1
|
Periferakis A, Periferakis K, Badarau IA, Petran EM, Popa DC, Caruntu A, Costache RS, Scheau C, Caruntu C, Costache DO. Kaempferol: Antimicrobial Properties, Sources, Clinical, and Traditional Applications. Int J Mol Sci 2022; 23:ijms232315054. [PMID: 36499380 PMCID: PMC9740324 DOI: 10.3390/ijms232315054] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Flavonoids are a category of plant-derived compounds which exhibit a large number of health-related effects. One of the most well-known and studied flavonoids is kaempferol, which can be found in a wide variety of herbs and plant families. Apart from their anticarcinogenic and anti-inflammatory effects, kaempferol and its associated compounds also exhibit antibacterial, antifungal, and antiprotozoal activities. The development of drugs and treatment schemes based on these compounds is becoming increasingly important in the face of emerging resistance of numerous pathogens as well as complex molecular interactions between various drug therapies. In addition, many of the kaempferol-containing plants are used in traditional systems all over the world for centuries to treat numerous conditions. Due to its variety of sources and associated compounds, some molecular mechanisms of kaempferol antimicrobial activity are well known while others are still under analysis. This paper thoroughly documents the vegetal and food sources of kaempferol as well as the most recent and significant studies regarding its antimicrobial applications.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P), 17236 Athens, Greece
- Orasis Acupuncture Institute, 11526 Athens, Greece
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Elena Madalina Petran
- Department of Biochemistry, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Toxicology, Grigore Alexandrescu Emergency Children’s Hospital, 011743 Bucharest, Romania
| | - Delia Codruta Popa
- Department of Biochemistry, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Hematology, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Correspondence: (D.C.P.); (C.S.)
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, ‘Dr. Carol Davila’ Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, ‘Titu Maiorescu’ University, 031593 Bucharest, Romania
| | - Raluca Simona Costache
- Department of Gastroenterology, Gastroenterology and Internal Medicine Clinic, ‘Dr. Carol Davila’ Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Internal Medicine and Gastroenterology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Correspondence: (D.C.P.); (C.S.)
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, ‘Prof. N.C. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Daniel Octavian Costache
- Department of Dermatology, ‘Dr. Carol Davila’ Central Military Emergency Hospital, 010825 Bucharest, Romania
| |
Collapse
|
2
|
Abstract
Bacteria of the genus Streptomyces produce a very large number of secondary metabolites, many of which are of vital importance to modern medicine. There is great interest in the discovery of novel pharmaceutical compounds derived from strepomycetes, since novel antibiotics, anticancer and compounds for treating other conditions are urgently needed. Greece, as proven by recent research, possesses microbial reservoirs with a high diversity of Streptomyces populations, which provide a rich pool of strains with potential pharmaceutical value. This review examines the compounds of pharmaceutical interest that have been derived from Greek Streptomyces isolates. The compounds reported in the literature include antibiotics, antitumor compounds, biofilm inhibitors, antiparasitics, bacterial toxin production inhibitors and antioxidants. The streptomycete biodiversity of Greek environments remains relatively unexamined and is therefore a very promising resource for potential novel pharmaceuticals.
Collapse
|
3
|
Yuan YR, Li YW, Huang YQ, Liu QF, Ren YH, Yue JM, Zhou B. Four new diterpenoids from the twigs and leaves of Phyllanthus acidus. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Tan SP, Tan ENY, Lim QY, Nafiah MA. Phyllanthus acidus (L.) Skeels: A review of its traditional uses, phytochemistry, and pharmacological properties. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112610. [PMID: 31991202 DOI: 10.1016/j.jep.2020.112610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phyllanthus acidus (L.) Skeels is not only used for its edible fruits but also used to treat a wide spectrum of diseases such as inflammatory, rheumatism, bronchitis, asthma, respiratory disorder, hepatic diseases and diabetes in India, Asia, the Caribbean region, and Central and South America. This paper aims to discuss the current understanding regarding the traditional uses, phytochemical and pharmacological studies of P. acidus, and their possible research opportunities. MATERIALS AND METHODS All information on P. acidus was collected from various electronic database (ACS, PubMed, Scopus, Web of Science, SciFinder, Science Direct, Google Scholar, Springer, Wiley, Taylor and Mendeley) and also from those published materials (Ph.D. and M.Sc. dissertations and books) by using a combination of various meaningful keywords. RESULTS Phytochemical analyses on barks, leaves, roots and fruits of P. acidus identified triterpene, diterpene, sesquiterpene, and glycosides as predominant classes of bioactive substances found in this plant. P. acidus was reported with various pharmacological activities such as in vivo hepatoprotective and hypoglycemic, in vitro anti-oxidant, α-glucosidase inhibitory, anti-inflammatory and antimicrobial activities. However, none of these studies are with clinical research. Some of the studies were performed with only a single set of experiments or with a high dose of extract, and thus the validity of the experimental data may be questionable. In addition, most of the studies described were without identifying the effective components. Some of the assays were even without a positive control for comparison which makes results questionable. CONCLUSION Although P. acidus has been proven as a valuable medicinal source from its traditional uses. However, the pharmacological experiments conducted were not sufficient to verify its traditional uses. More investigation is required to confirm the traditional claims such as bioassay-guided isolation of bioactive compounds, detailed pharmacological investigations, clinical studies, and its toxicity investigation. Additionally, an experimental design with sufficient data replication, the use of controls and authenticated research materials, and the selection of a rationale dose or concentration for the analysis are keys to providing reproducible experimental data.
Collapse
Affiliation(s)
- Siow-Ping Tan
- Department of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University College, 53300, Kuala Lumpur, Malaysia.
| | - Eric Nyak-Yong Tan
- Department of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University College, 53300, Kuala Lumpur, Malaysia.
| | - Qian-Yu Lim
- Department of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University College, 53300, Kuala Lumpur, Malaysia.
| | - Mohd Azlan Nafiah
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjung Malim, Perak, Malaysia.
| |
Collapse
|
5
|
Chen L, Ding Y, Hou Y, Liu Y, Nie H. Regulation of Cl- Electrolyte Permeability in Epithelia by Active Traditional Chinese Medicine Monomers for Diarrhea. Curr Drug Targets 2020; 21:902-909. [PMID: 32364074 DOI: 10.2174/1389450121666200504073635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 11/22/2022]
Abstract
The epithelial layer, lining the inner surface of the mammalian alveolar, kidney, brain and colon, is a typical electrolyte transporting tissue. Large quantities of salt and fluid are actively moved from the mucosal side toward the blood vessel. Transepithelial salt re-absorption in epithelial tissues plays an important role in maintaining fluid homeostasis. In absorptive epithelium, fluid and salt flux is controlled by the machinery mainly composed of epithelial sodium channel, cystic fibrosis transmembrane conductance regulator, Na+-K+-2Cl- cotransporter, Na+/H+ exchanger, and Na+/K+-ATPase. Dysregulation of salt permeability across epithelium contributes to the pathogenesis of organ edema. In numerous ion transporters, epithelial Cl- transportation plays an important role in water secretion across epithelial tissues and regulation of body fluid content. Many traditional Chinese medicines treat diarrhea by regulating the Cl- electrolyte transport. We systematically summarized the recent progress regarding the traditional Chinese medicine on Cl- electrolyte transport in the intestinal epithelial tissues. The pharmaceutical relevance of developing advanced strategies to mitigate edematous disorders is also implicated. In conclusion, the crosstalk between Cl- electrolyte transport and active traditional Chinese medicine monomers may lead to the development of new strategies for diarrhea by manipulating the function and expression of ion channels.
Collapse
Affiliation(s)
- Lei Chen
- China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yanhong Liu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
6
|
Fazary AE, Awwad NS, Ibrahium HA, Shati AA, Ju YH. Influence of DMSO organic liquid media on the solution equilibria of 2,3-dihydroxybenzic acid. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Sripriya N, Vasantharaj S, Mani U, Shanmugavel M, Jayasree R, Gnanamani A. Encapsulated enhanced silver nanoparticles biosynthesis by modified new route for nano-biocatalytic activity. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Duong TH, Beniddir MA, Nguyen VK, Aree T, Gallard JF, Mac DH, Nguyen HH, Bui XH, Boustie J, Nguyen KPP, Chavasiri W, Le Pogam P. Sulfonic Acid-Containing Flavonoids from the Roots of Phyllanthus acidus. JOURNAL OF NATURAL PRODUCTS 2018; 81:2026-2031. [PMID: 30207470 DOI: 10.1021/acs.jnatprod.8b00322] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Six new sulfonic acid-containing flavonoids, acidoflavanone (1), acidoauronol (2), 5- O-methylacidoauronol (3), acidoaurone (4), acidoisoflavone (5), and acidoflavonol (6), were isolated from the EtOH extract of the roots of Phyllanthus acidus. Their structures were unambiguously established by interpretation of their HRESIMS and 1D and 2D NMR data, single-crystal X-ray diffraction analysis, and comparison to the literature data. These new structures represent the first examples of sulfonic acid-containing flavanones, auronols, aurones, and isoflavones.
Collapse
Affiliation(s)
- Thuc-Huy Duong
- Department of Chemistry , Ho Chi Minh City University of Education , 280 An Duong Vuong Street, District 5 , Ho Chi Minh City 748342 , Vietnam
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science , Chulalongkorn University , Pathumwan, Bangkok 10330 , Thailand
| | - Mehdi A Beniddir
- Équipe "Pharmacognosie-Chimie des Substances Naturelles", BioCIS, Université Paris-Sud, CNRS , Université Paris-Saclay , 5 Rue J.-B. Clément , 92290 Châtenay-Malabry , France
| | - Van-Kieu Nguyen
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science , Chulalongkorn University , Pathumwan, Bangkok 10330 , Thailand
| | - Thammarat Aree
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science , Chulalongkorn University , Pathumwan, Bangkok 10330 , Thailand
| | - Jean-François Gallard
- Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR 2301, Université Paris-Saclay , 1 Avenue de la Terrasse , 91198 Gif-sur-Yvette , France
| | - Dinh-Hung Mac
- Department of Organic Chemistry , University of Science, Ha Noi National University , 19 Le Thanh Tong Street, District Hoan Kiem , Ha Noi City 748355 , Vietnam
| | - Huu-Hung Nguyen
- Faculty of Biotechnology and Environment , Nguyen Tat Thanh University , 300A Nguyen Tat Thanh, District 4 , Ho Chi Minh City 748355 , Vietnam
| | - Xuan-Hao Bui
- Department of Chemistry , Ho Chi Minh City University of Education , 280 An Duong Vuong Street, District 5 , Ho Chi Minh City 748342 , Vietnam
| | - Joël Boustie
- Université Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226 , F-35000 Rennes , France
| | - Kim-Phi-Phung Nguyen
- Department of Organic Chemistry , University of Science, National University-Ho Chi Minh City , 227 Nguyen Van Cu Street, District 5 , Ho Chi Minh City 748355 , Vietnam
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science , Chulalongkorn University , Pathumwan, Bangkok 10330 , Thailand
| | - Pierre Le Pogam
- Équipe "Pharmacognosie-Chimie des Substances Naturelles", BioCIS, Université Paris-Sud, CNRS , Université Paris-Saclay , 5 Rue J.-B. Clément , 92290 Châtenay-Malabry , France
| |
Collapse
|
9
|
Pérez-Colmenares A, Obregón-Díaz Y, Rojas-Fermín L, Aparicio-Zambrano R, Carmona-Arzola J, Usubillaga A. Chemical Composition of the Essential Oil of Phyllanthus acidus. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The essential oil from the leaves of Phyllanthus acidus (Phyllanthaceae) was obtained by hydrodistillation and its composition determined by GC and GC/MS. Twenty-one compounds were identified, representing 92.8 % of the oil. The most abundant components were t -muurolol (20.4 %), α-cadinol (14.6 %), β-cadinene (8.9 %) and α-muurolene (7.5 %).
Collapse
Affiliation(s)
- Alida Pérez-Colmenares
- Research Institute “Dr. Alfredo Usubillaga del Hierro”, University of Los Andes, Mérida, ZP-5101-A, Venezuela
| | - Ysbelia Obregón-Díaz
- Research Institute “Dr. Alfredo Usubillaga del Hierro”, University of Los Andes, Mérida, ZP-5101-A, Venezuela
| | - Luis Rojas-Fermín
- Research Institute “Dr. Alfredo Usubillaga del Hierro”, University of Los Andes, Mérida, ZP-5101-A, Venezuela
| | - Rosa Aparicio-Zambrano
- Research Institute “Dr. Alfredo Usubillaga del Hierro”, University of Los Andes, Mérida, ZP-5101-A, Venezuela
| | - Juan Carmona-Arzola
- Department of Pharmacognosy and Drugs Organic, Faculty of Pharmacy and Bioanalysis, University of Los Andes, Mérida, ZP-5101-A, Venezuela
| | - Alfredo Usubillaga
- Research Institute “Dr. Alfredo Usubillaga del Hierro”, University of Los Andes, Mérida, ZP-5101-A, Venezuela
| |
Collapse
|
10
|
|
11
|
Biosynthesis of silver nanoparticles using aqueous extract of Phyllanthus acidus L. fruits and characterization of its anti-inflammatory effect against H 2 O 2 exposed rat peritoneal macrophages. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.01.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
Mohd Bukhari DA, Siddiqui MJ, Shamsudin SH, Rahman MM, So'ad SZM. α-Glucosidase Inhibitory Activity of Selected Malaysian Plants. J Pharm Bioallied Sci 2017; 9:164-170. [PMID: 28979070 PMCID: PMC5621178 DOI: 10.4103/jpbs.jpbs_35_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Diabetes is a common metabolic disease indicated by unusually high plasma glucose level that can lead to major complications such as diabetic neuropathy, retinopathy, and cardiovascular diseases. One of the effective therapeutic managements of the disease is to reduce postprandial hyperglycemia through inhibition of α-glucosidase, a carbohydrate-hydrolyzing enzyme to retard overall glucose absorption. In recent years, a plenty of research works have been conducted looking for novel and effective α-glucosidase inhibitors (AGIs) from natural sources as alternatives for the synthetic AGI due to their unpleasant side effects. Plants and herbs are rich with secondary metabolites that have massive pharmaceutical potential. Besides, studies showed that phytochemicals such as flavonoids, alkaloids, terpenoids, anthocyanins, glycosides, and phenolic compounds possess significant inhibitory activity against α-glucosidase enzyme. Malaysia is a tropical country that is rich with medicinal herbs. In this review, we focus on eight Malaysian plants with the potential as AGI to develop a potential functional food or lead compounds against diabetes.
Collapse
Affiliation(s)
- Dzatil Awanis Mohd Bukhari
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Mohammad Jamshed Siddiqui
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Siti Hadijah Shamsudin
- Department of Pharmacy Practice, Kulliyyah of Pharmacy, International Islamic University Malaysia, Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Md Mukhlesur Rahman
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Siti Zaiton Mat So'ad
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| |
Collapse
|
13
|
Nechipadappu SK, R. Trivedi D. Pharmaceutical salts of ethionamide with GRAS counter ion donors to enhance the solubility. Eur J Pharm Sci 2017; 96:578-589. [DOI: 10.1016/j.ejps.2016.10.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/26/2016] [Accepted: 10/30/2016] [Indexed: 11/25/2022]
|
14
|
Dutra RC, Campos MM, Santos AR, Calixto JB. Medicinal plants in Brazil: Pharmacological studies, drug discovery, challenges and perspectives. Pharmacol Res 2016; 112:4-29. [DOI: 10.1016/j.phrs.2016.01.021] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 01/17/2016] [Indexed: 12/16/2022]
|
15
|
Ahire JJ, Dicks LMT. Nisin Incorporated With 2,3-Dihydroxybenzoic Acid in Nanofibers Inhibits Biofilm Formation by a Methicillin-Resistant Strain of Staphylococcus aureus. Probiotics Antimicrob Proteins 2016; 7:52-9. [PMID: 25319566 DOI: 10.1007/s12602-014-9171-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The aim of the present study was to determine the effect of nisin, 2,3-dihydroxybenzoic acid (DHBA) and a combination of nisin and DHBA incorporated into nanofibers prepared from poly(D,L-lactide) (PDLLA) and poly(ethylene oxide) (PEO) on biofilm formation of a methicillin-resistant strain of Staphylococcus aureus (strain Xen 31). Biofilm formation decreased by 88% after 24 h of exposure to nanofibers containing nisin and DHBA (NDF), compared to a 63% decrease when exposed to nanofibers containing only DHBA (DF) and a 3% decrease when exposed to nanofibers containing only nisin (NF). Planktonic cell numbers of biofilms exposed to nanofibers without nisin or DHBA (CF) and NF increased from no detectable OD(595nm) readings to 0.35 and 0.3, respectively, within the first 8 h of exposure, followed by a steady decline over the following 16 h. Planktonic cells of biofilms treated with DF increased from no detectable OD(595nm) readings to 0.05 after 8 h of exposure and remained more-or-less constant for the duration of the experiment. Planktonic cells of biofilms exposed to NDF increased from OD(595nm) 0.03 after 8 h of exposure and to 0.2 over the following 16 h. Biofilm formation increased with increasing concentrations of FeCl3·6H2O, which suggests that iron is required for S. aureus Xen 31 to form a biofilm. However, when exposed to NDF, biofilm formation decreased significantly in the presence of increasing concentrations of iron. This suggests that NDF may be used to prevent biofilm formation of MRSA and control infection.
Collapse
Affiliation(s)
- Jayesh J Ahire
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland, 7602, Stellenbosch, South Africa
| | | |
Collapse
|
16
|
Mao X, Wu LF, Guo HL, Chen WJ, Cui YP, Qi Q, Li S, Liang WY, Yang GH, Shao YY, Zhu D, She GM, You Y, Zhang LZ. The Genus Phyllanthus: An Ethnopharmacological, Phytochemical, and Pharmacological Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2016; 2016:7584952. [PMID: 27200104 PMCID: PMC4854999 DOI: 10.1155/2016/7584952] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/23/2016] [Accepted: 03/30/2016] [Indexed: 12/17/2022]
Abstract
The plants of the genus Phyllanthus (Euphorbiaceae) have been used as traditional medicinal materials for a long time in China, India, Brazil, and the Southeast Asian countries. They can be used for the treatment of digestive disease, jaundice, and renal calculus. This review discusses the ethnopharmacological, phytochemical, and pharmacological studies of Phyllanthus over the past few decades. More than 510 compounds have been isolated, the majority of which are lignins, triterpenoids, flavonoids, and tannins. The researches of their remarkable antiviral, antioxidant, antidiabetic, and anticancer activities have become hot topics. More pharmacological screenings and phytochemical investigations are required to support the traditional uses and develop leading compounds.
Collapse
Affiliation(s)
- Xin Mao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ling-Fang Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Hong-Ling Guo
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Jing Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Ya-Ping Cui
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Qi Qi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Shi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Wen-Yi Liang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Guang-Hui Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yan-Yan Shao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Dan Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Gai-Mei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yun You
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key laboratory of Chinese Internal Medicine, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Lan-Zhen Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| |
Collapse
|
17
|
Complex Formation Study of Binary and Ternary Complexes Including 2,3-Dihydroxybenzoic Acid, N-acetylcysteine and Divalent Metal Ions. J SOLUTION CHEM 2016. [DOI: 10.1007/s10953-016-0452-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Ghosh Tarafdar R, Nath S, Das Talukdar A, Dutta Choudhury M. Cicca acida L.: phytochemistry and pharmacological studies. J Pharm Pharmacol 2016; 68:148-58. [DOI: 10.1111/jphp.12514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/29/2015] [Indexed: 01/03/2023]
Abstract
Abstract
Objectives
Cicca acida L., is reported with traditional and pharmacological uses, and a good number of pure compounds have been isolated from its different parts. But published information is sporadic and fragmentary in nature. Therefore, it is imperative to have a comprehensive account of all of its medicinal potentialities with critical analysis. In this review, the traditional reports, phytochemical and pharmacology studies associated with Cicca acida have been compiled to figure out the net possibilities for its application in modern medicine.
Key findings
Careful scrutiny reveals that the plant possesses a huge range of medicinal properties, but published report analysis suggests that the plant is effectively used as antibacterial, hepatoprotective, anticonceptive and antidiabetic purposes. The published papers revealed the bioactivity of only 04 compounds. This indicates that a good number of isolated major compounds of this plant are yet to be pharmacologically investigated.
Conclusion
Intensive study of Cicca acida showed that despite of its plentiful isolated molecules, the effort leading to final product stage seems to be less. Therefore, the plant and its compounds need concentrated effort towards establishment of its therapeutic potentialities.
Collapse
Affiliation(s)
- Ramananda Ghosh Tarafdar
- Ethnobotany and Medicinal Plants Research Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Sushmita Nath
- Ethnobotany and Medicinal Plants Research Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Anupam Das Talukdar
- Ethnobotany and Medicinal Plants Research Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Manabendra Dutta Choudhury
- Ethnobotany and Medicinal Plants Research Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, India
| |
Collapse
|
19
|
Isolation and antifungal activity of methyl 2,3-dihydroxybenzoate from Paenibacillus elgii HOA73. Microb Pathog 2016; 106:139-145. [PMID: 26796297 DOI: 10.1016/j.micpath.2016.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/28/2015] [Accepted: 01/11/2016] [Indexed: 11/20/2022]
Abstract
The aim of the present study is to describe the purification and identification of methyl 2,3-dihydroxybenzoate (M2,3DB), isolated for the first time from Paenibacillus elgii HOA73, and to subsequently investigate its antifungal activity against important plant pathogens. The results show that M2,3DB can be purified by many different chromatographic techniques and is identified as methyl 2,3-dihydroxybenzoate based on nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry (LC-MS) spectra analyses. M2,3DB was firstly evaluated for its antifungal activity, where the growth of Botrytis cinerea and Rhizoctonia solani was almost completely inhibited at an M2,3DB concentration of 50 μg/mL. Growth inhibition of Phytophthora capsici and Fusarium oxysporum f.sp lycopersici was found at the same M2,3DB concentration by 48.8% and 36.6%, respectively. Minimum inhibitory concentrations (MICs) of M2,3DB that inhibited any visible mycelial growth of B. cinerea, R. solani, and F. oxysporum f.sp lycopersici were defined as 32, 32, and 64 μg/mL, respectively. The broad antifungal activity of M2,3DB against various plant pathogens suggests its scope as a biofungicide in the management of plant disease.
Collapse
|
20
|
Hossen MJ, Kim MY, Kim JH, Cho JY. AP-1-Targeted Inhibition of Macrophage Function and Lipopolysaccharide/D-Galactosamine-Induced Hepatitis by Phyllanthus acidus Methanolic Extract. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:1137-58. [PMID: 26381032 DOI: 10.1142/s0192415x15500652] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Traditionally, Phyllanthus acidus (Phyllanthaceae) has been used for the treatment of rheumatism, bronchitis, asthma, respiratory disorders, and hepatitis. Recently, we showed that a methanol extract of Phyllanthaceae (Pa-ME) has a potent anti-inflammatory activity in RAW264.7 cells and strongly ameliorates HCl / EtOH -induced gastric ulcers in mice by targeting the Src/Syk of NF-κB. In the present study, we explored the molecular mechanism of Pa-ME on the AP-1 activation pathway and evaluated its potential hepatoprotective effects. To do this, we employed lipopolysaccharide (LPS)-stimulated RAW264.7 cells and U937 cells and an LPS/D-galactosamine (D- GaIN )-induced acute hepatitis mouse model. We utilized a multitude of assays, including immunoblotting analysis, reporter gene assays, and mRNA expression analysis, to determine the effect of Pa-ME on the AP-1 pathway. Pa-ME strikingly suppressed the production of LPS-induced pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α). Furthermore, Pa-ME also strongly inhibited activator protein-1 (AP-1) activation and mitogen-activated protein kinase (MAPK) phosphorylation in LPS-stimulated RAW264.7 macrophages cells and the U937 monocyte like human cell line. Moreover, pre-treatment with Pa-ME exhibited strong hepatoprotective and curative effects in an LPS/D-Gal-induced mouse hepatitis model as evidenced by a decrease in elevated serum AST and ALT levels and the amelioration of histological damage. Taken together, our data suggest that Pa-ME might play a crucial ethnopharmacological role as a hepatoprotective herbal remedy by suppressing MAPK signaling and the activity of the downstream transcription factor AP-1.
Collapse
Affiliation(s)
- Muhammad Jahangir Hossen
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea.,Department of Animal Science, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Mi-Yeon Kim
- School of Systems Biological Science, Soongsil University, Seoul 156-743, Republic of Korea
| | - Jong-Hoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
21
|
Hossen MJ, Jeon SH, Kim SC, Kim JH, Jeong D, Sung NY, Yang S, Baek KS, Kim JH, Yoon DH, Song WO, Yoon KD, Cho SH, Lee S, Kim JH, Cho JY. In vitro and in vivo anti-inflammatory activity of Phyllanthus acidus methanolic extract. JOURNAL OF ETHNOPHARMACOLOGY 2015; 168:217-228. [PMID: 25839115 DOI: 10.1016/j.jep.2015.03.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/07/2015] [Accepted: 03/16/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phyllanthus acidus (L.) Skeels (Phyllanthaceae) has traditionally been used to treat gastric trouble, rheumatism, bronchitis, asthma, respiratory disorders, and hepatitis. Despite this widespread use, the pharmacological activities of this plant and their molecular mechanisms are poorly understood. Therefore, we evaluated the immunopharmacological activities of the methanolic extract of the aerial parts of this plant (Pa-ME) and validated its pharmacological targets. MATERIALS AND METHODS Lipopolysaccharide (LPS)-treated macrophages, an HCl/EtOH-induced gastritis model, and an acetic acid-injected capillary permeability mouse model were employed to evaluate the anti-inflammatory activity of Pa-ME. Potentially active anti-inflammatory components of this extract were identified by HPLC. The molecular mechanisms of the anti-inflammatory activity were studied by kinase assays, reporter gene assays, immunoprecipitation analysis, and overexpression of target enzymes. RESULTS Pa-ME suppressed the production of nitric oxide (NO) and prostaglandin E2 (PGE2) and prevented morphological changes in LPS-treated RAW264.7 cells. Moreover, both HCl/EtOH-induced gastric damage and acetic acid-triggered vascular permeability were restored by orally administered Pa-ME. Furthermore, this extract downregulated the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 and reduced the nuclear levels of NF-κB. Signalling events upstream of NF-κB translocation, such as phosphorylation of Src and Syk and formation of Src/Syk signalling complexes, were also inhibited by Pa-ME. The enzymatic activities of Src and Syk were also suppressed by Pa-ME. Moreover, Src-induced and Syk-induced luciferase activity and p85/Akt phosphorylation were also inhibited by Pa-ME. Of the identified flavonoids, kaempferol and quercetin were revealed as partially active anti-inflammatory components in Pa-ME. CONCLUSION Pa-ME exerts anti-inflammatory activity in vitro and in vivo by suppressing Src, Syk, and their downstream transcription factor, NF-κB.
Collapse
Affiliation(s)
- Muhammad Jahangir Hossen
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea; Department of Animal Science, Patuakhali Science and Technology University, Bangladesh
| | - Sung Ho Jeon
- Department of Life Science Hallym University, Chuncheon 200-702, Republic of Korea
| | - Seung Cheol Kim
- Division of Gynecologic Oncology Department of Obstetrics and Gynecology, Ewha Womans University Mokdong Hospital College of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
| | - Ji Hye Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Deok Jeong
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Nak Yoon Sung
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Sungjae Yang
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Kwang-Soo Baek
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jun Ho Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Deok Hyo Yoon
- Department of Biochemistry, Kangwon National University, Chuncheon 220-700, Republic of Korea
| | - Won O Song
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Kee Dong Yoon
- College of Pharmacy, The Catholic University of Korea, Bucheon 420-743, Republic of Korea
| | - Sang-Ho Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Sukchan Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jong-Hoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| |
Collapse
|
22
|
Ghosh Tarafdar R, Nath S, Das Talukdar A, Dutta Choudhury M. Antidiabetic plants used among the ethnic communities of Unakoti district of Tripura, India. JOURNAL OF ETHNOPHARMACOLOGY 2015; 160:219-226. [PMID: 25457986 DOI: 10.1016/j.jep.2014.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/02/2014] [Accepted: 11/12/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A large group of ethnic communities living in Unakoti district of Tripura, India is still dependent on traditional herbal remedies for treatment of diabetes. Valuable information collected from these communities in the present investigation is important in maintaining their indigenous knowledge of folklore medicine. METHODS Systematic and extensive field surveys were conducted during 2011-2013 among the ethnic inhabitants of Unokati district, Tripura, India covering all the seasons to collect information on their traditional herbal medication system for treatment of diabetes. Obtained data were analysed through fidelity level (FL), use value (UV) and relative frequency of citation (RFC) to authenticate the uniqueness of the species being used for diabetes treatment. RESULTS In this current study a total of 39 medicinal plant species belonging to 37 genera and 28 families were presented, used by the traditional healers of Unakoti district, Tripura, India for diabetes treatment. FL, UV and RFC values of collected plants for the selected study area ranges between 06% and 100%, 0.07% and 2.64% and 0.02% and 0.51% respectively. Out of 39 collected plants, 11, 5 and 3 plant species have showed significant (<50%) FL, UV and RFC values respectively. CONCLUSION Like many other ethnic communities of the world, inhabitants of Unakoti district depend on a traditional medication system to treat diabetes. Documented floras are locally available and need proper further pharmacological validation to endorse their traditional use in a modern health care system. This will help in the development of effective herbal antidiabetic medicines in near future.
Collapse
Affiliation(s)
- Ramananda Ghosh Tarafdar
- Ethnobotany and Medicinal Plants Research Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam 788011, India.
| | - Sushmita Nath
- Ethnobotany and Medicinal Plants Research Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam 788011, India
| | - Anupam Das Talukdar
- Ethnobotany and Medicinal Plants Research Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam 788011, India
| | - Manabendra Dutta Choudhury
- Ethnobotany and Medicinal Plants Research Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam 788011, India
| |
Collapse
|
23
|
Ahire JJ, Neppalli R, Heunis TDJ, van Reenen AJ, Dicks LMT. 2,3-Dihydroxybenzoic acid electrospun into poly(D,L-lactide) (PDLLA)/poly(ethylene oxide) (PEO) nanofibers inhibited the growth of Gram-positive and Gram-negative bacteria. Curr Microbiol 2014; 69:587-93. [PMID: 24934995 DOI: 10.1007/s00284-014-0635-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/02/2014] [Indexed: 12/12/2022]
Abstract
Widespread emergence of antibiotic-resistant pathogens in recent years has restricted the treatment options for various infectious diseases. Investigation of alternative antimicrobial agents and therapies is thus of utmost importance. Electrospinning of 50 mg/ml 2,3-dihydroxybenzoic acid (DHBA) into 24 % (w/v) poly(D,L-lactide) (PDLLA) and poly(ethylene oxide) (PEO) (1:1) produced nanofibers with an average diameter of 401 ± 122 nm. DHBA released from the nanofibers (315 ± 0.04 µg/ml within 2 h) inhibited the growth of Pseudomonas aeruginosa Xen 5, Klebsiella pneumoniae Xen 39, Escherichia coli Xen 14, Salmonella typhimurium Xen 26, and Staphylococcus aureus strains Xen 30, Xen 31, and Xen 36. The reason for the rapid diffusion of DHBA from PEO:PDLLA may be due to formation of hydrogen bonds between the hydroxyl groups of DHBA and the C=O groups of the PDLLA. DHBA formed a strong interaction with PDLLA and increased the thermal stability of the nanofiber mesh. The DHBA-containing nanofibers were non-hemolytic, suggesting that they may be incorporated in the development of a wound dressing.
Collapse
Affiliation(s)
- Jayesh J Ahire
- Department of Microbiology, University of Stellenbosch, Matieland (Stellenbosch), 7602, South Africa
| | | | | | | | | |
Collapse
|
24
|
Distinct action of flavonoids, myricetin and quercetin, on epithelial Cl⁻ secretion: useful tools as regulators of Cl⁻ secretion. BIOMED RESEARCH INTERNATIONAL 2014; 2014:902735. [PMID: 24818160 PMCID: PMC4000985 DOI: 10.1155/2014/902735] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/06/2014] [Accepted: 03/10/2014] [Indexed: 01/01/2023]
Abstract
Epithelial Cl− secretion plays important roles in water secretion preventing bacterial/viral infection and regulation of body fluid. We previously suggested that quercetin would be a useful compound for maintaining epithelial Cl− secretion at a moderate level irrespective of cAMP-induced stimulation. However, we need a compound that stimulates epithelial Cl− secretion even under cAMP-stimulated conditions, since in some cases epithelial Cl− secretion is not large enough even under cAMP-stimulated conditions. We demonstrated that quercetin and myricetin, flavonoids, stimulated epithelial Cl− secretion under basal conditions in epithelial A6 cells. We used forskolin, which activates adenylyl cyclase increasing cytosolic cAMP concentrations, to study the effects of quercetin and myricetin on cAMP-stimulated epithelial Cl− secretion. In the presence of forskolin, quercetin diminished epithelial Cl− secretion to a level similar to that with quercetin alone without forskolin. Conversely, myricetin further stimulated epithelial Cl− secretion even under forskolin-stimulated conditions. This suggests that the action of myricetin is via a cAMP-independent pathway. Therefore, myricetin may be a potentially useful compound to increase epithelial Cl− secretion under cAMP-stimulated conditions. In conclusion, myricetin would be a useful compound for prevention from bacterial/viral infection even under conditions that the amount of water secretion driven by cAMP-stimulated epithelial Cl− secretion is insufficient.
Collapse
|
25
|
2,3-dihydroxybenzoic acid-containing nanofiber wound dressings inhibit biofilm formation by Pseudomonas aeruginosa. Antimicrob Agents Chemother 2014; 58:2098-104. [PMID: 24449781 DOI: 10.1128/aac.02397-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Pseudomonas aeruginosa forms biofilms in wounds, which often leads to chronic infections that are difficult to treat with antibiotics. Free iron enhances biofilm formation, delays wound healing, and may even be responsible for persistent inflammation, increased connective tissue destruction, and lipid peroxidation. Exposure of P. aeruginosa Xen 5 to the iron chelator 2,3-dihydroxybenzoic acid (DHBA), electrospun into a nanofiber blend of poly(d,l-lactide) (PDLLA) and poly(ethylene oxide) (PEO), referred to as DF, for 8 h decreased biofilm formation by approximately 75%. This was shown by a drastic decline in cell numbers, from 7.1 log10 CFU/ml to 4.8 log10 CFU/ml when biofilms were exposed to DF in the presence of 2.0 mM FeCl3 6H2O. A similar decline in cell numbers was recorded in the presence of 3.0 mM FeCl3 6H2O and DF. The cells were more mobile in the presence of DHBA, supporting the observation of less biofilm formation at lower iron concentrations. DHBA at MIC levels (1.5 mg/ml) inhibited the growth of strain Xen 5 for at least 24 h. Our findings indicate that DHBA electrospun into nanofibers inhibits cell growth for at least 4 h, which is equivalent to the time required for all DHBA to diffuse from DF. This is the first indication that DF can be developed into a wound dressing to treat topical infections caused by P. aeruginosa.
Collapse
|
26
|
Protective effects of Phyllanthus acidus (L.) Skeels leaf extracts on acetaminophen and thioacetamide induced hepatic injuries in Wistar rats. ASIAN PAC J TROP MED 2012; 4:470-4. [PMID: 21771701 DOI: 10.1016/s1995-7645(11)60128-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/11/2011] [Accepted: 05/15/2011] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To investigate and compare the hepatoprotective effects of crude ethanolic and aqueous extracts of Phyllanthus acidus (L.) Skeels (P. acidus) leaves on acetaminophen (APAP) and thioacetamide (TAA) induced liver toxicity in wistar rats. Silymarin was the reference hepatoprotective agent. METHODS In two different sets of experiments, the P. acidus extracts (200 and 400 mg/kg, body weight) and silymarin (100 mg/kg, body weight) were given orally for 7 days and a single dose of APAP (2 g/kg, per oral) or TAA (100 mg/kg, subcutaneous) were given to rats. The level of serum aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), total bilirubin and total protein were monitored to assess hepatotoxicity and hepatoprotection. RESULTS APAP or TAA administration caused severe hepatic damage in rats as evident from significant rise in serum AST, ALT, ALP, total bilirubin and concurrent depletion in total serum protein. The P. acidus extracts and silymarin prevented the toxic effects of APAP or TAA on the above serum parameters indicating the hepatoprotective action. The aqueous extract was found to be more potent than the corresponding ethanolic extract against both toxicants. The phenolic and flavonoid content (175.02±4.35 and 74.68±1.28, respectively) and 2,2-diphenyl-1-picrylhydrazil (DPPH) [IC(50) = (33.2±0.31)μg/mL] scavenging potential was found maximum with aqueous extract as compared to ethanolic extract. CONCLUSIONS The results of present study suggests that the aqueous extract of P. acidus leaves has significant hepatoprotective activity on APAP and TAA induced hepatotoxicity, which might be associate with its high phenolic and flavonoid content and antioxidant properties.
Collapse
|
27
|
Leeya Y, Mulvany MJ, Queiroz EF, Marston A, Hostettmann K, Jansakul C. Hypotensive activity of an n-butanol extract and their purified compounds from leaves of Phyllanthus acidus (L.) Skeels in rats. Eur J Pharmacol 2010; 649:301-13. [PMID: 20868659 DOI: 10.1016/j.ejphar.2010.09.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 07/26/2010] [Accepted: 09/14/2010] [Indexed: 10/19/2022]
Abstract
We aimed to investigate the effects, identify the active substances and establish the mechanisms involved in the hypotensive activity of an n-butanol extract from leaves of Phyllanthus acidus (PA extract). PA extract caused a decrease in blood pressure of anesthetized rats that was not modified by atropine or propranolol. PA extract caused a persistent dilatation of thoracic aortic rings preconstricted with either phenylephrine or KCl, and these effects were not modified by LNA or removal of the vascular endothelium. For phenylephrine-preconstricted aortic rings, the dilatory activity of the PA extract was not modified by atropine, propranolol or indomethacin. TEA, glybenclamide or ODQ significantly inhibited the dilatory activity of the PA extract on endothelium-denuded aortic rings. Nifedipine or a Ca(2+)-free medium depressed the aortic rings constrictor response to phenylephrine, and that was further augmented by the PA extract. Adenosine, 4-hydroxybenzoic acid, caffeic acid, hypogallic acid, and kaempferol were isolated from the PA extract. Each caused a decrease in blood pressure and dilatation of the aortic rings. LNA or removal of the endothelium reduced this activity. ODQ and TEA attenuated the vasodilatory activity of adenosine whereas glybenclamide and ODQ attenuated the effect of hypogallic acid. These results suggest that the hypotensive activities of the PA extract is likely the result of the direct action of these five compounds on the blood vessels by stimulating release of nitric oxide from the vascular endothelium, in part through stimulation of soluble guanylate cyclase, and opening of K(ATP) and K(Ca) channels in the vascular smooth muscle.
Collapse
Affiliation(s)
- Yuttapong Leeya
- Department of Physiology, Faculty of Science, Prince of Songkla University, Hat-Yai, 90112, Thailand
| | | | | | | | | | | |
Collapse
|
28
|
Rottner M, Freyssinet JM, Martínez MC. Mechanisms of the noxious inflammatory cycle in cystic fibrosis. Respir Res 2009; 10:23. [PMID: 19284656 PMCID: PMC2660284 DOI: 10.1186/1465-9921-10-23] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 03/13/2009] [Indexed: 01/09/2023] Open
Abstract
Multiple evidences indicate that inflammation is an event occurring prior to infection in patients with cystic fibrosis. The self-perpetuating inflammatory cycle may play a pathogenic part in this disease. The role of the NF-κB pathway in enhanced production of inflammatory mediators is well documented. The pathophysiologic mechanisms through which the intrinsic inflammatory response develops remain unclear. The unfolded mutated protein cystic fibrosis transmembrane conductance regulator (CFTRΔF508), accounting for this pathology, is retained in the endoplasmic reticulum (ER), induces a stress, and modifies calcium homeostasis. Furthermore, CFTR is implicated in the transport of glutathione, the major antioxidant element in cells. CFTR mutations can alter redox homeostasis and induce an oxidative stress. The disturbance of the redox balance may evoke NF-κB activation and, in addition, promote apoptosis. In this review, we examine the hypotheses of the integrated pathogenic processes leading to the intrinsic inflammatory response in cystic fibrosis.
Collapse
Affiliation(s)
- Mathilde Rottner
- 1INSERM U 770; Université Paris-Sud 11, Faculté de Médecine, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.
| | | | | |
Collapse
|
29
|
Illek B, Maurisse R, Wahler L, Kunzelmann K, Fischer H, Gruenert DC. Cl transport in complemented CF bronchial epithelial cells correlates with CFTR mRNA expression levels. Cell Physiol Biochem 2008; 22:57-68. [PMID: 18769032 PMCID: PMC2927120 DOI: 10.1159/000149783] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2008] [Indexed: 12/12/2022] Open
Abstract
Little is known about the relationship between CF transmembrane conductance regulator (CFTR) gene expression and the corresponding transport of Cl. The phenotypic characteristics of polarized DeltaF508 homozygote CF bronchial epithelial (CFBE41o-) cells were evaluated following transfection with episomal expression vector containing either full-length (6.2kb) wild type (wt) and (4.7kb) DeltaF508CFTR cDNA. Forskolin-stimulated Cl secretion in two clones expressing the full-length wild type CFTR was assessed; clone c7-6.2wt gave 13.4+/-2.5 microA/cm(2) and clone c10-6.2wt showed 41.3+/-25.3 microA/cm(2). Another clone (c4-4.7DeltaF) complemented with the DeltaF508 CFTR cDNA showed high and stable expression of vector-derived DeltaF508 CFTR mRNA and a small cAMP-stimulated Cl current (4.7+/-0.7 microA/cm(2)) indicating DeltaF508CFTR trafficking to the plasma membrane at physiological temperatures. Vector-driven CFTR mRNA levels were 5-fold (c7-6.2wt), 14-fold (c10-6.2wt), and 27-fold (c7-4.7DeltaF) higher than observed in normal bronchial epithelial cells (16HBE14o-) endogenously expressing wtCFTR. Assessment of CFTR mRNA levels and CFTR function showed that cAMP-stimulated CFTR Cl currents were 33%, 167% and 24%, respectively, of those in 16HBE14o- cells. The data suggest that transgene expression needs to be significantly higher than endogenously expressed CFTR to restore functional wtCFTR Cl transport to levels sufficient to reverse CF pathology.
Collapse
Affiliation(s)
- Beate Illek
- Children’s Hospital Oakland Research Institute, Oakland, CA, USA
| | - Rosalie Maurisse
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Logan Wahler
- Children’s Hospital Oakland Research Institute, Oakland, CA, USA
| | | | - Horst Fischer
- Children’s Hospital Oakland Research Institute, Oakland, CA, USA
| | - Dieter C. Gruenert
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA and Department of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
30
|
Amaral MD, Kunzelmann K. Molecular targeting of CFTR as a therapeutic approach to cystic fibrosis. Trends Pharmacol Sci 2007; 28:334-41. [PMID: 17573123 DOI: 10.1016/j.tips.2007.05.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 04/17/2007] [Accepted: 05/29/2007] [Indexed: 12/19/2022]
Abstract
One of the major challenges facing the pharmaceutical field is the identification of novel, 'druggable' targets common to distinct diseases that, despite their clinical diversity, share the same basic molecular defect(s) - thus, being termed 'horizontal diseases'. Membrane proteins constitute one of the largest families in the human genome and, given their major roles in cells and organisms, they are relevant to common human disorders such as cardiovascular disease and cancer, but also to rare genetic conditions such as cystic fibrosis (CF). Here, we review therapeutic approaches to correcting the basic defect in CF, which is caused mainly by the intracellular retention of a misfolded protein, and focus on various recent drug-discovery strategies for this important and paradigmatic disease. These strategies have possible applications in many membrane protein disorders, including other channelopathies. The mechanisms of action of potent and specific compounds, representing promising drug leads for CF pharmacotherapy, are explained and discussed.
Collapse
Affiliation(s)
- Margarida D Amaral
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal.
| | | |
Collapse
|