Sánchez-Blázquez P, Rodríguez-Muñoz M, Montero C, de la Torre-Madrid E, Garzón J. Calcium/calmodulin-dependent protein kinase II supports morphine antinociceptive tolerance by phosphorylation of glycosylated phosducin-like protein.
Neuropharmacology 2007;
54:319-30. [PMID:
18006024 DOI:
10.1016/j.neuropharm.2007.10.002]
[Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 09/10/2007] [Accepted: 10/01/2007] [Indexed: 12/13/2022]
Abstract
The long isoform of the phosducin-like protein (PhLPl) is widely expressed in the brain and it is thought to influence G-protein signalling by regulating the activity of Gbetagamma dimers. We show that in the mature nervous system, PhLPl exists as both a 38kDa non-glycosylated isoform and as glycosylated isoforms of about 45, 100 and 150kDa. Additionally, neural PhLPl is subject to serine phosphorylation, which augments upon the activation of Mu-opioid receptors (MORs), as does its association with Gbetagamma subunits and 14-3-3 proteins. While the intracerebroventricular (icv) administration of morphine to mice rapidly reduced the association of MORs with G proteins, it increased the serine phosphorylation of these receptors. Moreover, activated Ca2+/calmodulin-dependent protein kinase II (CaMKII) accumulated in the MOR environment and phosphorylated PhLPl was seen to co-precipitate with these opioid receptors. Opioid-induced phosphorylation of PhLPl was impaired by inhibiting the activity of CaMKII and, in these circumstances, the association of PhLPl with Gbetagamma dimers and 14-3-3 proteins was diminished. Furthermore, these events were coupled with the recovery of G protein regulation by the MORs, while there was a decrease in serine phosphorylation of these receptors and morphine antinociceptive tolerance diminished. It seems that CaMKII phosphorylation of PhLPl stabilizes the PhLPl.Gbetagamma complex by promoting its binding to 14-3-3 proteins. When this complex fails to bind to 14-3-3 proteins, the association of PhLPl with Gbetagamma is probably disrupted by GalphaGDP subunits and the MORs recover control on G proteins.
Collapse