1
|
Cardona-Acosta AM, Parise LF, Bolaños-Guzmán CA, Parise EM. Prophylactic Ketamine: Current Knowledge and Future Directions. Biol Psychiatry 2025:S0006-3223(25)01103-5. [PMID: 40158609 DOI: 10.1016/j.biopsych.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/21/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
The prevalence of stress-induced disorders, including depression, anxiety, posttraumatic stress disorder, and postpartum depression, has been increasing, while current treatment approaches are limited. As a result, researchers are exploring alternative treatments that include ketamine as a prophylactic against these disorders. This review provides an overview of the current knowledge on the use of ketamine as a prophylactic for stress-induced disorders, including preclinical and clinical findings on (R,S)-ketamine, as well as (2R,6R)- and (2S,6S)-hydroxynorketamine. We also explore the potential underlying mechanisms involved in preventing these disorders, including the brain regions/circuits, as well as glutamatergic, dopaminergic, serotonergic, and inflammatory processes known to be involved, as evidenced by studies with ketamine and its metabolites. Additionally, we highlight the limitations and risks associated with ketamine use, such as age- and sex-specific efficacy, potential long-term and adverse effects, and legal and ethical considerations. Finally, we discuss future research directions, including the implications for clinical practice, integrating ketamine into current treatment approaches, and potential advancements in ketamine-based therapies. Overall, the literature emphasizes the importance of continuing research to better understand the potential benefits and risks of ketamine as a prophylactic for stress-induced disorders.
Collapse
Affiliation(s)
- Astrid M Cardona-Acosta
- Department of Psychological and Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, Texas
| | - Lyonna F Parise
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Carlos A Bolaños-Guzmán
- Department of Psychological and Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, Texas
| | - Eric M Parise
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
2
|
de Miranda AS, C B Toscano E, Venna VR, Graeff FG, Teixeira AL. Investigating novel pharmacological strategies for treatment-resistant depression: focus on new mechanisms and approaches. Expert Opin Drug Discov 2025:1-15. [PMID: 39885729 DOI: 10.1080/17460441.2025.2460674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
INTRODUCTION A substantial number of patients exhibit treatment-resistant depression (TRD), posing significant challenges to clinicians. The discovery of novel molecules or mechanisms that may underlie TRD pathogenesis and antidepressant actions is highly needed. AREAS COVERED Using the PubMed database, the authors searched for emerging evidence of novel approaches for TRD based on experimental and human studies. Herein, the authors discuss the mechanisms underlying glutamatergic antagonists, modulators of the opioid system, and tryptamine-derivate psychedelics as well as the emerging platforms to investigate novel pharmacological targets for TRD. A search for clinical trials investigating novel agents and interventions for TRD was also conducted. EXPERT OPINION The understanding of the multiple pathophysiological mechanisms involved in TRD may add further value to the effective treatment, contributing to a more personalized approach. Esketamine was approved for the treatment of TRD and novel drugs with rapid antidepressant actions such as psilocybin and buprenorphine have also been investigated as potential therapeutic strategies. Over the past decades, technological advances such as omics approaches have broadened our knowledge regarding molecular and genetic underpinnings of complex conditions like TRD. Omics approaches could open new avenues for investigating glial-mediated mechanisms, including their crosstalk with neurons, as therapeutic targets in TRD.
Collapse
Affiliation(s)
- Aline Silva de Miranda
- Laboratory of Neurobiology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Eliana C B Toscano
- Laboratory of Research in Pathology, Department of Pathology, Federal University of Juiz de Fora (UFJF) Medical School, Juiz de Fora, Brazil
| | - Venugopal Reddy Venna
- Department of Neurology, The University of Texas Health Science Center (UTHealth), Houston, TX, USA
| | | | - Antonio Lucio Teixeira
- Geriatric Neuropsychiatry Division, The Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
3
|
Loan Nguyen TM, Guilloux JP, Defaix C, Mendez-David I, Etting I, Alvarez JC, McGowan JC, Highland JN, Zanos P, Lovett J, Moaddel R, Corruble E, David DJ, Gould TD, Denny CA, Gardier AM. Ketamine metabolism via hepatic CYP450 isoforms contributes to its sustained antidepressant actions. Neuropharmacology 2024; 258:110065. [PMID: 39004413 PMCID: PMC11492263 DOI: 10.1016/j.neuropharm.2024.110065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024]
Abstract
(R,S)-ketamine (ketamine) has rapid and sustained antidepressant (AD) efficacy at sub-anesthetic doses in depressed patients. A metabolite of ketamine, including (2R,6R)-hydroxynorketamine ((6)-HNKs) has been reported to exert antidepressant actions in rodent model of anxiety/depression. To further understand the specific role of ketamine's metabolism in the AD actions of the drug, we evaluated the effects of inhibiting hepatic cytochrome P450 enzymes on AD responses. We assessed whether pre-treatment with fluconazole (10 and 20 mg/kg, i. p.) 1 h prior to ketamine or HNKs (10 mg/kg, i. p.) administration would alter behavioral and neurochemical actions of the drugs in male BALB/cJ mice with a highly anxious phenotype. Extracellular microdialysate levels of glutamate and GABA (Gluext, GABAext) were also measured in the medial prefrontal cortex (mPFC). Pre-treatment with fluconazole altered the pharmacokinetic profile of ketamine, by increasing both plasma and brain levels of ketamine and (R,S)-norketamine, while robustly reducing those of (6)-HNKs. At 24 h post-injection (t24 h), fluconazole prevented the sustained AD-like response of ketamine responses in the forced swim test and splash test, as well as the enhanced cortical GABA levels produced by ketamine. A single (2R,6R)-HNK administration resulted in prevention of the effects of fluconazole on the antidepressant-like activity of ketamine in mice. Overall, these findings are consistent with an essential contribution of (6)-HNK to the sustained antidepressant-like effects of ketamine and suggest potential interactions between pharmacological CYPIs and ketamine during antidepressant treatment in patients.
Collapse
Affiliation(s)
- Thi Mai Loan Nguyen
- Université Paris-Saclay, Faculté de Pharmacie, Inserm UMR 1018, CESP, MOODS Team, 91400 Orsay, France
| | - Jean-Philippe Guilloux
- Université Paris-Saclay, Faculté de Pharmacie, Inserm UMR 1018, CESP, MOODS Team, 91400 Orsay, France
| | - Céline Defaix
- Université Paris-Saclay, Faculté de Pharmacie, Inserm UMR 1018, CESP, MOODS Team, 91400 Orsay, France
| | - Indira Mendez-David
- Université Paris-Saclay, Faculté de Pharmacie, Inserm UMR 1018, CESP, MOODS Team, 91400 Orsay, France
| | - Isabelle Etting
- Service de Pharmacologie-Toxicologie, Hôpital Raymond Poincaré, Groupe Hospitalier Universitaires AP-HP, Université Paris-Saclay, Inserm U-1018, CESP, MOODS Team, 92380 Garches, France
| | - Jean-Claude Alvarez
- Service de Pharmacologie-Toxicologie, Hôpital Raymond Poincaré, Groupe Hospitalier Universitaires AP-HP, Université Paris-Saclay, Inserm U-1018, CESP, MOODS Team, 92380 Garches, France
| | - Josephine C McGowan
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA; Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH) /New York State Psychiatric Institute (NYSPI), New York, NY, 10032, USA; Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Jaclyn N Highland
- Departments of Psychiatry, Baltimore, MD, USA; Departments of Program in Toxicology, University of Maryland School of Medicine, Baltimore, MD, USA; Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA
| | - Panos Zanos
- Departments of Psychiatry, Baltimore, MD, USA; Departments of Pharmacology, Baltimore, MD, USA; Departments of Physiology, Baltimore, MD, USA; Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA; Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus
| | - Jacqueline Lovett
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Emmanuelle Corruble
- Université Paris-Saclay, Faculté de Médecine, Inserm UMR 1018, CESP, MOODS Team, 94270 Bicêtre Hospital, 94270 Le Kremin-Bicêtre, France; Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, 94270 Le Kremlin Bicêtre, France
| | - Denis J David
- Université Paris-Saclay, Faculté de Pharmacie, Inserm UMR 1018, CESP, MOODS Team, 91400 Orsay, France
| | - Todd D Gould
- Departments of Psychiatry, Baltimore, MD, USA; Departments of Pharmacology, Baltimore, MD, USA; Departments of Physiology, Baltimore, MD, USA; Departments of Neurobiology, Baltimore, MD, USA; Departments of Program in Toxicology, University of Maryland School of Medicine, Baltimore, MD, USA; Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA; Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Christine A Denny
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA; Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH) /New York State Psychiatric Institute (NYSPI), New York, NY, 10032, USA
| | - Alain M Gardier
- Université Paris-Saclay, Faculté de Pharmacie, Inserm UMR 1018, CESP, MOODS Team, 91400 Orsay, France.
| |
Collapse
|
4
|
Acero-Castillo MC, Correia MBM, Caixeta FV, Motta V, Barros M, Maior RS. Is the antidepressant effect of ketamine separate from its psychotomimetic effect? A review of rodent models. Neuropharmacology 2024; 258:110088. [PMID: 39032814 DOI: 10.1016/j.neuropharm.2024.110088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Ketamine is an NMDA (N-methyl-d-aspartate) glutamate receptor antagonist, which has a myriad of dose-dependent pharmacological and behavioral effects, including anesthetic, sedative, amnestic, analgesic, and anti-inflammatory properties. Intriguingly, ketamine at subanesthetic doses displays a relevant profile both in mimicking symptoms of schizophrenia and also as the first fast-acting treatment for depression. Here, we present an overview of the state-of-the-art knowledge about ketamine as an antidepressant as well as a pharmacological model of schizophrenia in animal models and human participants. Ketamine's dual effect appears to arise from its mechanism of action involving NMDA receptors, with both immediate and downstream consequences being triggered as a result. Finally, we discuss the feasibility of a unified approach linking the glutamatergic hypothesis of schizophrenia to the promising preclinical and clinical success of ketamine in the treatment of refractory depression.
Collapse
Affiliation(s)
- M C Acero-Castillo
- Laboratory of Neuroscience, Metabolism, and Behavior, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, ZIP 70910-900, Brasilia-DF, Brazil
| | - M B M Correia
- Laboratory of Neuroscience, Metabolism, and Behavior, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, ZIP 70910-900, Brasilia-DF, Brazil; Department of Anthropology, Emory University, Atlanta GA, ZIP 30322, USA
| | - F V Caixeta
- Laboratory of Neuroscience, Metabolism, and Behavior, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, ZIP 70910-900, Brasilia-DF, Brazil
| | - V Motta
- Department of Basic Psychological Processes, Institute of Psychology, University of Brasilia, ZIP 70910-900, Brasilia-DF, Brazil
| | - M Barros
- Department of Pharmacy, School of Health Sciences, University of Brasilia, ZIP 70910-900, Brasilia-DF, Brazil
| | - R S Maior
- Laboratory of Neuroscience, Metabolism, and Behavior, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, ZIP 70910-900, Brasilia-DF, Brazil.
| |
Collapse
|
5
|
Patarroyo-Rodriguez L, Cavalcanti S, Vande Voort JL, Singh B. The Use of Ketamine for the Treatment of Anhedonia in Depression. CNS Drugs 2024; 38:583-596. [PMID: 38910222 DOI: 10.1007/s40263-024-01099-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 06/25/2024]
Abstract
Anhedonia, a complex symptom rooted in deficits across reward processes, is primarily linked to depression and schizophrenia but transcends diagnostic boundaries across various mental disorders. Its presence correlates with poorer clinical outcomes, including an increased risk of suicide and diminished response to treatment. The neurobiological underpinnings of anhedonia remain incompletely understood despite advancements in biomarkers and imaging that contribute to deeper insights. Ketamine, known for its rapid-acting antidepressant properties, appears to possess antianhedonic effects through a mechanism of action not fully elucidated. This effect appears to be independent of its antidepressant properties. Explorations into alternative antianhedonic treatments have been underway, yet lingering questions persist, underscoring the imperative need for ongoing research to advance the field.
Collapse
Affiliation(s)
| | - Stefanie Cavalcanti
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jennifer L Vande Voort
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Balwinder Singh
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
6
|
Jiang Y, Dong Y, Hu H. The N-methyl-d-aspartate receptor hypothesis of ketamine's antidepressant action: evidence and controversies. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230225. [PMID: 38853549 PMCID: PMC11343275 DOI: 10.1098/rstb.2023.0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 06/11/2024] Open
Abstract
Substantial clinical evidence has unravelled the superior antidepressant efficacy of ketamine: in comparison to traditional antidepressants targeting the monoamine systems, ketamine, as an N-methyl-d-aspartate receptor (NMDAR) antagonist, acts much faster and more potently. Surrounding the antidepressant mechanisms of ketamine, there is ample evidence supporting an NMDAR-antagonism-based hypothesis. However, alternative arguments also exist, mostly derived from the controversial clinical results of other NMDAR inhibitors. In this article, we first summarize the historical development of the NMDAR-centred hypothesis of rapid antidepressants. We then classify different NMDAR inhibitors based on their mechanisms of inhibition and evaluate preclinical as well as clinical evidence of their antidepressant effects. Finally, we critically analyse controversies and arguments surrounding ketamine's NMDAR-dependent and NMDAR-independent antidepressant action. A better understanding of ketamine's molecular targets and antidepressant mechanisms should shed light on the future development of better treatment for depression. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Yihao Jiang
- Department of Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou310058, People's Republic of China
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou311100, People's Republic of China
| | - Yiyan Dong
- Department of Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou310058, People's Republic of China
| | - Hailan Hu
- Department of Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou310058, People's Republic of China
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou311100, People's Republic of China
| |
Collapse
|
7
|
Dunham KE, Khaled KH, Weizman L, Venton BJ. Microdosing ketamine in Drosophila does not block serotonin reuptake, but causes complex behavioral changes mediated by glutamate and serotonin receptors. J Neurochem 2024; 168:1097-1112. [PMID: 38323657 PMCID: PMC11136605 DOI: 10.1111/jnc.16070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
Microdosing ketamine is a novel antidepressant for treatment-resistant depression. Traditional antidepressants, like selective serotonin reuptake inhibitors (SSRIs), inhibit serotonin reuptake, but it is not clear if ketamine shows a similar mechanism. Here, we tested the effects of feeding ketamine and SSRIs to Drosophila melanogaster larvae, which has a similar serotonin system to mammals and is a good model to track depressive behaviors, such as locomotion and feeding. Fast-scan cyclic voltammetry (FSCV) was used to measure optogenetically stimulated serotonin changes, and locomotion tracking software and blue dye feeding to monitor behavior. We fed larvae various doses (1-100 mM) of antidepressants for 24 h and found that 1 mM ketamine did not affect serotonin, but increased locomotion and feeding. Low doses (≤10 mM) of escitalopram and fluoxetine inhibited dSERT and also increased feeding and locomotion behaviors. At 100 mM, ketamine inhibited dSERT and increased serotonin concentrations, but decreased locomotion and feeding because of its anesthetic properties. Since microdosing ketamine causes behavioral effects, we further investigated behavioral changes with a SERT16 mutant and low doses of other NMDA receptor antagonists and 5-HT1A and 2 agonists. Feeding and locomotion changes were similar to ketamine in the mutant, and we found NMDA receptor antagonism increased feeding, while serotonin receptor agonism increased locomotion, which could explain these effects with ketamine. Ultimately, this work shows that Drosophila is a good model to discern antidepressant mechanisms, and that ketamine does not work on dSERT like SSRIs, but effects behavior with other mechanisms that should be investigated further.
Collapse
Affiliation(s)
- Kelly E Dunham
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Kani H Khaled
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Leah Weizman
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
8
|
Taraku B, Loureiro JR, Sahib AK, Zavaliangos‐Petropulu A, Al‐Sharif N, Leaver AM, Wade B, Joshi S, Woods RP, Espinoza R, Narr KL. Modulation of habenular and nucleus accumbens functional connectivity by ketamine in major depression. Brain Behav 2024; 14:e3511. [PMID: 38894648 PMCID: PMC11187958 DOI: 10.1002/brb3.3511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/09/2024] [Accepted: 04/13/2024] [Indexed: 06/21/2024] Open
Abstract
INTRODUCTION Major depressive disorder (MDD) is associated with dysfunctional reward processing, which involves functional circuitry of the habenula (Hb) and nucleus accumbens (NAc). Since ketamine elicits rapid antidepressant and antianhedonic effects in MDD, this study sought to investigate how serial ketamine infusion (SKI) treatment modulates static and dynamic functional connectivity (FC) in Hb and NAc functional networks. METHODS MDD participants (n = 58, mean age = 40.7 years, female = 28) received four ketamine infusions (0.5 mg/kg) 2-3 times weekly. Resting-state functional magnetic resonance imaging (fMRI) scans and clinical assessments were collected at baseline and 24 h post-SKI. Static FC (sFC) and dynamic FC variability (dFCv) were calculated from left and right Hb and NAc seeds to all other brain regions. Changes in FC pre-to-post SKI, and correlations with changes with mood and anhedonia were examined. Comparisons of FC between patients and healthy controls (HC) at baseline (n = 55, mean age = 32.6, female = 31), and between HC assessed twice (n = 16) were conducted as follow-up analyses. RESULTS Following SKI, significant increases in left Hb-bilateral visual cortex FC, decreases in left Hb-left inferior parietal cortex FC, and decreases in left NAc-right cerebellum FC occurred. Decreased dFCv between left Hb and right precuneus and visual cortex, and decreased dFCv between right NAc and right visual cortex both significantly correlated with improvements in mood ratings. Decreased FC between left Hb and bilateral visual/parietal cortices as well as increased FC between left NAc and right visual/parietal cortices both significantly correlated with improvements in anhedonia. No differences were observed between HC at baseline or over time. CONCLUSION Subanesthetic ketamine modulates functional pathways linking the Hb and NAc with visual, parietal, and cerebellar regions in MDD. Overlapping effects between Hb and NAc functional systems were associated with ketamine's therapeutic response.
Collapse
Affiliation(s)
- Brandon Taraku
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Joana R. Loureiro
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Ashish K. Sahib
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Artemis Zavaliangos‐Petropulu
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Noor Al‐Sharif
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Amber M. Leaver
- Department of RadiologyNorthwestern UniversityChicagoIllinoisUSA
| | - Benjamin Wade
- Division of Neuropsychiatry and NeuromodulationMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Shantanu Joshi
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Roger P. Woods
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Randall Espinoza
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Katherine L. Narr
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
9
|
Zhou L, Duan J. The role of NMDARs in the anesthetic and antidepressant effects of ketamine. CNS Neurosci Ther 2024; 30:e14464. [PMID: 37680076 PMCID: PMC11017467 DOI: 10.1111/cns.14464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND As a phencyclidine (PCP) analog, ketamine can generate rapid-onset and substantial anesthetic effects. Contrary to traditional anesthetics, ketamine is a dissociative anesthetic and can induce loss of consciousness in patients. Recently, the subanaesthetic dose of ketamine was found to produce rapid-onset and lasting antidepressant effects. AIM However, how different concentrations of ketamine can induce diverse actions remains unclear. Furthermore, the molecular mechanisms underlying the NMDAR-mediated anesthetic and antidepressant effects of ketamine are not fully understood. METHOD In this review, we have introduced ketamine and its metabolism, summarized recent advances in the molecular mechanisms underlying NMDAR inhibition in the anesthetic and antidepressant effects of ketamine, explored the possible functions of NMDAR subunits in the effects of ketamine, and discussed the future directions of ketamine-based anesthetic and antidepressant drugs. RESULT Both the anesthetic and antidepressant effects of ketamine were thought to be mediated by N-methyl-D-aspartate receptor (NMDAR) inhibition. CONCLUSION The roles of NMDARs have been extensively studied in the anaesthetic effects of ketamine. However, the roles of NMDARs in antidepressant effects of ketamine are complicated and controversial.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Pharmacology, College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Jingjing Duan
- Department of Anatomy and Neurobiology, Zhongshan School of MedicineSunYat‐sen UniversityGuangzhouChina
| |
Collapse
|
10
|
Jóźwiak-Bębenista M, Sokołowska P, Wiktorowska-Owczarek A, Kowalczyk E, Sienkiewicz M. Ketamine - A New Antidepressant Drug with Anti-Inflammatory Properties. J Pharmacol Exp Ther 2024; 388:134-144. [PMID: 37977808 DOI: 10.1124/jpet.123.001823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/04/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023] Open
Abstract
Ketamine is a new, potent and rapid-acting antidepressant approved for therapy of treatment-resistant depression, which has a different mechanism of action than currently-available antidepressant therapies. It owes its uniquely potent antidepressant properties to a complex mechanism of action, which currently remains unclear. However, it is thought that it acts by modulating the functioning of the glutamatergic system, which plays an important role in the process of neuroplasticity associated with depression. However, preclinical and clinical studies have also found ketamine to reduce inflammation, either directly or indirectly (by activating neuroprotective branches of the kynurenine pathway), among patients exhibiting higher levels of inflammation. Inflammation and immune system activation are believed to play key roles in the development and course of depression. Therefore, the present work examines the role of the antidepressant effect of ketamine and its anti-inflammatory properties in the treatment of depression. SIGNIFICANCE STATEMENT: The present work examines the relationship between the antidepressant effect of ketamine and its anti-inflammatory properties, and the resulting benefits in treatment-resistant depression (TRD). The antidepressant mechanism of ketamine remains unclear, and there is an urgent need to develop new therapeutic strategies for treatment of depression, particularly TRD.
Collapse
Affiliation(s)
- Marta Jóźwiak-Bębenista
- Department of Pharmacology and Toxicology (M.J.-B., P.S., A.W.-O., E.K.) and Department of Pharmaceutical Microbiology and Microbiological Diagnostics (M.S.), Medical University of Lodz, Lodz, Poland
| | - Paulina Sokołowska
- Department of Pharmacology and Toxicology (M.J.-B., P.S., A.W.-O., E.K.) and Department of Pharmaceutical Microbiology and Microbiological Diagnostics (M.S.), Medical University of Lodz, Lodz, Poland
| | - Anna Wiktorowska-Owczarek
- Department of Pharmacology and Toxicology (M.J.-B., P.S., A.W.-O., E.K.) and Department of Pharmaceutical Microbiology and Microbiological Diagnostics (M.S.), Medical University of Lodz, Lodz, Poland
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology (M.J.-B., P.S., A.W.-O., E.K.) and Department of Pharmaceutical Microbiology and Microbiological Diagnostics (M.S.), Medical University of Lodz, Lodz, Poland
| | - Monika Sienkiewicz
- Department of Pharmacology and Toxicology (M.J.-B., P.S., A.W.-O., E.K.) and Department of Pharmaceutical Microbiology and Microbiological Diagnostics (M.S.), Medical University of Lodz, Lodz, Poland
| |
Collapse
|
11
|
Kurkin DV, Morkovin EI, Bakulin DA, Gorbunova YV, Ivanova OV, Pavlova EV, Zvereva VI, Dzhavakhyan MA, Krysanov IS, Kolosov YA, Zaborovsky AV, Strygin AV, Petrov VI, Beliy PA, Zaslavskaya KY, Maltsev DV, Skripka MO. [Targeting NMDAR/AMPAR: a promising pharmacotherapeutic approach for depressive disorders]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:22-30. [PMID: 38884426 DOI: 10.17116/jnevro202412405122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Depression is a leading cause of disability and reduced work capacity worldwide. The monoamine theory of the pathogenesis of depression has remained dominant for many decades, however, drugs developed on its basis have limited efficacy. Exploring alternative mechanisms underlying this pathology could illuminate new avenues for pharmacological intervention. Targeting glutamatergic pathways in the CNS, particularly through modulation of NMDA and AMPA receptors, demonstrates promising results. This review presents some existing drugs with glutamatergic activity and novel developments based on it to enhance the efficacy of pharmacotherapy for depressive disorders.
Collapse
Affiliation(s)
- D V Kurkin
- Russian University of Medicine, Moscow, Russia
- Volgograd State Medical University, Volgograd, Russia
| | - E I Morkovin
- Volgograd State Medical University, Volgograd, Russia
| | - D A Bakulin
- Russian University of Medicine, Moscow, Russia
| | | | - O V Ivanova
- Russian University of Medicine, Moscow, Russia
| | - E V Pavlova
- Russian University of Medicine, Moscow, Russia
| | - V I Zvereva
- Russian University of Medicine, Moscow, Russia
| | | | | | | | | | - A V Strygin
- Volgograd State Medical University, Volgograd, Russia
| | - V I Petrov
- Volgograd State Medical University, Volgograd, Russia
| | - P A Beliy
- Russian University of Medicine, Moscow, Russia
| | - K Y Zaslavskaya
- Ogarev National Research Mordovia State University, Saransk, Russia
| | - D V Maltsev
- Volgograd State Medical University, Volgograd, Russia
| | - M O Skripka
- Volgograd State Medical University, Volgograd, Russia
| |
Collapse
|
12
|
Nguyen TML, Jollant F, Tritschler L, Colle R, Corruble E, Gardier AM. [Ketamine and suicidal behavior: Contribution of animal models of aggression-impulsivity to understanding its mechanism of action]. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:3-14. [PMID: 37890717 DOI: 10.1016/j.pharma.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
More than two-thirds of suicides occur during a major depressive episode. Acting out prevention measures and therapeutic options to manage the suicidal crisis are limited. The impulsive-aggressive dimensions are vulnerability factors associated with suicide in patients suffering from a characterized depressive episode: this can be a dimension involved in animals. Impulsive and aggressive rodent models can help analyze, at least in part, the neurobiology of suicide and the beneficial effects of treatments. Ketamine, a glutamatergic antagonist, by rapidly improving the symptoms of depressive episodes, would help reduce suicidal thoughts in the short term. Animal models share with humans impulsive and aggressive endophenotypes modulated by the serotonergic system (5-HTB receptor, MAO-A enzyme), neuroinflammation or the hypothalamic-pituitary-adrenal axis and stress. Significant effects of ketamine on these endophenotypes remain to be demonstrated.
Collapse
Affiliation(s)
- Thi Mai Loan Nguyen
- Inserm CESP/UMR 1018, équipe MOODS, faculté de pharmacie, université Paris-Saclay, 91400 Orsay, France
| | - Fabrice Jollant
- Inserm CESP/UMR 1018, équipe MOODS, faculté de médecine, université Paris-Saclay, 94270 Le Kremin-Bicêtre, France; Service hospitalo-universitaire de psychiatrie, hôpital de Bicêtre, hôpitaux universitaires Paris-Saclay, Assistance publique-Hôpitaux de Paris (AP-HP), 94275 Le Kremlin-Bicêtre, France; Pôle de psychiatrie, CHU de Nîmes, Nîmes, France; Département de psychiatrie, Université McGill et Groupe McGill d'études sur le suicide, Montréal, Canada
| | - Laurent Tritschler
- Inserm CESP/UMR 1018, équipe MOODS, faculté de pharmacie, université Paris-Saclay, 91400 Orsay, France
| | - Romain Colle
- Inserm CESP/UMR 1018, équipe MOODS, faculté de médecine, université Paris-Saclay, 94270 Le Kremin-Bicêtre, France; Service hospitalo-universitaire de psychiatrie, hôpital de Bicêtre, hôpitaux universitaires Paris-Saclay, Assistance publique-Hôpitaux de Paris (AP-HP), 94275 Le Kremlin-Bicêtre, France
| | - Emmanuelle Corruble
- Inserm CESP/UMR 1018, équipe MOODS, faculté de médecine, université Paris-Saclay, 94270 Le Kremin-Bicêtre, France; Service hospitalo-universitaire de psychiatrie, hôpital de Bicêtre, hôpitaux universitaires Paris-Saclay, Assistance publique-Hôpitaux de Paris (AP-HP), 94275 Le Kremlin-Bicêtre, France
| | - Alain M Gardier
- Inserm CESP/UMR 1018, équipe MOODS, faculté de pharmacie, université Paris-Saclay, 91400 Orsay, France.
| |
Collapse
|
13
|
Taraku B, Loureiro JR, Sahib AK, Zavaliangos-Petropulu A, Al-Sharif N, Leaver A, Wade B, Joshi S, Woods RP, Espinoza R, Narr KL. Ketamine treatment modulates habenular and nucleus accumbens static and dynamic functional connectivity in major depression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.01.23299282. [PMID: 38106178 PMCID: PMC10723506 DOI: 10.1101/2023.12.01.23299282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Dysfunctional reward processing in major depressive disorder (MDD) involves functional circuitry of the habenula (Hb) and nucleus accumbens (NAc). Ketamine elicits rapid antidepressant and alleviates anhedonia in MDD. To clarify how ketamine perturbs reward circuitry in MDD, we examined how serial ketamine infusions (SKI) modulate static and dynamic functional connectivity (FC) in Hb and NAc networks. MDD participants (n=58, mean age=40.7 years, female=28) received four ketamine infusions (0.5mg/kg) 2-3 times weekly. Resting-state fMRI scans and clinical assessments were collected at baseline and 24 hours post-SKI completion. Static FC (sFC) and dynamic FC variability (dFCv) were calculated from left and right Hb and NAc seeds to all other brain regions. Paired t-tests examined changes in FC pre-to-post SKI, and correlations were used to determine relationships between FC changes with mood and anhedonia. Following SKI, significant increases in left Hb-bilateral visual cortex FC, decreases in left Hb-left inferior parietal cortex FC, and decreases in left NAc-right cerebellum FC occurred. Decreased dFCv between left Hb and right precuneus and visual cortex, and decreased dFCv between right NAc and right visual cortex both significantly correlated with improvements in Hamilton Depression Rating Scale. Decreased FC between left Hb and bilateral visual/parietal cortices as well as increased FC between left NAc and right visual/parietal cortices both significantly correlated with improvements in anhedonia. Subanesthetic ketamine modulates functional pathways linking the Hb and NAc with visual, parietal, and cerebellar regions. Overlapping effects between Hb and NAc functional systems were associated with ketamine's therapeutic response.
Collapse
Affiliation(s)
- Brandon Taraku
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Joana R Loureiro
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Ashish K Sahib
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Artemis Zavaliangos-Petropulu
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Noor Al-Sharif
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Benjamin Wade
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shantanu Joshi
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Roger P Woods
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Randall Espinoza
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Katherine L Narr
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
14
|
Dunham KE, Khaled KH, Weizman L, Venton BJ. Microdosing ketamine in Drosophila does not inhibit SERT like SSRIs, but causes behavioral changes mediated by glutamate and serotonin receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566121. [PMID: 37986873 PMCID: PMC10659355 DOI: 10.1101/2023.11.07.566121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Recently, the FDA approved microdosing ketamine for treatment resistant depression. Traditional antidepressants, like serotonin selective reuptake inhibitors (SSRIs), block serotonin reuptake, but it is not clear if ketamine blocks serotonin reuptake. Here, we tested the effects of feeding ketamine and SSRIs to Drosophila melanogaster larvae, which has a similar serotonin system to mammals, and is a good model to track depression behaviors, such as locomotion and feeding. Fast-scan cyclic voltammetry (FSCV) was used to measure optogenetically-stimulated serotonin changes, and locomotion tracking software and blue dye feeding to monitor behavior. We fed larvae various doses (1-100 mM) of antidepressants for 24 hours and found that 1 mM ketamine did not affect serotonin, but increased locomotion and feeding. Low doses (≤ 10 mM) of escitalopram and fluoxetine inhibited dSERT and also increased feeding and locomotion behaviors. At 100 mM, ketamine inhibited dSERT and increased serotonin concentrations, but decreased locomotion and feeding due to its anesthetic properties. Since microdosing ketamine causes behavioral effects, we also investigated behavior changes with low doses of other NMDA receptor antagonists and 5-HT1A and 2 agonists, which are other possible sites for ketamine action. NMDA receptor antagonism increased feeding, while serotonin receptor agonism increased locomotion, which could explain these effects with ketamine. Ultimately, this work shows that Drosophila is a good model to discern antidepressant mechanisms, and that ketamine does not work on dSERT like SSRIs at microdoses, but affects behavior with other mechanisms.
Collapse
Affiliation(s)
- Kelly E Dunham
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, USA
| | - Kani H Khaled
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, USA
| | - Leah Weizman
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, USA
| |
Collapse
|
15
|
Wu G, Xu H. A synopsis of multitarget therapeutic effects of anesthetics on depression. Eur J Pharmacol 2023; 957:176032. [PMID: 37660970 DOI: 10.1016/j.ejphar.2023.176032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Depression is a profound mental disorder that dampens the mood and undermines volition, which exhibited an increased incidence over the years. Although drug-based interventions remain the primary approach for depression treatment, the available medications still can't satisfy the patients. In recent years, the newly discovered therapeutic targets such as N-methyl-D-aspartate (NMDA) receptor, α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor, and tyrosine kinase B (TrkB) have brought new breakthroughs in the development of antidepressant drugs. Moreover, it has come to light that certain anesthetics possess pharmacological mechanisms intricately linked to the aforementioned therapeutic targets for depression. At present, numerous preclinical and clinical studies have explored the therapeutic effects of anesthetic drugs such as ketamine, isoflurane, N2O, and propofol, on depression. These investigations suggested that these drugs can swiftly ameliorate patients' depression symptoms and engender long-term effects. In this paper, we provide a comprehensive review of the research progress and potential molecular mechanisms of various anesthetic drugs for depression treatment. By shedding light on this subject, we aim to facilitate the development and clinical implementation of new antidepressant drugs based on anesthetic medications.
Collapse
Affiliation(s)
- Guowei Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Hongwei Xu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
16
|
Yang SQ, Zhou YY, Yang ST, Mao XY, Chen L, Bai ZH, Ping AQ, Xu SY, Li QW, Gao K, Wang SY, Duan KM. Effects of different doses of esketamine intervention on postpartum depressive symptoms in cesarean section women: A randomized, double-blind, controlled clinical study. J Affect Disord 2023; 339:333-341. [PMID: 37442447 DOI: 10.1016/j.jad.2023.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 06/02/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND The optimal dosage and method of esketamine for postpartum depressive symptoms (PDS) are unclear. We conducted a randomized controlled trial (RCT) to investigate the effect of different doses of esketamine on PDS in women undergoing cesarean section, with evidence of prenatal depression. METHODS The three groups were high- (2 mg kg-1) and low-dose (1 mg kg-1) esketamine via patient controlled intravenous analgesia (PCIA), following an initial intravenous infusion of 0.25 mg kg-1 esketamine, compared to placebo (0.9 % saline infusion). All groups also received the sufentanil (2.2 μg kg-1). The primary outcome was the incidence of PDS at 7 and 42 days postpartum. The secondary outcomes were: the remission from depression and total EPDS scores at 7 days and 42 days postpartum; mean change from baseline in the EPDS score; postoperative analgesia. RESULTS i). 0.25 mg kg-1 of esketamine intravenous infusion combined with 1 mg kg-1 (n = 99) or 2 mg kg-1 (n = 99) esketamine PCIA reduces PDS incidence at 7 days postpartum (p < 0.05), with high-dose esketamine PCIA also reduces PDS incidence 42 days postpartum (p < 0.05), compared to placebo (n = 97). ii). Low- and high-dose esketamine PCIA lowers NRS scores at rest within 48 h postoperatively (p < 0.01), with high-dose esketamine also reducing the NRS score during movement at 48 h postoperatively (p = 0.018). iii). Neither high- nor low-dose esketamine PCIA increased postoperative adverse reactions (p > 0.05). CONCLUSIONS Esketamine (0.25 mg kg-1) intravenous infusion combined with 1 mg kg-1 or 2 mg kg-1 esketamine PCIA seems safe and with few adverse effects in the management of PDS and pain in women undergoing cesarean section. LIMITATIONS The tolerability and safety of esketamine requires further investigation based on more specific scales; the transient side effects of esketamine could have biased the staff and patients. TRIAL REGISTRATION ChiCTR-ROC-2000039069.
Collapse
Affiliation(s)
- Si Qi Yang
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Ying Yong Zhou
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Shu Ting Yang
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiao Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Liang Chen
- Department of Anesthesiology, The Maternal and Child Health Hospital of the Hu Nan Province, Changsha, China
| | - Zhi Hong Bai
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - An Qi Ping
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Shou Yu Xu
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Qiu Wen Li
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Kai Gao
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Sai Ying Wang
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, China.
| | - Kai Ming Duan
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
17
|
Rusheen AE, Rojas-Cabrera J, Goyal A, Shin H, Yuen J, Jang DP, Bennet KE, Blaha CD, Lee KH, Oh Y. Deep brain stimulation alleviates tics in Tourette syndrome via striatal dopamine transmission. Brain 2023; 146:4174-4190. [PMID: 37141283 PMCID: PMC10545518 DOI: 10.1093/brain/awad142] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/24/2023] [Accepted: 04/14/2023] [Indexed: 05/05/2023] Open
Abstract
Tourette syndrome is a childhood-onset neuropsychiatric disorder characterized by intrusive motor and vocal tics that can lead to self-injury and deleterious mental health complications. While dysfunction in striatal dopamine neurotransmission has been proposed to underlie tic behaviour, evidence is scarce and inconclusive. Deep brain stimulation (DBS) of the thalamic centromedian parafascicular complex (CMPf), an approved surgical interventive treatment for medical refractory Tourette syndrome, may reduce tics by affecting striatal dopamine release. Here, we use electrophysiology, electrochemistry, optogenetics, pharmacological treatments and behavioural measurements to mechanistically examine how thalamic DBS modulates synaptic and tonic dopamine activity in the dorsomedial striatum. Previous studies demonstrated focal disruption of GABAergic transmission in the dorsolateral striatum of rats led to repetitive motor tics recapitulating the major symptom of Tourette syndrome. We employed this model under light anaesthesia and found CMPf DBS evoked synaptic dopamine release and elevated tonic dopamine levels via striatal cholinergic interneurons while concomitantly reducing motor tic behaviour. The improvement in tic behaviour was found to be mediated by D2 receptor activation as blocking this receptor prevented the therapeutic response. Our results demonstrate that release of striatal dopamine mediates the therapeutic effects of CMPf DBS and points to striatal dopamine dysfunction as a driver for motor tics in the pathoneurophysiology of Tourette syndrome.
Collapse
Affiliation(s)
- Aaron E Rusheen
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN 55902, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55902, USA
| | - Juan Rojas-Cabrera
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN 55902, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55902, USA
| | - Abhinav Goyal
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN 55902, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55902, USA
| | - Hojin Shin
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55902, USA
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
| | - Jason Yuen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55902, USA
- IMPACT—the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Barwon Health, Geelong, VIC 3216, Australia
| | - Dong-Pyo Jang
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Keven E Bennet
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55902, USA
- Division of Engineering, Mayo Clinic, Rochester, MN 55902, USA
| | - Charles D Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55902, USA
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55902, USA
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
| | - Yoonbae Oh
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55902, USA
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
18
|
Johnston JN, Henter ID, Zarate CA. The antidepressant actions of ketamine and its enantiomers. Pharmacol Ther 2023; 246:108431. [PMID: 37146727 PMCID: PMC10213151 DOI: 10.1016/j.pharmthera.2023.108431] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Ketamine, an N-methyl-d-aspartate receptor (NMDAR) antagonist first developed as an anesthetic, has shown significant promise as a medication with rapid antidepressant properties in treatment-resistant depression. However, concerns such as adverse side effects and potential misuse liability have limited its widespread use. Racemic ketamine has two enantiomers-(S)- and (R)-ketamine-that appear to have disparate underlying mechanisms. This brief review summarizes some of the most recent preclinical and clinical research regarding the convergent and divergent prophylactic, immediate, and sustained antidepressant effects of (S)- and (R)-ketamine while addressing potential differences in their side effect and misuse liability profiles. Preclinical research suggests divergent mechanisms underlying (S)- and (R)-ketamine, with (S)-ketamine more directly affecting mechanistic target of rapamycin complex 1 (mTORC1) signaling and (R)-ketamine more directly affecting extracellular signal-related kinase (ERK) signaling. Clinical research suggests that (R)-ketamine has a milder side effect profile than (S)-ketamine and decreases depression rating scale scores, but recent randomized, controlled trials found that it had no significant antidepressant efficacy compared to placebo, suggesting that caution is warranted in interpreting its therapeutic potential. Future preclinical and clinical research is needed to maximize the efficacy of each enantiomer, either by optimizing dose, route of administration, or administration paradigm.
Collapse
Affiliation(s)
- Jenessa N Johnston
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MA, United States.
| | - Ioline D Henter
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MA, United States
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MA, United States
| |
Collapse
|
19
|
Nguyen TML, Jollant F, Tritschler L, Colle R, Corruble E, Gardier AM. Pharmacological Mechanism of Ketamine in Suicidal Behavior Based on Animal Models of Aggressiveness and Impulsivity: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:ph16040634. [PMID: 37111391 PMCID: PMC10146327 DOI: 10.3390/ph16040634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Around 700,000 people die from suicide each year in the world. Approximately 90% of suicides have a history of mental illness, and more than two-thirds occur during a major depressive episode. Specific therapeutic options to manage the suicidal crisis are limited and measures to prevent acting out also remain limited. Drugs shown to reduce the risk of suicide (antidepressants, lithium, or clozapine) necessitate a long delay of onset. To date, no treatment is indicated for the treatment of suicidality. Ketamine, a glutamate NMDA receptor antagonist, is a fast-acting antidepressant with significant effects on suicidal ideation in the short term, while its effects on suicidal acts still need to be demonstrated. In the present article, we reviewed the literature on preclinical studies in order to identify the potential anti-suicidal pharmacological targets of ketamine. Impulsive-aggressive traits are one of the vulnerability factors common to suicide in patients with unipolar and bipolar depression. Preclinical studies in rodent models with impulsivity, aggressiveness, and anhedonia may help to analyze, at least in part, suicide neurobiology, as well as the beneficial effects of ketamine/esketamine on reducing suicidal ideations and preventing suicidal acts. The present review focuses on disruptions in the serotonergic system (5-HTB receptor, MAO-A enzyme), neuroinflammation, and/or the HPA axis in rodent models with an impulsive/aggressive phenotype, because these traits are critical risk factors for suicide in humans. Ketamine can modulate these endophenotypes of suicide in human as well as in animal models. The main pharmacological properties of ketamine are then summarized. Finally, numerous questions arose regarding the mechanisms by which ketamine may prevent an impulsive-aggressive phenotype in rodents and suicidal ideations in humans. Animal models of anxiety/depression are important tools to better understand the pathophysiology of depressed patients, and in helping develop novel and fast antidepressant drugs with anti-suicidal properties and clinical utility.
Collapse
Affiliation(s)
- Thi Mai Loan Nguyen
- Université Paris-Saclay, Faculté de Pharmacie, Inserm CESP/UMR 1018, MOODS Team, F-91400 Orsay, France
| | - Fabrice Jollant
- Université Paris-Saclay, Faculté de Médecine, Inserm CESP/UMR 1018, MOODS Team, F-94270 Le Kremin-Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
- Pôle de Psychiatrie, CHU Nîmes, 30900 Nîmes, France
- Department of Psychiatry, McGill University and McGill Group for Suicide Studies, Montréal, QC H3A 0G4, Canada
| | - Laurent Tritschler
- Université Paris-Saclay, Faculté de Pharmacie, Inserm CESP/UMR 1018, MOODS Team, F-91400 Orsay, France
| | - Romain Colle
- Université Paris-Saclay, Faculté de Médecine, Inserm CESP/UMR 1018, MOODS Team, F-94270 Le Kremin-Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
| | - Emmanuelle Corruble
- Université Paris-Saclay, Faculté de Médecine, Inserm CESP/UMR 1018, MOODS Team, F-94270 Le Kremin-Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
| | - Alain M Gardier
- Université Paris-Saclay, Faculté de Pharmacie, Inserm CESP/UMR 1018, MOODS Team, F-91400 Orsay, France
| |
Collapse
|
20
|
Discontinuation of methylphenidate after long-term exposure in nonhuman primates. Neurotoxicol Teratol 2023; 97:107173. [PMID: 36893929 DOI: 10.1016/j.ntt.2023.107173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/19/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a common human neurobehavioral disorder that usually begins in early childhood. Methylphenidate (MPH) has been used extensively as a first-line medicine for the treatment of ADHD. Since ADHD is often diagnosed in early childhood and can persist for the entire lifespan, individuals may take MPH for many years. Given that in the course of one's lifetime a person may stop taking MPH for periods of time, or may implement lifestyle changes that may reduce the need for MPH entirely, it is important to understand how cessation of MPH affects the adult brain following long-term use of MPH. The blockage of the dopamine transporter (DAT) and the norepinephrine transporter (NET) by MPH may help with ADHD symptoms by boosting monoamine levels in the synapse. In the present study, microPET/CT was used to investigate possible neurochemical alterations in the cerebral dopamine system after cessation of long-term MPH administration in nonhuman primates. MicroPET/CT images were collected from adult male rhesus monkeys 6 months after they stopped receiving vehicle or MPH following 12 years of chronic treatment. The neurochemical status of brain dopaminergic systems was evaluated using the vesicular monoamine transporter 2 (VMAT2) ligand [18F]-AV-133 and a tracer for imaging dopamine subtype 2 (D2) and serotonin subfamily 2 (5HT2) receptors, [18F]-FESP. Each tracer was injected intravenously and ten minutes later microPET/CT images were obtained over 120 min. The binding potential (BP) of each tracer in the striatum was obtained using the Logan reference tissue model with the cerebellar cortex time activity curve (TAC) as an input function. Brain metabolism was also evaluated using microPET/CT images of [18F]-FDG. [18F]-FDG was injected intravenously, and ten minutes later, microPET/CT images were obtained over 120 min. Radiolabeled tracer accumulation in regions of interest (ROIs) in the prefrontal cortex, temporal cortex, striatum, and cerebellum were converted into standard uptake values (SUVs). Compared to the vehicle control group, the BPs of [18F] AV-133 and [18F]-FESP in the striatum were not significantly altered in MPH treated groups. Additionally, no significant differences were detected in the SUVs of [18F]-FDG in the MPH treated group compared with control. This study demonstrates that 6 months after cessation of long-term, chronic MPH treatment, there are no significant neurochemical or neural metabolic changes in the central nervous system (CNS) of non-human primates (NHPs) and suggests that microPET imaging is helpful in assessing the status of biomarkers of neurochemical processes linked to chronic CNS drug exposure. (Supported by NCTR).
Collapse
|
21
|
Nguyen TML, Defaix C, Mendez-David I, Tritschler L, Etting I, Alvarez JC, Choucha W, Colle R, Corruble E, David DJ, Gardier AM. Intranasal (R, S)-ketamine delivery induces sustained antidepressant effects associated with changes in cortical balance of excitatory/inhibitory synaptic activity. Neuropharmacology 2023; 225:109357. [PMID: 36462636 DOI: 10.1016/j.neuropharm.2022.109357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
In 2019, an intranasal (IN) spray of esketamine SPRAVATO® was approved as a fast-acting antidepressant by drug Agencies US FDA and European EMA. At sub-anesthetic doses, (±)-ketamine, a non-competitive glutamate N-methyl-d-aspartate (NMDA) receptor antagonist, increases the overall excitability of the medial prefrontal cortex (mPFC), an effect being essential for its rapid antidepressant activity. We wondered if this effect of ketamine could come from changes in the balance between neuronal excitation and inhibition (E/I balance) in the mPFC. Here, we performed a preclinical approach to study neurochemical and behavioral responses to a single IN ketamine dose in BALB/cJ mice, a strain more sensitive to stress. By using in vivo microdialysis, we measured cortical E/I balance as the ratio between glutamate to GABA extracellular levels 24 h post-ketamine. We found, for the first time, that E/I balance was shifted in favor of excitation rather than inhibition in the mPFC but more robustly with IN KET than with a single intraperitoneal (IP) dose. Increases in plasma and brain ketamine, norketamine and HNKs levels suggest different metabolic profiles of IP and IN ketamine 30 min post-dose. A significantly larger proportion of ketamine and HNKs in the brain are derived from the IN route 30 min post-dose. It may be linked to the greater magnitude in E/I ratio following IN delivery relative to IP at t24 h. This study suggests that both IP and IN are effective brain delivery methods inducing similar sustained antidepressant efficacy of KET, but the way they induced neurotransmitter changes is slightly different.
Collapse
Affiliation(s)
- Thi Mai Loan Nguyen
- Université Paris-Saclay, Faculté de Pharmacie, UMR 1018, CESP-Inserm, MOODS Team, Chatenay-Malabry, 92290, France
| | - Céline Defaix
- Université Paris-Saclay, Faculté de Pharmacie, UMR 1018, CESP-Inserm, MOODS Team, Chatenay-Malabry, 92290, France
| | - Indira Mendez-David
- Université Paris-Saclay, Faculté de Pharmacie, UMR 1018, CESP-Inserm, MOODS Team, Chatenay-Malabry, 92290, France
| | - Laurent Tritschler
- Université Paris-Saclay, Faculté de Pharmacie, UMR 1018, CESP-Inserm, MOODS Team, Chatenay-Malabry, 92290, France
| | - Isabelle Etting
- Lab. Pharmacologie-Toxicologie, Centre Hospitalier Universitaire Raymond Poincaré, AP-HP, Garches, France
| | - Jean-Claude Alvarez
- Lab. Pharmacologie-Toxicologie, Centre Hospitalier Universitaire Raymond Poincaré, AP-HP, Garches, France
| | - Walid Choucha
- Université Paris-Saclay, Faculté de Médecine, UMR 1018, CESP MOODS Team, Bicêtre Hospital, Université Paris-Saclay, Le Kremin-Bicêtre, 94270, France; Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Romain Colle
- Université Paris-Saclay, Faculté de Médecine, UMR 1018, CESP MOODS Team, Bicêtre Hospital, Université Paris-Saclay, Le Kremin-Bicêtre, 94270, France; Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Emmanuelle Corruble
- Université Paris-Saclay, Faculté de Médecine, UMR 1018, CESP MOODS Team, Bicêtre Hospital, Université Paris-Saclay, Le Kremin-Bicêtre, 94270, France; Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Denis J David
- Université Paris-Saclay, Faculté de Pharmacie, UMR 1018, CESP-Inserm, MOODS Team, Chatenay-Malabry, 92290, France
| | - Alain M Gardier
- Université Paris-Saclay, Faculté de Pharmacie, UMR 1018, CESP-Inserm, MOODS Team, Chatenay-Malabry, 92290, France.
| |
Collapse
|
22
|
Ago Y, Yokoyama R, Asano S, Hashimoto H. Roles of the monoaminergic system in the antidepressant effects of ketamine and its metabolites. Neuropharmacology 2023; 223:109313. [PMID: 36328065 DOI: 10.1016/j.neuropharm.2022.109313] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
While the molecular target of (R,S)-ketamine (ketamine) is thought to be the NMDA receptor, subanesthetic doses of ketamine have been known to modulate monoaminergic neurotransmission in the central nervous system. Although the involvement of the serotonergic system in the antidepressant effects of ketamine has been reported in most studies of this topic, some recent studies have reported that the dopaminergic system plays a key role in the effects of ketamine. Additionally, several lines of evidence suggest that the antidepressant-like effects of (R)-ketamine might be independent of the monoaminergic system. Ketamine metabolites also differ considerably in their ability to regulate monoamine neurotransmitters relative to (S)-ketamine and (R)-ketamine, while (2R,6R)-hydroxynorketamine might share common serotonergic signaling mechanisms with ketamine. In the current review, we summarize the effects of ketamine and its metabolites on monoamine neurotransmission in the brain and discuss the potential roles of the monoaminergic system in the mechanism of action of ketamine.
Collapse
Affiliation(s)
- Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, 734-8553, Japan.
| | - Rei Yokoyama
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Satoshi Asano
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, 734-8553, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, 565-0871, Japan; Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka, 565-0871, Japan; Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan; Department of Molecular Pharmaceutical Science, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
23
|
Goswami N, Aleem M, Manda K. Intranasal (2R, 6R)-hydroxynorketamine for acute pain: Behavioural and neurophysiological safety analysis in mice. Clin Exp Pharmacol Physiol 2023; 50:169-177. [PMID: 36371631 DOI: 10.1111/1440-1681.13737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/12/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
Abstract
Ketamine is known for its antinociceptive effect and is also used for treatment-resistant depression. However, the efficacy and safety of (2R, 6R)-hydroxynorketamine (HNK), a ketamine metabolite has been sparingly investigated for acute pain management. The current study aims at investigating the antinociceptive effect of intranasal (2R, 6R)-HNK using pre-clinical models of acute pain. Additionally, the behavioural and neurophysiological safety analyses were carried out for the effective time window. Antinociceptive efficacy of (2R, 6R)-HNK was evaluated using the hot plate test and Hargreaves' plantar test. The formalin test was carried out in both the acute and tonic phases. The neurophysiological and behavioural safety analyses were carried out separately for the haemodynamic function, cortical electroencephalography (EEG), and spontaneous behavioural functions. Analgesic effect of (2R, 6R)-HNK was evident by a significant increase in paw-withdrawal latency in both Hargreaves' and hot plate tests. Additionally, the (2R, 6R)-HNK showed a significant ameliorative effect on pain-related behaviour in the second phase of the formalin test. (2R, 6R)-HNK exhibited an anxiolytic effect without causing any significant changes in locomotor activity and haemodynamic parameters. Power spectral density (PSD) analysis of electroencephalogram revealed no significant changes except a comparative increase in the gamma band range. Both the locomotor functions in the open field test and the PSD value of delta wave indicated no sedative effect at the given dose of (2R, 6R)-HNK. The results demonstrated the pain-alleviating effect of (2R, 6R)-HNK without compromising the neurophysiological and behavioural function. Therefore, intranasal (2R, 6R)-HNK is suggested as a safe candidate for further clinical study in the management of acute pain.
Collapse
Affiliation(s)
- Nidhi Goswami
- Division of Behavioral Neuroscience, Institute of Nuclear Medicine & Allied Sciences, Delhi, India
| | - Mohd Aleem
- Division of Behavioral Neuroscience, Institute of Nuclear Medicine & Allied Sciences, Delhi, India
| | - Kailash Manda
- Division of Behavioral Neuroscience, Institute of Nuclear Medicine & Allied Sciences, Delhi, India
| |
Collapse
|
24
|
Zhang K, Yao Y, Hashimoto K. Ketamine and its metabolites: Potential as novel treatments for depression. Neuropharmacology 2023; 222:109305. [PMID: 36354092 DOI: 10.1016/j.neuropharm.2022.109305] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
Depression is a well-known serious mental illness, and the onset of treatment using traditional antidepressants is frequently delayed by several weeks. Moreover, numerous patients with depression fail to respond to therapy. One major breakthrough in antidepressant therapy is that subanesthetic ketamine doses can rapidly alleviate depressive symptoms within hours of administering a single dose, even in treatment-resistant patients. However, specific mechanisms through which ketamine exerts its antidepressant effects remain elusive, leading to concerns regarding its rapid and long-lasting antidepressant effects. N-methyl-d-aspartate receptor (NMDAR) antagonists like ketamine are reportedly associated with serious side effects, such as dissociative symptoms, cognitive impairment, and abuse potential, limiting the large-scale clinical use of ketamine as an antidepressant. Herein, we reviewed the pharmacological properties of ketamine and the mechanisms of action underlying the rapid antidepressant efficacy, including the disinhibition hypothesis and synaptogenesis, along with common downstream effector pathways such as enhanced brain-derived neurotrophic factor and tropomyosin-related kinase B signaling, activation of the mechanistic target of rapamycin complex 1 and transforming growth factor β1. We focused on evidence supporting the relevance of these potential mechanisms of ketamine and its metabolites in mediating the clinical efficacy of the drug. Given its reported antidepressant efficacy in preclinical studies and limited undesirable adverse effects, (R)-ketamine may be a safer, more controllable, rapid antidepressant. Overall, understanding the potential mechanisms of action of ketamine and its metabolites in combination with pharmacology may help develop a new generation of rapid antidepressants that maximize antidepressant effects while avoiding unfavorable adverse effects. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, China; Anhui Psychiatric Center, Anhui Medical University, Hefei, China.
| | - Yitan Yao
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, China; Anhui Psychiatric Center, Anhui Medical University, Hefei, China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan.
| |
Collapse
|
25
|
Bonaventura J, Gomez JL, Carlton ML, Lam S, Sanchez-Soto M, Morris PJ, Moaddel R, Kang HJ, Zanos P, Gould TD, Thomas CJ, Sibley DR, Zarate CA, Michaelides M. Target deconvolution studies of (2R,6R)-hydroxynorketamine: an elusive search. Mol Psychiatry 2022; 27:4144-4156. [PMID: 35768639 PMCID: PMC10013843 DOI: 10.1038/s41380-022-01673-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
The off-label use of racemic ketamine and the FDA approval of (S)-ketamine are promising developments for the treatment of depression. Nevertheless, racemic ketamine and (S)-ketamine are controlled substances with known abuse potential and their use is associated with undesirable side effects. For these reasons, research efforts have focused on identifying alternatives. One candidate is (2R,6R)-hydroxynorketamine ((2R,6R)-HNK), a ketamine metabolite that in preclinical models lacks the dissociative and abuse properties of ketamine while retaining its antidepressant-like behavioral efficacy. (2R,6R)-HNK's mechanism of action however is unclear. The main goals of this study were to perform an in-depth pharmacological characterization of (2R,6R)-HNK at known ketamine targets, to use target deconvolution approaches to discover novel proteins that bind to (2R,6R)-HNK, and to characterize the biodistribution and behavioral effects of (2R,6R)-HNK across several procedures related to substance use disorder liability. We found that unlike (S)- or (R)-ketamine, (2R,6R)-HNK did not directly bind to any known or proposed ketamine targets. Extensive screening and target deconvolution experiments at thousands of human proteins did not identify any other direct (2R,6R)-HNK-protein interactions. Biodistribution studies using radiolabeled (2R,6R)-HNK revealed non-selective brain regional enrichment, and no specific binding in any organ other than the liver. (2R,6R)-HNK was inactive in conditioned place preference, open-field locomotor activity, and intravenous self-administration procedures. Despite these negative findings, (2R,6R)-HNK produced a reduction in immobility time in the forced swim test and a small but significant increase in metabolic activity across a network of brain regions, and this metabolic signature differed from the brain metabolic profile induced by ketamine enantiomers. In sum, our results indicate that (2R,6R)-HNK does not share pharmacological or behavioral profile similarities with ketamine or its enantiomers. However, it could still be possible that both ketamine and (2R,6R)-HNK exert antidepressant-like efficacy through a common and previously unidentified mechanism. Given its pharmacological profile, we predict that (2R,6R)-HNK will exhibit a favorable safety profile in clinical trials, and we must wait for clinical studies to determine its antidepressant efficacy.
Collapse
Affiliation(s)
- Jordi Bonaventura
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, 21224, MD, USA
- Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Catalonia, Spain
| | - Juan L Gomez
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, 21224, MD, USA
| | - Meghan L Carlton
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, 21224, MD, USA
| | - Sherry Lam
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, 21224, MD, USA
| | - Marta Sanchez-Soto
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, 20892, MD, USA
| | - Patrick J Morris
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, 20850, MD, USA
| | - Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA
| | - Hye Jin Kang
- National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, 27599, NC, USA
| | - Panos Zanos
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus
| | - Todd D Gould
- Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA
- Departments of Psychiatry, Pharmacology, and Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, 21201, MD, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, 20850, MD, USA
| | - David R Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, 20892, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Intramural Research Program, Bethesda, 20892, MD, USA
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, 21224, MD, USA.
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA.
| |
Collapse
|
26
|
Riggs LM, Thompson SM, Gould TD. (2R,6R)-hydroxynorketamine rapidly potentiates optically-evoked Schaffer collateral synaptic activity. Neuropharmacology 2022; 214:109153. [PMID: 35661657 PMCID: PMC9904284 DOI: 10.1016/j.neuropharm.2022.109153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/31/2022]
Abstract
(2R,6R)-hydroxynorketamine (HNK) is a metabolite of ketamine that exerts rapid and sustained antidepressant-like effects in preclinical studies. We hypothesize that the rapid antidepressant actions of (2R,6R)-HNK involve an acute increase in glutamate release at Schaffer collateral synapses. Here, we used an optogenetic approach to assess whether (2R,6R)-HNK promotes glutamate release at CA1-projecting Schaffer collateral terminals in response to select optical excitation of CA3 afferents. The red-shifted channelrhodopsin, ChrimsonR, was expressed in dorsal CA3 neurons of adult male Sprague Dawley rats. Transverse slices were collected four weeks later to determine ChrimsonR expression and to assess the acute synaptic effects of an antidepressant-relevant concentration of (2R,6R)-HNK (10 μM). (2R,6R)-HNK led to a rapid potentiation of CA1 field excitatory postsynaptic potentials evoked by recurrent optical stimulation of ChrimsonR-expressing CA3 afferents. This potentiation is mediated in part by an increase in glutamate release probability, as (2R,6R)-HNK suppressed paired-pulse facilitation at CA3 projections, an effect that correlated with the magnitude of the (2R,6R)-HNK-induced potentiation of CA1 activity. These results demonstrate that (2R,6R)-HNK increases the probability of glutamate release at CA1-projecting Schaffer collateral afferents, which may be involved in the antidepressant-relevant behavioral adaptations conferred by (2R,6R)-HNK in vivo. The current study also establishes proof-of-principle that genetically-encoded light-sensitive proteins can be used to investigate the synaptic plasticity induced by novel antidepressant compounds in neuronal subcircuits.
Collapse
Affiliation(s)
- Lace M Riggs
- Program in Neuroscience and Training Program in Integrative Membrane Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Scott M Thompson
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA.
| |
Collapse
|
27
|
Simmler LD, Li Y, Hadjas LC, Hiver A, van Zessen R, Lüscher C. Dual action of ketamine confines addiction liability. Nature 2022; 608:368-373. [PMID: 35896744 DOI: 10.1038/s41586-022-04993-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/17/2022] [Indexed: 12/19/2022]
Abstract
Ketamine is used clinically as an anaesthetic and a fast-acting antidepressant, and recreationally for its dissociative properties, raising concerns of addiction as a possible side effect. Addictive drugs such as cocaine increase the levels of dopamine in the nucleus accumbens. This facilitates synaptic plasticity in the mesolimbic system, which causes behavioural adaptations and eventually drives the transition to compulsion1-4. The addiction liability of ketamine is a matter of much debate, in part because of its complex pharmacology that among several targets includes N-methyl-D-aspartic acid (NMDA) receptor (NMDAR) antagonism5,6. Here we show that ketamine does not induce the synaptic plasticity that is typically observed with addictive drugs in mice, despite eliciting robust dopamine transients in the nucleus accumbens. Ketamine nevertheless supported reinforcement through the disinhibition of dopamine neurons in the ventral tegmental area (VTA). This effect was mediated by NMDAR antagonism in GABA (γ-aminobutyric acid) neurons of the VTA, but was quickly terminated by type-2 dopamine receptors on dopamine neurons. The rapid off-kinetics of the dopamine transients along with the NMDAR antagonism precluded the induction of synaptic plasticity in the VTA and the nucleus accumbens, and did not elicit locomotor sensitization or uncontrolled self-administration. In summary, the dual action of ketamine leads to a unique constellation of dopamine-driven positive reinforcement, but low addiction liability.
Collapse
Affiliation(s)
- Linda D Simmler
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Yue Li
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Lotfi C Hadjas
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Agnès Hiver
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Ruud van Zessen
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Christian Lüscher
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland. .,Service de Neurologie, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland.
| |
Collapse
|
28
|
Willis DE, Goldstein PA. Targeting Affective Mood Disorders With Ketamine to Prevent Chronic Postsurgical Pain. FRONTIERS IN PAIN RESEARCH 2022; 3:872696. [PMID: 35832728 PMCID: PMC9271565 DOI: 10.3389/fpain.2022.872696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
The phencyclidine-derivative ketamine [2-(2-chlorophenyl)-2-(methylamino)cyclohexan-1-one] was added to the World Health Organization's Model List of Essential Medicines in 1985 and is also on the Model List of Essential Medicines for Children due to its efficacy and safety as an intravenous anesthetic. In sub-anesthetic doses, ketamine is an effective analgesic for the treatment of acute pain (such as may occur in the perioperative setting). Additionally, ketamine may have efficacy in relieving some forms of chronic pain. In 2019, Janssen Pharmaceuticals received regulatory-approval in both the United States and Europe for use of the S-enantiomer of ketamine in adults living with treatment-resistant major depressive disorder. Pre-existing anxiety/depression and the severity of postoperative pain are risk factors for development of chronic postsurgical pain. An important question is whether short-term administration of ketamine can prevent the conversion of acute postsurgical pain to chronic postsurgical pain. Here, we have reviewed ketamine's effects on the biopsychological processes underlying pain perception and affective mood disorders, focusing on non-NMDA receptor-mediated effects, with an emphasis on results from human trials where available.
Collapse
Affiliation(s)
- Dianna E. Willis
- Burke Neurological Institute, White Plains, NY, United States
- Feil Family Brain and Mind Institute, Weill Cornell Medicine, New York, NY, United States
| | - Peter A. Goldstein
- Feil Family Brain and Mind Institute, Weill Cornell Medicine, New York, NY, United States
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Peter A. Goldstein
| |
Collapse
|
29
|
Sharafi A, Pakkhesal S, Fakhari A, Khajehnasiri N, Ahmadalipour A. Rapid treatments for depression: Endocannabinoid system as a therapeutic target. Neurosci Biobehav Rev 2022; 137:104635. [PMID: 35351488 DOI: 10.1016/j.neubiorev.2022.104635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 12/16/2022]
Abstract
Current first-line treatments for major depressive disorder (MDD), i.e., antidepressant drugs and psychotherapy, show delayed onset of therapeutic effect as late as 2-3 weeks or more. In the clinic, the speed of beginning of the actions of antidepressant drugs or other interventions is vital for many reasons. Late-onset means that depression, its related disability, and the potential danger of suicide remain a threat for some patients. There are some rapid-acting antidepressant interventions, such as sleep deprivation, ketamine, acute exercise, which induce a significant response, ranging from a few hours to maximally one week, and most of them share a common characteristic that is the activation of the endocannabinoid (eCB) system. Activation of this system, i.e., augmentation of eCB signaling, appears to have anti-depressant-like actions. This article puts the idea forward that the activation of eCB signaling represents a critical mechanism of rapid-acting therapeutic interventions in MDD, and this system might contribute to the development of novel rapid-acting treatments for MDD.
Collapse
Affiliation(s)
- AmirMohammad Sharafi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Pakkhesal
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Fakhari
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazli Khajehnasiri
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Ali Ahmadalipour
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
30
|
Bhimani RV, Yates R, Bass CE, Park J. Distinct limbic dopamine regulation across olfactory-tubercle subregions through integration of in vivo fast-scan cyclic voltammetry and optogenetics. J Neurochem 2022; 161:53-68. [PMID: 35061915 PMCID: PMC8930533 DOI: 10.1111/jnc.15577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
Abstract
The olfactory tubercle (OT), an important component of the ventral striatum and limbic system, is involved in multi-sensory integration of reward-related information in the brain. However, its functional roles are often overshadowed by the neighboring nucleus accumbens. Increasing evidence has highlighted that dense dopamine (DA) innervation of the OT from the ventral tegmental area (VTA) is implicated in encoding reward, natural reinforcers, and motivated behaviors. Recent studies have further suggested that OT subregions may have distinct roles in these processes due to their heterogeneous DA transmission. Currently, very little is known about regulation (release and clearance) of extracellular DA across OT subregions due to its limited anatomical accessibility and proximity to other DA-rich brain regions, making it difficult to isolate VTA-DA signaling in the OT with conventional methods. Herein, we characterized heterogeneous VTA-DA regulation in the medial (m) and lateral (l) OT in "wild-type," urethane-anesthetized rats by integrating in vivo fast-scan cyclic voltammetry with cell-type specific optogenetics to stimulate VTA-DA neurons. Channelrhodopsin-2 was selectively expressed in the VTA-DA neurons of wild-type rats and optical stimulating parameters were optimized to determine VTA-DA transmission across the OT. Our anatomical, neurochemical, and pharmacological results show that VTA-DA regulation in the mOT is less dependent on DA transporters and has greater DA transmission than the lOT. These findings establish the OT as a unique, compartmentalized structure and will aid in future behavioral characterization of the roles of VTA-DA signaling in the OT subregions in reward, drug addiction, and encoding behavioral outputs necessary for survival.
Collapse
Affiliation(s)
- Rohan V. Bhimani
- Neuroscience Program, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
| | - Ryan Yates
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
| | - Caroline E. Bass
- Neuroscience Program, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
- Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
| | - Jinwoo Park
- Neuroscience Program, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
- Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
| |
Collapse
|
31
|
Hess EM, Riggs LM, Michaelides M, Gould TD. Mechanisms of ketamine and its metabolites as antidepressants. Biochem Pharmacol 2022; 197:114892. [PMID: 34968492 PMCID: PMC8883502 DOI: 10.1016/j.bcp.2021.114892] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023]
Abstract
Treating major depression is a medical need that remains unmet by monoaminergic therapeutic strategies that commonly fail to achieve symptom remission. A breakthrough in the treatment of depression was the discovery that the anesthetic (R,S)-ketamine (ketamine), when administered at sub-anesthetic doses, elicits rapid (sometimes within hours) antidepressant effects in humans that are otherwise resistant to monoaminergic-acting therapies. While this finding was revolutionary and led to the FDA approval of (S)-ketamine (esketamine) for use in adults with treatment-resistant depression and suicidal ideation, the mechanisms underlying how ketamine or esketamine elicit their effects are still under active investigation. An emerging view is that metabolism of ketamine may be a crucial step in its mechanism of action, as several metabolites of ketamine have neuroactive effects of their own and may be leveraged as therapeutics. For example, (2R,6R)-hydroxynorketamine (HNK), is readily observed in humans following ketamine treatment and has shown therapeutic potential in preclinical tests of antidepressant efficacy and synaptic potentiation while being devoid of the negative adverse effects of ketamine, including its dissociative properties and abuse potential. We discuss preclinical and clinical studies pertaining to how ketamine and its metabolites produce antidepressant effects. Specifically, we explore effects on glutamate neurotransmission through N-methyl D-aspartate receptors (NMDARs) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), synaptic structural changes via brain derived neurotrophic factor (BDNF) signaling, interactions with opioid receptors, and the enhancement of serotonin, norepinephrine, and dopamine signaling. Strategic targeting of these mechanisms may result in novel rapid-acting antidepressants with fewer undesirable side effects compared to ketamine.
Collapse
Affiliation(s)
- Evan M Hess
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Lace M Riggs
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Program in Neuroscience and Training Program in Integrative Membrane Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Michael Michaelides
- Biobehavioral Imaging & Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Departments of Pharmacology and Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Baltimore Veterans Affairs Medical Center, Veterans Affairs Maryland Health Care System, Baltimore, MD 21201, USA.
| |
Collapse
|
32
|
Comments to pharmacological and behavioral divergence of ketamine enantiomers by Jordi Bonaventura et al. Mol Psychiatry 2022; 27:1860-1862. [PMID: 35177823 PMCID: PMC9126803 DOI: 10.1038/s41380-022-01447-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 11/09/2022]
|
33
|
CYP 450 enzymes influence (R,S)-ketamine brain delivery and its antidepressant activity. Neuropharmacology 2021; 206:108936. [PMID: 34965407 DOI: 10.1016/j.neuropharm.2021.108936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022]
Abstract
Esketamine, the S-stereoisomer of (R,S)-ketamine was recently approved by drug agencies (FDA, EMA), as an antidepressant drug with a new mechanism of action. (R,S)-ketamine is a N-methyl-d-aspartate receptor (NMDA-R) antagonist putatively acting on GABAergic inhibitory synapses to increase excitatory synaptic glutamatergic neurotransmission. Unlike monoamine-based antidepressants, (R,S)-ketamine exhibits rapid and persistent antidepressant activity at subanesthetic doses in preclinical rodent models and in treatment-resistant depressed patients. Its major brain metabolite, (2R,6R)-hydroxynorketamine (HNK) is formed following (R,S)-ketamine metabolism by various cytochrome P450 enzymes (CYP) mainly activated in the liver depending on routes of administration [e.g., intravenous (largely used for a better bioavailability), intranasal spray, intracerebral, subcutaneous, intramuscular or oral]. Experimental or clinical studies suggest that (2R,6R)-HNK could be an antidepressant drug candidate. However, questions still remain regarding its molecular and cellular targets in the brain and its role in (R,S)-ketamine's fast-acting antidepressant effects. The purpose of the present review is: 1) to review (R,S)-ketamine pharmacokinetic properties in humans and rodents and its metabolism by CYP enzymes to form norketamine and HNK metabolites; 2) to provide a summary of preclinical strategies challenging the role of these metabolites by modifying (R,S)-ketamine metabolism, e.g., by administering a pre-treatment CYP inducers or inhibitors; 3) to analyze the influence of sex and age on CYP expression and (R,S)-ketamine metabolism. Importantly, this review describes (R,S)-ketamine pharmacodynamics and pharmacokinetics to alert clinicians about possible drug-drug interactions during a concomitant administration of (R,S)-ketamine and CYP inducers/inhibitors that could enhance or blunt, respectively, (R,S)-ketamine's therapeutic antidepressant efficacy in patients.
Collapse
|
34
|
Štefková-Mazochová K, Danda H, Dehaen W, Jurásek B, Šíchová K, Pinterová-Leca N, Mazoch V, Krausová BH, Kysilov B, Smejkalová T, Vyklický L, Kohout M, Hájková K, Svozil D, Horsley RR, Kuchař M, Páleníček T. Pharmacokinetic, pharmacodynamic, and behavioural studies of deschloroketamine in Wistar rats. Br J Pharmacol 2021; 179:65-83. [PMID: 34519023 DOI: 10.1111/bph.15680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Deschloroketamine (DCK), a structural analogue of ketamine, has recently emerged on the illicit drug market as a recreational drug with a modestly long duration of action. Despite it being widely used by recreational users, no systematic research on its effects has been performed to date. EXPERIMENTAL APPROACH Pharmacokinetics, acute effects, and addictive potential in a series of behavioural tests in Wistar rats were performed following subcutaneous (s.c.) administration of DCK (5, 10, and 30 mg·kg-1 ) and its enantiomers S-DCK (10 mg·kg-1 ) and R-DCK (10 mg·kg-1 ). Additionally, activity at human N-methyl-d-aspartate (NMDA) receptors was also evaluated. KEY RESULTS DCK rapidly crossed the blood brain barrier, with maximum brain levels achieved at 30 min and remaining high at 2 h after administration. Its antagonist activity at NMDA receptors is comparable to that of ketamine with S-DCK being more potent. DCK had stimulatory effects on locomotion, induced place preference, and robustly disrupted PPI. Locomotor stimulant effects tended to disappear more quickly than disruptive effects on PPI. S-DCK had more pronounced stimulatory properties than its R-enantiomer. However, the potency in disrupting PPI was comparable in both enantiomers. CONCLUSION AND IMPLICATIONS DCK showed similar behavioural and addictive profiles and pharmacodynamics to ketamine, with S-DCK being in general more active. It has a slightly slower pharmacokinetic profile than ketamine, which is consistent with its reported longer duration of action. These findings have implications and significance for understanding the risks associated with illicit use of DCK.
Collapse
Affiliation(s)
| | - Hynek Danda
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,3rd Faculty of Medicine, Charles University, Prague 10, Czech Republic
| | - Wim Dehaen
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague 6, Czech Republic
| | - Bronislav Jurásek
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague 6, Czech Republic
| | - Klára Šíchová
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic
| | - Nikola Pinterová-Leca
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,3rd Faculty of Medicine, Charles University, Prague 10, Czech Republic
| | - Vladimír Mazoch
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic
| | - Barbora Hrčka Krausová
- Department of Cellular Neurophysiology, Institute of Physiology, CAS, Prague 4, Czech Republic
| | - Bohdan Kysilov
- Department of Cellular Neurophysiology, Institute of Physiology, CAS, Prague 4, Czech Republic
| | - Tereza Smejkalová
- Department of Cellular Neurophysiology, Institute of Physiology, CAS, Prague 4, Czech Republic
| | - Ladislav Vyklický
- Department of Cellular Neurophysiology, Institute of Physiology, CAS, Prague 4, Czech Republic
| | - Michal Kohout
- Department of Organic Chemistry, University of Chemistry and Technology, Prague 6, Czech Republic
| | - Kateřina Hájková
- Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague 6, Czech Republic.,Department of Analytical Chemistry, University of Chemistry and Technology, Prague 6, Czech Republic
| | - Daniel Svozil
- CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague 6, Czech Republic.,CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Institute of Molecular Genetics, CAS, Prague 4, Czech Republic
| | - Rachel R Horsley
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic
| | - Martin Kuchař
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague 6, Czech Republic
| | - Tomáš Páleníček
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,3rd Faculty of Medicine, Charles University, Prague 10, Czech Republic
| |
Collapse
|
35
|
Bhimani RV, Vik M, Wakabayashi KT, Szalkowski C, Bass CE, Park J. Distinct dose-dependent effects of methamphetamine on real-time dopamine transmission in the rat nucleus accumbens and behaviors. J Neurochem 2021; 158:865-879. [PMID: 34265079 PMCID: PMC8376794 DOI: 10.1111/jnc.15470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 01/17/2023]
Abstract
Methamphetamine (METH) is a potent psychostimulant that exerts many of its physiological and psychomotor effects by increasing extracellular dopamine (DA) concentrations in limbic brain regions. While several studies have focused on how potent, neurotoxic doses of METH augment or attenuate DA transmission, the acute effects of lower and behaviorally activating doses of METH on modulating DA regulation (release and clearance) through DA D2 autoreceptors and transporters remain to be elucidated. In this study, we investigated how systemic administration of escalating, subneurotoxic doses of METH (0.5-5 mg/kg, IP) alter extracellular DA regulation in the nucleus accumbens (NAc), in both anesthetized and awake-behaving rats through the use of in vivo fast-scan cyclic voltammetry. Pharmacological, electrochemical, and behavioral evidence show that lower doses (≤2.0 mg/kg, IP) of METH enhance extracellular phasic DA concentrations and locomotion as well as stereotypies. In contrast, higher doses (≥5.0 mg/kg) further increase both phasic and baseline DA concentrations and stereotypies but decrease horizontal locomotion. Importantly, our results suggest that acute METH-induced enhancement of extracellular DA concentrations dose dependently activates D2 autoreceptors. Therefore, these different METH dose-dependent effects on mesolimbic DA transmission may distinctly impact METH-induced behavioral changes. This study provides valuable insights regarding how low METH doses alter DA transmission and paves the way for future clinical studies on the reinforcing effects of METH.
Collapse
Affiliation(s)
- Rohan V. Bhimani
- Neuroscience Program, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
| | - Megan Vik
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
| | - Ken T. Wakabayashi
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
- Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
| | - Caitlin Szalkowski
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
| | - Caroline E. Bass
- Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
| | - Jinwoo Park
- Neuroscience Program, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
- Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
| |
Collapse
|
36
|
Kokkinou M, Irvine EE, Bonsall DR, Natesan S, Wells LA, Smith M, Glegola J, Paul EJ, Tossell K, Veronese M, Khadayate S, Dedic N, Hopkins SC, Ungless MA, Withers DJ, Howes OD. Reproducing the dopamine pathophysiology of schizophrenia and approaches to ameliorate it: a translational imaging study with ketamine. Mol Psychiatry 2021; 26:2562-2576. [PMID: 32382134 PMCID: PMC8440182 DOI: 10.1038/s41380-020-0740-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 04/06/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Abstract
Patients with schizophrenia show increased striatal dopamine synthesis capacity in imaging studies. The mechanism underlying this is unclear but may be due to N-methyl-D-aspartate receptor (NMDAR) hypofunction and parvalbumin (PV) neuronal dysfunction leading to disinhibition of mesostriatal dopamine neurons. Here, we develop a translational mouse model of the dopamine pathophysiology seen in schizophrenia and test approaches to reverse the dopamine changes. Mice were treated with sub-chronic ketamine (30 mg/kg) or saline and then received in vivo positron emission tomography of striatal dopamine synthesis capacity, analogous to measures used in patients. Locomotor activity was measured using the open-field test. In vivo cell-type-specific chemogenetic approaches and pharmacological interventions were used to manipulate neuronal excitability. Immunohistochemistry and RNA sequencing were used to investigate molecular mechanisms. Sub-chronic ketamine increased striatal dopamine synthesis capacity (Cohen's d = 2.5) and locomotor activity. These effects were countered by inhibition of midbrain dopamine neurons, and by activation of PV interneurons in pre-limbic cortex and ventral subiculum of the hippocampus. Sub-chronic ketamine reduced PV expression in these cortical and hippocampal regions. Pharmacological intervention with SEP-363856, a novel psychotropic agent with agonism at trace amine receptor 1 (TAAR1) and 5-HT1A receptors but no appreciable action at dopamine D2 receptors, significantly reduced the ketamine-induced increase in dopamine synthesis capacity. These results show that sub-chronic ketamine treatment in mice mimics the dopaminergic alterations in patients with psychosis, that this requires activation of midbrain dopamine neurons, and can be ameliorated by activating PV interneurons and by a TAAR1/5-HT1A agonist. This identifies novel therapeutic approaches for targeting presynaptic dopamine dysfunction in patients with schizophrenia and effects of ketamine relevant to its therapeutic use for treating major depression.
Collapse
Affiliation(s)
- Michelle Kokkinou
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Elaine E Irvine
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - David R Bonsall
- Invicro, Burlington Danes, Hammersmith Hospital, London, W12 0NN, UK
| | - Sridhar Natesan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Lisa A Wells
- Invicro, Burlington Danes, Hammersmith Hospital, London, W12 0NN, UK
| | - Mark Smith
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Justyna Glegola
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Eleanor J Paul
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Kyoko Tossell
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Sanjay Khadayate
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
| | - Nina Dedic
- Sunovion Pharmaceuticals, 84 Waterford Drive, Marlborough, MA, 01752, USA
| | - Seth C Hopkins
- Sunovion Pharmaceuticals, 84 Waterford Drive, Marlborough, MA, 01752, USA
| | - Mark A Ungless
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Dominic J Withers
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
| | - Oliver D Howes
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK.
| |
Collapse
|
37
|
Boczek T, Mackiewicz J, Sobolczyk M, Wawrzyniak J, Lisek M, Ferenc B, Guo F, Zylinska L. The Role of G Protein-Coupled Receptors (GPCRs) and Calcium Signaling in Schizophrenia. Focus on GPCRs Activated by Neurotransmitters and Chemokines. Cells 2021; 10:cells10051228. [PMID: 34067760 PMCID: PMC8155952 DOI: 10.3390/cells10051228] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 01/13/2023] Open
Abstract
Schizophrenia is a common debilitating disease characterized by continuous or relapsing episodes of psychosis. Although the molecular mechanisms underlying this psychiatric illness remain incompletely understood, a growing body of clinical, pharmacological, and genetic evidence suggests that G protein-coupled receptors (GPCRs) play a critical role in disease development, progression, and treatment. This pivotal role is further highlighted by the fact that GPCRs are the most common targets for antipsychotic drugs. The GPCRs activation evokes slow synaptic transmission through several downstream pathways, many of them engaging intracellular Ca2+ mobilization. Dysfunctions of the neurotransmitter systems involving the action of GPCRs in the frontal and limbic-related regions are likely to underly the complex picture that includes the whole spectrum of positive and negative schizophrenia symptoms. Therefore, the progress in our understanding of GPCRs function in the control of brain cognitive functions is expected to open new avenues for selective drug development. In this paper, we review and synthesize the recent data regarding the contribution of neurotransmitter-GPCRs signaling to schizophrenia symptomology.
Collapse
Affiliation(s)
- Tomasz Boczek
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Joanna Mackiewicz
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Marta Sobolczyk
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Julia Wawrzyniak
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Malwina Lisek
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Bozena Ferenc
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
- Correspondence:
| |
Collapse
|
38
|
Carboni E, Carta AR, Carboni E, Novelli A. Repurposing Ketamine in Depression and Related Disorders: Can This Enigmatic Drug Achieve Success? Front Neurosci 2021; 15:657714. [PMID: 33994933 PMCID: PMC8120160 DOI: 10.3389/fnins.2021.657714] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/31/2021] [Indexed: 12/27/2022] Open
Abstract
Repurposing ketamine in the therapy of depression could well represent a breakthrough in understanding the etiology of depression. Ketamine was originally used as an anesthetic drug and later its use was extended to other therapeutic applications such as analgesia and the treatment of addiction. At the same time, the abuse of ketamine as a recreational drug has generated a concern for its psychotropic and potential long-term effects; nevertheless, its use as a fast acting antidepressant in treatment-resistant patients has boosted the interest in the mechanism of action both in psychiatry and in the wider area of neuroscience. This article provides a comprehensive overview of the actions of ketamine and intends to cover: (i) the evaluation of its clinical use in the treatment of depression and suicidal behavior; (ii) the potential use of ketamine in pediatrics; (iii) a description of its mechanism of action; (iv) the involvement of specific brain areas in producing antidepressant effects; (v) the potential interaction of ketamine with the hypothalamic-pituitary-adrenal axis; (vi) the effect of ketamine on neuronal transmission in the bed nucleus of stria terminalis and on its output; (vii) the evaluation of any gender-dependent effects of ketamine; (viii) the interaction of ketamine with the inflammatory processes involved in depression; (ix) the evaluation of the effects observed with single or repeated administration; (x) a description of any adverse or cognitive effects and its abuse potential. Finally, this review attempts to assess whether ketamine's use in depression can improve our knowledge of the etiopathology of depression and whether its therapeutic effect can be considered an actual cure for depression rather than a therapy merely aimed to control the symptoms of depression.
Collapse
Affiliation(s)
- Ezio Carboni
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Anna R. Carta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Elena Carboni
- Unit of Paediatrics, ASST Cremona Maggiore Hospital, Cremona, Italy
| | - Antonello Novelli
- Department of Psychology and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
- Sanitary Institute of the Princedom of Asturias, Oviedo, Spain
| |
Collapse
|
39
|
Highland JN, Zanos P, Riggs LM, Georgiou P, Clark SM, Morris PJ, Moaddel R, Thomas CJ, Zarate CA, Pereira EFR, Gould TD. Hydroxynorketamines: Pharmacology and Potential Therapeutic Applications. Pharmacol Rev 2021; 73:763-791. [PMID: 33674359 PMCID: PMC7938660 DOI: 10.1124/pharmrev.120.000149] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hydroxynorketamines (HNKs) are formed in vivo after (R,S)-ketamine (ketamine) administration. The 12 HNK stereoisomers are distinguished by the position of cyclohexyl ring hydroxylation (at the 4, 5, or 6 position) and their unique stereochemistry at two stereocenters. Although HNKs were initially classified as inactive metabolites because of their lack of anesthetic effects, more recent studies have begun to reveal their biologic activities. In particular, (2R,6R)- and (2S 6)-HNK exert antidepressant-relevant behavioral and physiologic effects in preclinical models, which led to a rapid increase in studies seeking to clarify the mechanisms by which HNKs exert their pharmacological effects. To date, the majority of HNK research has focused on the actions of (2R,6R)-HNK because of its robust behavioral actions in tests of antidepressant effectiveness and its limited adverse effects. This review describes HNK pharmacokinetics and pharmacodynamics, as well as the putative cellular, molecular, and synaptic mechanisms thought to underlie their behavioral effects, both following their metabolism from ketamine and after direct administration in preclinical studies. Converging preclinical evidence indicates that HNKs modulate glutamatergic neurotransmission and downstream signaling pathways in several brain regions, including the hippocampus and prefrontal cortex. Effects on other neurotransmitter systems, as well as possible effects on neurotrophic and inflammatory processes, and energy metabolism, are also discussed. Additionally, the behavioral effects of HNKs and possible therapeutic applications are described, including the treatment of unipolar and bipolar depression, post-traumatic stress disorder, chronic pain, neuroinflammation, and other anti-inflammatory and analgesic uses. SIGNIFICANCE STATEMENT: Preclinical studies indicate that hydroxynorketamines (HNKs) exert antidepressant-relevant behavioral actions and may also have analgesic, anti-inflammatory, and other physiological effects that are relevant for the treatment of a variety of human diseases. This review details the pharmacokinetics and pharmacodynamics of the HNKs, as well as their behavioral actions, putative mechanisms of action, and potential therapeutic applications.
Collapse
Affiliation(s)
- Jaclyn N Highland
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Panos Zanos
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Lace M Riggs
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Polymnia Georgiou
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Sarah M Clark
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Patrick J Morris
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Ruin Moaddel
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Craig J Thomas
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Carlos A Zarate
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Edna F R Pereira
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Todd D Gould
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| |
Collapse
|
40
|
Abstract
The therapeutic onset of traditional antidepressants is delayed by several weeks and many depressed patients fail to respond to treatment altogether. In contrast, subanesthetic ketamine can rapidly alleviate symptoms of depression within hours of a single administration, even in patients who are considered treatment-resistant. Ketamine is thought to exert these effects by restoring the integrity of neural circuits that are compromised in depression. This hypothesis stems in part from preclinical observations that ketamine can strengthen synaptic connections by increasing glutamate-mediated neurotransmission and promoting rapid neurotrophic factor release. An improved understanding of how ketamine, and other novel rapid-acting antidepressants, give rise to these processes will help foster future therapeutic innovation. Here, we review the history of antidepressant treatment advances that preceded the ketamine discovery, critically examine mechanistic hypotheses for how ketamine may exert its antidepressant effects, and discuss the impact this knowledge has had on ongoing drug discovery efforts.
Collapse
Affiliation(s)
- Lace M Riggs
- Program in Neuroscience and Training Program in Integrative Membrane Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA; .,Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA;
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA; .,Departments of Pharmacology and Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Baltimore Veterans Affairs Medical Center, Veterans Affairs Maryland Health Care System, Baltimore, Maryland 21201, USA
| |
Collapse
|
41
|
Abstract
The discovery of the rapid antidepressant effects of the dissociative anaesthetic ketamine, an uncompetitive N-Methyl-D-Aspartate receptor antagonist, is arguably the most important breakthrough in depression research in the last 50 years. Ketamine remains an off-label treatment for treatment-resistant depression with factors that limit widespread use including its dissociative effects and abuse potential. Ketamine is a racemic mixture, composed of equal amounts of (S)-ketamine and (R)-ketamine. An (S)-ketamine nasal spray has been developed and approved for use in treatment-resistant depression in the United States and Europe; however, some concerns regarding efficacy and side effects remain. Although (R)-ketamine is a less potent N-Methyl-D-Aspartate receptor antagonist than (S)-ketamine, increasing preclinical evidence suggests (R)-ketamine may have more potent and longer lasting antidepressant effects than (S)-ketamine, alongside fewer side effects. Furthermore, a recent pilot trial of (R)-ketamine has demonstrated rapid-acting and sustained antidepressant effects in individuals with treatment-resistant depression. Research is ongoing to determine the specific cellular and molecular mechanisms underlying the antidepressant actions of ketamine and its component enantiomers in an effort to develop future rapid-acting antidepressants that lack undesirable effects. Here, we briefly review findings regarding the antidepressant effects of ketamine and its enantiomers before considering underlying mechanisms including N-Methyl-D-Aspartate receptor antagonism, γ-aminobutyric acid-ergic interneuron inhibition, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptor activation, brain-derived neurotrophic factor and tropomyosin kinase B signalling, mammalian target of rapamycin complex 1 and extracellular signal-regulated kinase signalling, inhibition of glycogen synthase kinase-3 and inhibition of lateral habenula bursting, alongside potential roles of the monoaminergic and opioid receptor systems.
Collapse
Affiliation(s)
- Luke A Jelen
- Department of Psychological
Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s
College London, London, United Kingdom,South London and Maudsley NHS
Foundation Trust, London, United Kingdom,Luke A Jelen, Department of
Psychological Medicine, Institute of Psychiatry, Psychology and
Neuroscience, King’s College London, 16 De Crespigny Park, London SE5
8AF, United Kingdom.
| | - Allan H Young
- Department of Psychological
Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s
College London, London, United Kingdom,South London and Maudsley NHS
Foundation Trust, London, United Kingdom
| | - James M Stone
- Department of Psychological
Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s
College London, London, United Kingdom,South London and Maudsley NHS
Foundation Trust, London, United Kingdom
| |
Collapse
|
42
|
Abstract
Hospitalized coronavirus disease 2019 (COVID-19)-infected patients suffer from both physical impairments and mental stress. Respiratory insufficiency and cardiovascular disturbances require most of the intensive care interventions, but they are also accompanied by depressive conditions, sadness and fear of dying. Sedatives are mostly respiratory and cardiovascular depressants and do not provide resistance to the pro-inflammatory burst induced by the virus. Ketamine is a unique and safe drug that enables well-controlled sedation and anesthesia, attenuates depression and mitigates suicidal thoughts, without depressing respiratory or cardiovascular mechanics. This brief communication highlights the benefits potentially provided by ketamine to patients hospitalized for COVID-19 infection.
Collapse
Affiliation(s)
- Avi A Weinbroum
- Department of Research and Development, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
43
|
Inserra A, De Gregorio D, Gobbi G. Psychedelics in Psychiatry: Neuroplastic, Immunomodulatory, and Neurotransmitter Mechanisms. Pharmacol Rev 2021; 73:202-277. [PMID: 33328244 DOI: 10.1124/pharmrev.120.000056] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mounting evidence suggests safety and efficacy of psychedelic compounds as potential novel therapeutics in psychiatry. Ketamine has been approved by the Food and Drug Administration in a new class of antidepressants, and 3,4-methylenedioxymethamphetamine (MDMA) is undergoing phase III clinical trials for post-traumatic stress disorder. Psilocybin and lysergic acid diethylamide (LSD) are being investigated in several phase II and phase I clinical trials. Hence, the concept of psychedelics as therapeutics may be incorporated into modern society. Here, we discuss the main known neurobiological therapeutic mechanisms of psychedelics, which are thought to be mediated by the effects of these compounds on the serotonergic (via 5-HT2A and 5-HT1A receptors) and glutamatergic [via N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors] systems. We focus on 1) neuroplasticity mediated by the modulation of mammalian target of rapamycin-, brain-derived neurotrophic factor-, and early growth response-related pathways; 2) immunomodulation via effects on the hypothalamic-pituitary-adrenal axis, nuclear factor ĸB, and cytokines such as tumor necrosis factor-α and interleukin 1, 6, and 10 production and release; and 3) modulation of serotonergic, dopaminergic, glutamatergic, GABAergic, and norepinephrinergic receptors, transporters, and turnover systems. We discuss arising concerns and ways to assess potential neurobiological changes, dependence, and immunosuppression. Although larger cohorts are required to corroborate preliminary findings, the results obtained so far are promising and represent a critical opportunity for improvement of pharmacotherapies in psychiatry, an area that has seen limited therapeutic advancement in the last 20 years. Studies are underway that are trying to decouple the psychedelic effects from the therapeutic effects of these compounds. SIGNIFICANCE STATEMENT: Psychedelic compounds are emerging as potential novel therapeutics in psychiatry. However, understanding of molecular mechanisms mediating improvement remains limited. This paper reviews the available evidence concerning the effects of psychedelic compounds on pathways that modulate neuroplasticity, immunity, and neurotransmitter systems. This work aims to be a reference for psychiatrists who may soon be faced with the possibility of prescribing psychedelic compounds as medications, helping them assess which compound(s) and regimen could be most useful for decreasing specific psychiatric symptoms.
Collapse
Affiliation(s)
- Antonio Inserra
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Danilo De Gregorio
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
44
|
Bowman MA, Vitela M, Clarke KM, Koek W, Daws LC. Serotonin Transporter and Plasma Membrane Monoamine Transporter Are Necessary for the Antidepressant-Like Effects of Ketamine in Mice. Int J Mol Sci 2020; 21:ijms21207581. [PMID: 33066466 PMCID: PMC7589995 DOI: 10.3390/ijms21207581] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 01/17/2023] Open
Abstract
Major depressive disorder is typically treated with selective serotonin reuptake inhibitors (SSRIs), however, SSRIs take approximately six weeks to produce therapeutic effects, if any. Not surprisingly, there has been great interest in findings that low doses of ketamine, a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist, produce rapid and long-lasting antidepressant effects. Preclinical studies show that the antidepressant-like effects of ketamine are dependent upon availability of serotonin, and that ketamine increases extracellular serotonin, yet the mechanism by which this occurs is unknown. Here we examined the role of the high-affinity, low-capacity serotonin transporter (SERT), and the plasma membrane monoamine transporter (PMAT), a low-affinity, high-capacity transporter for serotonin, as mechanisms contributing to ketamine’s ability to increase extracellular serotonin and produce antidepressant-like effects. Using high-speed chronoamperometry to measure real-time clearance of serotonin from CA3 region of hippocampus in vivo, we found ketamine robustly inhibited serotonin clearance in wild-type mice, an effect that was lost in mice constitutively lacking SERT or PMAT. As expected, in wild-type mice, ketamine produced antidepressant-like effects in the forced swim test. Mapping onto our neurochemical findings, the antidepressant-like effects of ketamine were lost in mice lacking SERT or PMAT. Future research is needed to understand how constitutive loss of either SERT or PMAT, and compensation that occurs in other systems, is sufficient to void ketamine of its ability to inhibit serotonin clearance and produce antidepressant-like effects. Taken together with existing literature, a critical role for serotonin, and its inhibition of uptake via SERT and PMAT, cannot be ruled out as important contributing factors to ketamine’s antidepressant mechanism of action. Combined with what is already known about ketamine’s action at NMDA receptors, these studies help lead the way to the development of drugs that lack ketamine’s abuse potential but have superior efficacy in treating depression.
Collapse
Affiliation(s)
- Melodi A. Bowman
- Department of Cellular and Integrative Physiology at University of Texas Health, San Antonio, TX 78229, USA; (M.A.B.); (M.V.); (K.M.C.)
| | - Melissa Vitela
- Department of Cellular and Integrative Physiology at University of Texas Health, San Antonio, TX 78229, USA; (M.A.B.); (M.V.); (K.M.C.)
| | - Kyra M. Clarke
- Department of Cellular and Integrative Physiology at University of Texas Health, San Antonio, TX 78229, USA; (M.A.B.); (M.V.); (K.M.C.)
- Department of Pharmacology at University of Texas Health, San Antonio, TX 78229, USA;
| | - Wouter Koek
- Department of Pharmacology at University of Texas Health, San Antonio, TX 78229, USA;
- Department of Psychiatry at University of Texas Health, San Antonio, TX 78229, USA
| | - Lynette C. Daws
- Department of Cellular and Integrative Physiology at University of Texas Health, San Antonio, TX 78229, USA; (M.A.B.); (M.V.); (K.M.C.)
- Department of Pharmacology at University of Texas Health, San Antonio, TX 78229, USA;
- Correspondence:
| |
Collapse
|
45
|
McDougall SA, Apodaca MG, Park GI, Teran A, Baum TJ, Montejano NR. MK801-induced locomotor activity in preweanling and adolescent male and female rats: role of the dopamine and serotonin systems. Psychopharmacology (Berl) 2020; 237:2469-2483. [PMID: 32445054 PMCID: PMC7354898 DOI: 10.1007/s00213-020-05547-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/05/2020] [Indexed: 01/01/2023]
Abstract
RATIONALE MK801, like other NMDA receptor open-channel blockers (e.g., ketamine and phencyclidine), increases the locomotor activity of rats and mice. Whether this behavioral effect ultimately relies on monoamine neurotransmission is of dispute. OBJECTIVE The purpose of this study was to determine whether these psychopharmacological effects and underlying neural mechanisms vary according to sex and age. METHODS Across four experiments, male and female preweanling and adolescent rats were pretreated with vehicle, the monoamine-depleting agent reserpine (1 or 5 mg/kg), the dopamine (DA) synthesis inhibitor ∝-methyl-DL-p-tyrosine (AMPT), the serotonin (5-HT) synthesis inhibitor 4-chloro-DL-phenylalanine methyl ester hydrochloride (PCPA), or both AMPT and PCPA. The locomotor activity of preweanling and adolescent rats was then measured after saline or MK801 (0.3 mg/kg) treatment. RESULTS As expected, MK801 increased the locomotor activity of all age groups and both sexes, but the stimulatory effects were significantly less pronounced in male adolescent rats. Preweanling rats and adolescent female rats were more sensitive to the effects of DA and 5-HT synthesis inhibitors, as AMPT and PCPA caused only small reductions in the MK801-induced locomotor activity of male adolescent rats. Co-administration of AMPT+PCPA or high-dose reserpine (5 mg/kg) treatment substantially reduced MK801-induced locomotor activity in both age groups and across both sexes. CONCLUSIONS These results, when combined with other recent studies, show that NMDA receptor open-channel blockers cause pronounced age-dependent behavioral effects that can vary according to sex. The neural changes underlying these sex and age differences appear to involve monoamine neurotransmission.
Collapse
Affiliation(s)
- Sanders A McDougall
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA.
| | - Matthew G Apodaca
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA
| | - Ginny I Park
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA
| | - Angie Teran
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA
| | - Timothy J Baum
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA
| | - Nazaret R Montejano
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA
| |
Collapse
|
46
|
McMillan R, Muthukumaraswamy SD. The neurophysiology of ketamine: an integrative review. Rev Neurosci 2020; 31:457-503. [DOI: 10.1515/revneuro-2019-0090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/26/2020] [Indexed: 12/13/2022]
Abstract
AbstractThe drug ketamine has been extensively studied due to its use in anaesthesia, as a model of psychosis and, most recently, its antidepressant properties. Understanding the physiology of ketamine is complex due to its rich pharmacology with multiple potential sites at clinically relevant doses. In this review of the neurophysiology of ketamine, we focus on the acute effects of ketamine in the resting brain. We ascend through spatial scales starting with a complete review of the pharmacology of ketamine and then cover its effects on in vitro and in vivo electrophysiology. We then summarise and critically evaluate studies using EEG/MEG and neuroimaging measures (MRI and PET), integrating across scales where possible. While a complicated and, at times, confusing picture of ketamine’s effects are revealed, we stress that much of this might be caused by use of different species, doses, and analytical methodologies and suggest strategies that future work could use to answer these problems.
Collapse
Affiliation(s)
- Rebecca McMillan
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Suresh D. Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
47
|
Mensah JA, Kukuia KKE, Amoateng P, Osei-Safo D, Adongo DW, Ameyaw EO, Ben IO, Amponsah SK, Asiedu-Gyekye IJ. Monoaminergic and L-arginine-no-cGMP pathways mediate the antidepressant–like action of alkaloids from the stem bark of Trichilia monadelpha. SCIENTIFIC AFRICAN 2020; 8:e00422. [DOI: 10.1016/j.sciaf.2020.e00422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
48
|
Farmer CA, Gilbert JR, Moaddel R, George J, Adeojo L, Lovett J, Nugent AC, Kadriu B, Yuan P, Gould TD, Park LT, Zarate CA. Ketamine metabolites, clinical response, and gamma power in a randomized, placebo-controlled, crossover trial for treatment-resistant major depression. Neuropsychopharmacology 2020; 45:1398-1404. [PMID: 32252062 PMCID: PMC7297997 DOI: 10.1038/s41386-020-0663-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 12/27/2022]
Abstract
A single, subanesthetic dose of (R,S)-ketamine (ketamine) exerts rapid and robust antidepressant effects. Several groups previously reported that (2S,6S;2R,6R)-hydroxynorketamine (HNK) had antidepressant effects in rodents, and that (2R,6R)-HNK increased cortical electroencephalographic gamma power. This exploratory study examined the relationship between ketamine metabolites, clinical response, psychotomimetic symptoms, and gamma power changes in 34 individuals (ages 18-65) with treatment-resistant depression (TRD) who received a single ketamine infusion (0.5 mg/kg) over 40 min. Plasma concentrations of ketamine, norketamine, and HNKs were measured at 40, 80, 120, and 230 min and at 1, 2, and 3 days post-infusion. Linear mixed models evaluated ketamine metabolites as mediators of antidepressant and psychotomimetic effects and their relationship to resting-state whole-brain magnetoencephalography (MEG) gamma power 6-9 h post-infusion. Three salient findings emerged. First, ketamine concentration positively predicted distal antidepressant response at Day 11 post-infusion, and an inverse relationship was observed between (2S,6S;2R,6R)-HNK concentration and antidepressant response at 3 and 7 days post-infusion. Norketamine concentration was not associated with antidepressant response. Second, ketamine, norketamine, and (2S,6S;2R,6R)-HNK concentrations at 40 min were positively associated with contemporaneous psychotomimetic symptoms; post-hoc analysis revealed that ketamine was the predominant contributor. Third, increased (2S,6S;2R,6R)-HNK maximum observed concentration (Cmax) was associated with increased MEG gamma power. While contrary to preclinical observations and our a priori hypotheses, these exploratory results replicate those of a recently published study documenting a relationship between higher (2S,6S;2R,6R)-HNK concentrations and weaker antidepressant response in humans and provide further rationale for studying gamma power changes as potential biomarkers of antidepressant response.
Collapse
Affiliation(s)
- Cristan A Farmer
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Jessica R Gilbert
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Ruin Moaddel
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jomy George
- Clinical Pharmacokinetics Research Unit, Pharmacy Department, National Institutes of Health, Bethesda, MD, USA
| | - Lilian Adeojo
- Clinical Pharmacokinetics Research Unit, Pharmacy Department, National Institutes of Health, Bethesda, MD, USA
| | - Jacqueline Lovett
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Allison C Nugent
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Magnetoencephalography Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Bashkim Kadriu
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Peixiong Yuan
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Todd D Gould
- Departments of Psychiatry, Pharmacology, and Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Veterans Affairs Maryland Health Care System, Baltimore, MD, USA
| | - Lawrence T Park
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Carlos A Zarate
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
49
|
Elmer GI, Tapocik JD, Mayo CL, Zanos P, Gould TD. Ketamine metabolite (2R,6R)-hydroxynorketamine reverses behavioral despair produced by adolescent trauma. Pharmacol Biochem Behav 2020; 196:172973. [PMID: 32569786 DOI: 10.1016/j.pbb.2020.172973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 01/09/2023]
Abstract
Early life trauma dramatically increases the risk of developing major depressive disorder (MDD), and is associated with a markedly decreased adult treatment response to antidepressants. Novel treatment approaches are required to treat childhood trauma-associated MDD. Recent studies suggest that the (R,S)-ketamine (ketamine) metabolite, (2R,6R)-hydroxynorketamine (HNK), exerts fast- and long-lasting antidepressant-like effects without ketamine's NMDAR-inhibition-associated adverse side-effect profile. We investigated the therapeutic potential of (2R,6R)-HNK against behavioral despair produced by a novel live-predator stress exposure during adolescence. Male and female C57BL/6J mice were exposed to a live snake or control conditions at post-natal (PND) days 31, 45 and 61. In order to assess the enduring consequences of trauma-exposure, at a minimum of 14 days following the last exposure, mice received inescapable shocks followed by a session with available escape options twenty-four hours later. Mice that manifested enduring escape deficits (helplessness) were treated with vehicle or (2R,6R)-HNK (20 mg/kg, i.p.), 24 h prior to retesting for reversal of escape deficits. We found that a significantly greater number of mice developed the helpless phenotype when they were exposed to the live predator and that the helpless phenotype was reversed in mice treated with (2R,6R)-HNK. There were no sex differences in the response to predator-stress exposure or (2R,6R)-HNK treatment. The live-predator model developed in this study provides an opportunity to further refine our understanding of the neurobiological substrates impacted by adolescent trauma and improve treatment strategies. The demonstrated efficacy of (2R,6R)-HNK in this model suggests a novel therapeutic intervention for a treatment-resistant population.
Collapse
Affiliation(s)
- Greg I Elmer
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Departments of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Departments of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Jenica D Tapocik
- Clin. And Translational Studies, NIAAA, NIH, Bethesda, MD 20817, USA
| | - Cheryl L Mayo
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Departments of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Panos Zanos
- Departments of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Departments of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA; Departments of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Todd D Gould
- Departments of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Departments of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA; Departments of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA; Veterans Affairs Maryland Health Care System, Baltimore, MD 21201, USA
| |
Collapse
|
50
|
Saoud H, De Beus D, Eybrard S, Louilot A. Postnatal functional inactivation of the ventral subiculum enhances dopaminergic responses in the core part of the nucleus accumbens following ketamine injection in adult rats. Neurochem Int 2020; 137:104736. [PMID: 32283120 DOI: 10.1016/j.neuint.2020.104736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/23/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
Abstract
For almost two decades schizophrenia has been considered to be a functional disconnection disorder. This functional disconnectivity between several brain regions could have a neurodevelopmental origin. Various approaches suggest the ventral subiculum (SUB) is a particular target region for neurodevelopemental disturbances in schizophrenia. It is also commonly acknowledged that there is a striatal dopaminergic (DA) dysregulation in schizophrenia which may depend on a subiculo-striatal disconnection involving glutamatergic NMDA receptors. The present study was designed to investigate, in adult rats, the effects of the non-competitive NMDA receptor antagonist ketamine on DA responses in the ventral striatum, or, more specifically, the core part of the nucleus accumbens (Nacc), following postnatal functional inactivation of the SUB. Functional inactivation of the left SUB was carried out by local tetrodotoxin (TTX) microinjection at postnatal day 8 (PND8), i.e. at a critical point in the neurodevelopmental period. DA variations were recorded using in vivo voltammetry in freely moving adult rats (11 weeks). Locomotor activity was recorded simultaneously with the extracellular levels of DA in the core part of the Nacc. Data obtained during the present study showed that after administration of ketamine, the two indexes were higher in TTX animals than PBS animals, the suggestion being that animals microinjected with TTX in the left SUB at PND8 present greater reactivity to ketamine than animals microinjected with PBS. These findings could provide new information regarding the involvement of NMDA glutamatergic receptors in the core part of the Nacc in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Hana Saoud
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France
| | - Duco De Beus
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France
| | - Séverine Eybrard
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France
| | - Alain Louilot
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France.
| |
Collapse
|