1
|
Yadav K, Sahu KK, Sucheta, Minz S, Pradhan M. Unlocking exosome therapeutics: The critical role of pharmacokinetics in clinical applications. Tissue Cell 2025; 93:102749. [PMID: 39904192 DOI: 10.1016/j.tice.2025.102749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Exosomes are microscopic vesicles released by cells that transport various biological materials and play a vital role in intercellular communication. When they are engineered, they serve as efficient delivery systems for therapeutic agents, making it possible to precisely deliver active pharmaceutical ingredients to organs, tissues, and cells. Exosomes' pharmacokinetics, or how they are transported and metabolized inside the body, is affected by several factors, including their source of origination and the proteins in their cell membranes. The pharmacokinetics and mobility of both native and modified exosomes are being observed in living organisms using advanced imaging modalities such as in vitro-in vivo simulation, magnetic resonance imaging, and positron emission tomography. Establishing comprehensive criteria for the investigation of exosomal pharmacokinetic is essential, given its increasing significance in both therapy and diagnostics. To obtain a thorough understanding of exosome intake, distribution, metabolism, and excretion, molecular imaging methods are crucial. The development of industrial processes and therapeutic applications depends on the precise measurement of exosome concentration in biological samples. To ensure a seamless incorporation of exosomes into clinical practice, as their role in therapeutics grows, it is imperative to conduct a complete assessment of their pharmacokinetics. This review provides a brief on how exosome-based research is evolving and the need for pharmacokinetic consideration to realize the full potential of these promising new therapeutic approaches.
Collapse
Affiliation(s)
- Krishna Yadav
- Rungta College of Pharmaceutical Sciences and Research, Kohka Road, Kurud, Bhilai, Chhattisgarh 491024, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 11 122103, India
| | - Sunita Minz
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | | |
Collapse
|
2
|
Mallamaci R, Castellani S, Limosani F, Medaglia PG, Fracchiolla G, Cardone RA, Guerra L, Tripaldi F, Porcelli V, Muscella A, Marsigliante S, Trapani A, Bellucci S. Slightly viscous oxidized alginate dispersions as vehicles for intranasal administration of the α-synuclein aggregation inhibitor Anle 138b in free form or encapsulated in solid lipid nanoparticles. Int J Pharm 2025; 673:125399. [PMID: 39999902 DOI: 10.1016/j.ijpharm.2025.125399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 02/27/2025]
Abstract
The aim of the present work was to evaluate the performance of slightly viscous dispersions (SVDs) of the mucoadhesive oxidized alginate (Alg OX) with or without hydroxypropylmethyl cellulose (HPMC) as vehicles for brain delivery of the α-synuclein aggregation inhibitor Anle 138b loaded solid lipid nanoparticles (Anle 138b SLNs) by intranasal administration. For this purpose, the required Anle 138b loaded SLNs were prepared employing the self-emulsifying Gelucire® 50/13 as lipid matrix following the melt emulsification method. The resulting nanocarriers showed a mean diameter of 99 ± 3 nm, an average zeta potential of -5.0 ± 0.2 mV and the encapsulation efficiency of 65 ± 2 %. Their stability on storage was found of a month at 4 °C and 24 h at 37 °C. Solid state studies on Anle 138b SLNs, based on FT-IR and Raman at mid- and at higher-frequency spectra, suggested that the inhibitor is endowed with higher fluidity compared to the pure drug and X-ray diffraction spectra allowed us to assess the reduced crystallinity state for Anle 138b SLNs. The Alg OX based SVDs were prepared by aqueous dispersion of mucoadhesive polymer at low concentrations to which SLN pellets were added. Drug release studies employing SVDs and SNF/mucin mixture as release medium showed quantitative release of the inhibitor within 48 h. We conclude that Anle 138b SLN Alg OX/HPMC SVD constitutes a promising formulation due to its capability to provide the inhibitor in quantitative and sustained way, being not cytotoxic towards human RPMI 2650 cells and neuronal SH-SY5Y cells.
Collapse
Affiliation(s)
- Rosanna Mallamaci
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Stefano Castellani
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Francesca Limosani
- ENEA C.R. Casaccia, Nuclear Department, Via Anguillarese 301, 00123, S. Maria di Galeria, Rome, Italy
| | | | - Giuseppe Fracchiolla
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Francesca Tripaldi
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Vito Porcelli
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Antonella Muscella
- Department of Biological and Environmental Science and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy
| | - Santo Marsigliante
- Department of Biological and Environmental Science and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy.
| | - Stefano Bellucci
- Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati, Via Enrico Fermi 54, Frascati, I-00044 Rome, Italy
| |
Collapse
|
3
|
Loke YH, Jayakrishnan A, Mod Razif MRF, Yee KM, Kee PE, Goh BH, Helal Uddin ABM, Lakshminarayanan V, Liew KB. A Comprehensive Review of Challenges in Oral Drug Delivery Systems and Recent Advancements in Innovative Design Strategies. Curr Pharm Des 2025; 31:360-376. [PMID: 39390835 DOI: 10.2174/0113816128338560240923073357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 10/12/2024]
Abstract
The oral route of drug administration is often preferred by patients and healthcare providers due to its convenience, ease of use, non-invasiveness, and patient acceptance. However, traditional oral dosage forms have several limitations, including low bioavailability, limited drug loading capacity, and stability and storage issues, particularly with solutions and suspensions. Over the years, researchers have dedicated considerable effort to developing novel oral drug delivery systems to overcome these limitations. This review discusses various challenges associated with oral drug delivery systems, including biological, pharmaceutical, and physicochemical barriers. It also explores common delivery approaches, such as gastroretentive drug delivery, small intestine drug delivery, and colon-targeting drug delivery systems. Additionally, numerous strategies aimed at improving oral drug delivery efficiency are reviewed, including solid dispersion, absorption enhancers, lipidbased formulations, nanoparticles, polymer-based nanocarriers, liposomal formulations, microencapsulation, and micellar formulations. Furthermore, innovative approaches like orally disintegrating tablets (ODT), orally disintegrating films (ODF), layered tablets, micro particulates, self-nano emulsifying formulations (SNEF), and controlled release dosage forms are explored for their potential in enhancing oral drug delivery efficiency and promoting patients' compliance. Overall, this review highlights significant progress in addressing challenges in the pharmaceutical industry and clinical settings, offering novel approaches for the development of effective oral drug delivery systems.
Collapse
Affiliation(s)
- Ying Hui Loke
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyberjaya 63000, Selangor, Malaysia
| | - Achuth Jayakrishnan
- Department of Microbiology, Hindusthan College of Arts and Science, Coimbatore 641028, Tamil Nadu, India
| | | | - Kar Ming Yee
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyberjaya 63000, Selangor, Malaysia
| | - Phei Er Kee
- Biorefinery and Bioprocessing Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan 320, Taiwan
| | - Bey Hing Goh
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia
| | - A B M Helal Uddin
- Faculty of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan, Pahang, Malaysia
| | - Vijayakumar Lakshminarayanan
- Department of Pharmaceutical Technology, Hindusthan Institute of Technology, Coimbatore 641032, Tamil Nadu, India
| | - Kai Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyberjaya 63000, Selangor, Malaysia
| |
Collapse
|
4
|
Diaa Abdullah H, Kamal I, Sabry SA, Abd Elghany M, El Hakim Ramadan A. Clarithromycin-tailored cubosome: A sustained release oral nano platform for evaluating antibacterial, anti-biofilm, anti-inflammatory, anti-liver cancer, biocompatibility, ex-vivo and in-vivo studies. Int J Pharm 2024; 667:124865. [PMID: 39490789 DOI: 10.1016/j.ijpharm.2024.124865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
The clinical implication of clarithromycin (CLT) is compromised owing to its poor solubility and, subsequently, bioavailability, unpalatable taste, rapid metabolism, short half-life, frequent dosing, and adverse effects. The present investigation provides an innovative sustained-release oral drug delivery strategy that tackles these challenges. Accordingly, CLT was loaded into a cubosome, a vesicular system with a bicontinuous cubic structure that promotes solubility and bioavailability, provides a sustained release system combating short half-life and adverse effects, masks unpleasant taste, and protects the drug from destruction in gastrointestinal tract (GIT). Nine various formulas were fabricated using the emulsification method. The resulting vesicles increased the encapsulation efficiency (EE %) from 57.64 ± 0.04 % to 96.80 ± 1.50 %, the particle size (PS) from 147.30 ± 21.77 nm to 216.61 ± 5.37 nm, and the polydispersity index (PDI) values ranged from 0.117 ± 0.024 to 0.278 ± 0.073. The zeta potential (ZP) changed from -20.65 ± 2.01 mV to -33.98 ± 2.60 mV. Further, the release profile exhibited a dual release pattern within 24 h., with the percentage of cumulative release (CR %) expanding from 30.06 ± 0.42 % to 98.49 ± 2.88 %, optimized formula was found to be CC9 with EE % = 96.80 ± 1.50 %, PS = 216.61 ± 5.37 nm, ZP = -33.98 ± 2.60 mV, PDI = 0.117 ± 0.024, CR % = 98.49 ± 2.88 % and IC50 of 0.74 ± 0.19 µg/mL against HepG-2 cells with scattered unilamellar cubic non-agglomerated vesicles. Additionally, it exhibited higher anti-MRSA biofilm, relative bioavailability (2.8 fold), and anti-inflammatory and antimicrobial capacity against Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis, and Staphylococcus aureus compared to free CLT. Our data demonstrate that cubosome is a powerful nanocarrier for oral delivery of CLT, boosting its biological impacts and pharmacokinetic profile.
Collapse
Affiliation(s)
- Hend Diaa Abdullah
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt.
| | - Islam Kamal
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt.
| | - Shereen A Sabry
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Mahmoud Abd Elghany
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Abd El Hakim Ramadan
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt.
| |
Collapse
|
5
|
Gu W, Zhang H, Zhang Z, Xu M, Li X, Han Z, Fu X, Li X, Wang X, Zhang C. Continuous Oral Administration of the Superantigen Staphylococcal Enterotoxin C2 Activates Intestinal Immunity and Modulates the Gut Microbiota in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405039. [PMID: 39248343 PMCID: PMC11538665 DOI: 10.1002/advs.202405039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/28/2024] [Indexed: 09/10/2024]
Abstract
Staphylococcal Enterotoxin C2 (SEC2), a classical superantigen, is an antitumor immunotherapy agent. However, the injectable formulation of SEC2 limits its clinical application. Here, it is reported that oral administration of SEC2 activates the intestinal immune system and benefits intestinal health in a mouse model. These results indicate that intact SEC2 is detected in the stomach, intestine, and serum after oral administration. Continuous oral administration of SEC2 activates immune cells in gut-associated lymphoid tissues, promoting extensive differentiation and proliferation of CD4+ and CD8+ T cells and CD19+ B cells, leading to increased production of cytokines and secretory immunoglobulin A. SEC2 also enhances intestinal barrier function, as demonstrated by an increased villus length/crypt depth ratio and elevated expression of mucins and tight junction proteins. Additionally, SEC2 indirectly influenced gut microbiota, reinforcing potential probiotics and short-chain fatty acid synthesis. Enhanced differentiation of T and B cells in the spleen, coupled with elevated serum interleukin-2 levels, suggests systemic immune enhancement following oral administration of SEC2. These findings provide a scientific basis for the development of SEC2 as an oral immunostimulant for immune enhancement and anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Wu Gu
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- University of Chinese Academy of SciencesNo.1 Yanqihu East Rd, Huairou DistrictBeijing101408P. R. China
| | - Huiwen Zhang
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- Best Health (Guangdong) Bio‐Technology Co., Ltd.Center Building, Minke Park, Xinhui Economic Development ZoneJiangmen529100P. R. China
| | - Zhichun Zhang
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- University of Chinese Academy of SciencesNo.1 Yanqihu East Rd, Huairou DistrictBeijing101408P. R. China
| | - Mingkai Xu
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- Key Laboratory of Superantigen Research of Liao Ning ProvinceNo. 72 WenHua RoadShenyang110016P. R. China
| | - Xiang Li
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- Key Laboratory of Superantigen Research of Liao Ning ProvinceNo. 72 WenHua RoadShenyang110016P. R. China
| | - Zhiyang Han
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- University of Chinese Academy of SciencesNo.1 Yanqihu East Rd, Huairou DistrictBeijing101408P. R. China
| | - Xuanhe Fu
- Key Laboratory of Superantigen Research of Liao Ning ProvinceNo. 72 WenHua RoadShenyang110016P. R. China
- Department of ImmunologyShenyang Medical CollegeNo. 146 Huanghe North StreetShenyang110034P. R. China
| | - Xu Li
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- Key Laboratory of Superantigen Research of Liao Ning ProvinceNo. 72 WenHua RoadShenyang110016P. R. China
| | - Xiujuan Wang
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- Key Laboratory of Superantigen Research of Liao Ning ProvinceNo. 72 WenHua RoadShenyang110016P. R. China
| | - Chenggang Zhang
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- Key Laboratory of Superantigen Research of Liao Ning ProvinceNo. 72 WenHua RoadShenyang110016P. R. China
| |
Collapse
|
6
|
Sivadasan D, Madkhali OA. The Design Features, Quality by Design Approach, Characterization, Therapeutic Applications, and Clinical Considerations of Transdermal Drug Delivery Systems-A Comprehensive Review. Pharmaceuticals (Basel) 2024; 17:1346. [PMID: 39458987 PMCID: PMC11510585 DOI: 10.3390/ph17101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/24/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Transdermal drug delivery systems (TDDSs) are designed to administer a consistent and effective dose of an active pharmaceutical ingredient (API) through the patient's skin. These pharmaceutical preparations are self-contained, discrete dosage forms designed to be placed topically on intact skin to release the active component at a controlled rate by penetrating the skin barriers. The API provides the continuous and prolonged administration of a substance at a consistent rate. TDDSs, or transdermal drug delivery systems, have gained significant attention as a non-invasive method of administering APIs to vulnerable patient populations, such as pediatric and geriatric patients. This approach is considered easy to administer and helps overcome the bioavailability issues associated with conventional drug delivery, which can be hindered by poor absorption and metabolism. A TDDS has various advantages compared to conventional methods of drug administration. It is less intrusive, more patient-friendly, and can circumvent first pass metabolism, as well as the corrosive acidic environment of the stomach, that happens when drugs are taken orally. Various approaches have been developed to enhance the transdermal permeability of different medicinal compounds. Recent improvements in TDDSs have enabled the accurate administration of APIs to their target sites by enhancing their penetration through the stratum corneum (SC), hence boosting the bioavailability of drugs throughout the body. Popular physical penetration augmentation methods covered in this review article include thermophoresis, iontophoresis, magnetophoresis, sonophoresis, needle-free injections, and microneedles. This review seeks to provide a concise overview of several methods employed in the production of TDDSs, as well as their evaluation, therapeutic uses, clinical considerations, and the current advancements intended to enhance the transdermal administration of drugs. These advancements have resulted in the development of intelligent, biodegradable, and highly efficient TDDSs.
Collapse
Affiliation(s)
| | - Osama A. Madkhali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| |
Collapse
|
7
|
Toroitich AM, Armitage R, Tanna S. Suspected poor-quality medicines in Kenya: a retrospective descriptive study of medicine quality-related complaints reports in Kenya's pharmacovigilance database. BMC Public Health 2024; 24:2561. [PMID: 39300437 PMCID: PMC11414318 DOI: 10.1186/s12889-024-20036-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
Poor-quality, substandard and falsified, medicines pose a significant public health threat, particularly in low-middle-income countries. A retrospective study was performed on Kenya's Pharmacovigilance Electronic Reporting System (2014-2021) to characterize medicine quality-related complaints and identify associations using disproportionality analysis. A total of 2767 individual case safety reports were identified, categorized into medicines with quality defects (52.1%), suspected therapeutic failure (41.6%), and suspected adverse drug reactions (6.3%). Predominantly reported were antineoplastic agents (28.6%), antivirals (11.7%), and antibacterial agents (10.8%) potentially linked to non-adherence to good manufacturing practices, inappropriate usage and supply chain degradation. Notably, analgesics (8.2%), and medical devices (3.5%) notified had quality defects, predominantly from government health facilities (60.0%). Antineoplastic agents (20.2%) and antivirals (3.7%) were frequently reported from suspected therapeutic failures and suspected adverse drug reactions, respectively, across both private for-profit facilities (26.5%) and not-for-profit facilities (5.4%). Underreporting occurred in unlicensed health facilities (8.1%), due to unawareness and reporting challenges. Pharmacists (46.1%), and pharmaceutical technicians (11.7%) predominantly reported quality defects, while medical doctors (28.0%) reported suspected therapeutic failures. Orally administered generic medicines (76.9%) were commonly reported, with tablets (5.8%) identified as potential sources of suspected adverse drug reactions, while quality defects were notified from oral solutions, suspensions, and syrups (7.0%) and medical devices (3.9%). The COVID-19 pandemic correlated with reduced reporting possibly due to prioritization of health surveillance. This study provides valuable evidence to supporting the use of medicine quality-related complaints for proactive, targeted regulatory control of high-risk medicines on the market. This approach can be strengthened by employing standardized terminology to prioritize monitoring of commonly reported suspected poor-quality medicines for risk-based sampling and testing within the supply chain.
Collapse
Affiliation(s)
- Anthony Martin Toroitich
- Pharmacy and Poisons Board, P.O. Box 27663 - 00506, Nairobi, Kenya
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Rachel Armitage
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
- School of Archaeology and Ancient History, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Sangeeta Tanna
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH, UK.
| |
Collapse
|
8
|
Castellani S, Iaconisi GN, Tripaldi F, Porcelli V, Trapani A, Messina E, Guerra L, Di Franco C, Maruccio G, Monteduro AG, Corbo F, Di Gioia S, Trapani G, Conese M. Dopamine and Citicoline-Co-Loaded Solid Lipid Nanoparticles as Multifunctional Nanomedicines for Parkinson's Disease Treatment by Intranasal Administration. Pharmaceutics 2024; 16:1048. [PMID: 39204393 PMCID: PMC11360708 DOI: 10.3390/pharmaceutics16081048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
This work aimed to evaluate the potential of the nanosystems constituted by dopamine (DA) and the antioxidant Citicoline (CIT) co-loaded in solid lipid nanoparticles (SLNs) for intranasal administration in the treatment of Parkinson disease (PD). Such nanosystems, denoted as DA-CIT-SLNs, were designed according to the concept of multifunctional nanomedicine where multiple biological roles are combined into a single nanocarrier and prepared by the melt emulsification method employing the self-emulsifying Gelucire® 50/13 as lipid matrix. The resulting DA-CIT-SLNs were characterized regarding particle size, surface charge, encapsulation efficiency, morphology, and physical stability. Differential scanning calorimetry, FT-IR, and X ray diffraction studies were carried out to gain information on solid-state features, and in vitro release tests in simulated nasal fluid (SNF) were performed. Monitoring the particle size at two temperatures (4 °C and 37 °C), the size enlargement observed over the time at 37 °C was lower than that observed at 4 °C, even though at higher temperature, color changes occurred, indicative of possible neurotransmitter decomposition. Solid-state studies indicated a reduction in the crystallinity when DA and CIT are co-encapsulated in DA-CIT-SLNs. Interestingly, in vitro release studies in SNF indicated a sustained release of DA. Furthermore, DA-CIT SLNs displayed high cytocompatibility with both human nasal RPMI 2650 and neuronal SH-SY5Y cells. Furthermore, OxyBlot assay demonstrated considerable potential to assess the protective effect of antioxidant agents against oxidative cellular damage. Thus, such protective effect was shown by DA-CIT-SLNs, which constitute a promising formulation for PD application.
Collapse
Affiliation(s)
- Stefano Castellani
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Giorgia Natalia Iaconisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| | - Francesca Tripaldi
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (F.T.); (F.C.); (G.T.)
| | - Vito Porcelli
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (V.P.); (E.M.); (L.G.)
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (F.T.); (F.C.); (G.T.)
| | - Eugenia Messina
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (V.P.); (E.M.); (L.G.)
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (V.P.); (E.M.); (L.G.)
| | | | - Giuseppe Maruccio
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento and INFN Sezione di Lecce, Via per Monteroni, 73100 Lecce, Italy (A.G.M.)
- CNR-NANOTEC Institute of Nanotechnology, Via per Monteroni, 73100 Lecce, Italy
| | - Anna Grazia Monteduro
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento and INFN Sezione di Lecce, Via per Monteroni, 73100 Lecce, Italy (A.G.M.)
- CNR-NANOTEC Institute of Nanotechnology, Via per Monteroni, 73100 Lecce, Italy
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (F.T.); (F.C.); (G.T.)
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
| | - Giuseppe Trapani
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (F.T.); (F.C.); (G.T.)
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
| |
Collapse
|
9
|
Najihah AZ, Hassan MZ, Ismail Z. Current trend on preparation, characterization and biomedical applications of natural polysaccharide-based nanomaterial reinforcement hydrogels: A review. Int J Biol Macromol 2024; 271:132411. [PMID: 38821798 DOI: 10.1016/j.ijbiomac.2024.132411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
The tunable properties of hydrogels have led to their widespread use in various biomedical applications such as wound treatment, drug delivery, contact lenses, tissue engineering and 3D bioprinting. Among these applications, natural polysaccharide-based hydrogels, which are fabricated from materials like agarose, alginate, chitosan, hyaluronic acid, cellulose, pectin and chondroitin sulfate, stand out as preferred choices due to their biocompatibility and advantageous fabrication characteristics. Despite the inherent biocompatibility, polysaccharide-based hydrogels on their own tend to be weak in physiochemical and mechanical properties. Therefore, further reinforcement in the hydrogel is necessary to enhance its suitability for specific applications, ensuring optimal performance in diverse settings. Integrating nanomaterials into hydrogels has proven effective in improving the overall network and performance of the hydrogel. This approach also addresses the limitations associated with pure hydrogels. Next, an overview of recent trends in the fabrication and applications of hydrogels was presented. The characterization of hydrogels was further discussed, focusing specifically on the reinforcement achieved with various hydrogel materials used so far. Finally, a few challenges associated with hydrogels by using polysaccharide-based nanomaterial were also presented.
Collapse
Affiliation(s)
- A Z Najihah
- Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Mohamad Zaki Hassan
- Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| | - Zarini Ismail
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
10
|
Dai C, Xu Q, Li L, Liu Y, Qu S. Milk Extracellular Vesicles: Natural Nanoparticles for Enhancing Oral Drug Delivery against Bacterial Infections. ACS Biomater Sci Eng 2024; 10:1988-2000. [PMID: 38529792 DOI: 10.1021/acsbiomaterials.3c01824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Oral drug delivery is typically preferred as a therapeutic intervention due to the complexities and expenses associated with intravenous administration. However, some drugs are poorly absorbed orally, requiring intravenous administration to bypass the gastrointestinal tract and deliver the drug directly into the bloodstream. Thus, there is an urgent need to develop novel drug delivery platforms to overcome the challenges of oral drug delivery with low solubility, low permeability, oral degradation, and low bioavailability. Advances in extracellular vesicles (EVs) as natural carriers have provided emerging approaches to improve potential therapeutic applications. Milk not only contains traditional nutrients but is also rich in EVs. In this Review, we focus mainly on the purification of milk EVs (mEVs), their safety, and the advantages of mEV-based drug carriers in combatting intestinal infections. Additionally, we summarize several advantages of mEVs over conventional synthetic carriers, such as low immunogenicity, high biocompatibility, and the ability to transfer bioactive molecules between cells. Considering the unmet gaps of mEVs in clinical translation, it is essential to review the cargo loading into mEVs and future perspectives for their use as natural drug carriers for oral delivery. This overview of mEV-based drug carriers for oral delivery sheds light on alternative approaches to treat clinical infections associated with intestinal pathogens and the development of novel oral delivery systems.
Collapse
Affiliation(s)
- Cunchun Dai
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qingjun Xu
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Lin Li
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ying Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shaoqi Qu
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
11
|
Куркин ДВ, Бакулин ДА, Робертус АИ, Колосов ЮА, Крысанов ИС, Морковин ЕИ, Стрыгин АВ, Горбунова ЮВ, Макаренко ИЕ, Драй РВ, Макарова ЕВ, Павлова ЕВ, Кудрин РА, Иванова ОВ. [Evolution of insulin therapy: past, present, future]. PROBLEMY ENDOKRINOLOGII 2024; 69:86-101. [PMID: 38311998 PMCID: PMC10848184 DOI: 10.14341/probl13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 02/06/2024]
Abstract
2021 marks the 100th anniversary of the discovery of insulin, an event that forever changed the lives of people with diabetes mellitus. At present patients around the world experience the miracle of insulin therapy every day. A disease that used to kill children and teenagers in 2 years in 1920 has become a disease that can be controlled with a possibility to lead a long productive life. Over the past century, the great discovery of Banting, Best and Collip has forever changed the world and saved millions of lives. This review is devoted to the history of the development of insulin and its further improvement: from the moment of discovery to the present days. Various generations of insulin are considered: from animals to modern ultrashort and basal analogues. The article ends with a brief review of current trends in the development of new delivery methods and the development of new insulin molecules. Over the past century, insulin therapy has come a long way, which has significantly improved the quality of life of our patients. But research is actively continuing, including in the field of alternative methods of insulin delivery, which are more convenient for the patient, as well as in the development of «smart» molecules that will have a glucose-dependent effect.
Collapse
Affiliation(s)
- Д. В. Куркин
- Московский государственный медико-стоматологический университет им. А.И. Евдокимова
| | - Д. А. Бакулин
- Волгоградский государственный медицинский университет
| | - А. И. Робертус
- Московский государственный медико-стоматологический университет им. А.И. Евдокимова; Российский национальный исследовательский медицинский университет им. Н.И. Пирогова Ю.А
| | - Ю. А. Колосов
- Московский государственный медико-стоматологический университет им. А.И. Евдокимова
| | - И. С. Крысанов
- Московский государственный медико-стоматологический университет им. А.И. Евдокимова
| | - Е. И. Морковин
- Московский государственный медико-стоматологический университет им. А.И. Евдокимова
| | - А. В. Стрыгин
- Волгоградский государственный медицинский университет
| | - Ю. В. Горбунова
- Московский государственный медико-стоматологический университет им. А.И. Евдокимова
| | | | | | - Е. В. Макарова
- Московский государственный медико-стоматологический университет им. А.И. Евдокимова; Университет Сантьяго де Компостела
| | - Е. В. Павлова
- Московский государственный медико-стоматологический университет им. А.И. Евдокимова
| | - Р. А. Кудрин
- Волгоградский государственный медицинский университет
| | - О. В. Иванова
- Московский государственный медико-стоматологический университет им. А.И. Евдокимова
| |
Collapse
|
12
|
Xian S, Zhu J, Wang Y, Song H, Wang H. Oral liposomal delivery of an activatable budesonide prodrug reduces colitis in experimental mice. Drug Deliv 2023; 30:2183821. [PMID: 36861451 PMCID: PMC9987780 DOI: 10.1080/10717544.2023.2183821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Inflammatory bowel disease (IBD) is one of the most common intestinal disorders, with increasing global incidence and prevalence. Numerous therapeutic drugs are available but require intravenous administration and are associated with high toxicity and insufficient patient compliance. Here, an oral liposome that entraps the activatable corticosteroid anti-inflammatory budesonide was developed for efficacious and safe IBD therapy. The prodrug was produced via the ligation of budesonide with linoleic acid linked by a hydrolytic ester bond, which was further constrained into lipid constituents to form colloidal stable nanoliposomes (termed budsomes). Chemical modification with linoleic acid augmented the compatibility and miscibility of the resulting prodrug in lipid bilayers to provide protection from the harsh environment of the gastrointestinal tract, while liposomal nanoformulation enables preferential accumulation to inflamed vasculature. Hence, when delivered orally, budsomes exhibited high stability with low drug release in the stomach in the presence of ultra-acidic pH but released active budesonide after accumulation in inflamed intestinal tissues. Notably, oral administration of budsomes demonstrated favorable anti-colitis effect with only ∼7% mouse body weight loss, whereas at least ∼16% weight loss was observed in other treatment groups. Overall, budsomes exhibited higher therapeutic efficiency than free budesonide treatment and potently induced remission of acute colitis without any adverse side effects. These data suggest a new and reliable approach for improving the efficacy of budesonide. Our in vivo preclinical data demonstrate the safety and increased efficacy of the budsome platform for IBD treatment, further supporting clinical evaluation of this orally efficacious budesonide therapeutic.
Collapse
Affiliation(s)
- Shiyun Xian
- The First Affiliated Hospital, National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China.,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, P.R. China
| | - Jiabin Zhu
- Department of Pharmacy, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P.R. China
| | - Yuchen Wang
- The First Affiliated Hospital, National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Haihan Song
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, P.R. China
| | - Hangxiang Wang
- The First Affiliated Hospital, National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China.,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, P.R. China
| |
Collapse
|
13
|
Yuan S, Ma T, Zhang YN, Wang N, Baloch Z, Ma K. Novel drug delivery strategies for antidepressant active ingredients from natural medicinal plants: the state of the art. J Nanobiotechnology 2023; 21:391. [PMID: 37884969 PMCID: PMC10604811 DOI: 10.1186/s12951-023-02159-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Depression is a severe mental disorder among public health issues. Researchers in the field of mental health and clinical psychiatrists have long been faced with difficulties in slow treatment cycles, high recurrence rates, and lagging efficacy. These obstacles have forced us to seek more advanced and effective treatments. Research has shown that novel drug delivery strategies for natural medicinal plants can effectively improve the utilization efficiency of the active molecules in these plants and therefore improve their efficacy. Currently, with the development of treatment technologies and the constant updating of novel drug delivery strategies, the addition of natural medicinal antidepressant therapy has given new significance to the study of depression treatment against the background of novel drug delivery systems. Based on this, this review comprehensively evaluates and analyses the research progress in novel drug delivery systems, including nanodrug delivery technology, in intervention research strategies for neurological diseases from the perspective of natural medicines for depression treatment. This provided a new theoretical foundation for the development and application of novel drug delivery strategies and drug delivery technologies in basic and clinical drug research fields.
Collapse
Affiliation(s)
- Shun Yuan
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Ting Ma
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Ya-Nan Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, No 4655, University Road, Changqing District, Jinan, 250355, Shandong, China
| | - Ning Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, No 4655, University Road, Changqing District, Jinan, 250355, Shandong, China
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, People's Republic of China
| | - Ke Ma
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, No 4655, University Road, Changqing District, Jinan, 250355, Shandong, China.
| |
Collapse
|
14
|
Peng H, Wang J, Chen J, Peng Y, Wang X, Chen Y, Kaplan DL, Wang Q. Challenges and opportunities in delivering oral peptides and proteins. Expert Opin Drug Deliv 2023; 20:1349-1369. [PMID: 37450427 PMCID: PMC10990675 DOI: 10.1080/17425247.2023.2237408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION Rapid advances in bioengineering enable the use of complex proteins as therapeutic agents to treat diseases. Compared with conventional small molecule drugs, proteins have multiple advantages, including high bioactivity and specificity with low toxicity. Developing oral dosage forms with active proteins is a route to improve patient compliance and significantly reduce production costs. However, the gastrointestinal environment remains a challenge to this delivery path due to enzymatic degradation, low permeability, and weak absorption, leading to reduced delivery efficiency and poor clinical outcomes. AREAS COVERED This review describes the barriers to oral delivery of peptides and complex proteins, current oral delivery strategies utilized and the opportunities and challenges ahead to try and circumvent these barriers. Oral protein drugs on the market and clinical trials provide insights and approaches for advancing delivery strategies. EXPERT OPINION Although most current studies on oral protein delivery rely on in vitro and in vivo animal data, the safety and limitations of the approach in humans remain uncertain. The shortage of clinical data limits the development of new or alternative strategies. Therefore, designing appropriate oral delivery strategies remains a significant challenge and requires new ideas, innovative design strategies and novel model systems.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, China
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Jiahe Wang
- Department of Humanities, Daqing Branch, Harbin Medical University, Daqing, China
| | - Jiayu Chen
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, China
| | - Yanbo Peng
- Department of Pharmaceutical Engineering, China Pharmaceutical University, 639 Longmian Rd, Nanjing 211198, China
| | - Xiaoxian Wang
- The Affiliated Hospital of Medical College, University of Shaoxing, Shaoxing, Zhejiang Province, China
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
15
|
Ghanbariamin D, Samandari M, Ghelich P, Shahbazmohamadi S, Schmidt TA, Chen Y, Tamayol A. Cleanroom-Free Fabrication of Microneedles for Multimodal Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207131. [PMID: 37026428 DOI: 10.1002/smll.202207131] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/26/2022] [Indexed: 06/19/2023]
Abstract
Microneedles have recently emerged as a powerful tool for minimally invasive drug delivery and body fluid sampling. To date, high-resolution fabrication of microneedle arrays (MNAs) is mostly achieved by the utilization of sophisticated facilities and expertise. Particularly, hollow microneedles have usually been manufactured in cleanrooms out of silicon, resin, or metallic materials. Such strategies do not support the fabrication of microneedles from biocompatible/biodegradable materials and limit the capability of multimodal drug delivery for the controlled release of different therapeutics through a combination of injection and sustained diffusion. This study implements low-cost 3D printers to fabricate relatively large needle arrays, followed by repeatable shrink-molding of hydrogels to form high-resolution molds for solid and hollow MNAs with controllable sizes. The developed strategy further enables modulating surface topography of MNAs to tailor their surface area and instantaneous wettability for controllable drug delivery and body fluid sampling. Hybrid gelatin methacryloyl (GelMA)/polyethylene glycol diacrylate (PEGDA) MNAs are fabricated using the developed strategy that can easily penetrate the skin and enable multimodal drug delivery. The proposed method holds promise for affordable, controllable, and scalable fabrication of MNAs by researchers and clinicians for controlled spatiotemporal administration of therapeutics and sample collection.
Collapse
Affiliation(s)
- Delaram Ghanbariamin
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Mohamadmahdi Samandari
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Pejman Ghelich
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Sina Shahbazmohamadi
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Tannin A Schmidt
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
16
|
Falsafi SR, Wang Y, Ashaolu TJ, Sharma M, Rawal S, Patel K, Askari G, Javanmard SH, Rostamabadi H. Biopolymer Nanovehicles for Oral Delivery of Natural Anticancer Agents. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202209419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 01/06/2025]
Abstract
AbstractCancer is the second leading cause of death throughout the world. Nature‐inspired anticancer agents (NAAs) that are a gift of nature to humanity have been extensively utilized in the alleviation/prevention of the disease due to their numerous pharmacological activities. While the oral route is an ideal and common way of drug administration, the application of NAAs through the oral pathway has been extremely limited owing to their inherent features, e.g., poor solubility, gastrointestinal (GI) instability, and low bioavailability. With the development of nano‐driven encapsulation strategies, polymeric vehicles, especially those with natural origins, have demonstrated a potent platform, which can professionally shield versatile NAAs against GI barricades and safely deliver them to the site of action. In this review, the predicament of orally delivering NAAs and the encapsulation strategy solutions based on biopolymer matrices are summarized. Proof‐of‐concept in vitro/in vivo results are also discussed for oral delivery of these agents by various biopolymer vehicles, which can be found so far from the literature. Last but not the least, the challenges and new opportunities in the field are highlighted.
Collapse
Affiliation(s)
- Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center Isfahan University of Medical Sciences Isfahan 81746‐73461 Iran
| | - Yong Wang
- School of Chemical Engineering UNSW Sydney Sydney NSW 2052 Australia
| | - Tolulope Joshua Ashaolu
- Institute of Research and Development Duy Tan University Da Nang 550000 Viet Nam
- Faculty of Environmental and Chemical Engineering Duy Tan University Da Nang 550000 Viet Nam
| | - Minaxi Sharma
- Laboratoire de Chimie verte et Produits Biobasés Haute Ecole Provinciale de Hainaut‐Condorcet Département AgroBioscience et Chimie 11, Rue de la Sucrerie 7800 ATH Belgium
- Department of Applied Biology University of Science and Technology Ri‐Bhoi Meghalaya 793101 India
| | - Shruti Rawal
- Department of Pharmaceutical Technology L.J. Institute of Pharmacy L J University Ahmedabad 382210 India
- Department of Pharmaceutics Institute of Pharmacy Nirma University S.G. Highway, Chharodi Ahmedabad Gujarat 382481 India
| | - Kaushika Patel
- Department of Pharmaceutical Technology L.J. Institute of Pharmacy L J University Ahmedabad 382210 India
| | - Gholamreza Askari
- Department of Community Nutrition School of Nutrition and Food Science Nutrition and Food Security Research Center Isfahan University of Medical Sciences Isfahan 81746‐73461 Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center Cardiovascular Research Institute Isfahan University of Medical Isfahan 81746‐73461 Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center Isfahan University of Medical Sciences Isfahan 81746‐73461 Iran
| |
Collapse
|
17
|
Ren Y, Nie L, Zhu S, Zhang X. Nanovesicles-Mediated Drug Delivery for Oral Bioavailability Enhancement. Int J Nanomedicine 2022; 17:4861-4877. [PMID: 36262189 PMCID: PMC9574265 DOI: 10.2147/ijn.s382192] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/03/2022] [Indexed: 11/08/2022] Open
Abstract
Bioavailability is an eternal topic that cannot be circumvented by peroral drug delivery. Adequate blood drug exposure after oral administration is a prerequisite for effective treatment. Nanovesicles as pleiotropic oral vehicles can solubilize, encapsulate, stabilize an active ingredient and promote the payload absorption via various mechanisms. Vesicular systems with nanoscale size, such as liposomes, niosomes and polymersomes, provide a versatile platform for oral delivery of drugs with distinct nature. The amphiphilicity of vesicles in structure allows hydrophilic and lipophilic molecule(s) either or both to be loaded, being encapsulated in the aqueous cavity or the inner core, respectively. Depending on high oral transport efficiency based on their structural flexibility, gastrointestinal stability, biocompatibility, and/or intestinal epithelial affinity, nanovesicles can markedly augment the oral bioavailability of various poorly absorbed drugs. Vesicular drug delivery systems (VDDSs) demonstrate a lot of preferences and are becoming more prominent of late years in biomedical applications. Equally, these systems can potentiate a drug's therapeutic index by ameliorating the oral absorption. This review devotes to comment on various VDDSs with special emphasis on the peroral drug delivery. The classification of nanovesicles, preparative processes, intestinal transport mechanisms, in vivo fate, and design rationale were expounded. Knowledge on vesicles-mediated oral drug delivery for bioavailability enhancement has been properly provided. It can be concluded that VDDSs with many merits will step into an energetic arena in oral drug delivery.
Collapse
Affiliation(s)
- Yuehong Ren
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China
| | - Linghui Nie
- ASD Medical Rehabilitation Center, the Second People’s Hospital of Guangdong Province, Guangzhou, People’s Republic of China
| | - Shiping Zhu
- Department of Chinese Traditional Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China,Correspondence: Shiping Zhu, Department of Chinese Traditional Medicine, The First Affiliated Hospital of Jinan University, 613 West Huangpu Avenue, Guangzhou, 513630, People’s Republic of China, Email
| | - Xingwang Zhang
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China,Xingwang Zhang, Department of Pharmaceutics, College of Pharmacy, Jinan University, No. 855 East Xingye Avenue, Guangzhou, 511443, People’s Republic of China, Email
| |
Collapse
|
18
|
The Encapsulation of Citicoline within Solid Lipid Nanoparticles Enhances Its Capability to Counteract the 6-Hydroxydopamine-Induced Cytotoxicity in Human Neuroblastoma SH-SY5Y Cells. Pharmaceutics 2022; 14:pharmaceutics14091827. [PMID: 36145575 PMCID: PMC9506317 DOI: 10.3390/pharmaceutics14091827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Backgrond: Considering the positive effects of citicoline (CIT) in the management of some neurodegenerative diseases, the aim of this work was to develop CIT-Loaded Solid Lipid Nanoparticles (CIT-SLNs) for enhancing the therapeutic use of CIT in parkinsonian syndrome; (2) Methods: CIT-SLNs were prepared by the melt homogenization method using the self-emulsifying lipid Gelucire® 50/13 as lipid matrix. Solid-state features on CIT-SLNs were obtained with FT-IR, thermal analysis (DSC) and X-ray powder diffraction (XRPD) studies. (3) Results: CIT-SLNs showed a mean diameter of 201 nm, −2.20 mV as zeta potential and a high percentage of entrapped CIT. DSC and XRPD analyses evidenced a greater amorphous state of CIT in CIT-SLNs. On confocal microscopy, fluorescent SLNs replacing unlabeled CIT-SLNs released the dye selectively in the cytoplasm. Biological evaluation showed that pre-treatment of SH-SY5Y dopaminergic cells with CIT-SLNs (50 µM) before the addition of 40 µM 6-hydroxydopamine (6-OHDA) to mimic Parkinson’s disease’s degenerative pathways counteracts the cytotoxic effects induced by the neurotoxin, increasing cell viability with the consistent maintenance of both nuclear and cell morphology. In contrast, pre-treatment with CIT 50 and 60 µM or plain SLNs for 2 h followed by 6-OHDA (40 µM) did not significantly influence cell viability. (4) Conclusions: These data suggest an enhanced protection exerted by CIT-SLNs with respect to free CIT and prompt further investigation of possible molecular mechanisms that underlie this difference.
Collapse
|
19
|
Formulation and optimization of Paliperidone palmitate biodegradable injectable microspheres using Box-Behnken design. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Alkilani AZ, Nasereddin J, Hamed R, Nimrawi S, Hussein G, Abo-Zour H, Donnelly RF. Beneath the Skin: A Review of Current Trends and Future Prospects of Transdermal Drug Delivery Systems. Pharmaceutics 2022; 14:1152. [PMID: 35745725 PMCID: PMC9231212 DOI: 10.3390/pharmaceutics14061152] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The ideal drug delivery system has a bioavailability comparable to parenteral dosage forms but is as convenient and easy to use for the patient as oral solid dosage forms. In recent years, there has been increased interest in transdermal drug delivery (TDD) as a non-invasive delivery approach that is generally regarded as being easy to administer to more vulnerable age groups, such as paediatric and geriatric patients, while avoiding certain bioavailability concerns that arise from oral drug delivery due to poor absorbability and metabolism concerns. However, despite its many merits, TDD remains restricted to a select few drugs. The physiology of the skin poses a barrier against the feasible delivery of many drugs, limiting its applicability to only those drugs that possess physicochemical properties allowing them to be successfully delivered transdermally. Several techniques have been developed to enhance the transdermal permeability of drugs. Both chemical (e.g., thermal and mechanical) and passive (vesicle, nanoparticle, nanoemulsion, solid dispersion, and nanocrystal) techniques have been investigated to enhance the permeability of drug substances across the skin. Furthermore, hybrid approaches combining chemical penetration enhancement technologies with physical technologies are being intensively researched to improve the skin permeation of drug substances. This review aims to summarize recent trends in TDD approaches and discuss the merits and drawbacks of the various chemical, physical, and hybrid approaches currently being investigated for improving drug permeability across the skin.
Collapse
Affiliation(s)
- Ahlam Zaid Alkilani
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Jehad Nasereddin
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Rania Hamed
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan;
| | - Sukaina Nimrawi
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Ghaid Hussein
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Hadeel Abo-Zour
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Ryan F. Donnelly
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK;
| |
Collapse
|
21
|
Chu JN, Traverso G. Foundations of gastrointestinal-based drug delivery and future developments. Nat Rev Gastroenterol Hepatol 2022; 19:219-238. [PMID: 34785786 DOI: 10.1038/s41575-021-00539-w] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/07/2021] [Indexed: 12/12/2022]
Abstract
Gastrointestinal-based drug delivery is considered the preferred mode of drug administration owing to its convenience for patients, which improves adherence. However, unique characteristics of the gastrointestinal tract (such as the digestive environment and constraints on transport across the gastrointestinal mucosa) limit the absorption of drugs. As a result, many medications, in particular biologics, still exist only or predominantly in injectable form. In this Review, we examine the fundamentals of gastrointestinal drug delivery to inform clinicians and pharmaceutical scientists. We discuss general principles, including the challenges that need to be overcome for successful drug formulation, and describe the unique features to consider for each gastrointestinal compartment when designing drug formulations for topical and systemic applications. We then discuss emerging technologies that seek to address remaining obstacles to successful gastrointestinal-based drug delivery.
Collapse
Affiliation(s)
- Jacqueline N Chu
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni Traverso
- Massachusetts Institute of Technology, Cambridge, MA, USA.
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Falcetta P, Aragona M, Bertolotto A, Bianchi C, Campi F, Garofolo M, Del Prato S. Insulin discovery: A pivotal point in medical history. Metabolism 2022; 127:154941. [PMID: 34838778 DOI: 10.1016/j.metabol.2021.154941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/10/2021] [Accepted: 11/20/2021] [Indexed: 01/12/2023]
Abstract
The discovery of insulin in 1921 - due to the efforts of the Canadian research team based in Toronto - has been a landmark achievement in the history of medicine. Lives of people with diabetes were changed forever, considering that in the pre-insulin era this was a deadly condition. Insulin, right after its discovery, became the first hormone to be purified for human use, the first to be unraveled in its amino acid sequence and to be synthetized by DNA-recombinant technique, the first to be modified in its amino acid sequence to modify its duration of action. As such the discovery of insulin represents a pivotal point in medical history. Since the early days of its production, insulin has been improved in its pharmacokinetic and pharmacodynamic properties in the attempt to faithfully reproduce diurnal physiologic plasma insulin fluctuations. The evolution of insulin molecule has been paralleled by evolution in the way the hormone is administered. Once-weekly insulins will be available soon, and glucose-responsive "smart" insulins start showing their potential in early clinical studies. The first century of insulin as therapy was marked by relentless search for better formulations, a search that has not stopped yet. New technologies may have, indeed, the potential to provide further improvement of safety and efficacy of insulin therapy and, therefore, contribute to improvement of the quality of life of people with diabetes.
Collapse
Affiliation(s)
- Pierpaolo Falcetta
- Department of Clinical and Experimental Medicine, Section of Metabolic Diseases and Diabetes, University of Pisa, Via Trivella, 56124 Pisa, Italy.
| | - Michele Aragona
- Section of Metabolic Diseases and Diabetes, Azienda Ospedaliero-Universitaria Pisana, Via Trivella, 56124 Pisa, Italy.
| | - Alessandra Bertolotto
- Section of Metabolic Diseases and Diabetes, Azienda Ospedaliero-Universitaria Pisana, Via Trivella, 56124 Pisa, Italy.
| | - Cristina Bianchi
- Section of Metabolic Diseases and Diabetes, Azienda Ospedaliero-Universitaria Pisana, Via Trivella, 56124 Pisa, Italy.
| | - Fabrizio Campi
- Section of Metabolic Diseases and Diabetes, Azienda Ospedaliero-Universitaria Pisana, Via Trivella, 56124 Pisa, Italy.
| | - Monia Garofolo
- Department of Clinical and Experimental Medicine, Section of Metabolic Diseases and Diabetes, University of Pisa, Via Trivella, 56124 Pisa, Italy.
| | - Stefano Del Prato
- Department of Clinical and Experimental Medicine, Section of Metabolic Diseases and Diabetes, University of Pisa, Via Trivella, 56124 Pisa, Italy.
| |
Collapse
|
23
|
Trapani A, Cometa S, De Giglio E, Corbo F, Cassano R, Di Gioia ML, Trombino S, Hossain MN, Di Gioia S, Trapani G, Conese M. Novel Nanoparticles Based on N, O-Carboxymethyl Chitosan-Dopamine Amide Conjugate for Nose-to-Brain Delivery. Pharmaceutics 2022; 14:pharmaceutics14010147. [PMID: 35057043 PMCID: PMC8780454 DOI: 10.3390/pharmaceutics14010147] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
A widely investigated approach to bypass the blood brain barrier is represented by the intranasal delivery of therapeutic agents exploiting the olfactory or trigeminal connections nose-brain. As for Parkinson’s disease (PD), characterized by dopaminergic midbrain neurons degeneration, currently there is no disease modifying therapy. Although several bio-nanomaterials have been evaluated for encapsulation of neurotransmitter dopamine (DA) or dopaminergic drugs in order to restore the DA content in parkinsonian patients, the premature leakage of the therapeutic agent limits this approach. To tackle this drawback, we undertook a study where the active was linked to the polymeric backbone by a covalent bond. Thus, novel nanoparticles (NPs) based on N,O-Carboxymethylchitosan-DA amide conjugate (N,O-CMCS-DA) were prepared by the nanoprecipitation method and characterized from a technological view point, cytotoxicity and uptake by Olfactory Ensheating Cells (OECs). Thermogravimetric analysis showed high chemical stability of N,O-CMCS-DA NPs and X-ray photoelectron spectroscopy evidenced the presence of amide linkages on the NPs surface. MTT test indicated their cytocompatibility with OECs, while cytofluorimetry and fluorescent microscopy revealed the internalization of labelled N,O-CMCS-DA NPs by OECs, that was increased by the presence of mucin. Altogether, these findings seem promising for further development of N,O-CMCS-DA NPs for nose-to-brain delivery application in PD.
Collapse
Affiliation(s)
- Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (G.T.)
- Correspondence: ; Tel.: +39-080-5442114
| | | | - Elvira De Giglio
- Chemistry Department, University of Bari “Aldo Moro”, Via Orabona, 4, 70125 Bari, Italy;
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (G.T.)
| | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (R.C.); (M.L.D.G.); (S.T.)
| | - Maria Luisa Di Gioia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (R.C.); (M.L.D.G.); (S.T.)
| | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (R.C.); (M.L.D.G.); (S.T.)
| | - Md Niamat Hossain
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.N.H.); (S.D.G.); (M.C.)
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.N.H.); (S.D.G.); (M.C.)
| | - Giuseppe Trapani
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (G.T.)
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.N.H.); (S.D.G.); (M.C.)
| |
Collapse
|
24
|
Preparation and evaluation of solid self-microemulsifying drug delivery system of eprosartan mesylate using vegetable oils. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Bajaj R, Chong LB, Zou L, Tsakalozou E, Ni Z, Giacomini KM, Kroetz DL. Interaction of Commonly Used Oral Molecular Excipients with P-glycoprotein. AAPS JOURNAL 2021; 23:106. [PMID: 34528148 DOI: 10.1208/s12248-021-00631-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022]
Abstract
P-glycoprotein (P-gp) plays a critical role in drug oral bioavailability, and modulation of this transporter can alter the safety and/or efficacy profile of substrate drugs. Individual oral molecular excipients that inhibit P-gp function have been considered a mechanism for improving drug absorption, but a systematic evaluation of the interaction of excipients with P-gp is critical for informed selection of optimal formulations of proprietary and generic drug products. A library of 123 oral molecular excipients was screened for their ability to inhibit P-gp in two orthogonal cell-based assays. β-Cyclodextrin and light green SF yellowish were identified as modest inhibitors of P-gp with IC50 values of 168 μM (95% CI, 118-251 μM) and 204 μM (95% CI, 5.9-1745 μM), respectively. The lack of effect of most of the tested excipients on P-gp transport provides a wide selection of excipients for inclusion in oral formulations with minimal risk of influencing the oral bioavailability of P-gp substrates.
Collapse
Affiliation(s)
- Ruchika Bajaj
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1550 4th Street RH584E, San Francisco, California, 94143-2911, USA
| | - Lisa B Chong
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1550 4th Street RH584E, San Francisco, California, 94143-2911, USA
| | - Ling Zou
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1550 4th Street RH584E, San Francisco, California, 94143-2911, USA
| | - Eleftheria Tsakalozou
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Zhanglin Ni
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1550 4th Street RH584E, San Francisco, California, 94143-2911, USA
| | - Deanna L Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1550 4th Street RH584E, San Francisco, California, 94143-2911, USA.
| |
Collapse
|
26
|
Trapani A, De Giglio E, Cometa S, Bonifacio MA, Dazzi L, Di Gioia S, Hossain MN, Pellitteri R, Antimisiaris SG, Conese M. Dopamine-loaded lipid based nanocarriers for intranasal administration of the neurotransmitter: A comparative study. Eur J Pharm Biopharm 2021; 167:189-200. [PMID: 34333085 DOI: 10.1016/j.ejpb.2021.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 01/07/2023]
Abstract
Both dopamine (DA) loaded Solid Lipid Nanoparticles (SLN) and liposomes (Lip), designed for intranasal administration of the neurotransmitter as an innovative Parkinson disease treatment, were already characterized in vitro in some extent by us (Trapani et al., 2018a and Cometa et al., 2020, respectively). Herein, to gain insight into the structure of SLN, X-ray Photoelectron Spectroscopy Analysis was carried out and DA-SLN (SLN 1) were found to exhibit high amounts of the neurotransmitter on the surface, whereas the external side of Glycol Chitosan (GCS) containing SLN (SLN 2) possessed only few amounts. However, SLN 2 were characterized by the highest encapsulation DA efficiency (i.e., 81%). Furthermore, in view of intranasal administration, mucoadhesion tests in vitro were also conducted for SLN and Lip formulations, evidencing high muchoadesive effect exerted by SLN 2. Concerning ex-vivo studies, SLN and Lip were found to be safe for Olfactory Ensheathing Cells and fluorescent SLN 2 were taken up in a dose-dependent manner reaching the 100% of positive cells, while Lip 2 (chitosan-glutathione-coated) were internalised by 70% OECs with six-times more lipid concentration. Hence, SLN 2 formulation containing DA and GCS may constitute interesting formulations for further studies and promising dosage form for non-invasive nose-to-brain neurotransmitter delivery.
Collapse
Affiliation(s)
- Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy.
| | - Elvira De Giglio
- Chemistry Department, University of Bari "Aldo Moro", via Orabona, 4, Bari 70125, Italy
| | | | | | - Laura Dazzi
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato (Cagliari), Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| | - Md Niamat Hossain
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation (IRIB-CNR), Catania 95126, Italy
| | - Sophia G Antimisiaris
- Laboratory of Pharm. Technology, Dept. of Pharmacy, School of Health Sciences, University of Patras, Rio 26504, Greece; Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Rio 26504, Greece
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
27
|
El Moukhtari SH, Rodríguez-Nogales C, Blanco-Prieto MJ. Oral lipid nanomedicines: Current status and future perspectives in cancer treatment. Adv Drug Deliv Rev 2021; 173:238-251. [PMID: 33774117 DOI: 10.1016/j.addr.2021.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
Oral anticancer drugs have earned a seat at the table, as the need for homecare treatment in oncology has increased. Interest in this field is growing as a result of their proven efficacy, lower costs and positive patient uptake. However, the gastrointestinal barrier is still the main obstacle to surmount in chemotherapeutic oral delivery. Anticancer nanomedicines have been proposed to solve this quandary. Among these, lipid nanoparticles are described to be efficiently absorbed while protecting drugs from early degradation in hostile environments. Their intestinal lymphatic tropism or mucoadhesive/penetrative properties give them unique characteristics for oral administration. Considering that chronic cancer cases are increasing over time, it is important to be able to provide treatments with low toxicity and low prices. The challenges, opportunities and therapeutic perspectives of lipid nanoparticles in this area will be discussed in this review, taking into consideration the pre-clinical and clinical progress made in the last decade.
Collapse
|
28
|
Wang Y, Tan X, Fan X, Zhao L, Wang S, He H, Yin T, Zhang Y, Tang X, Jian L, Jin J, Gou J. Current strategies for oral delivery of BCS IV drug nanocrystals: challenges, solutions and future trends. Expert Opin Drug Deliv 2021; 18:1211-1228. [PMID: 33719798 DOI: 10.1080/17425247.2021.1903428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Oral absorption of BCS IV drug benefits little from improved dissolution. Therefore, the absorption of BCS IV drug nanocrystals 'as a whole' strategy is preferred, and structural modification of nanocrystals is required. Surface modification helps the nanocrystals maintain particle structure before drug dissolution is needed, thus enhancing the oral absorption of BCS IV drugs and promoting therapeutic effect. Here, the main challenges and solutions of oral BCS IV drug nanocrystals delivery are discussed. Moreover, strategies for nanocrystal surface modification that facilitates oral bioavailability of BCS IV drugs are highlighted, and provide insights for the innovation in oral drug delivery. AREAS COVERED Promising size, shape, and surface modification of nanocrystals have gained interests for application in oral BCS IV drugs. EXPERT OPINION Nanocrystal surface modification is a feasible method to maintain the structural integrity of nanocrystals, and the introduced materials can also be modified to integrate additional functions to further facilitate the absorption of nanocrystals. It is expected that the absorption 'as a whole' strategy of nanocrystals will provide different choices for the oral BCS IV drugs.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.,Department of Pharmaceutics, School of Pharmacy, Jilin University, Changchun, China
| | - Xinyi Tan
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xinyu Fan
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Linxuan Zhao
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.,Department of Pharmaceutics, School of Pharmacy, Jilin University, Changchun, China
| | - Shuhang Wang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.,Department of Pharmaceutics, School of Pharmacy, Jilin University, Changchun, China
| | - Haibing He
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Yu Zhang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xing Tang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Lingyan Jian
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jian Jin
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Jingxin Gou
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
29
|
Di Gioia S, Trapani A, Cassano R, Di Gioia ML, Trombino S, Cellamare S, Bolognino I, Hossain MN, Sanna E, Trapani G, Conese M. Nose-to-brain delivery: A comparative study between carboxymethyl chitosan based conjugates of dopamine. Int J Pharm 2021; 599:120453. [PMID: 33675929 DOI: 10.1016/j.ijpharm.2021.120453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 11/25/2022]
Abstract
Herein, the synthesis of a novel polymeric conjugate N,O-CMCS-Dopamine (DA) based on an amide linkage is reported. The performances of this conjugate were compared with those of an analogous N,O-CMCS-DA ester conjugate previously studied (Cassano et al., 2020) to gain insight into their potential utility for Parkinson's disease treatment. The new amide conjugate was synthesized by standard carbodiimide coupling procedure and characterized by FT-IR, 1H NMR spectroscopies and thermal analysis (Differential Scanning Calorimetry). In vitro mucoadhesive studies in simulated nasal fluid (SNF) evidenced high adhesive effect of both ester and amide conjugates. Results demonstrated that the amide conjugate exerted an important role to prevent DA spontaneous autoxidation both under stressed conditions and physiological mimicking ones. MTT test indicated cytocompatibility of the amide conjugate with Olfactory Ensheating Cells (OECs), which were shown by cytofluorimetry to internalize efficiently the conjugate. Overall, among the two conjugates herein studied, the N,O-CMCS-DA amide conjugate seems a promising candidate for improving the delivery of DA by nose-to-brain administration.
Collapse
Affiliation(s)
- Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy.
| | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy.
| | - Maria Luisa Di Gioia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Saverio Cellamare
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Isabella Bolognino
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Md Niamat Hossain
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Enrico Sanna
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Cagliari, Italy
| | - Giuseppe Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
30
|
Ultrasound mediated delivery of quantum dots from a proof of concept capsule endoscope to the gastrointestinal wall. Sci Rep 2021; 11:2584. [PMID: 33510366 PMCID: PMC7844260 DOI: 10.1038/s41598-021-82240-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 01/14/2021] [Indexed: 12/15/2022] Open
Abstract
Biologic drugs, defined as therapeutic agents produced from or containing components of a living organism, are of growing importance to the pharmaceutical industry. Though oral delivery of medicine is convenient, biologics require invasive injections because of their poor bioavailability via oral routes. Delivery of biologics to the small intestine using electronic delivery with devices that are similar to capsule endoscopes is a promising means of overcoming this limitation and does not require reformulation of the therapeutic agent. The efficacy of such capsule devices for drug delivery could be further improved by increasing the permeability of the intestinal tract lining with an integrated ultrasound transducer to increase uptake. This paper describes a novel proof of concept capsule device capable of electronic application of focused ultrasound and delivery of therapeutic agents. Fluorescent markers, which were chosen as a model drug, were used to demonstrate in vivo delivery in the porcine small intestine with this capsule. We show that the fluorescent markers can penetrate the mucus layer of the small intestine at low acoustic powers when combining microbubbles with focused ultrasound during in vivo experiments using porcine models. This study illustrates how such a device could be potentially used for gastrointestinal drug delivery and the challenges to be overcome before focused ultrasound and microbubbles could be used with this device for the oral delivery of biologic therapeutics.
Collapse
|
31
|
Amaral M, Pereiro AB, Gaspar MM, Reis CP. Recent advances in ionic liquids and nanotechnology for drug delivery. Nanomedicine (Lond) 2020; 16:63-80. [PMID: 33356551 DOI: 10.2217/nnm-2020-0340] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In drug discovery and drug development, it is estimated that around 40% of commercialized and 90% of under-study drugs have inadequate pharmaceutical properties, severely impairing its therapeutic efficacy. Thus, there is a strong demand to find strategies to enhance the delivery of such drugs. Ionic liquids are a novel class of liquids composed of a combination of organic salts that are of particular interest alone or in combination with drug delivery systems. This review is focused on the recent efforts using ionic liquids in drug solubility, formulation and drug delivery with specific emphasis on nanotechnology. The latest developments using hybrid delivery systems obtained upon the combination of drug delivery systems and ionic liquids will also be addressed.
Collapse
Affiliation(s)
- Mariana Amaral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, 1649-003, Portugal
| | - Ana B Pereiro
- LAQV, REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, 1649-003, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, 1649-003, Portugal.,IBEB, Institute of Biophysics & Biomedical Engineering, Faculdade de Ciências, Universidade de Lisboa, Lisboa, 1749-016, Portugal
| |
Collapse
|
32
|
Absorption-Enhancing Mechanisms of Capryol 90, a Novel Absorption Enhancer, for Improving the Intestinal Absorption of Poorly Absorbed Drugs: Contributions to Trans- or Para-Cellular Pathways. Pharm Res 2020; 37:248. [PMID: 33230672 DOI: 10.1007/s11095-020-02963-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/26/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE We have previously reported that Capryol 90 improves the intestinal absorption of insulin, a peptide drug, without causing serious damage to the intestinal epithelium. However, the effects of Capryol 90 and its related formulations on the intestinal absorption of other drugs, and their absorption-enhancing mechanisms are still unclear. The aim of this study is to evaluate the effects of Capryol 90 and its related formulations on the intestinal absorption of drugs and elucidate their absorption-enhancing mechanisms. METHODS The intestinal absorption of 5(6)-carboxyfluorescein, fluorescein isothiocyanate-dextrans, and alendronate was evaluated using an in situ closed loop method. Brush border membrane vesicles (BBMVs) were labeled with fluorescent probes, and the fluidity of membrane was evaluated by a fluorescence depolarization method. The expression levels of tight junction (TJ) proteins were measured using a Western blot method and immunofluorescence staining. RESULTS Among the tested excipients, Capryol 90 significantly improved the small and large intestinal absorption of drugs. In mechanistic studies, Capryol 90 increased the membrane fluidity of lipid bilayers in BBMVs. Additionally, Capryol 90 decreased the expression levels of TJ-associated proteins, namely claudin-4, occludin, and ZO-1. CONCLUSIONS Capryol 90 is an effective absorption enhancer for improving the intestinal absorption of poorly absorbed drugs via both transcellular and paracellular pathways.
Collapse
|
33
|
The efficient development of a sildenafil orally disintegrating tablet using a material sparing and expedited approach. Int J Pharm 2020; 589:119816. [PMID: 32877727 DOI: 10.1016/j.ijpharm.2020.119816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/16/2020] [Accepted: 08/23/2020] [Indexed: 12/17/2022]
Abstract
The purpose of this work is to develop an orally disintegrating tablet (ODT) of sildenafil (SIL) using a materials sparing and expedited development approach, enabled by the materials science tetrahedron principle and predictive technologies. To overcome the problem of bitter taste of SIL, an artificial sweetener, acesulfame (Acs), was used to form a sweet SIL salt (SIL-Acs) using an effective reaction crystallization process to prepare phase pure bulk SIL-Acs with a high yield. The SIL-Acs salt shows excellent thermal stability (Tm = 200.2 °C), low hygroscopicity, and acceptable dissolution rate. Formulation and process parameters were optimized based on powder flowability, tabletability, tablet disintegration time, and expedited friability. A particle engineering approach, i.e., nanocoating, was employed to attain adequate flowability of the SIL-Acs ODT formulation required for the direct compression process. The wide range of compression forces for making tablets exhibiting both fast disintegration time (≤30 s) and low friability (≤0.8%) suggested excellent flexibility in manufacturing SIL-Acs ODT. The development of a sildenafil ODT formulation, including solid form selection and characterization, crystallization method development, formulation development, and DC process optimization, only required 5 g of SIL citrate and 2 weeks of time.
Collapse
|
34
|
Anti-angiogenic activity of uncoated- and N,O-carboxymethyl-chitosan surface modified-Gelucire® 50/13 based solid lipid nanoparticles for oral delivery of curcumin. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101494] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
35
|
Micro and nanoscale technologies in oral drug delivery. Adv Drug Deliv Rev 2020; 157:37-62. [PMID: 32707147 PMCID: PMC7374157 DOI: 10.1016/j.addr.2020.07.012] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022]
Abstract
Oral administration is a pillar of the pharmaceutical industry and yet it remains challenging to administer hydrophilic therapeutics by the oral route. Smart and controlled oral drug delivery could bypass the physiological barriers that limit the oral delivery of these therapeutics. Micro- and nanoscale technologies, with an unprecedented ability to create, control, and measure micro- or nanoenvironments, have found tremendous applications in biology and medicine. In particular, significant advances have been made in using these technologies for oral drug delivery. In this review, we briefly describe biological barriers to oral drug delivery and micro and nanoscale fabrication technologies. Micro and nanoscale drug carriers fabricated using these technologies, including bioadhesives, microparticles, micropatches, and nanoparticles, are described. Other applications of micro and nanoscale technologies are discussed, including fabrication of devices and tissue engineering models to precisely control or assess oral drug delivery in vivo and in vitro, respectively. Strategies to advance translation of micro and nanotechnologies into clinical trials for oral drug delivery are mentioned. Finally, challenges and future prospects on further integration of micro and nanoscale technologies with oral drug delivery systems are highlighted.
Collapse
|
36
|
Yu Z, Fan W, Wang L, Qi J, Lu Y, Wu W. Effect of Surface Charges on Oral Absorption of Intact Solid Lipid Nanoparticles. Mol Pharm 2019; 16:5013-5024. [PMID: 31638827 DOI: 10.1021/acs.molpharmaceut.9b00861] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Surface charge is a crucial factor that determines the in vivo behaviors of drug nanocarriers following administration via different routes. However, there is still a lack of comprehensive knowledge of how surface charges affect the in vivo behaviors of particles, especially for oral delivery. In this study, solid lipid nanoparticles (SLNs), as model drug nanocarriers, are modified to bear either anionic, cationic, or net neutral surface charges. The effect of surface charges on oral absorption of intact SLNs was investigated by tracking the in vivo transport of the particles. The fluorescent bioimaging strategy exploits the aggregation-caused quenching property to discriminate the particles. Both in vitro and in vivo lipolysis studies confirm slowed-down lipolysis by anionic charges in comparison with both unmodified and net neutral SLNs but accelerated degradation by cationic charges. The scanning of ex vivo tissues and organs reveals limited absorption of unmodified SLNs into the circulation. Nevertheless, all three types of surface charge modifications are able to enhance the oral absorption of intact SLNs with the fastest and highest absorption observed for net neutral SLNs, possibly owing to promoted mucus penetration. Anionic SLNs, though repulsed by the mucus layer, show the second highest absorption owing to enhanced lymphatic transport. The efficacy of cationic charge modification is less significant due to entrapment and retention in mucus layers as well as increased lability to lipolysis. In conclusion, surface charges may serve as initiators to guide the in vivo behaviors and enhance the oral absorption of intact SLNs.
Collapse
Affiliation(s)
- Zhou Yu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wufa Fan
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Luting Wang
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianping Qi
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.,Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| |
Collapse
|