1
|
A current overview of RhoA, RhoB, and RhoC functions in vascular biology and pathology. Biochem Pharmacol 2022; 206:115321. [DOI: 10.1016/j.bcp.2022.115321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/24/2022]
|
2
|
Fimasartan for Remodeling after Myocardial Infarction. J Clin Med 2019; 8:jcm8030366. [PMID: 30875971 PMCID: PMC6463200 DOI: 10.3390/jcm8030366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/02/2019] [Accepted: 03/07/2019] [Indexed: 11/17/2022] Open
Abstract
An angiotensin receptor blocker (ARB) mitigates cardiac remodeling after myocardial infarction (MI). Here, we investigated the effect of fimasartan, a new ARB, on cardiac remodeling after MI. Sprague–Dawley rats were assigned into 3 groups: surgery only (sham group, n = 7), MI without (MI-only group, n = 13), and MI with fimasartan treatment (MI + Fima group, n = 16). MI was induced by the permanent ligation of the left anterior descending artery. Treatment with fimasartan (10 mg/kg) was initiated 24 h after MI and continued for 7 weeks. Rats in the MI + Fima group had a higher mean ejection fraction (66.3 ± 12.5% vs. 51.3 ± 14.8%, P = 0.002) and lower left ventricular end-diastolic diameter (9.14 ± 1.11 mm vs. 9.91 ± 1.43 mm, P = 0.045) than those in the MI-only group at 7 weeks after MI. The infarct size was lower in the MI + Fima than in the MI group (P < 0.05). A microarray analysis revealed that the expression of genes related to the lipid metabolism and mitochondrial membrane ion transporters were upregulated, and those involved in fibrosis and inflammation were downregulated by fimasartan. Fimasartan attenuates cardiac remodeling and dysfunction in rats after MI and may prevent the progression to heart failure after MI.
Collapse
|
3
|
An L, An S, Jia Z, Wang H, Yang Z, Xu C, Teng X, Wang J, Liu X, Cao Q, Wang S. Atorvastatin improves left ventricular remodeling and cardiac function in rats with congestive heart failure by inhibiting RhoA/Rho kinase-mediated endothelial nitric oxide synthase. Exp Ther Med 2018; 17:960-966. [PMID: 30651887 DOI: 10.3892/etm.2018.6976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 11/03/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the effects and possible mechanisms of atorvastatin (Ato) against chronic heart failure (CHF). A rat model of CHF was established and cardiac functions were assessed using Echocardiography. The expression of RhoA/Rho kinase and endothelial nitric oxide synthase (eNOS) was assessed using western blotting and reverse transcription polymerase chain reaction following 4 weeks of treatment. The three groups assessed in the present study were as follows: The control group (no treatment), the Ato + isopropylnoradrenaline (ISO) group (subcutaneous injections of 340 mg/kg ISO + orally administered 50 mg/kg Ato dissolved in saline; administered once daily) and the ISO group (subcutaneous injections of 340 mg/kg ISO + orally administered with an equal volume of saline; administered once daily). Heart volume and weight in the ISO group were significantly increased compared with the control (C) group (P<0.01), whereas contractility was decreased. The results were reverse for the Ato group when compared with the ISO group (P<0.05). Levels of RhoA/Rho kinase protein and mRNA were significantly increased in the ISO group (P<0.01); however. The mRNA and protein expression of eNOS was significantly decreased (P<0.05) when compared with the C group. The mRNA and protein expression of RhoA/Rho kinase was significantly reduced in the Ato+ISO group compared with the ISO group (P<0.01), whereas the mRNA and protein expression of eNOS was significantly increased (P<0.05). RhoA protein expression was increased in the cytoplasm of the C group and on the cell membrane of the ISO group; however, in the Ato+ISO group, RhoA protein expression on the cell membrane was significantly downregulated when compared with the ISO group (P<0.05). The results of the present study suggest that Ato upregulates eNOS by inhibiting RhoA/Rho kinase overexpression in the myocardial tissue of rats with CHF, thus improving left ventricular remodeling and cardiac function.
Collapse
Affiliation(s)
- Liping An
- Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Shoukuan An
- Department of Cardiac Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Zhuowen Jia
- Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Huan Wang
- Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Zhaoying Yang
- Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Chaoxin Xu
- Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Xiane Teng
- Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Jipeng Wang
- Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Xiaodong Liu
- Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Qidong Cao
- Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Sha Wang
- Department of Geriatric Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| |
Collapse
|
4
|
CHANG-QING DU, XIAO-WEI LIU, GUANG-ZHONG ZENG, HONG-FENG JIN, LI-JIANG TANG. Inhibition of farnesyl pyrophosphate synthase attenuates angiotensin II-induced fibrotic responses in vascular smooth muscle cells. Int J Mol Med 2015; 35:1767-72. [DOI: 10.3892/ijmm.2015.2166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/26/2015] [Indexed: 11/06/2022] Open
|
5
|
Montezano AC, Nguyen Dinh Cat A, Rios FJ, Touyz RM. Angiotensin II and vascular injury. Curr Hypertens Rep 2014; 16:431. [PMID: 24760441 DOI: 10.1007/s11906-014-0431-2] [Citation(s) in RCA: 307] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vascular injury, characterized by endothelial dysfunction, structural remodelling, inflammation and fibrosis, plays an important role in cardiovascular diseases. Cellular processes underlying this include altered vascular smooth muscle cell (VSMC) growth/apoptosis, fibrosis, increased contractility and vascular calcification. Associated with these events is VSMC differentiation and phenotypic switching from a contractile to a proliferative/secretory phenotype. Inflammation, associated with macrophage infiltration and increased expression of redox-sensitive pro-inflammatory genes, also contributes to vascular remodelling. Among the many factors involved in vascular injury is Ang II. Ang II, previously thought to be the sole biologically active downstream peptide of the renin-angiotensin system (RAS), is converted to smaller peptides, [Ang III, Ang IV, Ang-(1-7)], that are functional and that modulate vascular tone and structure. The actions of Ang II are mediated via signalling pathways activated upon binding to AT1R and AT2R. AT1R activation induces effects through PLC-IP3-DAG, MAP kinases, tyrosine kinases, tyrosine phosphatases and RhoA/Rho kinase. Ang II elicits many of its (patho)physiological actions by stimulating reactive oxygen species (ROS) generation through activation of vascular NAD(P)H oxidase (Nox). ROS in turn influence redox-sensitive signalling molecules. Here we discuss the role of Ang II in vascular injury, focusing on molecular mechanisms and cellular processes. Implications in vascular remodelling, inflammation, calcification and atherosclerosis are highlighted.
Collapse
Affiliation(s)
- Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | | | | |
Collapse
|
6
|
Staiculescu MC, Galiñanes EL, Zhao G, Ulloa U, Jin M, Beig MI, Meininger GA, Martinez-Lemus LA. Prolonged vasoconstriction of resistance arteries involves vascular smooth muscle actin polymerization leading to inward remodelling. Cardiovasc Res 2013; 98:428-36. [PMID: 23417038 DOI: 10.1093/cvr/cvt034] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AIMS Inward remodelling of the resistance vasculature is predictive of hypertension and life-threatening cardiovascular events. We hypothesize that the contractile mechanisms responsible for maintaining a reduced diameter over time in response to prolonged stimulation with vasoconstrictor agonists are in part responsible for the initial stages of the remodelling process. Here we investigated the role of vascular smooth muscle (VSM) actin polymerization on agonist-induced vasoconstriction and development of inward remodelling. METHODS AND RESULTS Experiments were conducted in Sprague-Dawley rat resistance vessels isolated from the cremaster and mesentery. Within blood vessels, actin dynamics of VSM were monitored by confocal microscopy after introduction of fluorescent actin monomers through electroporation and by differential centrifugation to probe globular (G) and filamentous (F) actin content. Results indicated that 4 h of agonist-dependent vasoconstriction induced inward remodelling and caused significant actin polymerization, elevating the F-/total-actin ratio. Inhibition of actin polymerization prevented vessels from maintaining prolonged vasoconstriction and developing inward remodelling. Activation of the small GTPases Rho/Rac/Cdc42 also increased the F-/total-actin ratio and induced inward remodelling, while inhibition of Rho kinase or Rac-1 prevented inward remodelling. Disruption of the actin cytoskeleton reversed the inward remodelling caused by prolonged vasoconstriction, but did not affect the passive diameter of freshly isolated vessels. CONCLUSION These results indicate that vasoconstriction-induced inward remodelling is in part caused by the polymerization of actin within VSM cells through activation of small GTPases.
Collapse
Affiliation(s)
- Marius C Staiculescu
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, 134 Research Park Dr, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Haack KKV, Gao L, Schiller AM, Curry PL, Pellegrino PR, Zucker IH. Central Rho kinase inhibition restores baroreflex sensitivity and angiotensin II type 1 receptor protein imbalance in conscious rabbits with chronic heart failure. Hypertension 2013; 61:723-9. [PMID: 23283363 DOI: 10.1161/hypertensionaha.111.00396] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The small GTPase RhoA and its associated kinase ROCKII are involved in vascular smooth muscle cell contraction and endothelial NO synthase mRNA destabilization. Overactivation of the RhoA/ROCKII pathway is implicated in several pathologies, including chronic heart failure (CHF), and may contribute to the enhanced sympathetic outflow seen in CHF as a result of decreased NO availability. Thus, we hypothesized that central ROCKII blockade would improve the sympathovagal imbalance in a pacing rabbit model of CHF in an NO-dependent manner. CHF was induced by rapid ventricular pacing and characterized by an ejection fraction of ≤45%. Animals were implanted with an intracerbroventricular cannula and osmotic minipump (rate, 1 μL/h) containing sterile saline, 1.5 µg/kg per day fasudil (Fas, a ROCKII inhibitor) for 4 days or Fas+100 µg/kg per day Nω-Nitro-l-arginine methyl ester hydrochloride, a NO synthase inhibitor. Arterial baroreflex control was assessed by intravenous infusion of sodium nitroprusside and phenylephrine. Fas infusion significantly lowered resting heart rate by decreasing sympathetic and increasing vagal tone. Furthermore, Fas improved baroreflex gain in CHF in an NO-dependent manner. In CHF Fas animals, the decrease in heart rate in response to intravenous metoprolol was similar to Sham and was reversed by Nω-Nitro-l-arginine methyl ester hydrochloride. Fas decreased angiotensin II type 1 receptor and phospho-ERM protein expression and increased endothelial NO synthase expression in the brain stem of CHF animals. These data strongly suggest that central ROCKII activation contributes to cardiac sympathoexcitation in the setting of CHF and that central Fas restores vagal and sympathetic tone in an NO-dependent manner. ROCKII may be a new central therapeutic target in the setting of CHF.
Collapse
|
8
|
Inhibition of farnesyl pyrophosphate synthase attenuates angiotensin II-induced cardiac hypertrophy and fibrosis in vivo. Int J Biochem Cell Biol 2012; 45:657-66. [PMID: 23277274 DOI: 10.1016/j.biocel.2012.12.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 11/19/2012] [Accepted: 12/07/2012] [Indexed: 12/28/2022]
Abstract
Farnesyl pyrophosphate synthase (FPPS), as a key branchpoint of the mevalonate pathway, catalyzes the synthesis of isoprenoid intermediates. The isoprenoid intermediates are needed for protein isoprenylation to participate in cardiac remodeling. We have previously demonstrated that both knockdown of FPPS with small interfering RNA and inhibition of FPPS by alendronate could prevent Ang II-induced hypertrophy in cultured cardiomyocytes. In this study, we evaluated the effects of FPPS inhibition in Ang II-mediated cardiac hypertrophy and fibrosis in vivo. Wild type mice were separately treated with saline, Ang II (2.88 mg/kg per day), FPPS inhibitor alendronate (0.1 mg/kg per day), or the combination of Ang II (2.88 mg/kg per day) and alendronate (0.1 mg/kg per day) for 4 weeks. The results showed that Ang II increased FPPS expression, and the increases of Ang II-induced synthesis of the isoprenoid intermediates, FPP and GGPP, were significantly inhibited by FPPS inhibitor. In the meantime, FPPS inhibition attenuated Ang II-mediated cardiac hypertrophy and fibrosis as indexed by the heart weight to body weight ratio, echocardiographic parameters, histological examinations and expression of ANP and BNP mRNA. Furthermore, it was also found that FPPS inhibitor attenuated Ang II-induced increases of RhoA activity and p-38 MAPK phosphorylation and TGF-β1 mRNA expression. In conclusion, FPPS might play an important role in Ang II-induced cardiac hypertrophy and fibrosis in vivo, at least in part through RhoA, p-38 MAPK and TGF-β1.
Collapse
|
9
|
Takeshima H, Kobayashi N, Koguchi W, Ishikawa M, Sugiyama F, Ishimitsu T. Cardioprotective effect of a combination of Rho-kinase inhibitor and p38 MAPK inhibitor on cardiovascular remodeling and oxidative stress in Dahl rats. J Atheroscler Thromb 2011; 19:326-36. [PMID: 22166971 DOI: 10.5551/jat.11114] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Rho-kinase plays a critical role in various cellular functions. p38 mitogen-activated protein kinase (p38 MAPK) plays a central role in the inflammatory cytokine response to immune challenge. We evaluated the effects of a combination of fasudil, a Rho-kinase inhibitor, and FR167653, a p38 MAPK inhibitor, on cardiovascular remodeling, inflammation, and oxidative stress in Dahl salt-sensitive hypertensive (DS) rats. METHODS DS and Dahl salt-resistant (DR) rats were fed a high-salt diet at 6 weeks of age. Vehicle, fasudil (100 mg/kg per day), FR167653 (2 mg/kg per day), and a combination of fasudil and FR167653 were administered to 6-week-old DS rats for 5 weeks. RESULTS At the age of 11 weeks, in the left ventricle, DS rats were characterized by increased myocardial fibrosis, phosphorylation of p38 MAPK, and myosin phosphatase targeting subunit (MYPT-1), and NAD(P)H oxidase p22(phox), p47(phox), gp91(phox), tumor necrosis factor-α and interleukin-1β expression compared with DR rats. Fasudil improved cardiovascular remodeling, inflammation, NAD(P)H oxidase subunits, and phosphorylation of p38 MAPK and MYPT-1. FR167653 also similarly ameliorated these indices but not MYPT-1 phosphorylation. Compared with either agent alone, a combination of fasudil and FR167653 was more effective for the improvement of myocardial damage, inflammation and oxidative stress. CONCLUSION These findings suggest that the Rho-kinase and p38 MAPK pathways may play a pivotal role in ventricular hypertrophy; thus, we obtained the first evidence that a combination of Rho-kinase inhibitor and p38 MAPK inhibitor may provide a potential therapeutic target in hypertension with cardiovascular remodeling.
Collapse
Affiliation(s)
- Hiroshi Takeshima
- Department of Hypertension and Cardiorenal Medicine, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
INTRODUCTION A role for cytokines in the pathophysiology of erectile dysfunction (ED) has emerged. Cytokines induce genes that synthesize other peptides in the cytokine family and several mediators, such as prostanoids, leukotrienes, nitric oxide, bradykinin, reactive oxygen species, and platelet-activating factor, all of which can affect vascular function. Consistent with the fact that the cavernosal tissue is a complex extension of the vasculature, risk factors that affect the vasculature have been shown to affect cavernosal function as well. Accordingly, the penile tissue has been recognized as an early sentinel for atherosclerosis that underlies coronary artery disease and cardiovascular diseases (CVD). AIM To review the literature pertaining to the role of tumor necrosis factor-alpha (TNF-α) in ED. METHODS PubMed search for pertinent publications on the role of cytokines, particularly TNF-α, in CVD and ED. MAIN OUTCOME MEASURES Clinical and experimental evidence demonstrates that TNF-α may play a role in ED. RESULTS TNF-α has been shown to play an important role in CVD, mainly due to its direct effects on the vasculature. In addition, high levels of TNF-α were demonstrated in patients with ED. In this review, we present a short description of the physiology of erection and the cytokine network. We focus on vascular actions of TNF-α that support a role for this cytokine as a potential candidate in the pathophysiology of ED, particularly in the context of CVD. A brief overview of its discovery, mechanisms of synthesis, receptors, and its main actions on the systemic and penile vasculature is also presented. CONCLUSIONS Considering that ED results from a systemic arterial defect not only confined to the penile vasculature, implication of TNF-α in the pathophysiology of ED offers a humoral linking between CVD and ED.
Collapse
|
11
|
Stepanova OV, Chadin AV, Masyutin AG, Kulikova TG, Gurin YV, Sergeeva IA, Shirinsky VP. Rho-associated protein kinase is involved in establishing the cardiomyocyte contractile phenotype. Biophysics (Nagoya-shi) 2010. [DOI: 10.1134/s0006350910050167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
12
|
Vasculoprotective effect of cilostazol in aldosterone-induced hypertensive rats. Hypertens Res 2009; 33:229-35. [PMID: 20019701 DOI: 10.1038/hr.2009.211] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Chung CL, Sheu JR, Liu HE, Chang SC, Chou YC, Chen WL, Chou DS, Hsiao G. Dynasore, a Dynamin Inhibitor, Induces PAI-1 Expression in MeT-5A Human Pleural Mesothelial Cells. Am J Respir Cell Mol Biol 2009; 40:692-700. [DOI: 10.1165/rcmb.2008-0087oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
14
|
Huo LJ, Liu Y, Zhang SJ. Effect of valsartan on portal pressure and hepatic fibrosis in patients with hepatic cirrhosis. Shijie Huaren Xiaohua Zazhi 2009; 17:1139-1142. [DOI: 10.11569/wcjd.v17.i11.1139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the effects of valsartan on hemodynamic markers, CGRP, HA, CG and PAI-1 in patients with hepatic cirrhosis.
METHODS: Thirty-six patients with hepatic cirrhosis were divided into control group and observation group. Eighteen patients in control group received routine treatment for 1 month and eighteen patients in observation group received valsartan 80 mg/d based on routine treatment for the same time. Diameter of portal or splenic vein and their mean velocity were measured before and after treatment by color Doppler. Blood levels of calcitonin gene related peptide (CGRP), hyaluronic acid (HA), cholyglycine (CG) were simultaneously assessed by radioimmunoassay. Plasminogen activator inhibitor-1 (PAI-1) was measured by ELISA.
RESULTS: Valsartan reduced the diameter of portal or splenic vein and increased the mean velocity of portal or splenic vein.Valsartan also reduced the concentrations of CGRP, HA, CG and PAI-1 in blood (73.15 ± 14.59 vs 75.79 ± 15.06, 422.34 ± 183.94 vs 498.39 ± 197.53, 12.50 ± 8.92 vs 24.23 ± 13.05, 28.09 ± 10.80 vs 32.56 ± 11.18, all P < 0.05).
CONCLUSION: Valsartan can reduce portal hypertension and it may have the effect of anti-hepatic fibrosis.
Collapse
|
15
|
Stepanova OV, Chadin AV, Raevskaya AA, Blejyants DA, Muratov RM, Shirinsky VP. Myosin-activating protein kinases in human myocardium: Localization and content. Biophysics (Nagoya-shi) 2008. [DOI: 10.1134/s0006350908050084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
16
|
Crowley SD, Frey CW, Gould SK, Griffiths R, Ruiz P, Burchette JL, Howell DN, Makhanova N, Yan M, Kim HS, Tharaux PL, Coffman TM. Stimulation of lymphocyte responses by angiotensin II promotes kidney injury in hypertension. Am J Physiol Renal Physiol 2008; 295:F515-24. [PMID: 18495795 DOI: 10.1152/ajprenal.00527.2007] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Activation of the renin-angiotensin system contributes to the progression of chronic kidney disease. Based on the known cellular effects of ANG II to promote inflammation, we posited that stimulation of lymphocyte responses by ANG II might contribute to the pathogenesis of hypertensive kidney injury. We therefore examined the effects of the immunosuppressive agent mycophenolate mofetil (MMF) on the course of hypertension and kidney disease induced by chronic infusion of ANG II in 129/SvEv mice. Although it had no effect on the severity of hypertension or cardiac hypertrophy, treatment with MMF significantly reduced albuminuria and ameliorated kidney injury, decreasing glomerulosclerosis and reducing lymphocyte infiltration into the renal interstitium. Attenuation of renal pathology with MMF was associated with reduced expression of mRNAs for the proinflammatory cytokines interferon-gamma and tumor necrosis factor-alpha and the profibrotic cytokine transforming growth factor-beta. As infiltration of the kidney by T lymphocytes was a prominent feature of ANG II-dependent renal injury, we carried out experiments examining the effects of ANG II on lymphocytes in vitro. We find that exposure of splenic lymphocytes to ANG II causes prominent rearrangements of the actin cytoskeleton. These actions require the activity of Rho kinase. Thus, ANG II exaggerates hypertensive kidney injury by stimulating lymphocyte responses. These proinflammatory actions of ANG II seem to have a proclivity for inducing kidney injury while having negligible actions in the pathogenesis of cardiac hypertrophy.
Collapse
Affiliation(s)
- Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University Medical Center and Durham Veterans Affairs Medical Center, Durham, NC, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Montezano AC, Callera GE, Yogi A, He Y, Tostes RC, He G, Schiffrin EL, Touyz RM. Aldosterone and angiotensin II synergistically stimulate migration in vascular smooth muscle cells through c-Src-regulated redox-sensitive RhoA pathways. Arterioscler Thromb Vasc Biol 2008; 28:1511-8. [PMID: 18467645 DOI: 10.1161/atvbaha.108.168021] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Synergistic interactions between aldosterone (Aldo) and angiotensin II (Ang II) have been implicated in vascular inflammation, fibrosis, and remodeling. Molecular mechanisms underlying this are unclear. We tested the hypothesis that c-Src activation, through receptor tyrosine kinase transactivation, is critically involved in synergistic interactions between Aldo and Ang II and that it is upstream of promigratory signaling pathways in vascular smooth muscle cells (VSMCs). METHODS AND RESULTS VSMCs from WKY rats were studied. At low concentrations (10(-10) mol/L) Aldo and Ang II alone did not influence c-Src activation, whereas in combination they rapidly increased phosphorylation (P<0.01), an effect blocked by eplerenone (Aldo receptor antagonist) and irbesartan (AT1R blocker). This synergism was attenuated by AG1478 and AG1296 (inhibitors of EGFR and PDGFR, respectively), but not by AG1024 (IGFR inhibitor). Aldo and Ang II costimulation induced c-Src-dependent activation of NAD(P)H oxidase and c-Src-independent activation of ERK1/2 (P<0.05), without effect on ERK5, p38MAPK, or JNK. Aldo/Ang II synergistically activated RhoA/Rho kinase and VSMC migration, effects blocked by PP2, apocynin, and fasudil, inhibitors of c-Src, NADPH oxidase, and Rho kinase, respectively. CONCLUSIONS Aldo/Ang II synergistically activate c-Src, an immediate signaling response, through EGFR and PDGFR, but not IGFR transactivation. This is associated with activation of redox-regulated RhoA/Rho kinase, which controls VSMC migration. Although Aldo and Ang II interact to stimulate ERK1/2, such effects are c-Src-independent. These findings indicate differential signaling in Aldo-Ang II crosstalk and highlight the importance of c-Src in redox-sensitive RhoA, but not ERK1/2 signaling. Blockade of Aldo/Ang II may be therapeutically useful in vascular remodeling associated with abnormal VSMC migration.
Collapse
Affiliation(s)
- A C Montezano
- Ottawa Health Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, K1H 8M5, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang L, Ellis MJ, Fields TA, Howell DN, Spurney RF. Beneficial effects of the Rho kinase inhibitor Y27632 in murine puromycin aminonucleoside nephrosis. Kidney Blood Press Res 2008; 31:111-21. [PMID: 18367845 PMCID: PMC2821439 DOI: 10.1159/000121531] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 01/08/2008] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND AIMS Rho kinase (ROCK) inhibition reduces systemic blood pressure (BP) and decreases renal damage in animal models of kidney disease. The aim of this study was to determine if ROCK inhibition might have beneficial effects in glomerular disease processes that are independent of systemic BP. METHODS We investigated the effects of the ROCK inhibitor Y27632 and hydralazine in murine puromycin aminonucleoside (PAN) nephrosis. RESULTS Treatment with either Y27632 or hydralazine similarly reduced systolic BP compared to vehicle-treated controls. Seven days after treatment with PAN, albuminuria, proteinuria and effacement of podocyte foot processes were significantly reduced in Y27632- and hydralazine-treated mice compared to vehicle-treated animals. Treatment with PAN significantly reduced expression of the podocyte proteins nephrin and Neph1, and the loss of glomerular nephrin was attenuated by treatment with Y27632 but not by treatment with hydralazine. In cultured podocytes, PAN potently activated both Rho and ROCK, and PAN-induced ROCK activation was prevented by Y27632. CONCLUSIONS The ROCK inhibitor Y27632 attenuated glomerular nephrin loss in murine PAN nephrosis independent of its effects on systemic BP.
Collapse
Affiliation(s)
- Liming Wang
- Division of Nephrology, Department of Medicine, and Durham VA Medical Centers, Durham, N.C., USA
| | - Mathew J. Ellis
- Division of Nephrology, Department of Medicine, and Durham VA Medical Centers, Durham, N.C., USA
| | - Timothy A. Fields
- Department of Pathology, Duke University and Durham VA Medical Centers, Durham, N.C., USA
| | - David N. Howell
- Department of Pathology, Duke University and Durham VA Medical Centers, Durham, N.C., USA
| | - Robert F. Spurney
- Division of Nephrology, Department of Medicine, and Durham VA Medical Centers, Durham, N.C., USA
| |
Collapse
|
19
|
Abstract
Fibrosis is characterized by excessive accumulation of extracellular matrix (ECM) in basement membranes and interstitial tissues, resulting from increased synthesis or decreased degradation of ECM or both. The plasminogen activator/plasmin system plays an important role in ECM degradation, whereas the plasminogen activator inhibitor 1 (PAI-1) is a physiologic inhibitor of plasminogen activators. PAI-1 expression is increased in the lung fibrotic diseases and in experimental fibrosis models. The deletion of the PAI-1 gene reduces, whereas the overexpression of PAI-1 enhances, the susceptibility of animals to lung fibrosis induced by different stimuli, indicating an important role of PAI-1 in the development of lung fibrosis. Many growth factors, including transforming growth factor beta (TGF-beta) and tumor necrosis factor alpha (TNF-alpha), as well as other chemicals/agents, induce PAI-1 expression in cultured cells and in vivo. Reactive oxygen and nitrogen species (ROS/RNS) have been shown to mediate the induction of PAI-1 by many of these stimuli. This review summarizes some recent findings that help us to understand the role of PAI-1 in the development of lung fibrosis and ROS/RNS in the regulation of PAI-1 expression during fibrogenesis.
Collapse
Affiliation(s)
- Rui-Ming Liu
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| |
Collapse
|
20
|
Kitamura K, Tada S, Nakamoto N, Toda K, Horikawa H, Kurita S, Tsunematsu S, Kumagai N, Ishii H, Saito H, Hibi T. Rho/Rho kinase is a key enzyme system involved in the angiotensin II signaling pathway of liver fibrosis and steatosis. J Gastroenterol Hepatol 2007; 22:2022-33. [PMID: 17914985 DOI: 10.1111/j.1440-1746.2006.04735.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM The molecular mechanisms underlying the involvement of the renin-angiotensin system in hepatic fibrosis are unclear. Recently, it was reported that a Rho kinase inhibitor prevented fibrosis of various tissues and that the Rho/Rho kinase pathway was involved in the renin-angiotensin system of vascular smooth muscle cells. In this study, the involvement of the Rho/Rho kinase pathway on angiotensin II signaling in liver fibrogenesis and generation of steatosis was investigated. METHODS Rats were fed a choline-deficient/L-amino acid-defined (CDAA) diet continuously and treated with a Rho kinase inhibitor, Y-27632, and an angiotensin II receptor blocker, TCV-116. Liver histology and hepatic stellate cell activation were analyzed. Free radical production was detected by 4-hydroxynonenal and 8-hydroxy-2'-deoxyguanosine immunostaining and the expression of tumor necrosis factor-alpha was examined. Isolated hepatic stellate cells were pretreated with a Rho kinase inhibitor, Y-27632, or an angiotensin II receptor blocker, CV-11974, and stimulated with angiotensin II, and mRNA expression of transforming growth factor-beta and alpha-smooth muscle actin was analyzed. RESULTS Both the angiotensin II receptor blocker and the Rho kinase inhibitor improved fibrosis and steatosis of the liver in CDAA-fed rats. The increase in the number of hepatocytes positive for 4-hydroxynonenal and 8-hydroxy-2'-deoxyguanosine in CDAA-fed rats was significantly prevented by the angiotensin II receptor blocker and the Rho kinase inhibitor. The levels of tumor necrosis factor-alpha mRNA in the liver of CDAA-fed rats were significantly increased and this increase was significantly inhibited by treatment with the angiotensin II receptor blocker and the Rho kinase inhibitor. mRNA expression of transforming growth factor-beta and alpha-smooth muscle actin stimulated by angiotensin II was also significantly suppressed by these two drugs. CONCLUSION These results suggest that the Rho/Rho kinase pathway is at least partly involved in the renin-angiotensin system and plays an important role in hepatic fibrosis and steatosis.
Collapse
Affiliation(s)
- Kumi Kitamura
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Rivera P, Ocaranza MP, Lavandero S, Jalil JE. Rho kinase activation and gene expression related to vascular remodeling in normotensive rats with high angiotensin I converting enzyme levels. Hypertension 2007; 50:792-8. [PMID: 17785632 DOI: 10.1161/hypertensionaha.107.095117] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The RhoA/Rho kinase (ROCK) pathway is a new mechanism of remodeling and vasoconstriction. Few data are available regarding ROCK activation when angiotensin I-converting enzyme is high and blood pressure is normal. We hypothesized that ROCK is activated in the vascular wall in normotensive rats with genetically high angiotensin I-converting enzyme levels, and it causes increased vascular expression of genes promoting vascular remodeling and also oxidative stress. Aortic ROCK activation, mRNA and protein levels (of monocyte chemoattractant protein-1, transforming growth factor [TGF]-beta(1), and plasminogen activator inhibitor-1 [PAI-1]), NADPH oxidase activity, and O(2)(*-) production were measured in normotensive rats with genetically high (Brown Norway [BN]) and low (Lewis) angiotensin-I-converting enzyme levels and in BN rats treated with the ROCK antagonist fasudil (100 mg/kg per day) for 7 days. ROCK activation was 12-fold higher in BN versus Lewis rats (P<0.05) and was reduced with fasudil by 100% (P<0.05). Aortic TGF-beta1, PAI-1, and monocyte chemoattractant protein-1 mRNA levels were higher in BN versus Lewis rats by 300%, 180%, and 1000%, respectively (P<0.05). Aortic TGF-beta1, PAI-1, and monocyte chemoattractant protein-1 protein levels were higher in BN versus Lewis rats (P<0,05). Fasudil reduced TGF-beta1 and PAI-1 mRNA and TGF-beta1, PAI-1, and monocyte chemoattractant protein-1 protein aortic levels to those observed in Lewis rats. Aortic reduced nicotinamide-adenine dinucleotide phosphate oxidase activity and (*)O(2)(-) production were increased by 88% and 300%, respectively, in BN rats (P<0.05) and normalized by fasudil. In conclusion, ROCK is significantly activated in the aortic wall in normotensive rats with genetically high angiotensin-I-converting enzyme and angiotensin II, and it causes activation of genes that promote vascular remodeling and also increases vascular oxidative stress.
Collapse
Affiliation(s)
- Paulina Rivera
- Department of Cardiovascular Diseases, Medical School, P. Universidad Católica de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
22
|
Young MJ, Lam EYM, Rickard AJ. Mineralocorticoid receptor activation and cardiac fibrosis. Clin Sci (Lond) 2007; 112:467-75. [PMID: 17391102 DOI: 10.1042/cs20060275] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
MR (mineralocorticoid receptor) activation by either administration of exogenous mineralocorticoids or by allowing endogenous glucocorticoids to activate the MR has been shown to produce oxidative stress and vascular inflammation at the earliest stages of the development of cardiac fibrosis in experimental animals. These studies suggest potential mechanisms for the benefits observed in recent large scale clinical trials investigating the cardioprotective effects of MR antagonists given in conjunction with current best practice therapy for moderate-to-severe heart failure and heart failure post-myocardial infarction. Given that few patients had elevated plasma aldosterone, novel mechanisms involved in activating the MR in the failing heart are now being investigated.
Collapse
Affiliation(s)
- Morag J Young
- Prince Henry's Institute of Medical Research, PO Box 5152, Clayton, Melbourne, Victoria 3167, Australia.
| | | | | |
Collapse
|
23
|
Díez J. Review of the molecular pharmacology of Losartan and its possible relevance to stroke prevention in patients with hypertension. Clin Ther 2006; 28:832-48. [PMID: 16860167 DOI: 10.1016/j.clinthera.2006.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2006] [Indexed: 11/30/2022]
Abstract
BACKGROUND The Losartan Intervention For End-point reduction in hypertension (LIFE) study found that a losartan-based regimen, compared with an atenolol-based regimen, resulted in a significantly lower risk of stroke in hypertensive patients with left ventricular hypertrophy, despite similar reductions in blood pressure. OBJECTIVE The purpose of this review was to examine the molecular and pharmacologic mechanisms that may be associated with the different outcomes observed in the LIFE study. METHODS A PubMed/MEDLINE search of English-language articles (1990 to February 2006) with the terms angiotensin II antagonists or AIIAs or angiotensin receptor blockers or losartan or atenolol or beta blocker and terms including, but not limited to, atherosclerosis, left ventricular hypertrophy, carotid artery hypertrophy, fatty streaks, atrial fibrillation, arrhythmias, endothelial function, myocyte hypertrophy, myocardial fibrosis, platelet aggregation, tissue factor, plasminogen activator inhibitor-1, PAI-1, anti-inflammatory, uric acid, or oxidative stress. RESULTS Losartan's significant effect on stroke may be related to several possible mechanisms that are independent of blood-pressure reductions. These include improvements in endothelial function and vascular structure; decreases in vascular oxidative stress; reductions in left ventricular hypertrophy, reductions in myocardial fibrosis, or both; and modulation of atherosclerotic disease progression. Although some of these effects may be shared by other angiotensin II receptor antagonists (AIIAs), and perhaps other anti-hypertensive classes (eg, angiotensin-converting enzyme inhibitors), the ability of losartan to lower serum uric acid levels-a proposed independent risk factor for cardiovascular disease-appears to be a molecule-specific effect. Alternative explanations of the results of the LIFE study have also been hypothesized, including inappropriate choice of atenolol as an active comparator and differences in central pulse pressures between study groups. CONCLUSIONS This review of the literature suggests that losartan (and perhaps other AIIAs) may possess a number of properties, independent of its antihypertensive effects, that may be associated with decreased vulnerability of the plaque, myocardium, and blood.
Collapse
Affiliation(s)
- Javier Díez
- Division of Cardiovascular Sciences, Centre for Applied Medical Research, Department of Cardiology and Cardiovascular Surgery, University Clinic, School of Medicine, University of Navarra, Pamplona, Spain.
| |
Collapse
|
24
|
Fu P, Liu F, Su S, Wang W, Huang XR, Entman ML, Schwartz RJ, Wei L, Lan HY. Signaling mechanism of renal fibrosis in unilateral ureteral obstructive kidney disease in ROCK1 knockout mice. J Am Soc Nephrol 2006; 17:3105-14. [PMID: 17005937 DOI: 10.1681/asn.2005121366] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It has been shown that blockade of Rho kinase with pharmacologic inhibitors inhibits renal fibrosis. This study examined the role of Rho kinase in renal fibrosis in the unilateral ureteral obstruction (UUO) model in mice that do not express the ROCK1 gene, a critical downstream mediator of Rho GTPase. Unexpected, real-time PCR, Western blot, and immunohistochemistry demonstrated that, compared with the wild-type mice, mice with ROCK1 knockout (KO) were not protected against renal fibrosis at both the early (day 5) and late (day 10) UUO, as determined by histology and expression of both mRNA and protein levels of alpha-smooth muscle actin, collagen types I and III, and fibronectin within the diseased kidney. Then the mechanisms of loss of protective effect on renal fibrosis in ROCK1 KO mice were investigated. It is interesting that mice that lacked ROCK1 did not have altered expression of ROCK2 but significantly increased TGF-beta expression and Smad2/3 activation (phosphorylation and nuclear translocation) in the diseased kidney at day 5, which remained high at day 10 of UUO. Similarly, primary cultures of kidney fibroblasts that were obtained from both ROCK1 wild-type and KO mice showed that deletion of ROCK1 did not prevent TGF-beta-induced activation of Smad2/3 and collagen I expression. This also was observed in the presence of Rho kinase inhibitor Y-27632. Taken together, results from this study suggest that Rho/Rho kinase may not be a necessary or a central pathway for renal fibrosis in the UUO model. The interplay between the Rho/Rho kinase pathway and the Smad signaling pathway may be a key mechanism by which loss of ROCK1 does not prevent renal fibrosis in the UUO model.
Collapse
Affiliation(s)
- Ping Fu
- Department of Medicine-Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ito K, Hirooka Y, Kimura Y, Sagara Y, Sunagawa K. Ovariectomy augments hypertension through rho-kinase activation in the brain stem in female spontaneously hypertensive rats. Hypertension 2006; 48:651-7. [PMID: 16940229 DOI: 10.1161/01.hyp.0000238125.21656.9e] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Estrogen protects against increases in arterial pressure (AP) by acting on blood vessels and on cardiovascular centers in the brain. The mechanisms underlying the effects of estrogen in the brain stem, however, are not clear. The aim of the present study was to determine whether ovariectomy affects AP via the Rho/Rho-kinase pathway in the brain stem. We performed bilateral ovariectomy in 12-week-old female spontaneously hypertensive rats. AP and heart rate (HR), measured using radiotelemetry in awake rats, were increased in ovariectomized rats compared with control rats (mean AP: 163+/-3 versus 144+/-4 mm Hg; HR: 455+/-4 versus 380+/-6 bpm). Continuous intracisternal infusion of Y-27632 significantly attenuated the ovariectomy-induced increase in AP and HR (mean AP: 137+/-6 versus 163+/-3 mm Hg; HR: 379+/-10 versus 455+/-4 bpm). In addition, we confirmed the increase of Rho-kinase activity in the brain stem in ovariectomized rats, and the increase was attenuated by intracisternal infusion of Y-27632 via the phosphorylated ezrin, radixin, and moesin (ERM) family, which are Rho-kinase target proteins. Furthermore, angiotensin II type 1 receptor expression in the brain stem was significantly greater in ovariectomized rats than in control rats, and the increase was partially reduced by intracisternal infusion of Y-27632. In a separate group of animals, we confirmed that the serum and cerebrospinal fluid 17beta-estradiol concentrations decreased in ovariectomized rats. These results suggest that depletion of endogenous estrogen by ovariectomy, at least in part, induces hypertension in female spontaneously hypertensive rats via activation of the renin-angiotensin system and the Rho/Rho-kinase pathway in the brain stem.
Collapse
Affiliation(s)
- Koji Ito
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
26
|
Kobayashi N, Honda T, Yoshida K, Nakano S, Ohno T, Tsubokou Y, Matsuoka H. Critical role of bradykinin-eNOS and oxidative stress-LOX-1 pathway in cardiovascular remodeling under chronic angiotensin-converting enzyme inhibition. Atherosclerosis 2006; 187:92-100. [PMID: 16214149 DOI: 10.1016/j.atherosclerosis.2005.08.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 07/01/2005] [Accepted: 08/03/2005] [Indexed: 11/21/2022]
Abstract
To elucidate the molecular mechanisms of the cardioprotective effect of angiotensin-converting enzyme (ACE) inhibitors, we evaluated whether the effect of quinapril involved in bradykinin-endothelial nitric oxide synthase (eNOS) and oxidative stress-lectin-like oxidized LDL receptor-1 (LOX-1) pathway. Dahl salt-sensitive hypertensive (DS) rats were fed a diet containing 8% NaCl and treated with one of the following drug combinations for 5 weeks, from 6 weeks of age to left ventricular hypertrophy stage (11 weeks): vehicle; quinapril; quinapril plus the bradykinin B2 receptor antagonist FR172357; the NAD(P)H oxidase inhibitor apocynin; or quinapril plus apocynin. eNOS expression, which was decreased in hypertrophy stage, was significantly increased by quinapril and/or apocynin, but not by quinapril plus FR172357. Upregulated expression of NAD(P)H oxidase p22phox, p47phox, gp91phox and LOX-1 was significantly decreased by quinapril to a similar degree as after treatment with apocynin, but not by quinapril plus FR172357. Quinapril and/or apocynin treatment effectively ameliorated left ventricular weight and vascular changes such as increase in medial thickness and perivascular fibrosis and suppressed expression of transforming growth factor-beta1, type I collagen and fibronectin mRNA, but not that of quinapril plus FR172357. These results suggest that the ACE inhibitor quinapril may have cardioprotective effects in this model of hypertension mediated at least in part through effects on the bradykinin-eNOS and oxidative stress-LOX-1 pathway.
Collapse
Affiliation(s)
- Naohiko Kobayashi
- Department of Hypertension and Cardiorenal Medicine, Dokkyo University School of Medicine, Mibu, Tochigi 321-0293, Japan.
| | | | | | | | | | | | | |
Collapse
|
27
|
Budzyn K, Marley PD, Sobey CG. Targeting Rho and Rho-kinase in the treatment of cardiovascular disease. Trends Pharmacol Sci 2005; 27:97-104. [PMID: 16376997 DOI: 10.1016/j.tips.2005.12.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 11/07/2005] [Accepted: 12/08/2005] [Indexed: 01/18/2023]
Abstract
The small GTPase Rho and its downstream effector Rho-kinase contribute to agonist-induced vascular contraction via Ca2+ sensitization. Reasonably selective pharmacological inhibitors of these proteins have been developed and are now widely used experimentally to investigate the role of this signaling pathway in vascular function. Rho and Rho-kinase have attracted increasing clinical interest as a result of emerging evidence for their roles in the pathogenesis of several cardiovascular disorders, including hypertension, coronary and cerebral vasospasm, atherosclerosis and diabetes, and are now considered important future therapeutic targets. A major challenge lies in further developing selective inhibitors of this pathway beyond experimental use. Consideration should perhaps also be given to widening the application of existing clinical drugs now known to also interfere with Rho-Rho-kinase signaling.
Collapse
Affiliation(s)
- Klaudia Budzyn
- Department of Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
28
|
Winaver J, Ovcharenko E, Rubinstein I, Gurbanov K, Pollesello P, Bishara B, Hoffman A, Abassi Z. Involvement of Rho kinase pathway in the mechanism of renal vasoconstriction and cardiac hypertrophy in rats with experimental heart failure. Am J Physiol Heart Circ Physiol 2005; 290:H2007-14. [PMID: 16361369 DOI: 10.1152/ajpheart.00600.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rho-dependent kinases serve as downstream effectors of several vasoconstrictor systems, the activities of which are upregulated in congestive heart failure (CHF). We evaluated renal and cardiac effects of Y-27632, a highly selective Rho kinase inhibitor, in an experimental model of volume-overload CHF. Effects of acute administration of Y-27632 (0.3 mg/kg) on renal hemodynamic and clearance parameters and effects of chronic treatment (10.0 mg.kg(-1).day(-1) for 7 days via osmotic minipumps) on cardiac hypertrophy and cumulative Na+ excretion were studied in male Wistar rats with aortocaval fistula and control rats. The Y-27632-induced decrease in renal vascular resistance (from 40.4 +/- 4.6 to 26.0 +/- 3.1 resistance units, P < 0.01) in CHF rats was associated with a significant increase in total renal blood flow (+34%) and cortical and medullary blood flow (approx +37 and +27%, respectively). These values were significantly higher than those in control rats and occurred despite a decrease in mean arterial pressure (-15 mmHg). Despite the marked renal vasodilatory effect, Y-27632 did not alter glomerular filtration rate and renal Na+ excretion. Chronic administration of Y-27632 did not alter daily or cumulative renal Na+ excretion in CHF rats but was associated with a significant decrease in heart-to-body weight ratio, an index of cardiac hypertrophy: 0.32 +/- 0.007, 0.46 +/- 0.017, and 0.37 +/- 0.006% in control, CHF, and CHF + Y-27632 rats, respectively. The findings suggest that Rho kinase-dependent pathways are involved in the mechanisms of renal vasoconstriction and cardiac hypertrophy in rats with volume-overload heart failure. Selective blockade of these signaling pathways may be considered an additional tool to improve renal perfusion and attenuate cardiac hypertrophy in heart failure.
Collapse
Affiliation(s)
- Joseph Winaver
- Department of Physiology and Biophysics, Faculty of Medicine, Technion, Isreal Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Jalil J, Lavandero S, Chiong M, Ocaranza MP. [Rho/Rho kinase signal transduction pathway in cardiovascular disease and cardiovascular remodeling]. Rev Esp Cardiol 2005. [PMID: 16053829 DOI: 10.1157/13078132] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The small guanosine triphosphatase Rho and its target, Rho kinase, play important roles in both blood pressure regulation and vascular smooth muscle contraction. Rho is activated by agonists of receptors coupled to cell membrane G protein, such as angiotensin II and phenylephrine. Once Rho is activated, it translocates to the cell membrane where it, in turn, activates Rho kinase. Activated Rho kinase phosphorylates myosin light chain phosphatase, which is then inhibited. This sequence stimulates vascular smooth muscle contraction, stress fiber formation,and cell migration. In this way, Rho and Rho kinase activation have important effects on several cardiovascular diseases. Currently available substances that specifically inhibit this signaling pathway could offer clinical benefits in several cardiovascular, as well as noncardiovascular diseases, such as arterial hypertension, pulmonary hypertension, cerebral or coronary spasm, post-angioplasty restenosis, and erectile dysfunction.
Collapse
Affiliation(s)
- Jorge Jalil
- Departamento de Enfermedades Cardiovasculares, Hospital Clínico, Pontificia Universidad Católica de Chile, Chile.
| | | | | | | |
Collapse
|
30
|
Nakano S, Kobayashi N, Yoshida K, Ohno T, Matsuoka H. Cardioprotective mechanisms of spironolactone associated with the angiotensin-converting enzyme/epidermal growth factor receptor/extracellular signal-regulated kinases, NAD(P)H oxidase/lectin-like oxidized low-density lipoprotein receptor-1, and Rho-kinase pathways in aldosterone/salt-induced hypertensive rats. Hypertens Res 2005; 28:925-36. [PMID: 16555582 DOI: 10.1291/hypres.28.925] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Studies were performed to test the hypothesis that the angiotensin-converting enzyme (ACE)/epidermal growth factor receptor (EGFR)/extracellular signal-regulated kinases (ERK) pathway, nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase/lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) pathway, and Rho-kinase pathway contribute to the pathogenesis of aldosterone/salt-induced hypertensive rats. Wistar rats were given 1% NaCl to drink and treated with one of the following combinations for 6 weeks: vehicle; aldosterone (0.75 microg/h); aldosterone plus a mineralocorticoid receptor antagonist, spironolactone (20 mg/kg/day); aldosterone plus an ACE inhibitor, imidapril (1 mg/kg/day); aldosterone plus an NAD(P)H oxidase inhibitor, apocynin (0.5 mmol/l); and aldosterone plus an Rho-kinase inhibitor, Y-27632 (3 mg/kg/day). Upregulated expression of ACE and EGFR and p44/p42ERK phosphorylation were suppressed by spironolactone or imidapril. Upregulated NAD(P)H oxidase subunits and LOX-1 expression were inhibited by spironolactone or apocynin. Increased expression of RhoA and Rho-kinase and myosin light chain phosphorylation were decreased by spironolactone or Y-27632. Moreover, these drugs effectively inhibited the vascular lesion formation, as measured by the medial thickness and level of perivascular fibrosis, and suppressed the expression of transforming growth factor-beta1, type I and III collagen, and monocyte chemoattractant protein-1 mRNA. Spironolactone may be useful as a cardioprotective agent to prevent cardiovascular remodeling via the ACE/EGFR/ERK, NAD(P)H oxidase/LOX-1, and Rho-kinase pathways.
Collapse
Affiliation(s)
- Shigefumi Nakano
- Department of Hypertension and Cardiorenal Medicine, Dokkyo University School of Medicine, Shimotsuga-gun, Tochigi 321-0293, Japan
| | | | | | | | | |
Collapse
|
31
|
Nakakuki T, Ito M, Iwasaki H, Kureishi Y, Okamoto R, Moriki N, Kongo M, Kato S, Yamada N, Isaka N, Nakano T. Rho/Rho-Kinase Pathway Contributes to C-Reactive Protein–Induced Plasminogen Activator Inhibitor-1 Expression in Endothelial Cells. Arterioscler Thromb Vasc Biol 2005; 25:2088-93. [PMID: 16123329 DOI: 10.1161/01.atv.0000183607.50230.9f] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Rho/Rho-kinase pathway plays pivotal roles in cardiovascular diseases including arteriosclerosis and hypertension. Recently it has become evident that C-reactive protein (CRP), a powerful marker for cardiovascular events, has direct proatherothrombotic effects on vascular cells. However, its molecular mechanism has not been fully investigated. We examined the involvement of Rho/Rho-kinase signaling in CRP-induced plasminogen activator inhibitor-1 (PAI-1) expression in bovine aortic endothelial cells (BAECs). METHODS AND RESULTS PAI-1 expression was determined by Western blotting. RhoA activation was determined by an affinity pull-down assay using Rho-binding fragment of rhotekin. NF-kappaB activity was determined using the luciferase reporter gene. Incubation of BAECs with human recombinant CRP (> or =25 microg/mL) induced a significant increase in PAI-1 expression. Stimulation of BAECs with CRP significantly increased RhoA activation. Pretreatment with TAT-C3 (a membrane-permeable RhoA inhibitor) and Y-27632 (Rho-kinase inhibitor) significantly inhibited CRP-induced PAI-1 expression. NF-kappaB activity was markedly enhanced by CRP and pretreatment with Y-27632 inhibited its activation. Parthenolide, SN50, and BAY 11-7082 (NF-kappaB inhibitors) significantly blocked CRP-mediated PAI-1 expression. CONCLUSIONS These data suggested that CRP activates Rho/Rho-kinase signaling, which in turn activates NF-kappaB activity, resulting in PAI-1 expression in BAEC. These observations provide evidence for the possible involvement of Rho/Rho-kinase signaling in CRP-induced atherothrombogenesis.
Collapse
Affiliation(s)
- Tetsuya Nakakuki
- Department of Cardiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie 514-8507, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Touyz RM. Reactive oxygen species as mediators of calcium signaling by angiotensin II: implications in vascular physiology and pathophysiology. Antioxid Redox Signal 2005; 7:1302-14. [PMID: 16115036 DOI: 10.1089/ars.2005.7.1302] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Reactive oxygen species (ROS), including superoxide anion, hydrogen peroxide, and hydroxyl radical, and reactive nitrogen species, such as nitric oxide and peroxynitrite, are biologically relevant O2 derivatives increasingly being recognized as important in vascular biology through their oxidation/reduction (redox) potential. All vascular cell types produce ROS primarily via membrane-associated NAD(P)H oxidase. ROS influence vascular function by modulating contraction/dilation, cell growth, apoptosis/anoikis, migration, inflammation, and fibrosis. An imbalance in redox state where prooxidants overwhelm antioxidant capacity results in oxidative stress. Oxidative excess and associated oxidative damage are mediators of altered vascular tone and structural remodeling in many cardiovascular diseases. ROS elicit these effects by influencing intracellular signaling events. In addition to modulating protein tyrosine kinases, protein phosphatases, mitogen-activated protein kinases, and transcription factors, ROS are important regulators of intracellular Ca2+ homeostasis and RhoA/Rho kinase signaling. ROS increase vascular [Ca2+]i by stimulating inositol trisphosphate-mediated Ca2+ mobilization, by increasing cytosolic Ca2+ accumulation through sarcoplasmic/endoplasmic reticulum Ca2+-ATPase inhibition, and by stimulating Ca2+ influx through Ca2+ channels. Increased ROS generation enhances Ca2+ signaling and up-regulates RhoA/Rho kinase, thereby altering vascular contractility and tone. The present review discusses the importance of ROS in angiotensin II signaling in vascular biology and focuses specifically on the role of oxidative stress in Ca2+ signaling in the vasculature.
Collapse
Affiliation(s)
- Rhian M Touyz
- Kidney Research Centre, University of Ottawa, Ottawa Health Research Institute, Ontario, Canada.
| |
Collapse
|
33
|
Wang YX, da Cunha V, Martin-McNulty B, Vincelette J, Li W, Choy DF, Halks-Miller M, Mahmoudi M, Schroeder M, Johns A, Light DR, Dole WP. Inhibition of Rho-kinase by fasudil attenuated angiotensin II-induced cardiac hypertrophy in apolipoprotein E deficient mice. Eur J Pharmacol 2005; 512:215-22. [PMID: 15840407 DOI: 10.1016/j.ejphar.2005.02.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 02/07/2005] [Accepted: 02/18/2005] [Indexed: 12/17/2022]
Abstract
Recent evidence indicates that the GTPase activated Rho/Rho-kinase pathway contributes angiotensin II-induced cardiac hypertrophy and vascular remodeling. We tested this hypothesis in vivo by determining the effects of fasudil, a Rho-kinase inhibitor, on angiotensin II-induced cardiac hypertrophy, coronary vascular remodeling, and ventricular dysfunction. Six-month-old apolipoprotein E deficient (apoE-KO) mice were subcutaneously infused with angiotensin II (1.44 mg/kg/day) using an osmotic mini-pump. Mice were randomly assigned to either vehicle or fasudil (136 or 213 mg/kg/day in drinking water) group. Infusion of angiotensin II for 4 weeks resulted in cardiac enlargement, myocyte hypertrophy, and myocardial interstitial and coronary artery perivascular fibrosis. These changes were accompanied by reduced aortic flow velocity and acceleration rate. Cardiac gene expression levels of atrial natriuretic peptide (ANP) and collagen type III detected by real-time reverse transcriptase polymerase chain reaction were significantly increased in angiotensin II-infused mice. Treatment with fasudil dose-dependently attenuated angiotensin II-induced cardiac hypertrophy, prevented perivascular fibrosis, blunted the increase in ANP and collagen type III expression, and improved cardiac function, without changing blood pressure. These data are consistent with a role for Rho-kinase activation in angiotensin II-induced cardiac remodeling and vascular wall fibrosis.
Collapse
Affiliation(s)
- Yi-Xin Wang
- Department of Pharmacology, Berlex Biosciences, 2600 Hilltop Drive, Richmond, CA 94804, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rajashree R, Blunt BC, Hofmann PA. Modulation of myosin phosphatase targeting subunit and protein phosphatase 1 in the heart. Am J Physiol Heart Circ Physiol 2005; 289:H1736-43. [PMID: 15908465 DOI: 10.1152/ajpheart.00318.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myosin light chain 2 (LC2) phosphorylation is of both physiological and pathological importance to myocardial function. The phosphatase that directly dephosphorylates LC2 is a type 1 protein phosphatase (PP1) that contains a catalytic subunit that complexes with a myosin-binding phosphatase targeting subunit (MYPT). The goal of the present study was to examine the role of MYPT in the regulation of PP1 in ventricular myocytes. In the first part of the study, regional distribution of MYPT expression and phosphorylation were determined in unstimulated hearts. The pattern of MYPT phosphorylation was inversely related to the LC2 phosphorylation spatial gradient as described by Epstein and colleagues (Davis JS, Hassanzadeh S, Winitsky S, Lin H, Satorius C, Vemuri R, Aletras AH, Wen H, and Epstein ND. Cell 107: 631-641, 2001). In the second part of the study, adult rat isolated ventricular myocytes were exposed to an alpha-adrenergic receptor agonist, and properties of MYPT, PP1, and LC2 were studied. We found MYPT associates with cardiac myofilaments, and this association increases upon alpha-adrenergic receptor stimulation. Activation of alpha-adrenergic receptors also led to a decrease in the PP1-myofilament association. Furthermore, alpha-adrenergic receptor stimulation results in phosphorylation of MYPT and LC2 and an increase in myocyte Ca(2+) sensitivity of tension that all depend on Rho kinase activation. These data support the hypothesis that alpha-adrenergic receptor activation works through Rho kinase to phosphorylate MYPT, and phosphorylated MYPT dissociates from PP1 so that PP1 is no longer physically associated with LC2. Hence, we propose a pathway for the dynamic modulation of LC2 phosphorylation through receptor-dependent phosphorylation of MYPT, and a spatial gradient of LC2 phosphorylation under basal conditions that occurs due to varied levels of phosphorylation of MYPT in ventricles.
Collapse
Affiliation(s)
- Ravi Rajashree
- Department of Physiology, University of Tennessee School of Medicine, 894 Union Ave., Memphis, Tennessee 38163, USA
| | | | | |
Collapse
|
35
|
Jackson EK, Andresen BT, Seasholtz TM, Zhu C, Romero GG. Enhanced Activation of RhoA by Angiotensin II in SHR Preglomerular Microvascular Smooth Muscle Cells. J Cardiovasc Pharmacol 2005; 45:283-5. [PMID: 15772513 DOI: 10.1097/01.fjc.0000155383.83927.9f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Angiotensin II causes a greater renal vasoconstriction in spontaneously hypertensive rats (SHR) than in normotensive Wistar Kyoto rats (WKY), and alpha2-adrenoceptor agonists potentiate angiotensin II-induced renal vasoconstriction more in SHR. Because angiotensin II activates RhoA, and RhoA contributes to vasoconstriction, we tested the hypothesis that the ability of angiotensin II to stimulate RhoA in preglomerular vascular smooth muscle cells and the ability of alpha2-adrenoceptor activation to potentiate this response are augmented in cells from SHR. In SHR preglomerular vascular smooth muscle cells, angiotensin II (1 micromol/L) greatly stimulated RhoA activity, and this effect was markedly potentiated by UK 14,304 (1 micromol/L; alpha2-adrenoceptor agonist) (fold increase from vehicle-treated cells: 9.0 +/- 2, 0.8 +/- 0.2, and 13.6 +/- 3.2 in cells treated with angiotensin II, UK 14,304, and angiotensin II + UK 14,304, respectively). In contrast, in WKY cells, angiotensin II only mildly activated RhoA (2.0 +/- 0.50), and this response was not enhanced by UK 14,304. The expression of Galpha12 and Galpha13, G-proteins thought to link G-protein-coupled receptors to RhoA, was not increased in SHR cells. We conclude that angiotensin II-induced activation of RhoA is much more robust in the preglomerular microcirculation of SHR compared with WKY and that this may contribute to the etiology of genetic hypertension.
Collapse
Affiliation(s)
- Edwin K Jackson
- Center for Clinical Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA. edj+@pitt.edu
| | | | | | | | | |
Collapse
|
36
|
Kobayashi N, Hara K, Tojo A, Onozato ML, Honda T, Yoshida K, Mita SI, Nakano S, Tsubokou Y, Matsuoka H. Eplerenone Shows Renoprotective Effect by Reducing LOX-1–Mediated Adhesion Molecule, PKCε-MAPK-p90RSK, and Rho-Kinase Pathway. Hypertension 2005; 45:538-44. [PMID: 15710785 DOI: 10.1161/01.hyp.0000157408.43807.5a] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) may play an important role in atherosclerosis by inducing leukocyte adhesion molecules, such as intercellular and vascular cell adhesion molecule-1 (intercellular adhesion molecule-1 [ICAM-1], vascular cell adhesion molecule-1 [VCAM-1]). We hypothesized that eplerenone, a novel selective aldosterone blocker, produces inhibition of LOX-1–mediated adhesion molecules, suppresses mitogen-activated protein (MAP) kinase and its downstream effector p90 ribosomal S6 kinase (p90RSK) through the protein kinase Cε (PKCε) pathway, and improves endothelial function by inhibition of Rho-kinase in the renal cortex of Dahl salt-sensitive hypertensive (DS) and salt-resistant (DR) rats. Eplerenone (10, 30, and 100 mg/kg per day) was given from the age of 6 weeks to the left ventricular hypertrophy stage (11 weeks) for 5 weeks. At 11 weeks, expression levels of LOX-1, ICAM-1, VCAM-1, and Rho-kinase were higher in DS rats than in DR rats and were decreased by eplerenone. Similarly, upregulated phosphorylation of PKCε, MAP kinase, and p90RSK in DS rats was also inhibited by eplerenone. In contrast, downregulated endothelial nitric oxide synthase mRNA was increased by eplerenone to a similar degree as after treatment with Y-27632, a selective Rho-kinase inhibitor. Eplerenone administration resulted in significant improvement in glomerulosclerosis (eplerenone 10 mg, −61%; 30 mg, −78%; and 100 mg, −84% versus DS;
P
<0.01, respectively) and urinary protein (10 mg, −78%; 30 mg, −87%; and 100 mg, −88% versus DS;
P
<0.01, respectively). These results suggest that the renoprotective effects of eplerenone may be partly caused by inhibition of LOX-1–mediated adhesion molecules and PKCε–MAP kinase–p90RSK pathway, and improvement in endothelial function.
Collapse
Affiliation(s)
- Naohiko Kobayashi
- Department of Hypertension and Cardiorenal Medicine, Dokkyo University School of Medicine, Mibu, Tochigi 321-0293, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Oliveira MVB, Badia E, Carbonneau MA, Grimaldi P, Fouret G, Lauret C, Léger CL. Potential anti-atherogenic cell action of the naturally occurring 4-O-methyl derivative of gallic acid on Ang II-treated macrophages. FEBS Lett 2005; 577:239-44. [PMID: 15527792 DOI: 10.1016/j.febslet.2004.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Revised: 10/05/2004] [Accepted: 10/05/2004] [Indexed: 10/26/2022]
Abstract
We have recently established that the blood concentrations of gallic acid (GA), a polyphenolic component naturally found in food, and its O-methyl derivatives are very low (practically < or = 1 microM) in physiological (postprandial) condition. Using acellular oxidant systems and macrophage-differentiated promonocytes (MDPs) THP-1, we show here that the direct and indirect (through depressing effect on the superoxide cell production) antioxidant properties of these components were not effective at these concentrations. In contrast, 4-O-methyl GA was the most efficient component to depress AT1R and CD36 mRNA expression in Ang II-treated MDPs, suggesting a strong inhibition of Ang II-triggered pro-atherogenic mechanisms of foam cell formation.
Collapse
Affiliation(s)
- Maria V Bizerra Oliveira
- Laboratoire de Nutrition Humaine et Athérogénèse, EA 2993, Institut de Biologie, Université Montpellier I, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Mita SI, Kobayashi N, Yoshida K, Nakano S, Matsuoka H. Cardioprotective mechanisms of Rho-kinase inhibition associated with eNOS and oxidative stress-LOX-1 pathway in Dahl salt-sensitive hypertensive rats. J Hypertens 2005; 23:87-96. [PMID: 15643129 DOI: 10.1097/00004872-200501000-00017] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Rho-kinase plays a crucial role in various cellular functions. To elucidate molecular mechanisms of Rho-kinase-mediated cardiovascular remodeling in vivo, we evaluated whether a signaling pathway through Rho is involved, and whether Y-27632, a specific Rho-kinase inhibitor, stimulates endothelial nitric oxide synthase (eNOS) and suppresses the oxidative stress and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) pathway in the left ventricle of Dahl salt-sensitive hypertensive (DS) rats. METHODS Y-27632 (3 mg/kg per day) or vehicle were given for 5 weeks, from age 6 weeks to a stage of left ventricular hypertrophy (11 weeks). Age-matched Dahl salt-resistant (DR) rats fed the same diet served as a control group. RESULTS Increased left ventricular weight in the hypertrophy stage was significantly ameliorated by Y-27632. Upregulated RhoA protein, Rho-kinase gene expression and myosin light-chain phosphorylation in the hypertrophy stage were suppressed by Y-27632. Increased expression of NAD(P)H oxidase p22phox, p47phox, gp91phox and LOX-1 in DS rats were inhibited by Y-27632. Upregulated protein kinase Cepsilon and p65 nuclear factor-kappaB phosphorylation in DS rats was reduced by Y-27632. In contrast, downregulated eNOS expression in hypertrophy stage was upregulated by Y-27632. Y-27632 effectively inhibited vascular lesion formation, such as medial thickness and perivascular fibrosis, and suppressed transforming growth factor-beta1, type I and III collagen, and fibronectin gene expression. CONCLUSIONS Inhibiting the Rho-kinase pathway may play a key role in the cardioprotective effect on cardiovascular remodeling associated with eNOS and the oxidative stress-LOX-1 pathway in DS rats, and may be at least a potential therapeutic strategy for hypertension with cardiac hypertrophy.
Collapse
Affiliation(s)
- Shin-ichiro Mita
- Department of Hypertension and Cardiorenal Medicine, Dokkyo University School of Medicine, Mibu, Tochigi, 321-0293, Japan
| | | | | | | | | |
Collapse
|
39
|
Cal?? LA, Pessina AC, Semplicini A. Angiotensin II Signalling in Bartter???s and Gitelman???s Syndromes. High Blood Press Cardiovasc Prev 2005. [DOI: 10.2165/00151642-200512010-00004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
40
|
Pagnin E, Davis PA, Sartori M, Semplicini A, Pessina AC, Calò LA. Rho kinase and PAI-1 in Bartter's/Gitelman's syndromes. J Hypertens 2004; 22:1963-9. [PMID: 15361768 DOI: 10.1097/00004872-200410000-00019] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Angiotensin II (Ang II)-mediated activation of Rho kinase (ROK) is involved in the pathophysiology of hypertension and cardiovascular remodeling. ROK also controls plasminogen activator inhibitor-1 (PAI-1) which promotes vascular fibrosis contributing to atherogenesis. Bartter's and Gitelman's syndromes (BS/GS) are useful models to investigate abnormalities of vascular tone regulation, due to their reduced short- and long-term signaling pathways of Ang II. This study evaluated, using BS/GS as a model, ROK and PAI-1 gene and protein expression and the effect of Ang II co-incubation on ROK and PAI-1 gene and protein expression. DESIGN, METHODS AND RESULTS We measured ROK and PAI-1 gene and protein expression [reverse transcription-polymerase chain reaction (RT-PCR) and Western blot] in mononuclear cells (PBM) from one BS and eight GS patients. The effect of Ang II on ROK and PAI-1 gene and protein expression was also evaluated and compared with 10 controls. ROK gene and protein expression was reduced in BS/GS [0.47 +/- 0.11 densitometric units (d.u.) versus 0.70 +/- 0.04 d.u., P = 0.0038 and 0.39 +/- 0.07 d.u. versus 0.55 +/- 0.07 d.u., P = 0.0026, respectively]. The basal level of PAI-1 gene and protein expression did not differ (0.40 +/- 0.03 d.u. versus 0.39 +/- 0.02 d.u. and 0.81 +/- 0.02 d.u. versus 0.83 +/- 0.02 d.u., respectively). Ang II increased ROK and PAI-1 gene and protein expression only in controls: from 0.70 +/- 0.04 to 0.90 +/- 0.06 d.u., P = 0.007 (ROK mRNA); from 0.55 +/- 0.07 to 0.86 +/- 0.07 d.u., P = 0.0005 (ROK protein); from 0.40 +/- 0.02 to 0.63 +/- 0.03 d.u., P = 0.001 (PAI-1 mRNA); and from 0.83 +/- 0.02 to 1.34 +/- 0.16 d.u., P = 0.0023 (PAI-1 protein). CONCLUSIONS This study confirms BS/GS as a human model to investigate interrelated systems involved in the pathophysiology of hypertension and throws more light on the cellular mechanisms of BS/GS reduced Ang II short- and long-term signaling pathways.
Collapse
Affiliation(s)
- Elisa Pagnin
- Department of Clinical and Experimental Medicine, Clinica Medica 4, University of Padova, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Mathew S, Mascareno E, Siddiqui MAQ. A ternary complex of transcription factors, Nishéd and NFATc4, and co-activator p300 bound to an intronic sequence, intronic regulatory element, is pivotal for the up-regulation of myosin light chain-2v gene in cardiac hypertrophy. J Biol Chem 2004; 279:41018-27. [PMID: 15272022 DOI: 10.1074/jbc.m403578200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcriptional up-regulation of the myosin light chain-2 (MLC-2v) gene is an established marker for hypertrophic response in cardiomyocytes. Despite the documentation on the role of several cis-elements in the MLC-2v gene and their cognate proteins in transcription, the mechanism that dictates the preferential increase in MLC-2v gene expression during myocardial hypertrophy has not been delineated. Here we describe the properties of a cardiac specific intronic activator element (IRE) that shares sequence homology with the repressor element, the cardiac specific sequence, in the chicken MLC-2v gene. The transcription factor, Nishéd, that recognizes both IRE and the cardiac specific sequence potentiates the transcription of the MLC-2v gene via interaction with another transcription factor, nuclear factor of activated T cells, and the co-activator p300 at the IRE site. Angiotensin II (Ang II), a potent agonist of hypertrophy, causes induction of the MLC-2v gene transcription, which correlates well with the enhanced binding of Nishéd-nuclear factor of the activated T cells-p300 complex to IRE in the gel mobility shift assay. Losartan, an antagonist of Ang II receptor (AT1), abolishes the agonist-dependent stimulation of IRE/protein interaction and the consequent increase in MLC-2v gene transcription. These results together have thus established a transcriptional role of IRE as a direct target sequence of Ang II-mediated signaling that appears to be pivotal in the mechanism underlying the up-regulation of the MLC-2v gene during cardiac hypertrophy.
Collapse
MESH Headings
- Amino Acid Sequence
- Angiotensin II/metabolism
- Animals
- Base Sequence
- Binding, Competitive
- Blotting, Northern
- Blotting, Western
- Cardiac Myosins/chemistry
- Cardiomegaly
- Cell Nucleus/metabolism
- Cells, Cultured
- Chick Embryo
- DNA/chemistry
- DNA, Complementary/metabolism
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Gene Library
- Genes, Reporter
- Introns
- Luciferases/metabolism
- Models, Genetic
- Molecular Sequence Data
- Muscle, Skeletal/metabolism
- Myosin Light Chains/chemistry
- NFATC Transcription Factors
- Nuclear Proteins/physiology
- Oligonucleotides/chemistry
- Precipitin Tests
- Protein Binding
- RNA/chemistry
- RNA, Messenger/metabolism
- Repressor Proteins/metabolism
- Repressor Proteins/physiology
- T-Lymphocytes/metabolism
- Trans-Activators/physiology
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transcription, Genetic
- Transfection
- Up-Regulation
Collapse
Affiliation(s)
- Sumy Mathew
- Department of Anatomy and Cell Biology, Center for Cardiovascular and Muscle Research, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA
| | | | | |
Collapse
|
42
|
López B, González A, Díez J. Role of matrix metalloproteinases in hypertension-associated cardiac fibrosis. Curr Opin Nephrol Hypertens 2004; 13:197-204. [PMID: 15202614 DOI: 10.1097/00041552-200403000-00008] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW The potential contribution of alterations in matrix metalloproteinase activity to the development of myocardial fibrosis in hypertensive heart disease is reviewed. RECENT FINDINGS A number of experimental and clinical studies provide information on alterations in the balance between matrix metalloproteinase-1 or collagenase and tissue inhibitor of matrix metalloproteinases-1, which result in depressed proteolytic activity of the enzyme in animals and humans with hypertensive heart disease. While some recent data point to a genetic origin of such an imbalance, other findings suggest that depressed collagenase activity may contribute to disturbances of cardiac function via facilitation of myocardial fibrosis. On the other hand, emerging information is providing the basis for the notion that other matrix metalloproteinases, namely gelatinases, may participate in the process of myocardial fibrosis through stimulation of fibrillar collagen synthesis. Some fragmented matrix peptides or matrikines may be the mediators of the profibrotic action of these matrix metalloproteinases. SUMMARY The matrix metalloproteinases represent an important biological system within the myocardium designed to maintain the complex and dynamic microenvironment of the extracellular matrix. Improved understanding of how this system is dysregulated in hypertensive heart disease will probably provide new insights into, and strategies for, heart failure.
Collapse
Affiliation(s)
- Begoña López
- Area of Cardiovascular Pathophysiology, Centre for Applied Medical Research, and Department of Cardiology and Cardiovascular Surgery, University Clinic, School of Medicine University of Navarra, Pamplona, Spain
| | | | | |
Collapse
|
43
|
Kobayashi N, Yoshida K, Mita SI, Honda T, Hara K, Nakano S, Tsubokou Y, Matsuoka H. Betaxolol stimulates eNOS production associated with LOX-1 and VEGF in Dahl salt-sensitive rats. J Hypertens 2004; 22:1397-402. [PMID: 15201557 DOI: 10.1097/01.hjh.0000125442.28861.44] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and vascular endothelial growth factor (VEGF) may play key roles in atherosclerosis, and have been shown to regulate nitric oxide (NO) production. However, the molecular mechanisms by which betaxolol, a specific beta 1-antagonist, stimulates endothelial NO synthase (eNOS) expression associated with LOX-1 and VEGF are unclear. We hypothesized that in the left ventricle of Dahl salt-sensitive (DS) rats, betaxolol reduces production of LOX-1 by suppressing NAD(P)H oxidase p47phox expression; betaxolol stimulates eNOS production associated with expression of VEGF and LOX-1; and betaxolol inhibits adhesion molecule and signal transduction, which may be involved in cardiovascular remodeling. METHODS After 5 weeks of feeding an 8% NaCl diet to 6-week-old DS rats (i.e. at 11 weeks of age), a distinct stage of concentric left ventricular hypertrophy was noted. Betaxolol (0.9 mg/kg per day) was administered to 6-week-old DS rats for 5 weeks until the onset of left ventricular hypertrophy stage. RESULTS Decreased expression of eNOS and VEGF in DS rats was increased by betaxolol. Upregulated LOX-1, NAD(P)H oxidase p47phox, intercellular and vascular cell adhesion molecule-1 expression and phosphorylations of p38 mitogen-activated protein kinase and p65 nuclear factor-kappa B activity were inhibited by betaxolol. Betaxolol administration resulted in significant improvement of cardiovascular remodeling and suppression of transforming growth factor-beta 1 and type I collagen expression. CONCLUSIONS These results suggest that cardioprotective effects of betaxolol may stimulate eNOS production associated with VEGF and LOX-1, and inhibit adhesion molecule and signal transduction in DS rats.
Collapse
Affiliation(s)
- Naohiko Kobayashi
- Department of Hypertension and Cardiorenal Medicine, Dokkyo University School of Medicine, Mibu, Tochigi, 321-0293, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Hattori T, Shimokawa H, Higashi M, Hiroki J, Mukai Y, Tsutsui H, Kaibuchi K, Takeshita A. Long-term inhibition of Rho-kinase suppresses left ventricular remodeling after myocardial infarction in mice. Circulation 2004; 109:2234-9. [PMID: 15096457 DOI: 10.1161/01.cir.0000127939.16111.58] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Rho-kinase has been implicated as an important regulator of inflammatory responses mediated by cytokines and chemokines. Because proinflammatory cytokines play a critical role in left ventricular (LV) remodeling after myocardial infarction (MI), we examined whether long-term blockade of Rho-kinase suppresses LV remodeling in a mouse model of MI in vivo. METHODS AND RESULTS Mice underwent ligation of the left coronary artery and were treated with a Rho-kinase inhibitor, fasudil (100 mg x kg(-1) x d(-1) in tap water), for 4 weeks, starting 1 day after the surgery. At 4 weeks, LV infarct size was histologically comparable between the 2 groups. LV cavity dilatation and dysfunction evaluated by echocardiography were significantly suppressed in the fasudil group (P<0.05, n=15 to 28). The beneficial effects of fasudil were accompanied by suppression of cardiomyocyte hypertrophy and interstitial fibrosis (both P<0.01, n=6). The expression of inflammatory cytokines, including transforming growth factor (TGF)-beta2, TGF-beta3, and macrophage migration inhibitory factor, was upregulated in the noninfarcted LV in the control group and was significantly suppressed in the fasudil group (both P<0.05, n=10 to 11). Rho-kinase activity as evaluated by the extent of phosphorylation of the ERM family, a substrate of Rho-kinase, was significantly increased in the noninfarcted LV in the control group and was significantly suppressed in the fasudil group (P<0.05, n=5). CONCLUSIONS These results indicate that Rho-kinase is substantially involved in the pathogenesis of LV remodeling after MI associated with upregulation of proinflammatory cytokines, suggesting a therapeutic importance of the molecule for the prevention of post-MI heart failure.
Collapse
Affiliation(s)
- Tsuyoshi Hattori
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
González A, López B, Díez J. Fibrosis in hypertensive heart disease: role of the renin-angiotensin-aldosterone system. Med Clin North Am 2004; 88:83-97. [PMID: 14871052 DOI: 10.1016/s0025-7125(03)00125-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Structural homogeneity of cardiac tissue is governed by mechanical and humoral factors that regulate cell growth, apoptosis, phenotype, and extracellular matrix turnover. ANGII has endocrine, autocrine, and paracrine properties that influence the behavior of cardiac cells and matrix by AT1 receptor binding. Various paradigms have been suggested, including ANGII-mediated up-regulation of collagen types I and III formation and deposition in cardiac conditions, such as HHD. A growing body of evidence, however, deals with the potential role of aldosterone, either local or systemic, in inducing cardiac fibrosis. Aldosterone might also mediate the profibrotic actions of ANGII. To reduce the risk of heart failure that accompanies HHD, its adverse structural remodeling (eg, myocardial hypertrophy and fibrosis) must be targeted for pharmacologic intervention. Cardioprotective agents must reverse not only the exaggerated growth of cardiac cells, but also regress existing abnormalities in fibrillar collagen. Available experimental and clinical data suggest that agents interfering with ACE, the AT1 receptor, or the mineralocorticoid receptor may provide such a cardioprotective effect.
Collapse
Affiliation(s)
- Arantxa González
- Area of Cardiovascular Pathophysiology, Centre for Applied Medical Research, University of Navarra, C. Irunlarrea 1, 31080 Pamplona, Spain
| | | | | |
Collapse
|
46
|
Chen HC, Feener EP. MEK1,2 response element mediates angiotensin II-stimulated plasminogen activator inhibitor-1 promoter activation. Blood 2003; 103:2636-44. [PMID: 14656894 DOI: 10.1182/blood-2003-05-1737] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The MEK1,2 (MAPK/ERK kinase 1 and 2) pathway mediates the up-regulation of plasminogen activator inhibitor-1 (PAI-1) expression in vascular smooth muscle cells by a variety of hormones, including angiotensin II. Transfection of constitutively active MEKK-1, an upstream activator of the mitogen-activated protein (MAP) kinase pathways, was used to isolate an enhancer element located between -89 and -50 bp in PAI-1 promoter that was activated by MEKK-1 and selectively blocked by the MEK1,2 inhibitor PD98059. Mutational analysis revealed that the MEKK-1 response element (MRE) contained 2 cis-acting Sp1- and AP-1-like sequences, located between -75 to -70 and -63 to -52 bp, respectively. Overexpression of Sp1 enhanced MEKK-1-induced MRE promoter activity and a dominant-negative c-Fos blocked this Sp1 response. The combination of Sp1 and c-Jun or c-Fos was required to activate this MRE. Angiotensin II (Ang II) stimulation increased c-Fos, c-Jun, and Sp1 binding to the MRE by 100-, 4.9-, and 1.9-fold, respectively, and these responses were inhibited by PD98059 and AT1 receptor antagonist candesartan. Intravenous Ang II infusion in rats increased aortic c-Fos binding to the MRE. This MRE sequence mediated a 4-fold increase of MEK1,2-dependent PAI-1/luciferase mRNA expression by angiotensin II stimulation. This report identifies the MEK1,2 response element that mediates angiotensin II-stimulated PAI-1 promoter activation and shows that activation of this element requires Sp1 and AP-1 co-activation.
Collapse
Affiliation(s)
- Hong-Chi Chen
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
47
|
Chang H, Shyu KG, Lin S, Tsai SC, Wang BW, Liu YC, Sung YL, Lee CC. The plasminogen activator inhibitor-1 gene is induced by cell adhesion through the MEK/ERK pathway. J Biomed Sci 2003. [DOI: 10.1007/bf02256326] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
48
|
Thumkeo D, Keel J, Ishizaki T, Hirose M, Nonomura K, Oshima H, Oshima M, Taketo MM, Narumiya S. Targeted disruption of the mouse rho-associated kinase 2 gene results in intrauterine growth retardation and fetal death. Mol Cell Biol 2003; 23:5043-55. [PMID: 12832488 PMCID: PMC162229 DOI: 10.1128/mcb.23.14.5043-5055.2003] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rho-associated kinase (ROCK), including the ROCK-I and ROCK-II isoforms, is a protein kinase involved in signaling from Rho to actin cytoskeleton. However, in vivo functions of each ROCK isoform remain largely unknown. We generated mice deficient in ROCK-II by gene targeting. ROCK-II(-/-) embryos were found at the expected Mendelian frequency until 13.5 days postcoitum, but approximately 90% died thereafter in utero. ROCK-II(-/-) mice of both genders that survived were born runts, subsequently developed without gross abnormality, and were fertile. Whole-mount staining for a knocked-in lacZ reporter gene revealed that ROCK-II was highly expressed in the labyrinth layer of the placenta. Disruption of architecture and extensive thrombus formation were found in the labyrinth layer of ROCK-II(-/-) mice. While no obvious alteration in actin filament structures was found in the labyrinth layer of ROCK-II(-/-) placenta and stress fibers were formed in cultured ROCK-II(-/-) trophoblasts, elevated expression of plasminogen activator inhibitor 1 was found in ROCK-II(-/-) placenta. These results suggest that ROCK-II is essential in inhibiting blood coagulation and maintaining blood flow in the endothelium-free labyrinth layer and that loss of ROCK-II leads to thrombus formation, placental dysfunction, intrauterine growth retardation, and fetal death.
Collapse
Affiliation(s)
- Dean Thumkeo
- Department of Pharmacology, Kyoto University Faculty of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Goto D, Fujii S, Kaneko T, Furumoto T, Sugawara T, Tarikuz Zaman AKM, Imagawa S, Dong J, Nakai Y, Mishima T, Sobel BE, Kitabatake A. Intracellular signal transduction modulating expression of plasminogen activator inhibitor-1 in adipocytes. Biochem Pharmacol 2003; 65:1907-14. [PMID: 12781343 DOI: 10.1016/s0006-2952(03)00162-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The concentrations in blood of plasminogen activator inhibitor-1 (PAI-1), an inhibitor of fibrinolysis and proteolysis, are elevated in obese and insulin-resistant subjects, predispose them to the risk of thrombosis, and may accelerate atherogenesis. Adipose tissue is a prominent source. Accordingly, intracellular signaling pathways that may influence PAI-1 expression in adipocytes have been the focus of considerable study. Rho, a small GTP binding and GTPase protein, when activated in turn activates its target, Rho-associated coiled-coil forming protein, to yield an active kinase, Rho-kinase, an effector in the Rho pathway. Rho-kinase exerts calcium-sensitizing effects in vascular smooth muscle cells and inhibitory effects on transforming growth factor-beta (TGF-beta) expression in chicken embryonic heart cells. Because TGF-beta is a powerful agonist of PAI-1 expression, we characterized the effects of inhibition of Rho-kinase in 3T3-L1 adipocytes. PAI-1 mRNA was determined by Northern blotting, and PAI-1 protein was determined by Western blotting. The Rho-kinase inhibitor, Y-27632 [(R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide], increased PAI-1 expression markedly. Although genistein, a flavonoid tyrosine kinase, attenuated the increase of PAI-1 induced by Y-27632, other non-flavonoid tyrosine kinase inhibitors did not. However, another flavonoid, daidzein, which lacks tyrosine kinase activity, decreased basal PAI-1 expression and attenuated the induction of PAI-1 expression by Y-27632. Thus, the Rho/Rho-kinase system inhibits PAI-1 expression by a flavonoid-sensitive mechanism in adipocytes. Therefore, flavonoids may be useful in decreasing elevated PAI-1 expression in adipose tissue and its consequent pathophysiologic sequelae.
Collapse
Affiliation(s)
- Daisuke Goto
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Noma K, Higashi Y, Jitsuiki D, Hara K, Kimura M, Nakagawa K, Goto C, Oshima T, Yoshizumi M, Chayama K. Smoking activates rho-kinase in smooth muscle cells of forearm vasculature in humans. Hypertension 2003; 41:1102-5. [PMID: 12682081 DOI: 10.1161/01.hyp.0000067062.92836.9e] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies have shown that smoking is strongly associated with atherosclerosis and coronary vascular disease. Rho-kinase plays an important role in various cellular functions associated with atherosclerosis and hypertension. However, there is no information on the relationship between smoking and Rho-kinase activity in humans. The purpose of this study was to determine the Rho-kinase activity in forearm vascular smooth muscle cells (VSMCs) in healthy young male smokers. We evaluated the forearm blood flow (FBF) responses to fasudil (3, 10, and 30 microg/min for 5 minutes), a Rho-kinase inhibitor, or sodium nitroprusside (0.75, 1.5, and 3.0 microg/min for 5 minutes) in current smokers (n=8) and nonsmokers (n=8). FBF was measured with a strain-gauge plethysmograph. The vasodilatory effect of fasudil was significantly greater in smokers than in nonsmokers (14.9+/-3.5 versus 10.5+/-3.6 mL/min per 100 mL tissue; P<0.01). The FBF responses to sodium nitroprusside were similar in the 2 groups (34.7+/-10.4 versus 33.2+/-10.2 mL/min per 100 mL tissue; P=0.78). These findings suggest that smoking activates Rho-kinase in forearm VSMCs but does not alter the vasodilatory effect induced by exogenous nitric oxide in forearm VSMCs in healthy young men.
Collapse
Affiliation(s)
- Kensuke Noma
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|