1
|
Kim N, Shin HY. Deciphering the Potential Role of Specialized Pro-Resolving Mediators in Obesity-Associated Metabolic Disorders. Int J Mol Sci 2024; 25:9598. [PMID: 39273541 PMCID: PMC11395256 DOI: 10.3390/ijms25179598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Obesity-related metabolic disorders, including diabetes, non-alcoholic fatty liver disease (NAFLD), and cardiovascular disease, increasingly threaten global health. Uncontrolled inflammation is a key pathophysiological factor in many of these conditions. In the human body, inflammatory responses generate specialized pro-resolving mediators (SPMs), which are crucial for resolving inflammation and restoring tissue balance. SPMs derived from omega-3 polyunsaturated fatty acids (n-3 PUFAs) such as resolvins, protectins, and maresins hold promise in attenuating the chronic inflammatory diseases associated with lipid metabolism disorders. Recent research has highlighted the therapeutic potential of n-3 PUFA-derived metabolites in addressing these metabolic disorders. However, the understanding of the pharmacological aspects of SPMs, particularly in obesity-related metabolic disorders, remains limited. This review comprehensively summarizes recent advances in understanding the role of SPMs in resolving metabolic disorders, based on studies in animal models and humans. These studies indicate that SPMs have potential as therapeutic targets for combating obesity, as well as offering insights into their mechanisms of action.
Collapse
Affiliation(s)
- Nahyun Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ha Youn Shin
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
2
|
Ali AH, Hachem M, Ahmmed MK. Docosahexaenoic acid-loaded nanoparticles: A state-of-the-art of preparation methods, characterization, functionality, and therapeutic applications. Heliyon 2024; 10:e30946. [PMID: 38774069 PMCID: PMC11107210 DOI: 10.1016/j.heliyon.2024.e30946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/24/2024] Open
Abstract
Docosahexaenoic acid (DHA, C22:6 n-3), an omega-3 polyunsaturated fatty acid, offers several beneficial effects. DHA helps in reducing depression, autoimmune diseases, rheumatoid arthritis, attention deficit hyperactivity syndrome, and cardiovascular diseases. It can stimulate the development of brain and nerve, alleviate lipids metabolism-related disorders, and enhance vision development. However, DHA susceptibility to chemical oxidation, poor water solubility, and unpleasant order could restrict its applications for nutritional and therapeutic purposes. To avoid these drawbacks and enhance its bioavailability, DHA can be encapsulated using an effective delivery system. Several encapsulation methods are recognized, and DHA-loaded nanoparticles have demonstrated numerous benefits. In clinical studies, positive influences on the development of several diseases have been reported, but some assumptions are conflicting and need more exploration, since DHA has a systemic and not a targeted release at the required level. This might cause the applications of nanoparticles that could allow DHA release at the required level and improve its efficiency, thus resulting in a better controlling of several diseases. In the current review, we focused on researches investigating the formulation and development of DHA-loaded nanoparticles using different delivery systems, including low-density lipoprotein, zinc oxide, silver, zein, and resveratrol-stearate. Silver-DHA nanoparticles presented a typical particle size of 24 nm with an incorporation level of 97.67 %, while the entrapment efficiency of zinc oxide-DHA nanoparticles represented 87.3 %. By using zein/Poly (lactic-co-glycolic acid) stabilized nanoparticles, DHA's encapsulation level reached 84.6 %. We have also highlighted the characteristics, functionality and medical implementation of these nanoparticles in the treatment of inflammations, brain disorders, diabetes as well as hepatocellular carcinoma.
Collapse
Affiliation(s)
- Abdelmoneim H. Ali
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Mayssa Hachem
- Department of Chemistry and Healthcare Engineering Innovation Group, Khalifa University of Sciences and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Mirja Kaizer Ahmmed
- Department of Fishing and Post-harvest Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
3
|
Beyer MP, Videla LA, Farías C, Valenzuela R. Potential Clinical Applications of Pro-Resolving Lipids Mediators from Docosahexaenoic Acid. Nutrients 2023; 15:3317. [PMID: 37571256 PMCID: PMC10421104 DOI: 10.3390/nu15153317] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Docosahexaenoic acid (C22:6n-3, DHA) is the precursor of specialized pro-resolving lipid mediators (SPMs), such as resolvin, protectin, and maresin families which have been considered therapeutic bioactive compounds for human health. Growing evidence indicates that DHA and SPMs are beneficial strategies in the amelioration, regulation, and duration of inflammatory processes through different biological actions. The present review discusses the reported therapeutic benefits of SPMs on various diseases and their potential clinical applications.
Collapse
Affiliation(s)
- María Paz Beyer
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (M.P.B.); (C.F.)
| | - Luis A. Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 7810000, Chile;
| | - Camila Farías
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (M.P.B.); (C.F.)
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (M.P.B.); (C.F.)
| |
Collapse
|
4
|
Maltais R, Sancéau JY, Poirier D, Marette A. A Concise, Gram-Scale Total Synthesis of Protectin DX and Related Labeled Versions via a Key Stereoselective Reduction of Enediyne. J Org Chem 2023. [PMID: 37172290 DOI: 10.1021/acs.joc.3c00360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We report a gram-scale total synthesis of protectin DX (PDX) following a convergent synthetic route (24 steps) from l-malic acid. This novel synthetic strategy is based on the assembly of three main building blocks using a Sonogashira coupling reaction (blocks A and B) and Wittig olefination (block C) to provide the 22-carbon backbone of PDX. A key stereoselective reduction of enediyne leads to a central E,Z,E-trienic system of PDX and also gives access to its labeled versions (D and T).
Collapse
Affiliation(s)
- René Maltais
- Organic Synthesis Service, Medicinal Chemistry Platform, CHU de Québec Research Center-Université Laval, Québec, QC, Canada G1V 4G2
| | - Jean-Yves Sancéau
- Organic Synthesis Service, Medicinal Chemistry Platform, CHU de Québec Research Center-Université Laval, Québec, QC, Canada G1V 4G2
| | - Donald Poirier
- Organic Synthesis Service, Medicinal Chemistry Platform, CHU de Québec Research Center-Université Laval, Québec, QC, Canada G1V 4G2
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada G1V 0A6
| | - André Marette
- Department of Medicine, Québec Heart and Lung Institute, Laval Hospital, Québec, QC, Canada G1V 4G5
| |
Collapse
|
5
|
Kotlyarov S. Immune and metabolic cross-links in the pathogenesis of comorbid non-alcoholic fatty liver disease. World J Gastroenterol 2023; 29:597-615. [PMID: 36742172 PMCID: PMC9896611 DOI: 10.3748/wjg.v29.i4.597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 01/20/2023] Open
Abstract
In recent years, there has been a steady growth of interest in non-alcoholic fatty liver disease (NAFLD), which is associated with negative epidemiological data on the prevalence of the disease and its clinical significance. NAFLD is closely related to the metabolic syndrome and these relationships are the subject of active research. A growing body of evidence shows cross-linkages between metabolic abnormalities and the innate immune system in the development and progression of NAFLD. These links are bidirectional and largely still unclear, but a better understanding of them will improve the quality of diagnosis and management of patients. In addition, lipid metabolic disorders and the innate immune system link NAFLD with other diseases, such as atherosclerosis, which is of great clinical importance.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, Ryazan 390026, Russia
| |
Collapse
|
6
|
Rzeszotek S, Kolasa A, Pilutin A, Misiakiewicz-Has K, Sielatycka K, Wiszniewska B. The Interplay between Finasteride-Induced Androgen Imbalance, Endoplasmic Reticulum Stress, Oxidative Stress, and Liver Disorders in Paternal and Filial Generation. Biomedicines 2022; 10:2725. [PMID: 36359245 PMCID: PMC9687381 DOI: 10.3390/biomedicines10112725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 10/20/2023] Open
Abstract
Finasteride (Fin) causes androgen imbalance by inhibiting the conversion of testosterone (T) to its more active metabolite, dihydrotestosterone (DHT). Androgen receptors (AR) are present (e.g., in hepatocytes), which have well-developed endoplasmic reticulum (ERet). Cellular protein quality control is carried out by ERet in two paths: (i) unfolded protein response (UPR) and/or (ii) endoplasmic reticulum associated degradation (ERAD). ERet under continuous stress can generate changes in the UPR and can direct the cell on the pathway of life or death. It has been demonstrated that genes involved in ERet stress are among the genes controlled by androgens in some tissues. Oxidative stress is also one of the factors affecting the functions of ERet and androgens are one of the regulators of antioxidant enzyme activity. In this paper, we discuss/analyze a possible relationship between androgen imbalance in paternal generation with ERet stress and liver disorders in both paternal and filial generation. In our rat model, hyperglycemia and subsequent higher accumulation of hepatic glycogen were observed in all filial generation obtained from females fertilized by Fin-treated males (F1:Fin). Importantly, genes encoding enzymes involved in glucose and glycogen metabolism have been previously recognized among UPR targets.
Collapse
Affiliation(s)
- Sylwia Rzeszotek
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Agnieszka Kolasa
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Anna Pilutin
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Kamila Misiakiewicz-Has
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Katarzyna Sielatycka
- Institute of Biology, Faculty of Exact and Natural Sciences, University of Szczecin, 71-415 Szczecin, Poland
| | - Barbara Wiszniewska
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
7
|
Oh H, Park SY, Cho W, Abd El-Aty AM, Hacimuftuoglu A, Kwon CH, Jeong JH, Jung TW. Sclerostin aggravates insulin signaling in skeletal muscle and hepatic steatosis via upregulation of ER stress by mTOR-mediated inhibition of autophagy under hyperlipidemic conditions. J Cell Physiol 2022; 237:4226-4237. [PMID: 36087347 DOI: 10.1002/jcp.30873] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/05/2022]
Abstract
Recently, sclerostin (SCL), a circulating glycoprotein, was proposed to be a novel myokine involved in developing metabolic disorders. The association between SCL levels and insulin resistance in skeletal muscle, liver, and adipose tissue was studied in individuals with aggravated glucose tolerance. Thus, we hypothesized that elevated circulating SCL might affect skeletal muscle insulin signaling and hepatic lipid metabolism, and aimed to investigate the effects of SCL on skeletal muscle insulin resistance and hepatic steatosis in obesity using in vitro and in vivo experimental models under hyperlipidemic conditions. In the current study, we found elevated SCL messenger RNA expression levels in myocytes in obese patients. In addition to a higher blood level, SCL was expressed at an elevated level in the skeletal muscle of mice fed a high-fat diet (HFD). Higher SCL release levels and expression were also noticed in palmitate-treated C2C12 myocytes. SCL suppression by in vivo transfection improves skeletal muscle insulin resistance and hepatic steatosis in HFD-fed mice. The treatment of C2C12 myocytes with recombinant SCL aggravated insulin signaling. Furthermore, treatment with SCL augmented lipogenic lipid deposition in human primary hepatocytes. Treatment with SCL upregulated mammalian target of rapamycin (mTOR) phosphorylation and suppressed autophagy markers, thereby causing endoplasmic reticulum (ER) stress. 4-Phenylbutyric acid, a pharmacological ER stress inhibitor, abolished the effects of SCL on insulin signaling in C2C12 myocytes and lipid accumulation in primary hepatocytes. In conclusion, SCL promotes skeletal muscle insulin resistance and hepatic steatosis by upregulating ER stress via the mTOR/autophagy-mediated pathway. The present study suggests that antagonizing SCL might be a novel therapeutic strategy for simultaneously managing insulin resistance and hepatic steatosis in obesity.
Collapse
Affiliation(s)
- Heeseung Oh
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Seung Yeon Park
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | | | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Resolvin D3 improves the impairment of insulin signaling in skeletal muscle and nonalcoholic fatty liver disease through AMPK/autophagy-associated attenuation of ER stress. Biochem Pharmacol 2022; 203:115203. [DOI: 10.1016/j.bcp.2022.115203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022]
|
9
|
Jung TW, Jeong JC, Park SY, Cho W, Oh H, Lee HJ, Hacimuftuoglu A, Abd El-Aty A, Bang JS, Jeong JH. Abietic acid alleviates endoplasmic reticulum stress and lipid accumulation in human primary hepatocytes through the AMPK/ORP150 signaling. Biochem Biophys Res Commun 2022; 608:142-148. [DOI: 10.1016/j.bbrc.2022.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/02/2022] [Indexed: 02/06/2023]
|
10
|
Wang J, Ossemond J, Le Gouar Y, Boissel F, Dupont D, Pédrono F. Encapsulation of Docosahexaenoic Acid Oil Substantially Improves the Oxylipin Profile of Rat Tissues. Front Nutr 2022; 8:812119. [PMID: 35118110 PMCID: PMC8805515 DOI: 10.3389/fnut.2021.812119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/15/2021] [Indexed: 01/05/2023] Open
Abstract
Docosahexaenoic acid (DHA) is a major n-3 polyunsaturated fatty acid (PUFA) particularly involved in cognitive and cardiovascular functions. Due to the high unsaturation index, its dietary intake form has been considered to improve oxidation status and to favor bioaccessibility and bioavailability as well. This study aimed at investigating the effect of DHA encapsulated with natural whey protein. DHA was dietary provided as triacylglycerols to achieve 2.3% over total fatty acids. It was daily supplied to weanling rats for four weeks in omelet as food matrix, consecutively to a 6-hour fasting. First, when DHA oil was encapsulated, consumption of chow diet was enhanced leading to promote animal growth. Second, the brain exhibited a high accretion of 22.8% DHA, which was not improved by dietary supplementation of DHA. Encapsulation of DHA oil did not greatly affect the fatty acid proportions in tissues, but remarkably modified the profile of oxidized metabolites of fatty acids in plasma, heart, and even brain. Specific oxylipins derived from DHA were upgraded, such as Protectin Dx in heart and 14-HDoHE in brain, whereas those generated from n-6 PUFAs were mainly mitigated. This effect did not result from oxylipins measured in DHA oil since DHA and EPA derivatives were undetected after food processing. Collectively, these data suggested that dietary encapsulation of DHA oil triggered a more efficient absorption of DHA, the metabolism of which was enhanced more than its own accretion in our experimental conditions. Incorporating DHA oil in functional food may finally improve the global health status by generating precursors of protectins and maresins.
Collapse
Affiliation(s)
- Jun Wang
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Jordane Ossemond
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Yann Le Gouar
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Françoise Boissel
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Didier Dupont
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Frédérique Pédrono
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
- *Correspondence: Frédérique Pédrono
| |
Collapse
|
11
|
Heinrich L, Booijink R, Khurana A, Weiskirchen R, Bansal R. Lipoxygenases in chronic liver diseases: current insights and future perspectives. Trends Pharmacol Sci 2021; 43:188-205. [PMID: 34961619 DOI: 10.1016/j.tips.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver diseases (CLDs) caused by viral infections, alcohol/drug abuse, or metabolic disorders affect millions of people globally and have increased mortality owing to the lack of approved therapies. Lipoxygenases (LOXs) are a family of multifaceted enzymes that are responsible for the oxidation of polyunsaturated fatty acids (PUFAs) and are implicated in the pathogenesis of multiple disorders including liver diseases. This review describes the three main LOX signaling pathways - 5-, 12-, and 15-LOX - and their involvement in CLDs. We also provide recent insights and future perspectives on LOX-related hepatic pathophysiology, and discuss the potential of LOXs and LOX-derived metabolites as diagnostic biomarkers and therapeutic targets in CLDs.
Collapse
Affiliation(s)
- Lena Heinrich
- Translational Liver Research, Department of Medical Cell BioPhysics, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede 7500 AE, The Netherlands
| | - Richell Booijink
- Translational Liver Research, Department of Medical Cell BioPhysics, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede 7500 AE, The Netherlands
| | - Amit Khurana
- Translational Liver Research, Department of Medical Cell BioPhysics, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede 7500 AE, The Netherlands; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, Aachen 52074, Germany; Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT), Hauz Khas, New Delhi 110016, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, Aachen 52074, Germany
| | - Ruchi Bansal
- Translational Liver Research, Department of Medical Cell BioPhysics, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede 7500 AE, The Netherlands.
| |
Collapse
|
12
|
Pyun DH, Kim TJ, Park SY, Lee HJ, Abd El-Aty AM, Jeong JH, Jung TW. Patchouli alcohol ameliorates skeletal muscle insulin resistance and NAFLD via AMPK/SIRT1-mediated suppression of inflammation. Mol Cell Endocrinol 2021; 538:111464. [PMID: 34601002 DOI: 10.1016/j.mce.2021.111464] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 02/06/2023]
Abstract
Obesity-induced chronic low-grade inflammation and thus causes various metabolic diseases, such as insulin resistance and non-alcoholic fatty liver disease (NAFLD). Patchouli alcohol (PA), an active component extracted from patchouli, displayed anti-inflammatory effects on different cell types. However, the impact of PA on skeletal muscle insulin signaling and hepatic lipid metabolism remains unclear. This study aimed to investigate whether PA would affect insulin signaling impairment in myocytes and lipid metabolism in hepatocytes. Treatment with PA ameliorated palmitate-induced inflammation and aggravation of insulin signaling in C2C12 myocytes and lipid accumulation in HepG2 hepatocytes. Treatment of C2C12 myocytes and HepG2 cells with PA augmented AMP-activated protein kinase (AMPK) phosphorylation and Sirtuin 1 (SIRT1) expression in a dose-dependent manner. siRNA-mediated suppression of AMPK or SIRT1 mitigated the effects of PA on palmitate-induced inflammation and insulin resistance in C2C12 myocytes and lipid accumulation in HepG2 cells. Animal experiments demonstrated that PA administration increased AMPK phosphorylation and SIRT1 expression, and ameliorated inflammation, thereby attenuating skeletal muscle insulin resistance and hepatic steatosis in high-fat diet-fed mice. These results denote that PA alleviates skeletal muscle insulin resistance and hepatic steatosis through AMPK/SIRT1-dependent signaling. This study might provide a novel therapeutic approach for treating obesity-related insulin resistance and NAFLD.
Collapse
Affiliation(s)
- Do Hyeon Pyun
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Tae Jin Kim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Seung Yeon Park
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea; Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Jeyakumar SM, Vajreswari A. Pharmaconutrition strategy to resolve SARS-CoV-2-induced inflammatory cytokine storm in non-alcoholic fatty liver disease: Omega-3 long-chain polyunsaturated fatty acids. World J Clin Cases 2021; 9:9333-9349. [PMID: 34877270 PMCID: PMC8610854 DOI: 10.12998/wjcc.v9.i31.9333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/18/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammation is one of the primary factors associated with the causation and/or progression of several lifestyle disorders, including obesity, type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). NAFLD is a spectrum of disorders, and starts with simple steatosis, progresses to non-alcoholic steatohepatitis, and then advances to fibrosis, cirrhosis and finally, hepatocellular carcinoma, due to perpetual cycles of insults caused by inflammation and other cellular stress. Emerging evidence has documented that patients with NAFLD have severe coronavirus disease 2019 (COVID-19), and patients with COVID-19 have a higher liver injury and mortality. Although the exact cause or mechanism is not known, inflammatory cytokine storm is a characteristic feature of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and is known to be associated with higher mortality among COVID-19 patients. Therefore, the COVID-19 pandemic seems to be a major concern in NAFLD patients, who have contracted SARS-CoV-2 infection and develop COVID-19. This is evident in patients at any stage of the NAFLD spectrum, as the inflammatory cytokine storm may cause and/or aggravate the progression or severity of NAFLD. Thus, there is a need for resolution of the inflammatory cytokine storm in these patients. A large body of evidence has demonstrated the efficacy of omega-3 long-chain polyunsaturated fatty acids (ω-3 LCPUFA) in NAFLD conditions, due to their anti-inflammatory, immunomodulatory and anti-viral properties. Therefore, intervention with ω-3 LCPUFA, an effective pharmaconutrient along with the standard treatment for COVID-19 may be useful in the management of the NAFLD spectrum in COVID-19 patients with pre-existing NAFLD conditions by resolving the inflammatory cytokine storm and thereby attenuating its progression. Although there are challenges in implementation, optimistically they can be circumvented and the pharmaconutrition strategy may be potentially helpful in tackling both the pandemics; NAFLD and COVID-19 at least in this subset of patients.
Collapse
Affiliation(s)
- Shanmugam M Jeyakumar
- Department of Clinical Pharmacology, ICMR-National Institute for Research in Tuberculosis, Chennai 600031, Tamil Nadu, India
| | | |
Collapse
|
14
|
Clària J, Flores-Costa R, Duran-Güell M, López-Vicario C. Proresolving lipid mediators and liver disease. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159023. [PMID: 34352389 DOI: 10.1016/j.bbalip.2021.159023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Inflammation is a characteristic feature of virtually all acute and chronic liver diseases. It intersects different liver pathologies from the early stages of liver injury, when the inflammatory burden is mild-to-moderate, to very advanced stages of liver disease, when the inflammatory response is very intense and drives multiple organ dysfunction and failure(s). The current review describes the most relevant features of the inflammatory process in two different clinical entities across the liver disease spectrum, namely non-alcoholic steatohepatitis (NASH) and acute-on-chronic liver failure (ACLF). Special emphasis is given within these two disease conditions to gather the most relevant data on the specialized pro-resolving mediators that orchestrate the resolution of inflammation, a tightly controlled process which dysregulation commonly associates with chronic inflammatory conditions.
Collapse
Affiliation(s)
- Joan Clària
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS and CIBERehd, Barcelona, Spain; Department of Biomedical Sciences, University of Barcelona, Barcelona, Spain; European Foundation for the Study of Chronic Liver Failure (EF-Clif) and Grifols Chair, Barcelona, Spain.
| | - Roger Flores-Costa
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS and CIBERehd, Barcelona, Spain; European Foundation for the Study of Chronic Liver Failure (EF-Clif) and Grifols Chair, Barcelona, Spain
| | - Marta Duran-Güell
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS and CIBERehd, Barcelona, Spain; European Foundation for the Study of Chronic Liver Failure (EF-Clif) and Grifols Chair, Barcelona, Spain
| | - Cristina López-Vicario
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS and CIBERehd, Barcelona, Spain; European Foundation for the Study of Chronic Liver Failure (EF-Clif) and Grifols Chair, Barcelona, Spain.
| |
Collapse
|
15
|
Maciejewska-Markiewicz D, Stachowska E, Hawryłkowicz V, Stachowska L, Prowans P. The Role of Resolvins, Protectins and Marensins in Non-Alcoholic Fatty Liver Disease (NAFLD). Biomolecules 2021; 11:937. [PMID: 34202667 PMCID: PMC8301825 DOI: 10.3390/biom11070937] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 12/17/2022] Open
Abstract
Increased triacylglycerols' (TAG) synthesis, insulin resistance, and prolonged liver lipid storage might lead to the development of non-alcoholic fatty liver disease (NAFLD). Global prevalence of NAFLD has been estimated to be around 25%, with gradual elevation of this ratio along with the increased content of adipose tissue in a body. The initial stages of NAFLD may be reversible, but the exposition to pathological factors should be limited. As dietary factors greatly influence various disease development, scientists try to find dietary components, helping to alleviate the steatosis. These components include n-3 polyunsaturated (PUFA) fatty acids, especially eicosapentaenoic acid (EPA) and docosahexaenoic acids (DHA). This review focused on the role of resolvins, protectins and merensins in NAFLD.
Collapse
Affiliation(s)
- Dominika Maciejewska-Markiewicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 70-204 Szczecin, Poland; (E.S.); (V.H.); (L.S.)
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 70-204 Szczecin, Poland; (E.S.); (V.H.); (L.S.)
| | - Viktoria Hawryłkowicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 70-204 Szczecin, Poland; (E.S.); (V.H.); (L.S.)
| | - Laura Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 70-204 Szczecin, Poland; (E.S.); (V.H.); (L.S.)
| | - Piotr Prowans
- Clinic of Plastic, Endocrine and General Surgery, Pomeranian Medical University in Szczecin, 72-009 Police, Poland;
| |
Collapse
|
16
|
Duan J, Song Y, Zhang X, Wang C. Effect of ω-3 Polyunsaturated Fatty Acids-Derived Bioactive Lipids on Metabolic Disorders. Front Physiol 2021; 12:646491. [PMID: 34113260 PMCID: PMC8185290 DOI: 10.3389/fphys.2021.646491] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/26/2021] [Indexed: 12/23/2022] Open
Abstract
Arachidonic acid (ARA) is an important ω-6 polyunsaturated fatty acid (PUFA), and docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and n-3 docosapentaenoic acid (n-3 DPA) are three well-known ω-3 PUFAs. These fatty acids can be metabolized into a number of bioactive lipids. Eicosanoids derived from ARA have drawn great attention because of their important and complex biofunctions. Although EPA, DHA and n-3 DPA have also shown powerful biofunctions, we have fewer studies of metabolites derived from them than those from ARA. Recently, growing research has focused on the bioaction of ω-3 PUFA-derived metabolites, which indicates their great potential for treating metabolic disorders. Most of the functional studies of these bioactive lipids focused on their anti-inflammatory effects. However, several studies elucidated their direct effects on pancreatic β cells, hepatocytes, adipocytes, skeletal muscle cells, and endothelial cells. These researches revealed the importance of studying the functions of metabolites derived from ω-3 polyunsaturated fatty acids other than themselves. The current review summarizes research into the effects of ω-3 PUFA-derived oxylipins on metabolic disorders, including diabetes, non-alcoholic fatty liver disease, adipose tissue dysfunction, and atherosclerosis.
Collapse
Affiliation(s)
- Jinjie Duan
- Department of Physiology and Pathophysiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yayue Song
- Department of Physiology and Pathophysiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Xu Zhang
- Department of Physiology and Pathophysiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Chunjiong Wang
- Department of Physiology and Pathophysiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| |
Collapse
|
17
|
Lemarié M, Chatonnet F, Caron G, Fest T. Early Emergence of Adaptive Mechanisms Sustaining Ig Production: Application to Antibody Therapy. Front Immunol 2021; 12:671998. [PMID: 33995412 PMCID: PMC8117215 DOI: 10.3389/fimmu.2021.671998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/12/2021] [Indexed: 01/13/2023] Open
Abstract
Antibody therapy, where artificially-produced immunoglobulins (Ig) are used to treat pathological conditions such as auto-immune diseases and cancers, is a very innovative and competitive field. Although substantial efforts have been made in recent years to obtain specific and efficient antibodies, there is still room for improvement especially when considering a precise tissular targeting or increasing antigen affinity. A better understanding of the cellular and molecular steps of terminal B cell differentiation, in which an antigen-activated B cell becomes an antibody secreting cell, may improve antibody therapy. In this review, we use our recently published data about human B cell differentiation, to show that the mechanisms necessary to adapt a metamorphosing B cell to its new secretory function appear quite early in the differentiation process i.e., at the pre-plasmablast stage. After characterizing the molecular pathways appearing at this stage, we will focus on recent findings about two main processes involved in antibody production: unfolded protein response (UPR) and endoplasmic reticulum (ER) stress. We’ll show that many genes coding for factors involved in UPR and ER stress are induced at the pre-plasmablast stage, sustaining our hypothesis. Finally, we propose to use this recently acquired knowledge to improve productivity of industrialized therapeutic antibodies.
Collapse
Affiliation(s)
- Maud Lemarié
- Université de Rennes 1, INSERM, Établissement Français du Sang de Bretagne, UMR_S1236, Rennes, France
| | - Fabrice Chatonnet
- Université de Rennes 1, INSERM, Établissement Français du Sang de Bretagne, UMR_S1236, Rennes, France.,Laboratoire d'Hématologie, Pôle de Biologie, Centre Hospitalier Universitaire, Rennes, France
| | - Gersende Caron
- Université de Rennes 1, INSERM, Établissement Français du Sang de Bretagne, UMR_S1236, Rennes, France.,Laboratoire d'Hématologie, Pôle de Biologie, Centre Hospitalier Universitaire, Rennes, France
| | - Thierry Fest
- Université de Rennes 1, INSERM, Établissement Français du Sang de Bretagne, UMR_S1236, Rennes, France.,Laboratoire d'Hématologie, Pôle de Biologie, Centre Hospitalier Universitaire, Rennes, France
| |
Collapse
|
18
|
Ahn SH, Lee HJ, Pyun DH, Kim TJ, Abd El-Aty AM, Song JH, Shin YK, Jeong JH, Park ES, Jung TW. Capmatinib attenuates lipogenesis in 3T3-L1 adipocytes through an adenosine monophosphate-activated protein kinase-dependent pathway. Biochem Biophys Res Commun 2021; 553:30-36. [PMID: 33756343 DOI: 10.1016/j.bbrc.2021.03.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/11/2021] [Indexed: 01/01/2023]
Abstract
Recently, there is a rapid increase in the incidence of obesity, a condition for which there are no effective therapeutic agents. Capmatinib (CAP), a novel mesenchymal-to-epithelial transition inhibitor, is reported to attenuate pro-inflammatory mediators and oxidative stress. In this study, the effects of CAP on lipogenesis in the adipocytes were examined. Treatment with CAP dose-dependently suppressed lipid accumulation in, and differentiation of, and increased lipolysis in, 3T3-L1 adipocytes. Additionally, CAP treatment augmented adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and FNDC5 expression in the adipocytes. Transfection with si-AMPK or si-FNDC5 mitigated the CAP-induced suppression of lipogenesis and enhanced lipolysis. Furthermore, transfection with si-FNDC5 mitigated the CAP-induced phosphorylation of AMPK. These results suggest that the anti-obesity effect of CAP is mediated through the irisin/AMPK pathway and that CAP is a novel therapeutic agent for obesity.
Collapse
Affiliation(s)
- Sung Ho Ahn
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea; Department of Anatomy and Cell Biology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Do Hyeon Pyun
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Tae Jin Kim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey.
| | - Jin-Ho Song
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Yong Kyoo Shin
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea; Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Eon Sub Park
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Papadopoulos C, Tentes I, Anagnostopoulos K. Red Blood Cell Dysfunction in Non-Alcoholic Fatty Liver Disease: Marker and Mediator of Molecular Mechanisms. MÆDICA 2021; 15:513-516. [PMID: 33603909 DOI: 10.26574/maedica.2020.15.4.513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Despite efforts to unravel the pathogenetic mechanisms of non-alcoholic fatty liver disease (NAFLD), there is still a need for approved treatments and biomarkers. Interestingly, red blood cells present alterations in their characteristics during NAFLD. The phosphatidylcholine to phosphatidylethanolamine ratio, fatty acid profile, red blood cell count and red cell distribution width reflect molecular changes that are taking place in the liver. In addition, glycosylated hemoglobin, chemokine binding and release, and phosphatidylserine exposure actively participate in NAFLD pathogenesis. In this review, we describe the neglected red blood cell dysfunction in NAFLD, with the aim to unveil potent biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Charalampos Papadopoulos
- Laboratory of Biochemistry, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Tentes
- Laboratory of Biochemistry, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | |
Collapse
|
20
|
Eesmaa A, Yu LY, Göös H, Nõges K, Kovaleva V, Hellman M, Zimmermann R, Jung M, Permi P, Varjosalo M, Lindholm P, Saarma M. The cytoprotective protein MANF promotes neuronal survival independently from its role as a GRP78 cofactor. J Biol Chem 2021; 296:100295. [PMID: 33460650 PMCID: PMC7949057 DOI: 10.1016/j.jbc.2021.100295] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-stress-regulated protein exhibiting cytoprotective properties through a poorly understood mechanism in various in vitro and in vivo models of neuronal and non-neuronal damage. Although initially characterized as a secreted neurotrophic factor for midbrain dopamine neurons, MANF has recently gained more interest for its intracellular role in regulating the ER homeostasis, including serving as a cofactor of the chaperone glucose-regulated protein 78 (GRP78). We aimed for a better understanding of the neuroprotective mechanisms of MANF. Here we show for the first time that MANF promotes the survival of ER-stressed neurons in vitro as a general unfolded protein response (UPR) regulator, affecting several UPR pathways simultaneously. Interestingly, MANF does not affect naïve neurons. We hypothesize that MANF regulates UPR signaling toward a mode more compatible with neuronal survival. Screening of MANF interacting proteins from two mammalian cell lines revealed a conserved interactome of 15 proteins including several ER chaperones such as GRP78, GRP170, protein disulfide isomerase family A member 1, and protein disulfide isomerase family A member 6. Further characterization confirmed previously published finding that MANF is a cofactor of GRP78 interacting with its nucleotide binding domain. Using microscale thermophoresis and nuclear magnetic resonance spectroscopy, we discovered that MANF is an ATP binding protein and that ATP blocks the MANF-GRP78 interaction. Interestingly, functional analysis of the antiapoptotic properties of MANF mutants in cultured neurons revealed divergent roles of MANF as a GRP78 cofactor and as an antiapoptotic regulator of UPR. We conclude that the co-factor type interaction with GRP78 is dispensable for the survival-promoting activity of MANF in neurons.
Collapse
Affiliation(s)
- Ave Eesmaa
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Li-Ying Yu
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Helka Göös
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kristofer Nõges
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Vera Kovaleva
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Maarit Hellman
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Martin Jung
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Perttu Permi
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland; Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Päivi Lindholm
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
21
|
Guimarães RC, Gonçalves TT, Leiria LO. Exploiting oxidized lipids and the lipid-binding GPCRs against cardiometabolic diseases. Br J Pharmacol 2020; 178:531-549. [PMID: 33169375 DOI: 10.1111/bph.15321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022] Open
Abstract
Lipids govern vital cellular processes and drive physiological changes in response to different pathological or environmental cues. Lipid species can be roughly divided into structural and signalling lipids. The former is essential for membrane composition, while the latter are usually oxidized lipids. These mediators provide beneficial effects against cardiometabolic diseases (CMDs), including fatty-liver diseases, atherosclerosis, thrombosis, obesity, and Type 2 diabetes. For instance, several oxylipins were recently found to improve glucose homeostasis, increase insulin secretion, and inhibit platelet aggregation, while specialized pro-resolving mediators (SPMs) are able to ameliorate CMD by shaping the immune system. These lipids act mainly by stimulating GPCRs. In this review, we provide an updated and comprehensive overview of the current state of the literature on signalling lipids in the context of CMD. We also highlight the network encompassing the lipid-modifying enzymes and the lipid-binding GPCRs, as well as their interactions in health and disease.
Collapse
Affiliation(s)
| | - Tiago T Gonçalves
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Luiz O Leiria
- Obesity and Comorbidities Research Center, Campinas, Brazil.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
22
|
Pyun DH, Kim TJ, Kim MJ, Hong SA, Abd El-Aty AM, Jeong JH, Jung TW. Endogenous metabolite, kynurenic acid, attenuates nonalcoholic fatty liver disease via AMPK/autophagy- and AMPK/ORP150-mediated signaling. J Cell Physiol 2020; 236:4902-4912. [PMID: 33283879 DOI: 10.1002/jcp.30199] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/03/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
Endoplasmic reticulum (ER) stress plays a causative role in the development of nonalcoholic fatty liver disease (NAFLD). Kynurenic acid (KA) is a tryptophan metabolite that has been shown to exert anti-inflammatory effects in macrophages and endothelial cells. However, the role of KA in ER stress-associated development of NAFLD has not been fully explored. In the current study, we observed decreased KA levels in the serum of obese subjects. Treated hepatocytes with KA attenuated palmitate-induced lipid accumulation and downregulated lipogenesis-associated genes as well as ER stress markers in a dose-dependent manner. Furthermore, KA augmented AMP-activated protein kinase (AMPK) phosphorylation, oxygen-regulated protein 150 (ORP150) expression, and autophagy markers. The small interfering RNA-mediated suppression of AMPK and ORP150, or 3-methyladenine also abrogated the effects of KA on ER stress and lipid accumulation in hepatocytes. In accordance with in vitro observations, KA administration to mice fed a high-fat diet ameliorated hepatic lipid accumulation and decreased the expression of lipogenic genes as well as ER stress. Moreover, KA treatment increased hepatic AMPK phosphorylation, ORP150 expression, and autophagy related markers in mouse livers. Knockdown of AMPK using in vivo transfection mitigated the effects of KA on hepatic steatosis and ER stress as well as autophagy and ORP150 expression. These results suggest that KA ameliorates hepatic steatosis via the AMPK/autophagy- and AMPK/ORP150-mediated suppression of ER stress. In sum, KA might be used as a promising therapeutic agent for treatment of NAFLD.
Collapse
Affiliation(s)
- Do Hyeon Pyun
- Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea
| | - Tae Jin Kim
- Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea
| | - Myeong Jun Kim
- Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea
| | - Soon Auck Hong
- Department of Pathology, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.,State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Shandong Academy of Science, Qilu University of Technology, Jinan, China.,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Ji Hoon Jeong
- Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea.,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Assessing the safety of transarterial locoregional delivery of low-density lipoprotein docosahexaenoic acid nanoparticles to the rat liver. Eur J Pharm Biopharm 2020; 158:273-283. [PMID: 33242579 DOI: 10.1016/j.ejpb.2020.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/14/2020] [Accepted: 10/25/2020] [Indexed: 11/22/2022]
Abstract
Hepatic-arterial infusion (HAI) of low-density lipoprotein (LDL) nanoparticles reconstituted with docosahexaenoic acid (DHA) (LDL-DHA) has been shown in a rat hepatoma model to be a promising treatment for hepatocellular carcinoma. To date, little is known regarding the safety of HAI of LDL-DHA to the liver. Therefore, we aimed to investigate the deposition, metabolism and safety of HAI of LDL-DHA (2, 4 or 8 mg/kg) in the rat. Following HAI, fluorescent labeled LDL nanoparticles displayed a biexponential plasma concentration time curve as the particles were rapidly extracted by the liver. Overall, increasing doses of HAI of LDL-DHA was well tolerated in the rat. Body weight, plasma biochemistry and histology were all unremarkable and molecular markers of inflammation did not increase with treatment. Lipidomics analyses showed that LDL-DHA was preferentially oxidized to the anti-inflammatory mediator, protectin DX. We conclude that HAI of LDL-DHA nanoparticles is not only safe, but provides potential hepatoprotective benefits.
Collapse
|
24
|
Ruhanen H, Haridas PAN, Jauhiainen M, Olkkonen VM. Angiopoietin-like protein 3, an emerging cardiometabolic therapy target with systemic and cell-autonomous functions. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158791. [PMID: 32777482 DOI: 10.1016/j.bbalip.2020.158791] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/23/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Abstract
Angiopoietin like protein 3 (ANGPTL3) is best known for its function as an inhibitor of lipoprotein and endothelial lipases. Due to the capacity of genetic or pharmacologic ANGPTL3 suppression to markedly reduce circulating lipoproteins, and the documented cardioprotection upon such suppression, ANGPTL3 has become an emerging therapy target for which both antibody and antisense oligonucleotide (ASO) therapeutics are being clinically tested. While the antibody is relatively selective for circulating ANGPTL3, the ASO also depletes the intra-hepatocellular protein, and there is emerging evidence for cell-autonomous functions of ANGPTL3 in the liver. These include regulation of hepatocyte glucose and fatty acid uptake, insulin sensitivity, LDL/VLDL remnant uptake, VLDL assembly/secretion, polyunsaturated fatty acid (PUFA) and PUFA-derived lipid mediator content, and gene expression. In this review we elaborate on (i) why ANGPTL3 is considered one of the most promising new cardiometabolic therapy targets, and (ii) the present evidences for its intra-hepatocellular or cell-autonomous functions.
Collapse
Affiliation(s)
- Hanna Ruhanen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Molecular and Integrative Biosciences, University of Helsinki, Finland
| | | | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland.
| |
Collapse
|
25
|
Ruhanen H, Haridas PAN, Minicocci I, Taskinen JH, Palmas F, di Costanzo A, D'Erasmo L, Metso J, Partanen J, Dalli J, Zhou Y, Arca M, Jauhiainen M, Käkelä R, Olkkonen VM. ANGPTL3 deficiency alters the lipid profile and metabolism of cultured hepatocytes and human lipoproteins. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158679. [PMID: 32151767 DOI: 10.1016/j.bbalip.2020.158679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 02/08/2023]
Abstract
Loss-of-function (LOF) mutations in ANGPTL3, an inhibitor of lipoprotein lipase (LPL), cause a drastic reduction of serum lipoproteins and protect against the development of atherosclerotic cardiovascular disease. Therefore, ANGPTL3 is a promising therapy target. We characterized the impacts of ANGPTL3 depletion on the immortalized human hepatocyte (IHH) transcriptome, lipidome and human plasma lipoprotein lipidome. The transcriptome of ANGPTL3 knock-down (KD) cells showed altered expression of several pathways related to lipid metabolism. Accordingly, ANGPTL3 depleted IHH displayed changes in cellular overall fatty acid (FA) composition and in the lipid species composition of several lipid classes, characterized by abundant n-6 and n-3 polyunsaturated FAs (PUFAs). This PUFA increase coincided with an elevation of lipid mediators, among which there were species relevant for resolution of inflammation, protection from lipotoxic and hypoxia-induced ER stress, hepatic steatosis and insulin resistance or for the recovery from cardiovascular events. Cholesterol esters were markedly reduced in ANGPTL3 KD IHH, coinciding with suppression of the SOAT1 mRNA and protein. ANGPTL3 LOF caused alterations in plasma lipoprotein FA and lipid species composition. All lipoprotein fractions of the ANGPTL3 LOF subjects displayed a marked drop of 18:2n-6, while several highly unsaturated triacylglycerol (TAG) species were enriched. The present work reveals distinct impacts of ANGPTL3 depletion on the hepatocellular lipidome, transcriptome and lipid mediators, as well as on the lipidome of lipoproteins isolated from plasma of ANGPTL3-deficient human subjects. It is important to consider these lipidomics and transcriptomics findings when targeting ANGPTL3 for therapy and translating it to the human context.
Collapse
Affiliation(s)
- Hanna Ruhanen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland; Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Science (HiLIFE), Helsinki, Finland
| | | | - Ilenia Minicocci
- Department of Translational and Precision Medicine, Sapienza University of Rome, Italy
| | - Juuso H Taskinen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Francesco Palmas
- Lipid Mediator Unit, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Alessia di Costanzo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Italy
| | - Laura D'Erasmo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Italy
| | - Jari Metso
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | | | - Jesmond Dalli
- Lipid Mediator Unit, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK
| | - You Zhou
- Systems Immunity University Research Institute and Division of Infection & Immunity, Cardiff University, Cardiff, United Kingdom
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Italy
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Reijo Käkelä
- Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland; Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Science (HiLIFE), Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Anatomy, University of Helsinki, Finland.
| |
Collapse
|
26
|
Chauhan AS, Zhuang L, Gan B. Spatial control of AMPK signaling at subcellular compartments. Crit Rev Biochem Mol Biol 2020; 55:17-32. [PMID: 32069425 DOI: 10.1080/10409238.2020.1727840] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AMP-activated protein kinase (AMPK) is a master regulator of energy homeostasis that functions to restore the energy balance by phosphorylating its substrates during altered metabolic conditions. AMPK activity is tightly controlled by diverse regulators including its upstream kinases LKB1 and CaMKK2. Recent studies have also identified the localization of AMPK at different intracellular compartments as another key mechanism for regulating AMPK signaling in response to specific stimuli. This review discusses the AMPK signaling associated with different subcellular compartments, including lysosomes, endoplasmic reticulum, mitochondria, Golgi apparatus, nucleus, and cell junctions. Because altered AMPK signaling is associated with various pathologic conditions including cancer, targeting AMPK signaling in different subcellular compartments may present attractive therapeutic approaches for treatment of disease.
Collapse
Affiliation(s)
- Anoop Singh Chauhan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson UT, Houston, TX, USA
| |
Collapse
|
27
|
Protectin DX attenuates IL-1β-induced inflammation via the AMPK/NF-κB pathway in chondrocytes and ameliorates osteoarthritis progression in a rat model. Int Immunopharmacol 2019; 78:106043. [PMID: 31837574 DOI: 10.1016/j.intimp.2019.106043] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 12/31/2022]
Abstract
Protectin DX (PDX) has been reported to have extensive anti-inflammatory effects. However, it is unknown whether PDX acts as an anti-inflammatory agent in the context of osteoarthritis (OA). This study aimed to evaluate the anti-inflammatory activity of PDX in vitro and in vivo in a model of OA. Primary rat chondrocytes were preincubated with PDX 1 h prior to IL-1β treatment for 24 h. We found that PDX was nontoxic, and pretreatment with PDX increased cell viability in IL-1β-induced chondrocytes. Preincubation with PDX also efficiently inhibited the degradation of type II collagen dose-dependently. Additionally, the expression of MMP-3, MMP-13, ADAMTS4, iNOS, COX-2, NO, and PGE2 decreased after IL-1β stimulation when cells were preincubated with PDX. Moreover, PDX inhibited the increase in phosphorylated NF-κB p65 and IκBα upon IL-1β stimulation, and the negative effects of IL-1β on chondrocytes were partially blocked by treatment with pyrrolidine dithiocarbamate (PDTC), a selective NF-κB inhibitor. In addition, we found that PDX increased AMPK phosphorylation in IL-1β-mediated chondrocytes. The phosphorylation of AMPK could be inhibited by compound C, a classic AMPK inhibitor. Compound C also remarkably reversed the decrease in p65 phosphorylation and MMP-13 expression caused by PDX. Furthermore, nuclear translocation of NF-κB was visible by immunofluorescence after PDX-induced AMPK activation. Additionally, we verified that PDX ameliorated cartilage degradation in monosodium iodoacetate (MIA)-induced OA rats through histological evaluation and ELISA of TNF-α in the serum and intra-articular lavage fluid. In conclusion, we have shown that PDX suppresses inflammation in chondrocytes in vitro and in vivo, likely through the AMPK/NF-κB signaling pathway. Our results suggest that PDX could be a useful novel therapeutic agent for OA treatment.
Collapse
|
28
|
Kim JH, Sim HA, Jung DY, Lim EY, Kim YT, Kim BJ, Jung MH. Poria cocus Wolf Extract Ameliorates Hepatic Steatosis through Regulation of Lipid Metabolism, Inhibition of ER Stress, and Activation of Autophagy via AMPK Activation. Int J Mol Sci 2019; 20:4801. [PMID: 31569635 PMCID: PMC6801774 DOI: 10.3390/ijms20194801] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/16/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Poria cocos Wolf (PCW) is an edible, pharmaceutical mushroom with remarkable biological properties including anti-tumor, anti-inflammation, anti-oxidation, anti-ageing, and anti-diabetic effects. In the current study, we investigated the effects of PCW extract on hepatic steatosis under in vitro and in vivo conditions, and elucidated the underlying mechanisms. In this study, a mixture of HepG2 cells treated with free fatty acid (FFA)-palmitic and oleic acid-and high-fat diet (HFD)-fed obese mice were used; in this background, the triglyceride (TG) levels in HepG2 cells and mice liver were measured, and the expression levels of genes associated with lipogenesis, fatty acid oxidation, endoplasmic reticulum (ER) stress, and autophagy were determined. Treatment of HepG2 cells with FFA enhanced intracellular TG levels in HepG2 cells, but co-treatment with PCW significantly attenuated the TG levels. Notably, PCW significantly enhanced the phosphorylation of AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), and sterol regulatory element-binding protein-1c (SREBP-1c) in FFA-treated HepG2 cells. PCW downregulated the expression of lipogenesis-related genes, but upregulated the expression of genes associated with fatty acid oxidation. Further, PCW inhibited FFA-induced expression of ER stress markers and induced autophagy proteins. However, inhibition of AMPK significantly attenuated the beneficial effects of PCW in HepG2 cells. Moreover, PCW efficiently decreased HFD-induced hepatic TG accumulation in vivo and increased the phosphorylation of hepatic AMPK. Three compounds present in PCW including poricoic acid, pachymic acid, and ergosterol, significantly decreased FFA-induced increase in intracellular TG levels, consistent with increased AMPK phosphorylation, suggesting that poricoic acid, pachymic acid, and ergosterol are responsible for PCW-mediated amelioration of hepatic steatosis. Taken together, these results demonstrated that PCW ameliorates hepatic steatosis through the regulation of lipid metabolism, inhibition of ER stress, and activation of autophagy in an AMPK-dependent manner. This suggested that PCW can be potentially used for the treatment of hepatic steatosis.
Collapse
Affiliation(s)
- Ji-Hyun Kim
- Healthy Aging Korean Medical Research Center, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea.
| | - Hyun A Sim
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea.
| | - Dae Young Jung
- Healthy Aging Korean Medical Research Center, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea.
| | - Eun Yeong Lim
- Division of Functional Food Research, Korea Food Research Institute, Jeollabuk-do 55365, Korea.
- Department of Food Biotechnology, Korea University of Science & Technology, Daejeon 34113, Korea.
| | - Yun Tai Kim
- Division of Functional Food Research, Korea Food Research Institute, Jeollabuk-do 55365, Korea.
- Department of Food Biotechnology, Korea University of Science & Technology, Daejeon 34113, Korea.
| | - Byung Joo Kim
- Healthy Aging Korean Medical Research Center, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea.
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea.
| | - Myeong Ho Jung
- Healthy Aging Korean Medical Research Center, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea.
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea.
| |
Collapse
|
29
|
Jung TW, Ahn SH, Shin JW, Kim HC, Park ES, Abd El-Aty AM, Hacımüftüoğlu A, Song KH, Jeong JH. Protectin DX ameliorates palmitate-induced hepatic insulin resistance through AMPK/SIRT1-mediated modulation of fetuin-A and SeP expression. Clin Exp Pharmacol Physiol 2019; 46:898-909. [PMID: 31246318 DOI: 10.1111/1440-1681.13131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/08/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022]
Abstract
The role as well as the molecular mechanisms of protectin DX (PDX) in the prevention of hepatic insulin resistance, a hallmark of type 2 diabetes, remains unknown. Therefore, the present study was designed to explore the direct impact of PDX on insulin resistance and to investigate the expression of fetuin-A and selenoprotein P (SeP), hepatokines that are involved in insulin signalling, in hepatocytes. Human serum levels of PDX as well as fetuin-A and SeP were determined by high-performance liquid chromatography (HPLC). Human primary hepatocytes were treated with palmitate and PDX. NF-κB phosphorylation as well as expression of insulin signalling associated genes and hepatokines were determined by Western blotting analysis. FOXO1 binding levels were measured by quantitative real-time PCR. Selected genes from candidate pathways were evaluated by small interfering (si) RNA-mediated gene suppression. Serum PDX levels were significantly (P < 0.05) downregulated, whereas serum fetuin-A and SeP levels were increased (P < 0.05) in obese subjects compared with healthy subjects. In in vitro experiments, PDX treatment increased AMP-activated protein kinase (AMPK) phosphorylation and SIRT1 expression and attenuated palmitate-induced fetuin-A and SeP expression and insulin resistance in hepatocytes. AMPK or SIRT1 siRNA mitigated the suppressive effects of PDX on palmitate-induced fetuin-A through NF-κB and SeP expression linked to FOXO1 and insulin resistance. Recombinant fetuin-A and SeP reversed the suppressive effects of fetuin-A and SeP expression on palmitate-mediated impairment of insulin signalling. The current finding provides novel insight into the underlying mechanism linking hepatokines to the pathogenesis of hepatic insulin resistance.
Collapse
Affiliation(s)
- Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Sung Ho Ahn
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Jong Wook Shin
- Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Korea
| | - Eon Sub Park
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Ahmet Hacımüftüoğlu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Ki Hak Song
- Department of Urology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
| |
Collapse
|
30
|
Jung TW, Kim H, Kim HU, Park T, Park J, Kim U, Kim MK, Jeong JH. Asprosin attenuates insulin signaling pathway through PKCδ‐activated ER stress and inflammation in skeletal muscle. J Cell Physiol 2019; 234:20888-20899. [DOI: 10.1002/jcp.28694] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/30/2019] [Accepted: 04/05/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Tae Woo Jung
- Department of Pharmacology College of Medicine, Chung‐Ang University Seoul Republic of Korea
| | - Hyoung‐Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University Chunchon Republic of Korea
| | - Ho Ung Kim
- Department of Pharmacology College of Medicine, Chung‐Ang University Seoul Republic of Korea
| | - Taekwang Park
- Department of Pharmacology College of Medicine, Chung‐Ang University Seoul Republic of Korea
| | - Jinwoo Park
- Department of Pharmacology College of Medicine, Chung‐Ang University Seoul Republic of Korea
| | - Uiseok Kim
- Department of Pharmacology College of Medicine, Chung‐Ang University Seoul Republic of Korea
| | - Min Kyoon Kim
- Department of Surgery Chung‐Ang University College of Medicine, Chung‐Ang University Seoul Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology College of Medicine, Chung‐Ang University Seoul Republic of Korea
| |
Collapse
|
31
|
Dobrian AD, Morris MA, Taylor-Fishwick DA, Holman TR, Imai Y, Mirmira RG, Nadler JL. Role of the 12-lipoxygenase pathway in diabetes pathogenesis and complications. Pharmacol Ther 2018; 195:100-110. [PMID: 30347209 DOI: 10.1016/j.pharmthera.2018.10.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
12-lipoxygenase (12-LOX) is one of several enzyme isoforms responsible for the metabolism of arachidonic acid and other poly-unsaturated fatty acids to both pro- and anti-inflammatory lipid mediators. Mounting evidence has shown that 12-LOX plays a critical role in the modulation of inflammation at multiple checkpoints during diabetes development. Due to this, interventions to limit pro-inflammatory 12-LOX metabolites either by isoform-specific 12-LOX inhibition, or by providing specific fatty acid substrates via dietary intervention, has the potential to significantly and positively impact health outcomes of patients living with both type 1 and type 2 diabetes. To date, the development of truly specific and efficacious inhibitors has been hampered by homology of LOX family members; however, improvements in high throughput screening have improved the inhibitor landscape. Here, we describe the function and role of human 12-LOX, and mouse 12-LOX and 12/15-LOX, in the development of diabetes and diabetes-related complications, and describe promise in the development of strategies to limit pro-inflammatory metabolites, primarily via new small molecule 12-LOX inhibitors.
Collapse
Affiliation(s)
- A D Dobrian
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, United States
| | - M A Morris
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - D A Taylor-Fishwick
- Department of Microbiology, Cell and Molecular Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - T R Holman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Y Imai
- University of Iowa Carver College of Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa, city, IA, United States
| | - R G Mirmira
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - J L Nadler
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, United States.
| |
Collapse
|
32
|
Hwang HJ, Jung TW, Kim JW, Kim JA, Lee YB, Hong SH, Roh E, Choi KM, Baik SH, Yoo HJ. Protectin DX prevents H 2O 2-mediated oxidative stress in vascular endothelial cells via an AMPK-dependent mechanism. Cell Signal 2018; 53:14-21. [PMID: 30244170 DOI: 10.1016/j.cellsig.2018.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 01/20/2023]
Abstract
Protectin DX (PDX), which is a novel regulator of 5' adenosine monophosphate-activated protein kinase (AMPK), has recently gained attention for its ability to improve several metabolic diseases. However, the function of PDX in vascular endothelial cells remains unclear. To confirm the protective effects of PDX on endothelial oxidative stress, human umbilical vein endothelial cells (HUVECs) were treated with hydroperoxide (H2O2) and PDX. PDX treatment significantly increased the level of AMPK phosphorylation, and this elevation was attenuated after treatment with G-protein coupled receptor 120 (GPR120) antagonist or GPR120 knockdown. Expressions and activities of antioxidant proteins, including catalase and superoxide dismutase 2 (SOD2), were elevated by PDX and were inhibited by treatment with AMPK inhibitor or with GPR120 antagonist. Production of H2O2-induced reactive oxygen species (ROS), the Bax/Bcl-2 ratio, and the loss of mitochondrial membrane potential were all reversed by PDX, leading to improved cell viability and reduced release of lactate dehydrogenase (LDH). Using flow cytometry, we also found that PDX significantly reduced the H2O2-induced apoptotic population of cells. These protective effects of PDX were all reversed after treatment with AMPK inhibitor or GRP120 antagonist. These results show that the PDX-AMPK axis has a protective role against H2O2-induced oxidative stress in vascular endothelial cells.
Collapse
Affiliation(s)
- Hwan-Jin Hwang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Joo Won Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jung A Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - You Bin Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - So Hyeon Hong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Eun Roh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sei Hyun Baik
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hye Jin Yoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|