1
|
Ren Y, Li Q, Lu L, Jin H, Tao K, Hou T. Isochamaejasmin induces toxic effects on Helicoverpa zea via DNA damage and mitochondria-associated apoptosis. PEST MANAGEMENT SCIENCE 2021; 77:557-567. [PMID: 32815281 DOI: 10.1002/ps.6055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Stellera chamaejasme L. is a poisonous plant with rich resources and is thus highly valuable in terms of new pesticide development. Isochamaejasmin (ICM), one of the main ingredients in S. chamaejasme has drawn much attention owing to its antitumour properties. However, the toxicity and mode of action of ICM on insects are still not clear. In this article, the larva and neuronal cell (AW1) of Helicoverpa zea were used to clarify the insecticidal activity of ICM as well as its toxic mechanism at the cellular level. RESULTS The results confirmed that ICM has potential toxicity against H. zea both in vivo and in vitro via time- and dose-dependent manners. Moreover, we found that ICM caused DNA damage and increased the levels of γH2AX and OGG1 in AW1 cells. Results also showed decline in the mitochondrial membrane potential (MMP), upregulation of Bax/Bcl-2 expression resulting in the release of cytochrome c into the cytosol, activation of caspase-3/9, and cleavage of poly ADP-ribose polymerase (PARP) as a result of exposure to ICM. Additionally, a dose-dependent rise in the reactive oxygen species (ROS) levels, accumulation of a lipid peroxidation product, and inactivation of antioxidant enzymes were found in ICM-treated cells. CONCLUSION These findings confirmed the insecticidal activity of ICM. Furthermore, the results revealed that ICM could cause DNA damage and induce apoptosis via the mitochondrial pathway in AW1 cells. This study provides the basic information needed to understand the toxicity and mechanisms of action of ICM, which could potentially be used to develop it as a new insecticide.
Collapse
Affiliation(s)
- Yuanhang Ren
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lidan Lu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hong Jin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ke Tao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Taiping Hou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Taleghani A, Tayarani-Najaran Z. Potent Cytotoxic Natural Flavonoids: The Limits of Perspective. Curr Pharm Des 2019; 24:5555-5579. [PMID: 30799786 DOI: 10.2174/1381612825666190222142537] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/11/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Besides the numerous biologic and pharmacologic functions in the human body that act as potent antioxidants, flavonoids (flavones, flavanones, flavonols, flavanols and isoflavones) are noted as cancer preventive or therapeutic agents. METHODS This review summarizes the published data using PubMed, Science Direct, and Scopus. RESULTS In this context, recognition and introduction of the most active cytotoxic flavonoids as promising agents for cancer therapy gives insight for further evaluations. However, there are some critical points that may affect the entering of flavonoids as active cytotoxic phytochemicals in the clinical phase. Issues such as the abundance of active species in nature, the methods of extraction and purification, solubility, pharmacokinetic profile, presence of the chiral moieties, method of synthesis, and structure modification may limit the entry of a selected compound for use in humans. Although plenty of basic evidence exists for cytotoxic/antitumor activity of the versatility of flavonoids for entry into clinical trials, the above-mentioned concerns must be considered. CONCLUSION This review is an effort to introduce cytotoxic natural flavonoids (IC50< 10 µM) that may have the potential to be used against various tumor cells. Also, active constituents, molecular mechanisms, and related clinical trials have been discussed as well as the limitations and challenges of using flavonoids in clinic.
Collapse
Affiliation(s)
- Akram Taleghani
- Department of Chemistry, Faculty of Science, Gonbad Kavous University, Golestan Province, Gonbad Kavus, P.O. Box 163, Iran
| | - Zahra Tayarani-Najaran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Wu L, Zhang W, Qiu X, Wang C, Liu Y, Wang Z, Yu Y, Ye RD, Zhang Y. Identification of Alkaloids from Corydalis yanhusuo W. T. Wang as Dopamine D₁ Receptor Antagonists by Using CRE-Luciferase Reporter Gene Assay. Molecules 2018; 23:E2585. [PMID: 30308941 PMCID: PMC6222624 DOI: 10.3390/molecules23102585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/02/2018] [Accepted: 08/12/2018] [Indexed: 02/06/2023] Open
Abstract
Corydalis yanhusuo W. T. Wang (C. yanhusuo) has been traditionally used for drug addiction and pain relief in China. In our previous study, we showed that the extract of C. yanhusuo blocks dopamine receptors, demonstrating that its pharmacological activities are mostly due to the antagonistic effects of some of its components at dopamine receptors. As part of our ongoing project on C. yanhusuo, the aim of the present study is to establish a high-throughput and low-cost screening assay system and test the abilities of the isolated alkaloids from C. yanhusuo to inhibit dopamine-induced dopamine D₁ receptor activity. By using our established cyclic adenosine monophosphate (cAMP)-response element (CRE)-luciferase reporter gene assay system, we identified eight alkaloids from C. yanhusuo with D₁ receptor antagonistic activities. We next validated the activities of these compounds using fluorometric imaging plate reader (FLIPR) assay by measuring the intracellular Ca2+ change. Six out of eight compounds, including tetrahydropalmatine, corydaline, 13-methyldehydrocorydalmine, dehydrocorybubine, dehydrocorydaline, and columbamine, can be confirmed for their inhibitory activities. The dopamine-receptor-antagonistic effects of four compounds, including 13-methyldehydrocorydalmine, dehydrocorydaline, columbamine, and corydaline, are reported for the first time. The present study provides an important pharmacological basis to support the traditional use of C. yanhusuo in China.
Collapse
Affiliation(s)
- Lehao Wu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Weiyue Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xin Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chaoran Wang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yanfang Liu
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Zhiwei Wang
- DICP-CMC Innovation Institute of Medicine, Taizhou 225300, China.
| | - Yang Yu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Richard D Ye
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, SAR, China.
| | - Yan Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
4
|
The Ethyl Acetate Extract of Gynura formosana Kitam. Leaves Inhibited Cervical Cancer Cell Proliferation via Induction of Autophagy. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4780612. [PMID: 29992145 PMCID: PMC5994325 DOI: 10.1155/2018/4780612] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/16/2018] [Accepted: 04/02/2018] [Indexed: 11/22/2022]
Abstract
Gynura formosana Kitam. belongs to the Compositae family and has been traditionally used for the prevention of cancer, diabetes, and inflammation in China. Previous studies had indicated that the ethyl acetate extract of Gynura formosana Kitam. leaves (EAEG) exhibited antioxidant and anti-inflammatory activity. In this report, we demonstrated that EAEG possessed potent anticancer activity through autophagy-mediated inhibition of cell proliferation. EAEG induced a strong cytostatic effect towards HeLa cells and, to a lesser extent, HepG2 and MCF-7 cells. This cytostatic effect of EAEG was not a consequence of increased apoptosis, as neither DNA fragmentation nor change in protein expression level for a number of apoptosis-related genes including Bid, Bax, Bcl-2, and caspase-3 was observed after EAEG treatment, and the apoptosis inhibitor Z-VAD-FMK did not inhibit the EAEG-elicited cytostatic effect. On the other hand, EAEG induced autophagy in a dose-dependent fashion, as shown by increased GFP puncta formation, enhanced conversion of the microtubule-associated protein light chain LC3-I to LC3-II, and downregulation of the p62 protein. Treating the HeLa cells with EAEG together with Chloroquine (CQ) further accelerated LC3 conversion and p62 clearance, indicating that EAEG induced complete autophagy flux. Importantly, the autophagy inhibitor 3-methyladenine (3MA) significantly abrogated the cytostatic effect of EAEG, strongly suggesting that EAEG inhibited HeLa cell proliferation through the induction of autophagy rather than apoptosis. Our results provided a novel and interesting mechanistic insight into the anticancer action of EAEG, supporting the traditional use of this plant for the treatment of the cancer.
Collapse
|
5
|
Fan C, Wu LH, Zhang GF, Xu F, Zhang S, Zhang X, Sun L, Yu Y, Zhang Y, Ye RD. 4'-Hydroxywogonin suppresses lipopolysaccharide-induced inflammatory responses in RAW 264.7 macrophages and acute lung injury mice. PLoS One 2017; 12:e0181191. [PMID: 28792498 PMCID: PMC5549707 DOI: 10.1371/journal.pone.0181191] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/26/2017] [Indexed: 12/22/2022] Open
Abstract
4'-Hydroxywogonin (4'-HW), a flavonoid, has been isolated from various plants and shown to inhibit NO production in macrophages. However, the molecular mechanisms and its in vivo activity have not been determined. Our study aimed to investigate the mechanisms underlying the anti-inflammatory effects of 4'-HW in vitro and in vivo. We showed that 4'-HW potently reduced the expression levels of COX-2 and iNOS as well as their products, prostaglandin E2 (PGE2) and nitric oxide (NO) respectively, in LPS-stimulated RAW 264.7 macrophages. 4'-HW also suppressed LPS-induced pro-inflammatory cytokines at mRNA and protein levels. Moreover, 4'-HW blocked the interaction of TAK1 and TAB1 in LPS-stimulated RAW 264.7 macrophages, resulting in an inhibition of the TAK1/IKK/NF-κB signaling pathway. Furthermore, 4'-HW also reduced the phosphorylation of MAPKs and PI3/Akt signaling pathways in LPS-stimulated RAW 264.7 macrophages. 4'-HW was also significantly decreased the intracellular reactive oxygen species (ROS) level. The effect of 4'-HW was confirmed in vivo. 4'-HW exhibited potent protective effect against LPS-induced ALI in mice. These findings indicate that 4'-HW suppresses the LPS-induced response in vitro and in vivo. It is likely that the inhibition of the TAK1/IKK/NF-κB, MAPKs and PI3/AKT signaling pathways contribute to the anti-inflammatory effects of 4'-HW. Our study suggests that 4'-HW may be an important functional constituent in the plants and has the potential value to be developed as a novel anti-inflammatory agent.
Collapse
Affiliation(s)
- Chao Fan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Le-Hao Wu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Gu-Fang Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Fangfang Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Shuo Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xiuli Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Lei Sun
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Yu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (YZ); (RDY)
| | - Richard D. Ye
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Institute of Chinese Medical Sciences, University of Macau, Macau Special Administrative Region, China
- * E-mail: (YZ); (RDY)
| |
Collapse
|
6
|
An Exploration of Traditional Chinese Medicinal Plants with Anti-Inflammatory Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:1231820. [PMID: 28473862 PMCID: PMC5394394 DOI: 10.1155/2017/1231820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 12/26/2022]
Abstract
In a continuing effort to discover more anti-inflammatory medicinal plants in China, the anti-inflammatory activities of 101 extracts from different parts of 84 traditional medicinal plants were evaluated by a panel of in vitro and in vivo assays. Nuclear factor-kappa B (NF-κB) inhibitory effects were determined by luciferase assay in stably transfected Hela cells. Cytotoxic activities were assessed using the MTT assay. Inhibitory effects on LPS-induced nitric oxide production and proinflammatory mediators were assessed by Griess reaction and Real-Time PCR analysis, respectively. In vivo anti-inflammatory activities were examined by xylene-induced mice ear edema model. In total, 22 extracts showed promising NF-κB inhibitory effects whereas 9 of them did not affect the cell viability. The 9 hit extracts were active in at least one of the subsequently performed in vitro pharmacological test systems. The extract from Hemerocallis minor (root) was selected to perform the in vivo study because it demonstrated significant suppressive effects in all the in vitro assays. Results showed that the extract of Hemerocallis minor (Root) was able to alleviate ear edema effectively in xylene-induced mice ear edema mode. Collectively, our study provides evidence for the potential anti-inflammatory effects of the medicinal plants traditionally used in China. Further phytochemical and pharmacological studies remain to be clarified.
Collapse
|
7
|
Zhang SD, Shan L, Li W, Li HL, Zhang WD. Isochamaejasmin induces apoptosis in leukemia cells through inhibiting Bcl-2 family proteins. Chin J Nat Med 2016; 13:660-6. [PMID: 26412425 DOI: 10.1016/s1875-5364(15)30063-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Indexed: 12/23/2022]
Abstract
The biflavonoid isochamaejasmin is mainly distributed in the root of Stellera chamaejasme L. (Thymelaeaceae) that is used in traditional Chinese medicine (TCM) to treat tumors, tuberculosis, and psoriasis. Herein, isochamaejasmin was found to show similar bioactivity against Bcl-2 family proteins to the reference Bcl-2 ligand (-)-gossypol through 3D similarity search. It selectively bound to Bcl-xl and Mcl-1 with Ki values being 1.93 ± 0.13 μmol·L(-1) and 9.98 ± 0.21 μmol·L(-1), respectively. In addition, isochamaejasmin showed slight growth inhibitory activity against HL-60 with IC50 value being 50.40 ± 1.21 μmol·L(-1) and moderate growth inhibitory activity against K562 cells with IC50 value being 24.51 ± 1.62 μmol·L(-1). Furthermore, isochamaejasmin induced apoptosis of K562 cells by increasing the intracellular expression levels of proteins of the cleavage of caspase-9, caspase-3, and PARP which involved in the Bcl-2-induced apoptosis pathway. These results indicated that isochamaejasmin induces apoptosis in leukemia cells by inhibiting the activity of Bcl-2 family proteins, providing evidence for further studying the underlying anti-cancer mechanism of S. chamaejasme L.
Collapse
Affiliation(s)
- Shou-De Zhang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Shan
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wei Li
- Qinghai Academy of Agriculture and Forestry Science, Xining 810016, China
| | - Hong-Lin Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Wei-Dong Zhang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
8
|
Baron V, Mead KT. Synthesis of 3-benzylidene-dihydrofurochromen-2-ones: promising intermediates for biflavonoid synthesis. HETEROCYCL COMMUN 2015; 21:225-231. [PMID: 27594762 PMCID: PMC5006937 DOI: 10.1515/hc-2015-0053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A route to 3-benzylidene dihydrofurochromen-2-ones from 2H-chromenes is described. Lactonization of 2H-chromenes was achieved using a two-step cyclopropanation-rearrangement sequence. Subsequent conversion of these intermediates to the corresponding α-benzylidene lactones was achieved by lithium enolate Aldol reaction, followed by base-promoted elimination of the aldolate mesylates. The alkene geometry was found to be base-dependent. While KO t Bu favored formation of the E-isomer, DBU showed a slight preference for the Z-isomer. In further studies, these 3-benzylidene dihydrofurochromen-2-ones were converted to polyaromatic structures possessing all the required functionality for biflavonoid synthesis.
Collapse
Affiliation(s)
- Verna Baron
- Department of Chemistry, Mississippi State University, Mississippi
State, Mississippi 39762, USA
| | - Keith T. Mead
- Department of Chemistry, Mississippi State University, Mississippi
State, Mississippi 39762, USA
| |
Collapse
|
9
|
Zhou C, Zhou Y, Wang J, Zhu Y, Deng J, Wang MW. Emergence of Chinese drug discovery research: impact of hit and lead identification. ACTA ACUST UNITED AC 2014; 20:318-29. [PMID: 25520370 DOI: 10.1177/1087057114561950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The identification of hits and the generation of viable leads is an early and yet crucial step in drug discovery. In the West, the main players of drug discovery are pharmaceutical and biotechnology companies, while in China, academic institutions remain central in the field of drug discovery. There has been a tremendous amount of investment from the public as well as private sectors to support infrastructure buildup and expertise consolidation relative to drug discovery and development in the past two decades. A large-scale compound library has been established in China, and a series of high-impact discoveries of lead compounds have been made by integrating information obtained from different technology-based strategies. Natural products are a major source in China's drug discovery efforts. Knowledge has been enhanced via disruptive breakthroughs such as the discovery of Boc5 as a nonpeptidic agonist of glucagon-like peptide 1 receptor (GLP-1R), one of the class B G protein-coupled receptors (GPCRs). Most of the original hit identification and lead generation were carried out by academic institutions, including universities and specialized research institutes. The Chinese pharmaceutical industry is gradually transforming itself from manufacturing low-end generics and active pharmaceutical ingredients to inventing new drugs.
Collapse
Affiliation(s)
- Caihong Zhou
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yan Zhou
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Jia Wang
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yue Zhu
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Jiejie Deng
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Ming-Wei Wang
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
10
|
Li J, Zhang JJ, Pang XX, ZhengChen XL, Gan LS. Biflavanones with anti-proliferative activity against eight human solid tumor cell lines from Stellera chamaejasme. Fitoterapia 2014; 93:163-7. [DOI: 10.1016/j.fitote.2014.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 10/25/2022]
|
11
|
Liu X, Li Y, Yang Q, Chen Y, Weng X, Wang Y, Li N, Zhu X. In vitro inhibitory and pro-apoptotic effect of Stellera chamaejasme L extract on human lung cancer cell line NCI-H157. J TRADIT CHIN MED 2013; 32:404-10. [PMID: 23297564 DOI: 10.1016/s0254-6272(13)60046-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the inhibitory and pro-apoptotic effect of Stellera Chamaejasme L extract (ESC) in vitro. METHODS ESC was first extracted with ethanol, and then washed using a polyamide column with 60% ethanol. ESC was then decompressively recycled and vacuum dried at room temperature to obtain active fractions. Subsequently, the cytotoxic and apoptotic effects of ESC on NCI-H157 human lung cancer cells were determined. RESULTS The results showed that ESC was rich in isomers of Chamaejasminor, neochamaejasmine and Sikokianin. ESC had significant cytotoxicity against NCI-H157 cells, with an IC50 of approximately 18.50 microg x mL(-). ESC caused significant increase in total apoptotic rate, the activity of caspase 3 and 8, CONCLUSION The inhibitory effect of ESC on NCI-H157 tumor cells might partly be attributed to its apoptotic induction through activation of the Fas death receptor pathway.
Collapse
Affiliation(s)
- Xiaoni Liu
- Beijing YouAn Hospital, Capital Medical University, Beijing 100069, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Sikokianin D, a new C-3/C-3"-biflavanone from the roots of Wikstroemia indica. Molecules 2012; 17:7792-7. [PMID: 22735781 PMCID: PMC6268632 DOI: 10.3390/molecules17077792] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 06/15/2012] [Accepted: 06/19/2012] [Indexed: 12/01/2022] Open
Abstract
A new 3,3′′-biflavanone, sikokianin D (1), was isolated from the roots of Wikstroemia indica, together with two known compounds. Their structures were elucidated by chemical evidence and spectral analyses, including HR-ESI-MS, and 1D- and 2D-NMR techniques.
Collapse
|
13
|
Wang S, Wu X, Tan M, Gong J, Tan W, Bian B, Chen M, Wang Y. Fighting fire with fire: poisonous Chinese herbal medicine for cancer therapy. JOURNAL OF ETHNOPHARMACOLOGY 2012; 140:33-45. [PMID: 22265747 DOI: 10.1016/j.jep.2011.12.041] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Following the known principle of "fighting fire with fire", poisonous Chinese herbal medicine (PCHM) has been historically used in cancer therapies by skilled Chinese practitioners for thousands of years. In fact, most of the marketed natural anti-cancer compounds (e.g., camptothecin derivatives, vinca alkaloids, etc.) are often known in traditional Chinese medicine (TCM) and recorded as poisonous herbs as well. Inspired by the encouraging precedents, significant researches into the potential of novel anticancer drugs from other PCHM-derived natural products have been ongoing for several years and PCHM is increasingly being recognized as a gathering place for promising anti-cancer drugs. The present review aimed at giving a rational understanding of the toxicity of PCHM and, especially, providing the most recent developments on PCHM-derived anti-cancer compounds. MATERIALS AND METHODS Information on the toxicity and safety control of PCHM, as well as PCHM-derived anti-cancer compounds, was gathered from the articles, books and monographs published in the past 20 years. RESULTS Based on an objective introduction to the CHM toxicity, we clarified the general misconceptions about the safety of CHM and summarized the traditional experiences in dealing with the toxicity. Several PCHM-derived compounds, namely gambogic acid, triptolide, arsenic trioxide, and cantharidin, were selected as representatives, and their traditional usage and mechanism of anti-cancer actions were discussed. CONCLUSIONS Natural products derived from PCHM are of extreme importance in devising new drugs and providing unique ideas for the war against cancer. To fully exploit the potential of PCHM in cancer therapy, more attentions are advocated to be focused on their safety evaluation and mechanism exploration.
Collapse
Affiliation(s)
- Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
NF-κB-mediated anti-inflammatory activity of the sesquiterpene lactone 7-hydroxyfrullanolide. Eur J Pharmacol 2011; 657:41-50. [DOI: 10.1016/j.ejphar.2011.01.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 01/06/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
15
|
Tsolmon S, Han J, Isoda H. Inhibition of cell growth by Stellera chamaejasme extract is associated with induction of autophagy and differentiation in chronic leukemia K562 cells. J Biosci Bioeng 2010; 110:262-8. [DOI: 10.1016/j.jbiosc.2010.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/03/2010] [Accepted: 02/09/2010] [Indexed: 01/11/2023]
|
16
|
Zhou C, Zhang S, Nanamori M, Zhang Y, Liu Q, Li N, Sun M, Tian J, Ye PP, Cheng N, Ye RD, Wang MW. Pharmacological characterization of a novel nonpeptide antagonist for formyl peptide receptor-like 1. Mol Pharmacol 2007; 72:976-83. [PMID: 17652444 DOI: 10.1124/mol.107.037564] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A series of quinazolinone derivatives were synthesized based on a hit compound identified from a high-throughput screening campaign targeting the human formyl peptide receptor-like 1 (FPRL1). Based on structure-activity relationship analysis, we found that substitution on the para position of the 2-phenyl group of the quinazolinone backbone could alter the pharmacological properties of the compound. The methoxyl substitution produced an agonist 4-butoxy-N-[2-(4-methoxy-phenyl)-4-oxo-1,4-dihydro-2H-quinazolin-3-yl]-benzamide (Quin-C1; C1), whereas a hydroxyl substitution resulted in a pure antagonist, Quin-C7 (C7). Several partial agonists were derived from other substitutions on the para position. C7 partially displaced [(125)I]Trp-Lys-Tyr-Met-Val-d-Met-NH(2) (WKYMVm) binding to FPRL1 but not [(3)H]N-formyl-Met-Leu-Phe to formyl peptide receptor. In functional assays using FPRL1-expressing RBL-2H3 cells, C7 inhibited calcium mobilization and chemotaxis induced by WKYMVm and C1 and degranulation elicited by C1. C7 also suppressed C1-induced extracellular signal-regulated kinase phosphorylation and reduced arachidonic acid-induced ear edema in mice. This study represents the first characterization of a nonpeptidic antagonist for FPRL1 and suggests the prospect of using low molecular weight compounds as modulators of chemoattractant receptors in vitro and in vivo.
Collapse
Affiliation(s)
- Caihong Zhou
- National Center for Drug Screening, 189 Guo Shou Jing Road, Shanghai 201203, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yan P, Nanamori M, Sun M, Zhou C, Cheng N, Li N, Zheng W, Xiao L, Xie X, Ye RD, Wang MW. The Immunosuppressant Cyclosporin A Antagonizes Human Formyl Peptide Receptor through Inhibition of Cognate Ligand Binding. THE JOURNAL OF IMMUNOLOGY 2006; 177:7050-8. [PMID: 17082621 DOI: 10.4049/jimmunol.177.10.7050] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cyclosporin A (CsA) is a fungus-derived cyclic undecapeptide with potent immunosuppressive activity. Its analog, cyclosporin H (CsH), lacks immunosuppressive function but can act as an antagonist for the human formyl peptide receptor (FPR). More recent studies have shown that CsA also inhibits fMLF-induced degranulation in differentiated HL-60 promyelocytic leukemia cells. However, it is unclear whether CsA interferes with ligand-receptor interaction, G protein activation, or other downstream signaling events. In this study we used human neutrophils, differentiated HL-60 cells, and rat basophilic leukemia (RBL)-2H3 cells expressing human FPR (RBL-FPR) to identify the action site of CsA. In functional assays, CsA inhibited fMLF-stimulated degranulation, chemotaxis, calcium mobilization, and phosphorylation of the MAPKs ERK 1/2 and the serine/threonine protein kinase Akt. CsA also blocked Trp-Lys-Tyr-Met-Val-D-Met (WKYMVm)-induced functions in RBL-FPR cells. Concentrations for half-maximal inhibition with CsA are generally 6- to 50-fold higher than that of CsH. CsA was compared with another immunosuppressant, ascomycin, relative to the inhibitory effects on FPR-mediated chemotaxis, calcium mobilization, and degranulation. In these experiments, ascomycin produced no inhibitory effects at low micromolar concentrations (1-4 microM), whereas the inhibitory effects of CsA were prominent at comparable concentrations. Finally, CsA dose-dependently inhibited the uptake of fNle-Leu-Phe-Nle-Tyr-Lys-fluoresceine and [3H]fMLF or [125I]WKYMVm binding to FPR. However, CsA and CsH did not show any obvious inhibitory effect on FPR-like 1-mediated cellular functions. These results demonstrate that CsA is a selective antagonist of FPR and that its inhibition of fMLF-stimulated leukocyte activation is at the level of cognate ligand binding.
Collapse
Affiliation(s)
- Pangke Yan
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|