1
|
Mo D, Qiu Y, Tian B, Liu X, Chen Y, Zou G, Guo C, Deng C. Progranulin mitigates intestinal injury in a murine model of necrotizing enterocolitis by suppressing M1 macrophage polarization. Cell Biol Int 2024; 48:1520-1532. [PMID: 38973665 DOI: 10.1002/cbin.12209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024]
Abstract
Neonatal necrotizing enterocolitis (NEC) is a critical digestive disorder frequently affecting premature infants. Characterized by intestinal inflammation caused by activated M1 macrophages, modulation of macrophage polarization is considered a promising therapeutic strategy for NEC. It has been demonstrated that the growth factor-like protein progranulin (PGRN), which plays roles in a number of physiological and pathological processes, can influence macrophage polarization and exhibit anti-inflammatory characteristics in a number of illnesses. However, its role in NEC is yet to be investigated. Our research showed that the levels of PGRN were markedly elevated in both human and animal models of NEC. PGRN deletion in mice worsens NEC by encouraging M1 polarization of macrophages and escalating intestinal damage and inflammation. Intravenous administration of recombinant PGRN to NEC mice showed significant survival benefits and protective effects, likely due to PGRN's ability to inhibit M1 polarization and reduce the release of pro-inflammatory factors. Our findings shed new light on PGRN's biological role in NEC and demonstrate its potential as a therapeutic target for the disease.
Collapse
Affiliation(s)
- Dandan Mo
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqin, China
| | - Youjun Qiu
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqin, China
| | - Bing Tian
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqin, China
| | - Xinli Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Yujie Chen
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqin, China
| | - Guotao Zou
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqin, China
| | - Chunbao Guo
- Department of Pediatrics, Chongqing Health Center for Women and Children, Chongqing, China
- Department of Pediatric Surgery, Women's and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Chun Deng
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqin, China
| |
Collapse
|
2
|
Wang J, Zheng Z, Cui X, Dai C, Li J, Zhang Q, Cheng M, Jiang F. A transcriptional program associated with cell cycle regulation predominates in the anti-inflammatory effects of CX-5461 in macrophage. Front Pharmacol 2022; 13:926317. [PMID: 36386132 PMCID: PMC9644203 DOI: 10.3389/fphar.2022.926317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/12/2022] [Indexed: 09/23/2023] Open
Abstract
CX-5461, a novel selective RNA polymerase I inhibitor, shows potential anti-inflammatory and immunosuppressive activities. However, the molecular mechanisms underlying the inhibitory effects of CX-5461 on macrophage-mediated inflammation remain to be clarified. In the present study, we attempted to identify the systemic biological processes which were modulated by CX-5461 in inflammatory macrophages. Primary peritoneal macrophages were isolated from normal Sprague Dawley rats, and primed with lipopolysaccharide or interferon-γ. Genome-wide RNA sequencing was performed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases were used for gene functional annotations. Enrichment analysis was conducted using the ClusterProfiler package of R software. We found that CX-5461 principally induced a molecular signature related to cell cycle inhibition in primed macrophages, featuring downregulation of genes encoding cell cycle mediators and concomitant upregulation of cell cycle inhibitors. At the same concentration, however, CX-5461 did not induce a systemic anti-inflammatory transcriptional program, although some inflammatory genes such as IL-1β and gp91phox NADPH oxidase were downregulated by CX-5461. Our data further highlighted a central role of p53 in orchestrating the molecular networks that were responsive to CX-5461 treatment. In conclusion, our study suggested that limiting cell proliferation predominated in the inhibitory effects of CX-5461 on macrophage-mediated inflammation.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Cardiovascular Proteomics of Shandong Province and Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhijian Zheng
- Key Laboratory of Cardiovascular Remodeling and Function Research (Chinese Ministry of Education and Chinese National Health Commission), Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xiaopei Cui
- Key Laboratory of Cardiovascular Proteomics of Shandong Province and Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chaochao Dai
- Key Laboratory of Cardiovascular Proteomics of Shandong Province and Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jiaxin Li
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Qunye Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research (Chinese Ministry of Education and Chinese National Health Commission), Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Mei Cheng
- Key Laboratory of Cardiovascular Proteomics of Shandong Province and Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fan Jiang
- Key Laboratory of Cardiovascular Proteomics of Shandong Province and Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Domaszewska K, Boraczyński M, Tang YY, Gronek J, Wochna K, Boraczyński T, Wieliński D, Gronek P. Protective Effects of Exercise Become Especially Important for the Aging Immune System in The Covid-19 Era. Aging Dis 2022; 13:129-143. [PMID: 35111366 PMCID: PMC8782560 DOI: 10.14336/ad.2021.1219] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/01/2022] [Indexed: 12/11/2022] Open
Abstract
Aging is a complex, multietiological process and a major risk factor for most non-genetic, chronic diseases including geriatric syndromes that negatively affect healthspan and longevity. In the scenario of "healthy or good aging", especially during the COVID-19 era, the proper implementation of exercise as "adjuvant" or "polypill" to improve disease-related symptoms and comorbidities in the general population is a top priority. However, there is still a gap concerning studies analyzing influence of exercise training to immune system in older people. Therefore, the aim of this review is to provide a brief summary of well-established findings in exercise immunology and immunogerontology, but with a focus on the main exercise-induced mechanisms associated with aging of the immune system (immunosenescence). The scientific data strongly supports the notion that regular exercise as a low-cost and non-pharmacological treatment approach, when adjusted on an individual basis in elderly, induce multiple rejuvenating mechanisms: (1) affects the telomere-length dynamics (a "telo-protective" effect), (2) promote short- and long-term anti-inflammatory effects (via e.g., triggering the anti-inflammatory phenotype), 3) stimulates the adaptive immune system (e.g., helps to offset diminished adaptive responses) and in parallel inhibits the accelerated immunosenescence process, (4) increases post-vaccination immune responses, and (5) possibly extends both healthspan and lifespan.
Collapse
Affiliation(s)
- Katarzyna Domaszewska
- Department of Physiology and Biochemistry, Poznan University of Physical Education, Poland.
| | - Michał Boraczyński
- Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Poland.
| | - Yi-Yuan Tang
- College of Health Solutions, Arizona State University, USA.
| | - Joanna Gronek
- Laboratory of Genetics, Department of Dance and Gymnastics, Poznan University of Physical Education, Poland.
| | - Krystian Wochna
- Laboratory of Swimming and Water Lifesaving, Faculty of Sport Sciences, Poznan University of Physical Education, Poland.
| | | | - Dariusz Wieliński
- Department of Anthropology and Biometry, Poznan University of Physical Education, Poland.
| | - Piotr Gronek
- Laboratory of Genetics, Department of Dance and Gymnastics, Poznan University of Physical Education, Poland.
| |
Collapse
|
4
|
Cuevas B, Arroba AI, de los Reyes C, Gómez-Jaramillo L, González-Montelongo MC, Zubía E. Diterpenoids from the Brown Alga Rugulopteryx okamurae and Their Anti-Inflammatory Activity. Mar Drugs 2021; 19:677. [PMID: 34940676 PMCID: PMC8704470 DOI: 10.3390/md19120677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Brown algae of the Family Dictyotaceae produce an array of structurally diverse terpenoids, whose biomedical potential in the anti-inflammatory area has been scarcely explored. Herein, the chemical study of the alga Rugulopteryx okamurae has led to the isolation of ten new diterpenoids: rugukadiol A (1), rugukamurals A-C (2-4), and ruguloptones A-F (6-10). The structures of the new compounds were established by spectroscopic means. Compound 1 exhibits an unprecedented diterpenoid skeleton featuring a bridged tricyclic undecane system. Compounds 2-10 belong to the secospatane class of diterpenoids and differ by the oxygenated functions that they contain. In anti-inflammatory assays, the new diterpenoid 1 and the secospatanes 5 and 10 significantly inhibited the production of the inflammatory mediator NO in LPS-stimulated microglial cells Bv.2 and macrophage cells RAW 264.7. Moreover, compounds 1 and 5 were found to strongly inhibit the expression of Nos2 and the pro-inflammatory cytokine Il1b in both immune cell lines.
Collapse
Affiliation(s)
- Belén Cuevas
- Departamento de Química Orgánica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real (Cádiz), Spain; (B.C.); (C.d.l.R.)
- Unidad de Investigación, Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Avda. Ana de Viya 21, 11009 Cádiz, Spain; (A.I.A.); (L.G.-J.); (M.C.G.-M.)
| | - Ana I. Arroba
- Unidad de Investigación, Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Avda. Ana de Viya 21, 11009 Cádiz, Spain; (A.I.A.); (L.G.-J.); (M.C.G.-M.)
- Departamento de Endocrinología y Nutrición, Hospital Universitario Puerta del Mar, Avda. Ana de Viya 21, 11009 Cádiz, Spain
| | - Carolina de los Reyes
- Departamento de Química Orgánica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real (Cádiz), Spain; (B.C.); (C.d.l.R.)
| | - Laura Gómez-Jaramillo
- Unidad de Investigación, Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Avda. Ana de Viya 21, 11009 Cádiz, Spain; (A.I.A.); (L.G.-J.); (M.C.G.-M.)
| | - M. Carmen González-Montelongo
- Unidad de Investigación, Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Avda. Ana de Viya 21, 11009 Cádiz, Spain; (A.I.A.); (L.G.-J.); (M.C.G.-M.)
| | - Eva Zubía
- Departamento de Química Orgánica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real (Cádiz), Spain; (B.C.); (C.d.l.R.)
| |
Collapse
|
5
|
Takenaka M, Yabuta A, Takahashi Y, Takakura Y. Interleukin-4-carrying small extracellular vesicles with a high potential as anti-inflammatory therapeutics based on modulation of macrophage function. Biomaterials 2021; 278:121160. [PMID: 34653934 DOI: 10.1016/j.biomaterials.2021.121160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022]
Abstract
Interleukin-4 (IL4), a Th2-type cytokine that can drive M2 macrophage polarization, is expected to be used as an anti-inflammatory therapy agent as M2 polarization of macrophages can ameliorate chronic inflammation. However, several problems, such as the low effectiveness and side effects, have hampered the clinical application. To safely and effectively use IL4, an efficient delivery of IL4 to target cells, macrophages, is necessary. Small extracellular vesicles (sEVs) are promising candidates as macrophage delivery carriers because they are efficiently recognized by macrophages. In addition, considering the property of IL4 signaling, for which the internalization of IL4 receptor into the cellular compartment is important, and sEV uptake mechanism by macrophages, sEVs are expected to amplify IL4 signaling. In this study, we developed IL4-carrying sEVs (IL4-sEVs) by genetically engineering sEV-producing cells. We investigated the bioactivity of IL4-sEVs using RAW264.7 macrophages and their potential for therapeutic application to the treatment of an inflammatory disease using collagen-induced arthritis model mice. IL4-sEVs exhibited stronger anti-inflammatory effects on M1-polarized macrophages through M2 polarization of macrophages than those of soluble IL4 proteins. Moreover, IL4-sEVs exhibited more effective therapeutic effects on rheumatoid arthritis than those of IL4. These results indicate that IL4-carrying sEVs are promising anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Misako Takenaka
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ayane Yabuta
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
6
|
Lužajić Božinovski T, Todorović V, Milošević I, Prokić BB, Gajdov V, Nešović K, Mišković-Stanković V, Marković D. Macrophages, the main marker in biocompatibility evaluation of new hydrogels after subcutaneous implantation in rats. J Biomater Appl 2021; 36:1111-1125. [PMID: 34607494 DOI: 10.1177/08853282211046119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biocompatibility of materials is one of the most important conditions for their successful application in tissue regeneration and repair. Cell-surface interactions stimulate adhesion and activation of macrophages whose acquaintance can assist in designing novel biomaterials that promote favorable macrophage-biomaterial surface interactions for clinical application. This study is designed to determine the distribution and number of macrophages as a means of biocompatibility evaluation of two newly synthesized materials [silver/poly(vinyl alcohol) (Ag/PVA) and silver/poly(vinyl alcohol)/graphene (Ag/PVA/Gr) nanocomposite hydrogels] in vivo, with approval of the Ethics Committee of the Faculty of Veterinary Medicine, University of Belgrade. Macrophages and giant cells were analyzed in tissue sections stained by routine H&E and immunohistochemical methods (CD68+). Statistical relevance was determined in the statistical software package SPSS 20 (IBM corp). The results of the study in terms of the number of giant cells localized around the implant showed that their number was highest on the seventh postoperative day (p.o.d.) in the group implanted with Ag/PVA hydrogels, and on the 30th p.o.d. in the group implanted with Ag/PVA/Gr. Interestingly, the number of macrophages measured in the capsular and pericapsular space was highest in the group implanted with the commercial Suprasorb© material. The increased macrophage number, registered around the Ag/PVA/Gr implant on 60th p.o.d. indicates that the addition of graphene can, in a specific way, modulate different biological responses of tissues in the process of wound healing, regeneration, and integration.
Collapse
Affiliation(s)
- Tijana Lužajić Božinovski
- Department of Histology and Embryology, 229736University of Belgrade Faculty of Veterinary Medicine, Belgrade, Serbia
| | - Vera Todorović
- Department of Histology and Embryology, School of Medicine of University of Zenica, Zenica, Bosnia and Herzegovina
| | - Ivan Milošević
- Department of Histology and Embryology, 229736University of Belgrade Faculty of Veterinary Medicine, Belgrade, Serbia
| | - Bogomir Bolka Prokić
- Department of Surgery, Orthopedy and Ophthalmology, Faculty of Veterinary Medicine, Belgrade, Serbia
| | - Vladimir Gajdov
- Department of Histology and Embryology, 229736University of Belgrade Faculty of Veterinary Medicine, Belgrade, Serbia
| | - Katarina Nešović
- Department of Physical Chemistry and Electrochemistry, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Vesna Mišković-Stanković
- Department of Physical Chemistry and Electrochemistry, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Danica Marković
- Department of Histology and Embryology, 229736University of Belgrade Faculty of Veterinary Medicine, Belgrade, Serbia
| |
Collapse
|
7
|
Ren CZ, Hu WY, Zhang JW, Wei YY, Yu ML, Hu TJ. Establishment of inflammatory model induced by Pseudorabies virus infection in mice. J Vet Sci 2021; 22:e20. [PMID: 33774936 PMCID: PMC8007442 DOI: 10.4142/jvs.2021.22.e20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/18/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Pseudorabies virus (PRV) infection leads to high mortality in swine. Despite extensive efforts, effective treatments against PRV infection are limited. Furthermore, the inflammatory response induced by PRV strain GXLB-2013 is unclear. OBJECTIVES Our study aimed to investigate the inflammatory response induced by PRV strain GXLB-2013, establish an inflammation model to elucidate the pathogenesis of PRV infection further, and develop effective drugs against PRV infection. METHODS Kunming mice were infected intramuscularly with medium, LPS, and different doses of PRV-GXLB-2013. Viral spread and histopathological damage to brain, spleen, and lung were determined at 7 days post-infection (dpi). Immune organ indices, levels of reactive oxygen species (ROS), nitric oxide (NO), and inflammatory cytokines, as well as levels of activity of COX-2 and iNOS were determined at 4, 7, and 14 dpi. RESULTS At 10⁵-10⁶ TCID50 PRV produced obviously neurological symptoms and 100% mortality in mice. Viral antigens were detectable in kidney, heart, lung, liver, spleen, and brain. In addition, inflammatory injuries were apparent in brain, spleen, and lung of PRV-infected mice. Moreover, PRV induced increases in immune organ indices, ROS and NO levels, activity of COX-2 and iNOS, and the content of key pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, tumor necrosis factor-α, interferon-γ and MCP-1. Among the tested doses, 10² TCID50 of PRV produced a significant inflammatory mediator increase. CONCLUSIONS An inflammatory model induced by PRV infection was established in mice, and 10² TCID50 PRV was considered as the best concentration for the establishment of the model.
Collapse
Affiliation(s)
- Chun Zhi Ren
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China.,Guangxi Agricultural Vocational College, Nanning 530007, PR China
| | - Wen Yue Hu
- School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Jin Wu Zhang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Ying Yi Wei
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Mei Ling Yu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China.
| | - Ting Jun Hu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
8
|
Suzuki T, Yamashita S, Hattori K, Matsuda N, Hattori Y. Impact of a long-term high-glucose environment on pro-inflammatory responses in macrophages stimulated with lipopolysaccharide. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2129-2139. [PMID: 34402957 DOI: 10.1007/s00210-021-02137-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/27/2022]
Abstract
Cumulative evidence has established that macrophages orchestrate inflammatory responses that crucially contribute to the pathogenesis of insulin-resistant obesity and type 2 diabetes. In the present study, we examined the impact of hyperglycemia on macrophage pro-inflammatory responses under an inflammatory stimulus. To conduct this study, RAW264.7 macrophages were cultured under normal- (5.5 mM) or high-glucose (22 or 40 mM) conditions for 7 days and stimulated with lipopolysaccharide (LPS). Long-term exposure to high glucose significantly enhanced the increase in the production of pro-inflammatory cytokines, including tumor necrosis-α, interleukin (IL)-1β, and IL-6, when macrophages were stimulated with LPS. The LPS-induced increases in inducible nitric oxide (NO) synthase (iNOS) expression and NO production were also significantly enhanced by long-term exposure of macrophages to high glucose. Treatment with N-acetyl-L-cysteine, a widely used thiol-containing antioxidant, blunted the enhancement of the LPS-induced upregulation of pro-inflammatory cytokine production, iNOS expression, and NO production in macrophages. When intracellular reactive oxygen species (ROS) were visualized using the fluorescence dye 5-(and-6)-chloromethyl-2',7'-dichlorofluorescein diacetate, acetyl ester, a significant increase in ROS generation was found after stimulation of macrophages with LPS, and this increased ROS generation was exacerbated under long-term high-glucose conditions. LPS-induced translocation of phosphorylated nuclear factor-κB (NF-κB), a transcription factor regulating many pro-inflammatory genes, into the nucleus was promoted under long-term high-glucose conditions. Altogether, the present results indicate that a long-term high-glucose environment can enhance activation of NF-κB in LPS-stimulated macrophages possibly due to excessive ROS production, thereby leading to increased macrophage pro-inflammatory responses.
Collapse
Affiliation(s)
- Tokiko Suzuki
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
- J-Pharma Co., Ltd., Yokohama, 230-0046, Japan
| | - Shigeyuki Yamashita
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
- Department of Thoracic and Cardiovascular Surgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Kohshi Hattori
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Tobetsu, 061-0293, Japan.
| |
Collapse
|
9
|
Lagomarsino VN, Kostic AD, Chiu IM. Mechanisms of microbial-neuronal interactions in pain and nociception. NEUROBIOLOGY OF PAIN 2020; 9:100056. [PMID: 33392418 PMCID: PMC7772816 DOI: 10.1016/j.ynpai.2020.100056] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023]
Abstract
Molecular mechanisms of how microorganisms communicate with sensory afferent neurons. How pathogenic microorganisms directly communicate with nociceptor neurons to inflict pain on the host. Symbiotic bacterial communication with gut-extrinsic sensory afferent neurons. Plausible roles on how gut symbionts directly mediate pain and nociception.
Nociceptor sensory neurons innervate barrier tissues that are constantly exposed to microbial stimuli. During infection, pathogenic microorganisms can breach barrier surfaces and produce pain by directly activating nociceptors. Microorganisms that live in symbiotic relationships with their hosts, commensals and mutualists, have also been associated with pain, but the molecular mechanisms of how symbionts act on nociceptor neurons to modulate pain remain largely unknown. In this review, we will discuss the known molecular mechanisms of how microbes directly interact with sensory afferent neurons affecting nociception in the gut, skin and lungs. We will touch on how bacterial, viral and fungal pathogens signal to the host to inflict or suppress pain. We will also discuss recent studies examining how gut symbionts affect pain. Specifically, we will discuss how gut symbionts may interact with sensory afferent neurons either directly, through secretion of metabolites or neurotransmitters, or indirectly,through first signaling to epithelial cells or immune cells, to regulate visceral, neuropathic and inflammatory pain. While this area of research is still in its infancy, more mechanistic studies to examine microbial-sensory neuron crosstalk in nociception may allow us to develop new therapies for the treatment of acute and chronic pain.
Collapse
Affiliation(s)
- Valentina N Lagomarsino
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.,Joslin Diabetes Center, Boston, MA 02115, USA.,Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Aleksandar D Kostic
- Joslin Diabetes Center, Boston, MA 02115, USA.,Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Weinstock LD, Forsmo JE, Wilkinson A, Ueda J, Wood LB. Experimental Control of Macrophage Pro-Inflammatory Dynamics Using Predictive Models. Front Bioeng Biotechnol 2020; 8:666. [PMID: 32766211 PMCID: PMC7381235 DOI: 10.3389/fbioe.2020.00666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/28/2020] [Indexed: 12/31/2022] Open
Abstract
Macrophage activity is a major component of the healthy response to infection and injury that consists of tightly regulated early pro-inflammatory activation followed by anti-inflammatory and regenerative activity. In numerous diseases, however, macrophage polarization becomes dysregulated and can not only impair recovery, but can promote further injury and pathogenesis, e.g., after trauma or in diabetic ulcers. Dysregulated macrophages may either fail to polarize or become chronically polarized, resulting in increased production of cytotoxic factors, diminished capacity to clear pathogens, or failure to promote tissue regeneration. In these cases, a method of predicting and dynamically controlling macrophage polarization will enable a new strategy for treating diverse inflammatory diseases. In this work, we developed a model-predictive control framework to temporally regulate macrophage polarization. Using RAW 264.7 macrophages as a model system, we enabled temporal control by identifying transfer function models relating the polarization marker iNOS to exogenous pro- and anti-inflammatory stimuli. These stimuli-to-iNOS response models were identified using linear autoregressive with exogenous input terms (ARX) equations and were coupled with non-linear elements to account for experimentally identified supra-additive and hysteretic effects. Using this model architecture, we were able to reproduce experimentally observed temporal iNOS dynamics induced by lipopolysaccharides (LPS) and interferon gamma (IFN-γ). Moreover, the identified model enabled the design of time-varying input trajectories to experimentally sustain the duration and magnitude of iNOS expression. By designing transfer function models with the intent to predict cell behavior, we were able to predict and experimentally obtain temporal regulation of iNOS expression using LPS and IFN-γ from both naïve and non-naïve initial states. Moreover, our data driven models revealed decaying magnitude of iNOS response to LPS stimulation over time that could be recovered using combined treatment with both LPS and IFN-γ. Given the importance of dynamic tissue macrophage polarization and overall inflammatory regulation to a broad number of diseases, the temporal control methodology presented here will have numerous applications for regulating immune activity dynamics in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Laura D. Weinstock
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - James E. Forsmo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Alexis Wilkinson
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Jun Ueda
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Levi B. Wood
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
11
|
Sanguisorba officinalis L. derived from herbal medicine prevents intestinal inflammation by inducing autophagy in macrophages. Sci Rep 2020; 10:9972. [PMID: 32561763 PMCID: PMC7305163 DOI: 10.1038/s41598-020-65306-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/04/2020] [Indexed: 01/05/2023] Open
Abstract
Disturbed activation of autophagy is implicated in the pathogenesis of inflammatory bowel disease. Accordingly, several autophagy-related genes have been identified as Crohn's disease susceptibility genes. We screened the autophagy activators from a library including 3,922 natural extracts using a high-throughput assay system. The extracts identified as autophagy activators were administered to mice with 2% dextran sodium sulfate (DSS). Among the autophagy inducers, Sanguisorba officinalis L. (SO) suppressed DSS-induced colitis. To identify the mechanism by which SO ameliorates colitis, epithelial cell and innate myeloid cells-specific Atg7-deficient mice (Villin-cre; Atg7f/f and LysM-cre; Atg7f/f mice, respectively) were analyzed. SO-mediated inhibition of colitis was observed in Villin-cre; Atg7f/f mice. However, SO and a mixture of its components including catechin acid, ellagic acid, gallic acid, and ziyuglycoside II (Mix4) did not suppressed colitis in LysM-cre; Atg7f/f mice. In large intestinal macrophages (Mφ) of Atg7f/f mice, SO and Mix4 upregulated the expression of marker genes of anti-inflammatory Mφ including Arg1, Cd206, and Relma. However, these alterations were not induced in LysM-cre; Atg7f/f mice. These findings indicate that SO and its active components ameliorate DSS-induced colitis by providing intestinal Mφ with anti-inflammatory profiles via promotion of Atg7-dependent autophagy.
Collapse
|
12
|
Pereira SR, Almeida LM, Dinis TC. Improving the anti-inflammatory activity of 5-aminosalicylic acid by combination with cyanidin-3-glucoside: An in vitro study. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
13
|
Oxytocin system alleviates intestinal inflammation by regulating macrophages polarization in experimental colitis. Clin Sci (Lond) 2019; 133:1977-1992. [PMID: 31519790 DOI: 10.1042/cs20190756] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammation, but the accurate etiology remains to be elucidated. Increasing evidence has shown that macrophages polarize to different phenotypes depending on the intestinal microenvironment and are associated with the progression of IBD. In the present study, we investigated the effect of oxytocin, a neuroendocrinal, and pro-health peptide, on the modulation of macrophages polarization and the progression of experimental colitis. Our data demonstrated that oxytocin decreased the sensitivity of macrophages to lipopolysaccharide stimulation with lower expression of inflammatory cytokines, like IL-1β, IL-6, and TNF-α, but increased the sensitivity to IL-4 stimulation with enhanced expression of M2-type genes, arginase I (Arg1), CD206, and chitinase-like 3 (Chil3). This bidirectional modulation was partly due to the up-regulation of β-arrestin2 and resulted in the inhibition of NF-κB signaling and reinforcement of Signal transducer and activator of transcription (STAT) 6 phosphorylation. Moreover, oxytocin receptor (OXTR) myeloid deficiency mice were more susceptible to dextran sulfate sodium (DSS) intervention compared with the wild mice. For the first time, we reveal that oxytocin-oxytocin receptor system participates in modulating the polarization of macrophages to an anti-inflammatory phenotype and alleviates experimental colitis. These findings provide new potential insights into the pathogenesis and therapy of IBD.
Collapse
|
14
|
Silva AR, Gonçalves-de-Albuquerque CF, Pérez AR, Carvalho VDF. Immune-endocrine interactions related to a high risk of infections in chronic metabolic diseases: The role of PPAR gamma. Eur J Pharmacol 2019; 854:272-281. [PMID: 30974105 DOI: 10.1016/j.ejphar.2019.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/11/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
Abstract
Diverse disturbances in immune-endocrine circuitries are involved in the development and aggravation of several chronic metabolic diseases (CMDs), including obesity, diabetes, and metabolic syndrome. The chronic inflammatory syndrome observed in CMDs culminates in dysregulated immune responses with low microbial killing efficiency, by means low host innate immune response, and loss of ability to eliminate the pathogens, which results in a high prevalence of infectious diseases, including pneumonia, tuberculosis, and sepsis. Herein, we review evidence pointing out PPARγ as a putative player in immune-endocrine disturbances related to increased risk of infections in CMDs. Cumulated evidence indicates that PPARγ activation modulates host cells to control inflammation during CMDs because of PPARγ agonists have anti-inflammatory and pro-resolutive properties, increasing host ability to eliminate pathogen, modulating hormone production, and restoring glucose and lipid homeostasis. As such, we propose PPARγ as a putative therapeutic adjuvant for patients with CMDs to favor a better infection control.
Collapse
Affiliation(s)
- Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil.
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil; Laboratório de Imunofarmacologia, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Unirio, Brazil.
| | - Ana Rosa Pérez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET UNR), 2000, Rosario, Argentina.
| | - Vinicius de Frias Carvalho
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
15
|
Palikhe S, Ohashi W, Sakamoto T, Hattori K, Kawakami M, Andoh T, Yamazaki H, Hattori Y. Regulatory Role of GRK2 in the TLR Signaling-Mediated iNOS Induction Pathway in Microglial Cells. Front Pharmacol 2019; 10:59. [PMID: 30778300 PMCID: PMC6369205 DOI: 10.3389/fphar.2019.00059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/18/2019] [Indexed: 12/31/2022] Open
Abstract
G protein-coupled receptor kinase 2 (GRK2) is a ubiquitous member of the GRK family that restrains cellular activation by G protein-coupled receptor (GPCR) phosphorylation leading to receptor desensitization and internalization, but has been identified to regulate a variety of signaling molecules, among which may be associated with inflammation. In this study, we attempted to establish the regulatory role of GRK2 in the Toll-like receptor (TLR) signaling pathway for inducible nitric oxide synthase (iNOS) expression in microglial cells. When mouse MG6 cells were stimulated with the TLR4 ligands lipopolysaccharide (LPS) and paclitaxel, we found that interferon regulatory factor 1 (IRF1) protein expression and activation was upregulated, transcription of interferon-β (IFN-β) was accelerated, induction/activation of STAT1 and activation of STAT3 were promoted, and subsequently iNOS expression was upregulated. The ablation of GRK2 by small interfering RNAs (siRNAs) not only eliminated TLR4-mediated upregulation of IRF1 protein expression and nuclear translocation but also suppressed the activation of the STAT pathway, resulting in negating the iNOS upregulation. The TLR3-mediated changes in IRF1 and STAT1/3, leading to iNOS induction, were also abrogated by siRNA knockdown of GRK2. Furthermore, transfection of GRK2 siRNA blocked the exogenous IFN-β supplementation-induced increases in phosphorylation of STAT1 as well as STAT3 and abrogated the augmentation of iNOS expression in the presence of exogenous IFN-β. Taken together, our results show that GRK2 regulates the activation of IRF1 as well as the activation of the STAT pathway, leading to upregulated transcription of iNOS in activated microglial cells. Modulation of the TLR signaling pathway via GRK2 in microglia may be a novel therapeutic target for treatment of neuroinflammatory disorders.
Collapse
Affiliation(s)
- Sailesh Palikhe
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Wakana Ohashi
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Takuya Sakamoto
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kohshi Hattori
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Masaaki Kawakami
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tsugunobu Andoh
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hiromi Yamazaki
- Faculty of Nursing Science, Tsuruga Nursing University, Tsuruga, Japan
| | - Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- The Research Institute of Cancer Prevention, Health Sciences University of Hokkaido, Tobetsu, Japan
| |
Collapse
|
16
|
Gauthier A, Fisch A, Seuwen K, Baumgarten B, Ruffner H, Aebi A, Rausch M, Kiessling F, Bartneck M, Weiskirchen R, Tacke F, Storm G, Lammers T, Ludwig MG. Glucocorticoid-loaded liposomes induce a pro-resolution phenotype in human primary macrophages to support chronic wound healing. Biomaterials 2018; 178:481-495. [DOI: 10.1016/j.biomaterials.2018.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/27/2018] [Accepted: 04/02/2018] [Indexed: 02/07/2023]
|
17
|
Chemopreventive Effects of Phytochemicals and Medicines on M1/M2 Polarized Macrophage Role in Inflammation-Related Diseases. Int J Mol Sci 2018; 19:ijms19082208. [PMID: 30060570 PMCID: PMC6121620 DOI: 10.3390/ijms19082208] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/16/2018] [Accepted: 07/23/2018] [Indexed: 12/31/2022] Open
Abstract
Macrophages can polarize into two different states (M1 and M2), which play contrasting roles during pathogenesis or tissue damage. M1 polarized macrophages produce pro-inflammatory cytokines and mediators resulting in inflammation, while M2 macrophages have an anti-inflammatory effect. Secretion of appropriate cytokines and chemokines from macrophages can lead to the modification of the microenvironment for bridging innate and adaptive immune responses. Increasing evidence suggests that polarized macrophages are pivotal for disease progression, and the regulation of macrophage polarization may provide a new approach in therapeutic treatment of inflammation-related diseases, including cancer, obesity and metabolic diseases, fibrosis in organs, brain damage and neuron injuries, and colorectal disease. Polarized macrophages affect the microenvironment by secreting cytokines and chemokines while cytokines or mediators that are produced by resident cells or tissues may also influence macrophages behavior. The interplay of macrophages and other cells can affect disease progression, and therefore, understanding the activation of macrophages and the interaction between polarized macrophages and disease progression is imperative prior to taking therapeutic or preventive actions. Manipulation of macrophages can be an entry point for disease improvement, but the mechanism and potential must be understood. In this review, some advanced studies regarding the role of macrophages in different diseases, potential mechanisms involved, and intervention of drugs or phytochemicals, which are effective on macrophage polarization, will be discussed.
Collapse
|
18
|
Kawakami M, Hattori M, Ohashi W, Fujimori T, Hattori K, Takebe M, Tomita K, Yokoo H, Matsuda N, Yamazaki M, Hattori Y. Role of G protein-coupled receptor kinase 2 in oxidative and nitrosative stress-related neurohistopathological changes in a mouse model of sepsis-associated encephalopathy. J Neurochem 2018; 145:474-488. [PMID: 29500815 DOI: 10.1111/jnc.14329] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 11/30/2022]
Abstract
Sepsis-associated encephalopathy (SAE), characterized as diffuse brain dysfunction and neurological manifestations secondary to sepsis, is a common complication in critically ill patients and can give rise to poor outcome, but understanding the molecular basis of this disorder remains a major challenge. Given the emerging role of G protein-coupled receptor 2 (GRK2), first identified as a G protein-coupled receptor (GPCR) regulator, in the regulation of non-G protein-coupled receptor-related molecules contributing to diverse cellular functions and pathology, including inflammation, we tested the hypothesis that GRK2 may be linked to the neuropathogenesis of SAE. When mouse MG6 microglial cells were challenged with lipopolysaccharide (LPS), GRK2 cytosolic expression was highly up-regulated. The ablation of GRK2 by small interfering RNAs (siRNAs) prevented an increase in intracellular reactive oxygen species generation in LPS-stimulated MG6 cells. Furthermore, the LPS-induced up-regulation of inducible nitric-oxide synthase expression and increase in nitric oxide production were negated by GRK2 inhibitor or siRNAs. However, GRK2 inhibition was without effect on overproduction of tumor necrosis factor-α, interleukin (IL)-6, and IL-1β in LPS-stimulated MG cells. In mice with cecal ligation and puncture-induced sepsis, treatment with GRK2 inhibitor reduced high levels of oxidative and nitrosative stress in the mice brains, where GRK2 expression was up-regulated, alleviated neurohistological damage observed in cerebral cortex sections, and conferred a significant survival advantage to CLP mice. Altogether, these results uncover the novel role for GRK2 in regulating cellular oxidative and nitrosative stress during inflammation and suggest that GRK2 may have a potential as an intriguing therapeutic target to prevent or treat SAE.
Collapse
Affiliation(s)
- Masaaki Kawakami
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Department of Anesthesiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Mizuki Hattori
- Department of Anesthesiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Wakana Ohashi
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Toshio Fujimori
- Department of Anesthesiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kohshi Hattori
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Mariko Takebe
- Department of Anesthesiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kengo Tomita
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hiroki Yokoo
- Department of Health and Nutritional Sciences, Faculty of Health Promotional Sciences, Tokoha University, Hamamatsu, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuaki Yamazaki
- Department of Anesthesiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
19
|
Ray SC, Baban B, Tucker MA, Seaton AJ, Chang KC, Mannon EC, Sun J, Patel B, Wilson K, Musall JB, Ocasio H, Irsik D, Filosa JA, Sullivan JC, Marshall B, Harris RA, O'Connor PM. Oral NaHCO 3 Activates a Splenic Anti-Inflammatory Pathway: Evidence That Cholinergic Signals Are Transmitted via Mesothelial Cells. THE JOURNAL OF IMMUNOLOGY 2018; 200:3568-3586. [PMID: 29661827 DOI: 10.4049/jimmunol.1701605] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/10/2018] [Indexed: 12/15/2022]
Abstract
We tested the hypothesis that oral NaHCO3 intake stimulates splenic anti-inflammatory pathways. Following oral NaHCO3 loading, macrophage polarization was shifted from predominantly M1 (inflammatory) to M2 (regulatory) phenotypes, and FOXP3+CD4+ T-lymphocytes increased in the spleen, blood, and kidneys of rats. Similar anti-inflammatory changes in macrophage polarization were observed in the blood of human subjects following NaHCO3 ingestion. Surprisingly, we found that gentle manipulation to visualize the spleen at midline during surgical laparotomy (sham splenectomy) was sufficient to abolish the response in rats and resulted in hypertrophy/hyperplasia of the capsular mesothelial cells. Thin collagenous connections lined by mesothelial cells were found to connect to the capsular mesothelium. Mesothelial cells in these connections stained positive for the pan-neuronal marker PGP9.5 and acetylcholine esterase and contained many ultrastructural elements, which visually resembled neuronal structures. Both disruption of the fragile mesothelial connections or transection of the vagal nerves resulted in the loss of capsular mesothelial acetylcholine esterase staining and reduced splenic mass. Our data indicate that oral NaHCO3 activates a splenic anti-inflammatory pathway and provides evidence that the signals that mediate this response are transmitted to the spleen via a novel neuronal-like function of mesothelial cells.
Collapse
Affiliation(s)
- Sarah C Ray
- Department of Physiology, Augusta University, Augusta, GA 30912
| | - Babak Baban
- Department of Oral Biology, Augusta University, Augusta, GA 30912
| | - Matthew A Tucker
- Georgia Prevention Institute, Augusta University, Augusta, GA 30912; and
| | - Alec J Seaton
- Department of Physiology, Augusta University, Augusta, GA 30912
| | - Kyu Chul Chang
- Department of Physiology, Augusta University, Augusta, GA 30912
| | - Elinor C Mannon
- Department of Physiology, Augusta University, Augusta, GA 30912
| | - Jingping Sun
- Department of Physiology, Augusta University, Augusta, GA 30912
| | - Bansari Patel
- Department of Physiology, Augusta University, Augusta, GA 30912
| | - Katie Wilson
- Department of Physiology, Augusta University, Augusta, GA 30912
| | | | - Hiram Ocasio
- Department of Physiology, Augusta University, Augusta, GA 30912
| | - Debra Irsik
- Department of Physiology, Augusta University, Augusta, GA 30912
| | | | | | - Brendan Marshall
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA 30912
| | - Ryan A Harris
- Georgia Prevention Institute, Augusta University, Augusta, GA 30912; and
| | - Paul M O'Connor
- Department of Physiology, Augusta University, Augusta, GA 30912;
| |
Collapse
|
20
|
Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders? J Immunol Res 2018. [PMID: 29507865 DOI: 10.1155/2018/8917804]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macrophages are key cellular components of the innate immunity, acting as the main player in the first-line defence against the pathogens and modulating homeostatic and inflammatory responses. Plasticity is a major feature of macrophages resulting in extreme heterogeneity both in normal and in pathological conditions. Macrophages are not homogenous, and they are generally categorized into two broad but distinct subsets as either classically activated (M1) or alternatively activated (M2). However, macrophages represent a continuum of highly plastic effector cells, resembling a spectrum of diverse phenotype states. Induction of specific macrophage functions is closely related to the surrounding environment that acts as a relevant orchestrator of macrophage functions. This phenomenon, termed polarization, results from cell/cell, cell/molecule interaction, governing macrophage functionality within the hosting tissues. Here, we summarized relevant cellular and molecular mechanisms driving macrophage polarization in "distant" pathological conditions, such as cancer, type 2 diabetes, atherosclerosis, and periodontitis that share macrophage-driven inflammation as a key feature, playing their dual role as killers (M1-like) and/or builders (M2-like). We also dissect the physio/pathological consequences related to macrophage polarization within selected chronic inflammatory diseases, placing polarized macrophages as a relevant hallmark, putative biomarkers, and possible target for prevention/therapy.
Collapse
|
21
|
Huang C, Wu J, Xu L, Wang J, Chen Z, Yang R. Regulation of HSF1 protein stabilization: An updated review. Eur J Pharmacol 2018; 822:69-77. [PMID: 29341886 DOI: 10.1016/j.ejphar.2018.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/11/2017] [Accepted: 01/09/2018] [Indexed: 12/12/2022]
Abstract
Heat shock factor 1 (HSF1) is a transcriptional factor that determines the efficiency of heat shock responses (HSRs) in the cell. Given its function has been extensively studied in recent years, HSF1 is considered a potential target for the treatment of disorders associated with protein aggregation. The activity of HSF1 is traditionally regulated at the transcriptional level in which the transactivation domain of HSF1 is modified by extensive array of pos-translational modifications, such as phosphorylation, sumoylation, and acetylation. Recently, HSF1 is also reported to be regulated at the monomeric level. For example, in neurodegenerative disorders such as Huntington's disease and Alzheimer's disease the expression levels of the monomeric HSF1 are found to be reduced markedly. Methylene blue (MB) and riluzole, two clinical available drugs, increase the amount of the monomeric HSF1 in both cells and animals. Since the monomeric HSF1 not only determines the efficiency of HSRs, but exerts protective effects in a trimerization-independent manner, increasing the amount of the monomeric HSF1 via stabilization of HSF1 may be an alternative strategy for the amplification of HSR. However, to date we have no outlined knowledges about HSF1 protein stabilization, though studies regarding the regulation of the monomeric HSF1 have been documented in recent years. Here, we summarize the regulation of the monomeric HSF1 by some previously reported factors, such as synuclein, Huntingtin (Htt), TDP-43, unfolded protein response (UPR), MB and doxorubicin (DOX), as well as their possible mechanisms, aiming to push the understanding about HSF1 protein stabilization.
Collapse
Affiliation(s)
- Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| | - Jingjing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China
| | - Li Xu
- Department of Ultrasound, Danyang People's Hospital, #2 Xinmin Western Road, Danyang 212300, Jiangsu, China
| | - Jili Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, # 6 North Road Hai'er Xiang, Nantong 226001, Jiangsu, China
| | - Rongrong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Jiangsu Province, #20Xisi Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
22
|
Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders? J Immunol Res 2018; 2018:8917804. [PMID: 29507865 PMCID: PMC5821995 DOI: 10.1155/2018/8917804] [Citation(s) in RCA: 341] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 11/01/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022] Open
Abstract
Macrophages are key cellular components of the innate immunity, acting as the main player in the first-line defence against the pathogens and modulating homeostatic and inflammatory responses. Plasticity is a major feature of macrophages resulting in extreme heterogeneity both in normal and in pathological conditions. Macrophages are not homogenous, and they are generally categorized into two broad but distinct subsets as either classically activated (M1) or alternatively activated (M2). However, macrophages represent a continuum of highly plastic effector cells, resembling a spectrum of diverse phenotype states. Induction of specific macrophage functions is closely related to the surrounding environment that acts as a relevant orchestrator of macrophage functions. This phenomenon, termed polarization, results from cell/cell, cell/molecule interaction, governing macrophage functionality within the hosting tissues. Here, we summarized relevant cellular and molecular mechanisms driving macrophage polarization in “distant” pathological conditions, such as cancer, type 2 diabetes, atherosclerosis, and periodontitis that share macrophage-driven inflammation as a key feature, playing their dual role as killers (M1-like) and/or builders (M2-like). We also dissect the physio/pathological consequences related to macrophage polarization within selected chronic inflammatory diseases, placing polarized macrophages as a relevant hallmark, putative biomarkers, and possible target for prevention/therapy.
Collapse
|
23
|
Zou YH, Zhao L, Xu YK, Bao JM, Liu X, Zhang JS, Li W, Ahmed A, Yin S, Tang GH. Anti-inflammatory sesquiterpenoids from the Traditional Chinese Medicine Salvia plebeia: Regulates pro-inflammatory mediators through inhibition of NF-κB and Erk1/2 signaling pathways in LPS-induced Raw264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2018; 210:95-106. [PMID: 28847754 DOI: 10.1016/j.jep.2017.08.034] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia plebeia R. Brown, a traditional Chinese medicinal herb, has been used to treat inflammatory diseases such as cough, hepatitis, and diarrhea for a long history. AIM OF THE STUDY The aim of the present study was to isolate and identify potential anti-inflammatory agents from the herb of S. plebeia, which may have contributed to its folk pharmacological use in the treatment of inflammatory diseases. MATERIAL AND METHODS The aerial parts of S. plebeia were extracted with 95% ethanol and separated by silica gel, RP-C18, Sephadex LH-20, and HPLC. The structures of the isolated compounds were elucidated by extensive spectroscopic analysis (MS, NMR, and X-ray). Anti-inflammatory activities of all compounds were evaluated by the model of LPS-induced up-regulated of NO in Raw264.7 macrophages. The expression levels of cytokine (TNF-α) and proteins (iNOS and COX-2) were assessed by ELISA kit and Western blotting analysis, respectively. Furthermore, the influences of salviplenoid A (1) on NF-κB and MAPK signaling pathways were determined by Western blotting analysis and immunofluorescence assay. RESULTS Six new (1-6, salviplenoids A-F) and ten known (7-16) sesquiterpenoids were isolated from the herb of S. plebeia. The absolute configurations of compounds 1, 2, and 7 were determined by X-ray diffraction. The new eudesmane-type sesquiterpenoid, salviplenoid A (1), significantly decreased the release of NO and TNF-α and the expression of proteins iNOS and COX-2. In addition, the biochemical mechanistic study indicated that 1 regulated the NF-κB dependent transcriptional activity through inhibiting the nuclear translocation of p50/p65 dimer and decreasing the phosphorylation of IκB and Erk1/2. CONCLUSIONS Among all sesquiterpenoids isolated from S. plebeian, the new salviplenoid A (1) exhibited the most potent anti-inflammatory activity in LPS-induced Raw264.7 cells via inhibition of NF-κB and Erk1/2 signaling pathways.
Collapse
Affiliation(s)
- Yi-Hong Zou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Liang Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - You-Kai Xu
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Jing-Mei Bao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xin Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Jun-Sheng Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Wei Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Abrar Ahmed
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Gui-Hua Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
24
|
Kodar K, Harper JL, McConnell MJ, Timmer MSM, Stocker BL. The Mincle ligand trehalose dibehenate differentially modulates M1-like and M2-like macrophage phenotype and function via Syk signaling. IMMUNITY INFLAMMATION AND DISEASE 2017; 5:503-514. [PMID: 28722316 PMCID: PMC5691301 DOI: 10.1002/iid3.186] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/29/2017] [Accepted: 06/21/2017] [Indexed: 12/11/2022]
Abstract
Introduction Macrophages play a significant role in the progression of diseases, such as cancer, making them a target for immune‐modulating agents. Trehalose dibehenate (TDB) is known to activate M1‐like macrophages via Mincle, however, the effect of TDB on M2‐like macrophages, which are found in the tumor microenvironment, has not been studied. Methods qRT‐PCR, flow cytometry, cytokine ELISA, and Western Blotting were used to study the effect of TDB on GM‐CSF and M‐CSF/IL‐4 derived bone marrow macrophages (BMMs) from C57BL/6 and Mincle−/− mice. Results TDB treatment up‐regulated M1 markers over M2 markers by GM‐CSF BMMs, whereas M‐CSF/IL‐4 BMMs down‐regulated marker gene expression overall. TDB treatment resulted in Mincle‐independent down‐regulation of CD11b, CD115, and CD206 expression by GM‐CSF macrophages and CD115 in M‐CSF/IL‐4 macrophages. GM‐CSF BMMs produced of significant levels of proinflammatory cytokines (IL‐1β, IL‐6, TNF‐α), which was Mincle‐dependent and further enhanced by LPS priming. M‐CSF BMMs produced little or no cytokines in response to TDB regardless of LPS priming. Western blot analysis confirmed that the absence of cytokine production was associated with a lack of activation of the Syk kinase pathway. Conclusion This study illustrates that TDB has the potential to differentially regulate M1‐ and M2‐like macrophages in the tumor environment.
Collapse
Affiliation(s)
- Kristel Kodar
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.,Malaghan Institute of Medical Research, PO Box 7060, Wellington, New Zealand
| | - Jacquie L Harper
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, New Zealand
| | - Melanie J McConnell
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Mattie S M Timmer
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Bridget L Stocker
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.,Malaghan Institute of Medical Research, PO Box 7060, Wellington, New Zealand
| |
Collapse
|
25
|
Gabrielsson L, Gouveia-Figueira S, Häggström J, Alhouayek M, Fowler CJ. The anti-inflammatory compound palmitoylethanolamide inhibits prostaglandin and hydroxyeicosatetraenoic acid production by a macrophage cell line. Pharmacol Res Perspect 2017; 5:e00300. [PMID: 28357126 PMCID: PMC5368964 DOI: 10.1002/prp2.300] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/12/2017] [Accepted: 01/17/2017] [Indexed: 11/09/2022] Open
Abstract
The anti‐inflammatory agent palmitoylethanolamide (PEA) reduces cyclooxygenase (COX) activity in vivo in a model of inflammatory pain. It is not known whether the compound reduces prostaglandin production in RAW264.7 cells, whether such an action is affected by compounds preventing the breakdown of endogenous PEA, whether other oxylipins are affected, or whether PEA produces direct effects upon the COX‐2 enzyme. RAW264.7 cells were treated with lipopolysaccharide and interferon‐γ to induce COX‐2. At the level of mRNA, COX‐2 was induced >1000‐fold following 24 h of the treatment. Coincubation with PEA (10 μmol/L) did not affect the levels of COX‐2, but reduced the levels of prostaglandins D2 and E2 as well as 11‐ and 15‐hydroxyeicosatetraenoic acid, which can also be synthesised by a COX‐2 pathway in macrophages. These effects were retained when hydrolysis of PEA to palmitic acid was blocked. Linoleic acid‐derived oxylipin levels were not affected by PEA. No direct effects of PEA upon the oxygenation of either arachidonic acid or 2‐arachidonoylglycerol by COX‐2 were found. It is concluded that in lipopolysaccharide and interferon‐γ‐stimulated RAW264.7 cells, PEA reduces the production of COX‐2‐derived oxylipins in a manner that is retained when its metabolism to palmitic acid is inhibited.
Collapse
Affiliation(s)
- Linda Gabrielsson
- Department of Pharmacology and Clinical Neuroscience Pharmacology Unit Umeå University Umeå Sweden
| | - Sandra Gouveia-Figueira
- Department of Pharmacology and Clinical Neuroscience Pharmacology Unit Umeå University Umeå Sweden
| | - Jenny Häggström
- Department of Statistics Umeå School of Business and Economics Umeå University Umeå Sweden
| | - Mireille Alhouayek
- Department of Pharmacology and Clinical Neuroscience Pharmacology Unit Umeå University Umeå Sweden
| | - Christopher J Fowler
- Department of Pharmacology and Clinical Neuroscience Pharmacology Unit Umeå University Umeå Sweden
| |
Collapse
|
26
|
Villar-Lorenzo A, Ardiles AE, Arroba AI, Hernández-Jiménez E, Pardo V, López-Collazo E, Jiménez IA, Bazzocchi IL, González-Rodríguez Á, Valverde ÁM. Friedelane-type triterpenoids as selective anti-inflammatory agents by regulation of differential signaling pathways in LPS-stimulated macrophages. Toxicol Appl Pharmacol 2016; 313:57-67. [DOI: 10.1016/j.taap.2016.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/24/2016] [Accepted: 10/05/2016] [Indexed: 10/20/2022]
|
27
|
Bruscia EM, Bonfield TL. Cystic Fibrosis Lung Immunity: The Role of the Macrophage. J Innate Immun 2016; 8:550-563. [PMID: 27336915 DOI: 10.1159/000446825] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/16/2016] [Indexed: 01/04/2023] Open
Abstract
Cystic fibrosis (CF) pathophysiology is hallmarked by excessive inflammation and the inability to efficiently resolve lung infections, contributing to major morbidity and eventually the mortality of patients with this disease. Macrophages (MΦs) are major players in lung homeostasis through their diverse contributions to both the innate and adaptive immune networks. The setting of MΦ function and activity in CF is multifaceted, encompassing the response to the unique environmental cues in the CF lung as well as the intrinsic changes resulting from CFTR dysfunction. The complexity is further enhanced with the identification of modifier genes, which modulate the CFTR contribution to disease, resulting in epigenetic and transcriptional shifts in MΦ phenotype. This review focuses on the contribution of MΦ to lung homeostasis, providing an overview of the diverse literature and various perspectives on the role of these immune guardians in CF.
Collapse
Affiliation(s)
- Emanuela M Bruscia
- Section of Respiratory Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, Conn., USA
| | | |
Collapse
|
28
|
Xie C, Liu C, Wu B, Lin Y, Ma T, Xiong H, Wang Q, Li Z, Ma C, Tu Z. Effects of IRF1 and IFN-β interaction on the M1 polarization of macrophages and its antitumor function. Int J Mol Med 2016; 38:148-60. [PMID: 27176664 PMCID: PMC4899022 DOI: 10.3892/ijmm.2016.2583] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 04/18/2016] [Indexed: 01/01/2023] Open
Abstract
Macrophages that differentiate from precursor monocytes can be polarized into a classically activated (M1) or alternatively activated (M2) status depending on different stimuli. Generally, interferon (IFN)-γ and lipopolysaccharide (LPS) are considered the classical stimuli with which to establish M1 polarization. IFN regulatory factor (IRF)1 and IFN-β are two crucial molecules involved in IFN-γ- and LPS-initialed signaling. However, the association between IRF1 and IFN-β in the context of the M1 polarization of macrophages is not yet fully understood. In this study, we demonstrate that U937-derived macrophages, in response to IFN-γ and LPS stimulation, readily acquire an M1 status, indicated by the increased expression of interleukin (IL)-12, IL-6, IL-23, tumor necrosis factor (TNF)-α and the M1-specific cell surface antigen, CD86, and the decreased expression of the M2-specific mannose receptor, CD206. However, the knockdown of IRF1 in U937-derived macrophages led to an impaired M1 status, as indicated by the decreased expression of the above-mentioned M1 markers, and the increased expression of the M2 markers, CD206 and IL-10. A similar phenomenon was observed in the M1 macrophages in which IFN-β was inhibited. Furthermore, we demonstrated that IRF1 and IFN-β may interact with each other in the IFN-γ- and LPS-initiated signaling pathway, and contribute to the IRF5 regulation of M1 macrophages. In addition, the conditioned medium collected from the M1 macrophages in which IRF1 or IFN-β were inhibited, exerted pro-tumor effects on the HepG2 and SMMC-7721 cells, as indicated by an increase in proliferation, the inhibition of apoptosis and an enhanced invasion capability. The findings of our study suggest that the interactions of IRF1, IFN-β and IRF5 are involved in the M1 polarization of macro phages and have antitumor functions. These data may provide a novel antitumor strategy for targeted cancer therapy.
Collapse
Affiliation(s)
- Changli Xie
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Cuiying Liu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Bitao Wu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yan Lin
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tingting Ma
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Haiyu Xiong
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qin Wang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ziwei Li
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chenyu Ma
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhiguang Tu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
29
|
Comparative Analysis of the Effects of Two Probiotic Bacterial Strains on Metabolism and Innate Immunity in the RAW 264.7 Murine Macrophage Cell Line. Probiotics Antimicrob Proteins 2016; 8:73-84. [PMID: 27038159 DOI: 10.1007/s12602-016-9211-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Inhibition of ceramide de novo synthesis by myriocin produces the double effect of reducing pathological inflammation and exerting antifungal activity against A. fumigatus airways infection. Biochim Biophys Acta Gen Subj 2016; 1860:1089-97. [PMID: 26922830 DOI: 10.1016/j.bbagen.2016.02.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/02/2016] [Accepted: 02/22/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Fungal infections develop in pulmonary chronic inflammatory diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD) and Cystic Fibrosis (CF). The available antifungal drugs may fail to eradicate fungal pathogens, that can invade the lungs and vessels and spread by systemic circulation taking advantage of defective lung immunity. An increased rate of sphingolipid de novo synthesis, leading to ceramide accumulation, was demonstrated in CF and COPD inflamed lungs. The inhibitor of sphingolipid synthesis myriocin reduces inflammation and ameliorates the response against bacterial airway infection in CF mice. Myriocin also inhibits sphingolipid synthesis in fungi and exerts a powerful fungistatic effect. METHODS We treated Aspergillus fumigatus infected airway epithelial cells with myriocin and we administered myriocin-loaded nanocarriers to A. fumigatus infected mice lung. RESULTS We demonstrate here that de novo synthesized ceramide mediates the inflammatory response induced by A. fumigatus infection in airway epithelia. CF epithelial cells are chronically inflamed and defective in killing internalized conidia. Myriocin treatment reduced ceramide increase and inflammatory mediator release whereas it upregulated HO1 and NOD2, allowing the recovery of a functional killing of conidia in these cells. Myriocin-loaded nanocarriers, intratracheally administered to mice, significantly reduced both the inflammatory response induced by A. fumigatus pulmonary challenge and fungal lung invasion. CONCLUSIONS We conclude that inhibition of sphingolipid synthesis can be envisaged as a dual anti-inflammatory and anti-fungal therapy in patients suffering from chronic lung inflammation with compromised immunity. GENERAL SIGNIFICANCE Myriocin represents a powerful agent for inflammatory diseases and fungal infection.
Collapse
|