|
Bettio LEB, Gil-Mohapel J, Rodrigues ALS. Guanosine and its role in neuropathologies. Purinergic Signal 2016; 12:411-26. [PMID: 27002712 PMCID: PMC5023624 DOI: 10.1007/s11302-016-9509-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/08/2016] [Indexed: 02/08/2023] Open
Abstract
Guanosine is a purine nucleoside thought to have neuroprotective properties. It is released in the brain under physiological conditions and even more during pathological events, reducing neuroinflammation, oxidative stress, and excitotoxicity, as well as exerting trophic effects in neuronal and glial cells. In agreement, guanosine was shown to be protective in several in vitro and/or in vivo experimental models of central nervous system (CNS) diseases including ischemic stroke, Alzheimer's disease, Parkinson's disease, spinal cord injury, nociception, and depression. The mechanisms underlying the neurobiological properties of guanosine seem to involve the activation of several intracellular signaling pathways and a close interaction with the adenosinergic system, with a consequent stimulation of neuroprotective and regenerative processes in the CNS. Within this context, the present review will provide an overview of the current literature on the effects of guanosine in the CNS. The elucidation of the complex signaling events underlying the biochemical and cellular effects of this nucleoside may further establish guanosine as a potential therapeutic target for the treatment of several neuropathologies.
Collapse
Affiliation(s)
- Luis E B Bettio
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Joana Gil-Mohapel
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
20
|
Almeida RF, Comasseto DD, Ramos DB, Hansel G, Zimmer ER, Loureiro SO, Ganzella M, Souza DO. Guanosine Anxiolytic-Like Effect Involves Adenosinergic and Glutamatergic Neurotransmitter Systems. Mol Neurobiol 2016; 54:423-436. [PMID: 26742520 DOI: 10.1007/s12035-015-9660-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/17/2015] [Indexed: 12/21/2022]
Abstract
Accumulating evidences indicate that endogenous modulators of excitatory synapses in the mammalian brain are potential targets for treating neuropsychiatric disorders. Indeed, glutamatergic and adenosinergic neurotransmissions were recently highlighted as potential targets for developing innovative anxiolytic drugs. Accordingly, it has been shown that guanine-based purines are able to modulate both adenosinergic and glutamatergic systems in mammalian central nervous system. Here, we aimed to investigate the potential anxiolytic-like effects of guanosine and its effects on the adenosinergic and glutamatergic systems. Acute/systemic guanosine administration (7.5 mg/kg) induced robust anxiolytic-like effects in three classical anxiety-related paradigms (elevated plus maze, light/dark box, and round open field tasks). These guanosine effects were correlated with an enhancement of adenosine and a decrement of glutamate levels in the cerebrospinal fluid. Additionally, pre-administration of caffeine (10 mg/kg), an unspecific adenosine receptors' antagonist, completely abolished the behavioral and partially prevented the neuromodulatory effects exerted by guanosine. Although the hippocampal glutamate uptake was not modulated by guanosine (both ex vivo and in vitro protocols), the synaptosomal K+-stimulated glutamate release in vitro was decreased by guanosine (100 μM) and by the specific adenosine A1 receptor agonist, 2-chloro-N 6-cyclopentyladenosine (CCPA, 100 nM). Moreover, the specific adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 100 nM) fully reversed the inhibitory guanosine effect in the glutamate release. The pharmacological modulation of A2a receptors has shown no effect in any of the evaluated parameters. In summary, the guanosine anxiolytic-like effects seem closely related to the modulation of adenosinergic (A1 receptors) and glutamatergic systems.
Collapse
Affiliation(s)
- Roberto Farina Almeida
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Daniel Diniz Comasseto
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Denise Barbosa Ramos
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Gisele Hansel
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Eduardo R Zimmer
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil.,Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Samanta Oliveira Loureiro
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Marcelo Ganzella
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil.,Neurobiology Department, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Diogo Onofre Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil.
| |
Collapse
|
21
|
Intranasal guanosine administration presents a wide therapeutic time window to reduce brain damage induced by permanent ischemia in rats. Purinergic Signal 2015; 12:149-59. [PMID: 26695181 DOI: 10.1007/s11302-015-9489-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/10/2015] [Indexed: 10/22/2022] Open
Abstract
In addition to its intracellular roles, the nucleoside guanosine (GUO) also has extracellular effects that identify it as a putative neuromodulator signaling molecule in the central nervous system. Indeed, GUO can modulate glutamatergic neurotransmission, and it can promote neuroprotective effects in animal models involving glutamate neurotoxicity, which is the case in brain ischemia. In the present study, we aimed to investigate a new in vivo GUO administration route (intranasal, IN) to determine putative improvement of GUO neuroprotective effects against an experimental model of permanent focal cerebral ischemia. Initially, we demonstrated that IN [(3)H] GUO administration reached the brain in a dose-dependent and saturable pattern in as few as 5 min, presenting a higher cerebrospinal GUO level compared with systemic administration. IN GUO treatment started immediately or even 3 h after ischemia onset prevented behavior impairment. The behavior recovery was not correlated to decreased brain infarct volume, but it was correlated to reduced mitochondrial dysfunction in the penumbra area. Therefore, we showed that the IN route is an efficient way to promptly deliver GUO to the CNS and that IN GUO treatment prevented behavioral and brain impairment caused by ischemia in a therapeutically wide time window.
Collapse
|
22
|
Guanosine inhibits LPS-induced pro-inflammatory response and oxidative stress in hippocampal astrocytes through the heme oxygenase-1 pathway. Purinergic Signal 2015; 11:571-80. [PMID: 26431832 DOI: 10.1007/s11302-015-9475-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/24/2015] [Indexed: 12/12/2022] Open
Abstract
Guanosine, a guanine-based purine, is an extracellular signaling molecule that is released from astrocytes and has been shown to promote central nervous system defenses in several in vivo and in vitro injury models. Our group recently demonstrated that guanosine exhibits glioprotective effects in the C6 astroglial cell line by associating the heme oxygenase-1 (HO-1) signaling pathway with protection against azide-induced oxidative stress. Astrocyte overactivation contributes to the triggering of brain inflammation, a condition that is closely related to the development of many neurological disorders. These cells sense and amplify inflammatory signals from microglia and/or initiate the release of inflammatory mediators that are strictly related to transcriptional factors, such as nuclear factor kappa B (NFκB), that are modulated by HO-1. Astrocytes also express toll-like receptors (TLRs); TLRs specifically recognize lipopolysaccharide (LPS), which has been widely used to experimentally study inflammatory response. This study was designed to understand the glioprotective mechanism of guanosine against the inflammatory and oxidative damage induced by LPS exposure in primary cultures of hippocampal astrocytes. Treatment of astrocytes with LPS resulted in deleterious effects, including the augmentation of pro-inflammatory cytokine levels, NFκB activation, mitochondrial dysfunction, increased levels of oxygen/nitrogen species, and decreased levels of antioxidative defenses. Guanosine was able to prevent these effects, protecting the hippocampal astrocytes against LPS-induced cytotoxicity through activation of the HO-1 pathway. Additionally, the anti-inflammatory effects of guanosine were independent of the adenosinergic system. These results highlight the potential role of guanosine against neuroinflammatory-related diseases.
Collapse
|