1
|
McHale-Owen H, Faller KME, Chaytow H, Gillingwater TH. Phosphoglycerate kinase 1 as a therapeutic target in neurological disease. Trends Mol Med 2025:S1471-4914(25)00059-0. [PMID: 40234116 DOI: 10.1016/j.molmed.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/04/2025] [Accepted: 03/21/2025] [Indexed: 04/17/2025]
Abstract
Phosphoglycerate kinase 1 (PGK1) is a highly conserved enzyme that catalyzes the initial ATP-producing step in glycolysis. Improving cellular energy production by increasing PGK1 activity may be beneficial in multiple neurological conditions where cell metabolism is dysregulated, including Parkinson's disease (PD) and motor neuron disease (MND). This review examines recent evidence that suggests increasing PGK1 activity may be beneficial in multiple neurological conditions and discusses the current challenges surrounding the development of PGK1-focused therapies. PGK1 has considerable therapeutic potential, but novel PGK1 activators are needed to maximize the benefit for patients.
Collapse
Affiliation(s)
- Harriet McHale-Owen
- Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK; Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
| | - Kiterie M E Faller
- Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK; Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK; Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Helena Chaytow
- Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK; Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
| | - Thomas H Gillingwater
- Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK; Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Li Y, Zhao J, Xue Z, Tsang C, Qiao X, Dong L, Li H, Yang Y, Yu B, Gao Y. Aptamer nucleotide analog drug conjugates in the targeting therapy of cancers. Front Cell Dev Biol 2022; 10:1053984. [PMID: 36544906 PMCID: PMC9760908 DOI: 10.3389/fcell.2022.1053984] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Aptamers are short single-strand oligonucleotides that can form secondary and tertiary structures, fitting targets with high affinity and specificity. They are so-called "chemical antibodies" and can target specific biomarkers in both diagnostic and therapeutic applications. Systematic evolution of ligands by exponential enrichment (SELEX) is usually used for the enrichment and selection of aptamers, and the targets could be metal ions, small molecules, nucleotides, proteins, cells, or even tissues or organs. Due to the high specificity and distinctive binding affinity of aptamers, aptamer-drug conjugates (ApDCs) have demonstrated their potential role in drug delivery for cancer-targeting therapies. Compared with antibodies which are produced by a cell-based bioreactor, aptamers are chemically synthesized molecules that can be easily conjugated to drugs and modified; however, the conventional ApDCs conjugate the aptamer with an active drug using a linker which may add more concerns to the stability of the ApDC, the drug-releasing efficiency, and the drug-loading capacity. The function of aptamer in conventional ApDC is just as a targeting moiety which could not fully perform the advantages of aptamers. To address these drawbacks, scientists have started using active nucleotide analogs as the cargoes of ApDCs, such as clofarabine, ara-guanosine, gemcitabine, and floxuridine, to replace all or part of the natural nucleotides in aptamer sequences. In turn, these new types of ApDCs, aptamer nucleotide analog drug conjugates, show the strength for targeting efficacy but avoid the complex drug linker designation and improve the synthetic efficiency. More importantly, these classic nucleotide analog drugs have been used for many years, and aptamer nucleotide analog drug conjugates would not increase any unknown druggability risk but improve the target tumor accumulation. In this review, we mainly summarized aptamer-conjugated nucleotide analog drugs in cancer-targeting therapies.
Collapse
Affiliation(s)
- Yongshu Li
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China,Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China,Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China,*Correspondence: Yongshu Li, ; Yunhua Gao,
| | - Jing Zhao
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Zhichao Xue
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Chiman Tsang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoting Qiao
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China
| | - Lianhua Dong
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China,Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Huijie Li
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China
| | - Yi Yang
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China
| | - Bin Yu
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Yunhua Gao
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China,Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China,*Correspondence: Yongshu Li, ; Yunhua Gao,
| |
Collapse
|
3
|
Cao L, Wu J, Qu X, Sheng J, Cui M, Liu S, Huang X, Xiang Y, Li B, Zhang X, Cui R. Glycometabolic rearrangements--aerobic glycolysis in pancreatic cancer: causes, characteristics and clinical applications. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:267. [PMID: 33256814 PMCID: PMC7708116 DOI: 10.1186/s13046-020-01765-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer is one of the most malignant tumors worldwide, and pancreatic ductal adenocarcinoma is the most common type. In pancreatic cancer, glycolysis is the primary way energy is produced to maintain the proliferation, invasion, migration, and metastasis of cancer cells, even under normoxia. However, the potential molecular mechanism is still unknown. From this perspective, this review mainly aimed to summarize the current reasonable interpretation of aerobic glycolysis in pancreatic cancer and some of the newest methods for the detection and treatment of pancreatic cancer. More specifically, we reported some biochemical parameters, such as newly developed enzymes and transporters, and further explored their potential as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Lidong Cao
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China.,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, 130041, China
| | - Jiacheng Wu
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China.,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, 130041, China
| | - Xianzhi Qu
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China.,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, 130041, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China.,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, 130041, China
| | - Mengying Cui
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China.,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, 130041, China
| | - Shui Liu
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China.,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, 130041, China
| | - Xu Huang
- Department of Hepatobiliary and Pancreatic Surgery, the First Bethune Hospital of Jilin University, Changchun, 130021, China
| | - Yien Xiang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China.,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, 130041, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China. .,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, 130041, China.
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
4
|
Zhou X, Chen LL, Xie RF, Lam W, Zhang ZJ, Jiang ZL, Cheng YC. Chemosynthesis pathway and bioactivities comparison of saponins in radix and flower of Panax notoginseng (Burk.) F.H. Chen. JOURNAL OF ETHNOPHARMACOLOGY 2017; 201:56-72. [PMID: 27838357 DOI: 10.1016/j.jep.2016.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 09/06/2016] [Accepted: 11/04/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng (Burk.) F.H. Chen is a well known medicinal plant. Its radix is used in the history while its flower is recently used for health care. In this study we compared chemical ingredients and bioactivities in cell culture for radix and flower of Panax notoginseng (Burk.) F.H. Chen. MATERIALS AND METHODS The liquid chromatography-mass spectrometry system was applied to determine the contents of saponins in flower and radix of Panax notoginseng (Burk.) F.H. Chen. Transcription specific luciferase reporter assay and qPCR method for selected RNA were carried out to assess the impacts of flower and radix extract on the transcription signal pathways. RESULTS The results of chemical analysis showed that the contents of saponins in flower and radix are very different: the contents of Rg1, Rb1, Re, R1, Rg3-20R, Rh1 and Rf in radix are abundant; in contrast, the contents of Rb3, Fc, Ft1, Rb2 and Rh2-20s in flowers are plentiful. There are substantial variations of those saponin contents from one batch vs another. Based on relative content of saponins, the chemosynthesis pathway of ingredients in radix and flower are proposed: for radix, both PPT (Protopanaxatriol) and PPD (Protopanaxadiol) type triterpenoids are involved, the main pathway is PPT→Rb1→Rg1→R1 or PPD→Rh2 20s→Rg3(20s)→Rd→Rb1; for flowers, only PPD is main passage with PPD→Rh2 (20s)→Rg3(20s)→Rd→Rb2→Fc. The results of signal transcription assays demonstrated that herb water extract of radix and flower had no significant influences on most of transcription activities. However, total saponins of radix and flower which have highly content of saponins were able to inhibit the inflammatory related transcriptional activities and their related mRNA expression of IFNα, TNFα, il-6 and TGFβ as well as induce anti-oxygen NrF2 activities. In summary, although chemical ingredients and chemosynthesis pathway of flower and radix for Panax notoginseng (Burk.) F.H. Chen were different, these differences might not result in their differences of pharmacological activities.
Collapse
Affiliation(s)
- Xin Zhou
- Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| | - Lin-Lin Chen
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; HuBei University of Traditional Chinese Medicine, China
| | - Rui Fang Xie
- Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Wing Lam
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Zi-Jia Zhang
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Zao-Li Jiang
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
5
|
Giovannetti E, Leon LG, Gómez VE, Zucali PA, Minutolo F, Peters GJ. A specific inhibitor of lactate dehydrogenase overcame the resistance toward gemcitabine in hypoxic mesothelioma cells, and modulated the expression of the human equilibrative transporter-1. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2016; 35:643-651. [PMID: 27906635 DOI: 10.1080/15257770.2016.1149193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/26/2016] [Indexed: 02/07/2023]
Abstract
Malignant pleural mesothelioma (MPM) is a very hypoxic malignancy, and hypoxia has been associated with resistance towards gemcitabine. The muscle-isoform of lactate dehydrogenase (LDH-A) constitutes a major checkpoint for the switch to anaerobic glycolysis. Therefore we investigated the combination of a new LDH-A inhibitor (NHI-1) with gemcitabine in MPM cell lines. Under hypoxia (O2 tension of 1%) the cell growth inhibitory effects of gemcitabine, were reduced, as demonstrated by a 5- to 10-fold increase in IC50s. However, the simultaneous addition of NHI-1 was synergistic (combination index < 1). Flow cytometry demonstrated that hypoxia caused a G1 arrest, whereas the combination of NHI-1 significantly increased gemcitabine-induced cell death. Finally, the mRNA expression levels of the human equilibrative transporter-1 (hENT1) were significantly down-regulated under hypoxia, but treatment with NHI-1 was associated with a recovery of hENT1 expression. In conclusion, our data show that hypoxia increased MPM resistance to gemcitabine. However, cell death induction and modulation of the key transporter in gemcitabine uptake may contribute to the synergistic interaction of gemcitabine with the LDH-A inhibitor NHI-1 and support further studies for the rational development of this combination.
Collapse
Affiliation(s)
- Elisa Giovannetti
- a Department Medical Oncology , VU University Medical Center , Amsterdam , The Netherlands
- b Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa , Pisa , Italy
| | - Leticia G Leon
- a Department Medical Oncology , VU University Medical Center , Amsterdam , The Netherlands
- b Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa , Pisa , Italy
- c University of La Laguna , La Laguna , Spain
| | - Valentina E Gómez
- a Department Medical Oncology , VU University Medical Center , Amsterdam , The Netherlands
| | - Paolo A Zucali
- d Department Oncology , Humanitas Cancer Center , Milano , Italy
| | | | - Godefridus J Peters
- a Department Medical Oncology , VU University Medical Center , Amsterdam , The Netherlands
| |
Collapse
|
6
|
Lathuilière A, Schneider BL. Lentiviral Vectors for the Engineering of Implantable Cells Secreting Recombinant Antibodies. Methods Mol Biol 2016; 1448:139-155. [PMID: 27317179 DOI: 10.1007/978-1-4939-3753-0_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The implantation of genetically modified cells is considered for the chronic delivery of therapeutic recombinant proteins in vivo. In the context of gene therapy, the genetic engineering of cells faces two main challenges. First, it is critical to generate expandable cell sources, which can maintain stable high productivity of the recombinant protein of interest over time, both in culture and after transplantation. In addition, gene transfer techniques need to be developed to engineer cells synthetizing complex polypeptides, such as recombinant monoclonal antibodies, to broaden the range of potential therapeutic applications. Here, we provide a workflow for the use of lentiviral vectors as a flexible tool to generate antibody-producing cells. In particular, lentiviral vectors can be used to genetically engineer the cell types compatible with encapsulation devices protecting the implanted cells from the host immune system. Detailed methods are provided for the design and production of lentiviral vectors, optimization of cell transduction, as well as for the quantification and quality control of the produced recombinant antibody.
Collapse
Affiliation(s)
- Aurélien Lathuilière
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland
| | - Bernard L Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland.
| |
Collapse
|
7
|
Crooke PS, Tossberg JT, Horst SN, Tauscher JL, Henderson MA, Beaulieu DB, Schwartz DA, Olsen NJ, Aune TM. Using gene expression data to identify certain gastro-intestinal diseases. J Clin Bioinforma 2012; 2:20. [PMID: 23171526 PMCID: PMC3599448 DOI: 10.1186/2043-9113-2-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/17/2012] [Indexed: 12/18/2022] Open
Abstract
Background Inflammatory bowel diseases, ulcerative colitis and Crohn’s disease are considered to be of autoimmune origin, but the etiology of irritable bowel syndrome remains elusive. Furthermore, classifying patients into irritable bowel syndrome and inflammatory bowel diseases can be difficult without invasive testing and holds important treatment implications. Our aim was to assess the ability of gene expression profiling in blood to differentiate among these subject groups. Methods Transcript levels of a total of 45 genes in blood were determined by quantitative real-time polymerase chain reaction (RT-PCR). We applied three separate analytic approaches; one utilized a scoring system derived from combinations of ratios of expression levels of two genes and two different support vector machines. Results All methods discriminated different subject cohorts, irritable bowel syndrome from control, inflammatory bowel disease from control, irritable bowel syndrome from inflammatory bowel disease, and ulcerative colitis from Crohn’s disease, with high degrees of sensitivity and specificity. Conclusions These results suggest these approaches may provide clinically useful prediction of the presence of these gastro-intestinal diseases and syndromes.
Collapse
Affiliation(s)
- Philip S Crooke
- Department of Mathematics, Vanderbilt University, Nashville, TN, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ohmine K, Kawaguchi K, Ohtsuki S, Motoi F, Egawa S, Unno M, Terasaki T. Attenuation of phosphorylation by deoxycytidine kinase is key to acquired gemcitabine resistance in a pancreatic cancer cell line: targeted proteomic and metabolomic analyses in PK9 cells. Pharm Res 2012; 29:2006-16. [PMID: 22419259 DOI: 10.1007/s11095-012-0728-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 02/29/2012] [Indexed: 11/25/2022]
Abstract
PURPOSE Multiple proteins are involved in activation and inactivation of 2',2'-difluorodeoxycytidine (gemcitabine, dFdC). We aimed to clarify the mechanism of dFdC resistance in a pancreatic cancer cell line by applying a combination of targeted proteomic and metabolomic analyses. METHODS Twenty-five enzyme and transporter proteins and 6 metabolites were quantified in sensitive and resistant pancreatic cancer cell lines, PK9 and RPK9, respectively. RESULTS The protein concentration of deoxycytidine kinase (dCK) in RPK9 cells was less than 0.02-fold (2 %) compared with that in PK9 cells, whereas the differences (fold) were within a factor of 3 for other proteins. Targeted metabolomic analysis revealed that phosphorylated forms of dFdC were reduced to less than 0.2 % in RPK9 cells. The extracellular concentration of 2',2'-difluorodeoxyuridine (dFdU), an inactive metabolite of dFdC, reached the same level as the initial dFdC concentration in RPK9 cells. However, tetrahydrouridine treatment did not increase phosphorylated forms of dFdC and did not reverse dFdC resistance in RPK9 cells, though this treatment inhibits production of dFdU. CONCLUSIONS Combining targeted proteomics and metabolomics suggests that acquisition of resistance in RPK9 cells is due to attenuation of dFdC phosphorylation via suppression of dCK.
Collapse
Affiliation(s)
- Ken Ohmine
- Division of Membrane Transport and Drug Targeting Department of Biochemical Pharmacology and Therapeutics Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Retention of the in vitro radiosensitizing potential of gemcitabine under anoxic conditions, in p53 wild-type and p53-deficient non-small-cell lung carcinoma cells. Int J Radiat Oncol Biol Phys 2011; 80:558-66. [PMID: 21377279 DOI: 10.1016/j.ijrobp.2010.12.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 12/08/2010] [Accepted: 12/17/2010] [Indexed: 11/23/2022]
Abstract
PURPOSE Whereas radiosensitization by gemcitabine is well studied under normal oxygen conditions, little is known about its radiosensitizing potential under reduced oxygen conditions. Therefore, the present study evaluated the impact of anoxia on gemcitabine-mediated radiosensitization. METHODS AND MATERIALS The clonogenic assay was performed in three isogenic A549 cell lines differing in p53 status (24 h, 0-15 nM gemcitabine, 0-8 Gy irradiation, normoxia vs. anoxia). Using radiosensitizing conditions, cells were collected for cell cycle analysis and apoptosis detection. RESULTS Whereas wild-type p53 A549-LXSN cells were more sensitive to radiation than p53-deficient A549-E6 cells, both cell lines showed similar radiosensitization by gemcitabine under normoxia and anoxia. Independent of p53 functionality, gemcitabine was able to overcome anoxia-induced G(0/1) arrest and established an (early) S phase block in normoxic and anoxic cells. The percentage early and late apoptotic/necrotic cells increased with the gemcitabine/radiation combination, with a significant difference between A549-LXSN and A549-E6. CONCLUSIONS This study is the first to show that gemcitabine retains its radiosensitizing potential under low oxygen conditions. Although radiosensitization was observed in both p53 wild-type and p53-deficient cells, p53 status might influence induction of apoptosis after gemcitabine/radiation treatment, whereas no effect on cell cycle progression was noticed.
Collapse
|
10
|
Sasajima J, Mizukami Y, Sugiyama Y, Nakamura K, Kawamoto T, Koizumi K, Fujii R, Motomura W, Sato K, Suzuki Y, Tanno S, Fujiya M, Sasaki K, Shimizu N, Karasaki H, Kono T, Kawabe JI, Ii M, Yoshiara H, Kamiyama N, Ashida T, Bardeesy N, Chung DC, Kohgo Y. Transplanting normal vascular proangiogenic cells to tumor-bearing mice triggers vascular remodeling and reduces hypoxia in tumors. Cancer Res 2010; 70:6283-92. [PMID: 20631070 DOI: 10.1158/0008-5472.can-10-0412] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Blood vessels deliver oxygen and nutrients to tissues, and vascular networks are spatially organized to meet the metabolic needs for maintaining homeostasis. In contrast, the vasculature of tumors is immature and leaky, resulting in insufficient delivery of nutrients and oxygen. Vasculogenic processes occur normally in adult tissues to repair "injured" blood vessels, leading us to hypothesize that bone marrow mononuclear cells (BMMNC) may be able to restore appropriate vessel function in the tumor vasculature. Culturing BMMNCs in endothelial growth medium resulted in the early outgrowth of spindle-shaped attached cells expressing CD11b/Flt1/Tie2/c-Kit/CXCR4 with proangiogenic activity. Intravenous administration of these cultured vascular proangiogenic cells (VPC) into nude mice bearing pancreatic cancer xenografts and Pdx1-Cre;LSL-Kras(G12D);p53(lox/+) genetically engineered mice that develop pancreatic ductal adenocarcinoma significantly reduced areas of hypoxia without enhancing tumor growth. The resulting vasculature structurally mimicked normal vessels with intensive pericyte coverage. Increases in vascularized areas within VPC-injected xenografts were visualized with an ultrasound diagnostic system during injection of a microbubble-based contrast agent (Sonazoid), indicating a functional "normalization" of the tumor vasculature. In addition, gene expression profiles in the VPC-transplanted xenografts revealed a marked reduction in major factors involved in drug resistance and "stemness" of cancer cells. Together, our findings identify a novel alternate approach to regulate abnormal tumor vessels, offering the potential to improve the delivery and efficacy of anticancer drugs to hypoxic tumors.
Collapse
Affiliation(s)
- Junpei Sasajima
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical College, Asahikawa, Hokkaido, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Jie W, Wang X, Huang L, Guo J, Kuang D, Zhu P, Li M, Zhao X, Duan Y, Wang G, Ao Q. Contribution of CXCR4(+)/PDGFRbeta(+) progenitor cells in hypoxic alveolar arterioles muscularization: role of myocardin. Cardiovasc Res 2010; 87:740-50. [PMID: 20484220 DOI: 10.1093/cvr/cvq147] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIMS Bone marrow (BM) progenitor cells may contribute to vascular remodelling. The present study aimed to investigate the contribution of BM-derived CXCR4(+) (a CXC chemokine receptor) and PDGFRbeta(+) (platelet-derived growth factor receptor beta) progenitor cells in hypoxia-induced muscularization of alveolar arterioles. METHODS AND RESULTS Accumulation of GFP(+) (green fluorescent protein) cells was markedly increased in the pulmonary vasculature by the hypoxic (10% O(2,) 4 weeks) chimeric mice with transgenic GFP-tagged BM. After injection of BM-derived CXCR4(+)/PDGFRbeta(+) progenitor cells into C57BL/6J mice, followed by 6-week hypoxia, the cells were found to home to the alveolar arterioles and readily differentiated into smooth muscle cells (SMCs). Under the same hypoxic conditions, mice infused with myocardin lentiviral RNAi vector-transduced progenitor cells displayed lower myocardin expression in the muscularized alveolar arterioles, correlating with decreased pulmonary artery pressure and arteriole muscularization. In vitro experiments further confirmed that the differentiation of the progenitor cells into SMCs occurred under hypoxia (1% O(2)), and SMC differentiation could be suppressed when myocardin RNAi was administered. CONCLUSION Theses results suggest that myocardin may contribute to the differentiation of CXCR4(+)/PDGFRbeta(+) progenitor cells into SMCs induced by hypoxia, which leads to the muscularization of alveolar arterioles.
Collapse
Affiliation(s)
- Wei Jie
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Da Dao, Wuhan 430030, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Rendic S, Guengerich FP. Update information on drug metabolism systems--2009, part II: summary of information on the effects of diseases and environmental factors on human cytochrome P450 (CYP) enzymes and transporters. Curr Drug Metab 2010; 11:4-84. [PMID: 20302566 PMCID: PMC4167379 DOI: 10.2174/138920010791110917] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 02/22/2010] [Indexed: 12/14/2022]
Abstract
The present paper is an update of the data on the effects of diseases and environmental factors on the expression and/or activity of human cytochrome P450 (CYP) enzymes and transporters. The data are presented in tabular form (Tables 1 and 2) and are a continuation of previously published summaries on the effects of drugs and other chemicals on CYP enzymes (Rendic, S.; Di Carlo, F. Drug Metab. Rev., 1997, 29(1-2), 413-580., Rendic, S. Drug Metab. Rev., 2002, 34(1-2), 83-448.). The collected information presented here is as stated by the cited author(s), and in cases when several references are cited the latest published information is included. Inconsistent results and conclusions obtained by different authors are highlighted, followed by discussion of the major findings. The searchable database is available as an Excel file, for information about file availability contact the corresponding author.
Collapse
Affiliation(s)
- S Rendic
- University of Zagreb, Zagreb, Croatia.
| | | |
Collapse
|
13
|
Lam W, Bussom S, Cheng YC. Effect of hypoxia on the expression of phosphoglycerate kinase and antitumor activity of troxacitabine and gemcitabine in non-small cell lung carcinoma. Mol Cancer Ther 2009; 8:415-23. [PMID: 19208827 DOI: 10.1158/1535-7163.mct-08-0692] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Beta-L-dioxolane-cytidine (L-OddC; BCH-4556; troxacitabine), a novel L-configuration deoxycytidine analogue, was under clinical trials for treating cancer. The cytotoxicity of L-OddC is dependent on its phosphorylation to L-OddCTP by phosphoglycerate kinase (PGK) and its subsequent addition into nuclear DNA. Because PGK is induced with hypoxia, the expression of hypoxia-inducible factor-1alpha and PGK of H460 cells (human non-small cell lung carcinoma) in vitro and in vivo was studied. In culture, hypoxic treatment induced the protein expression of PGK by 3-fold but had no effect on the protein expression of other L-OddC metabolism-associated enzymes such as apurinic/apyrimidinic endonuclease-1, deoxycytidine kinase, CMP kinase, and nM23 H1. Using a clonogenic assay, hypoxic treatment of H460 cells rendered cells 4-fold more susceptible to L-OddC but not to gemcitabine (dFdC) following exposure to drugs for one generation. Using hypoxia response element-luciferase reporter system, Western blotting, and immunohistochemistry, it was found that hypoxia-inducible factor-1alpha and PGK expression increased and could be correlated to tumor size. Despite dFdC being more toxic than L-OddC in cell culture, L-OddC (300 mg/kg i.p.) had a stronger antitumor activity than dFdC in H460 xenograft-bearing nude mice. Furthermore, L-OddC retained approximately 50% of its antitumor activity with oral gavage compared with i.p. delivery. Oral administration of L-OddC (600 mg/kg p.o.) had a similar area under the curve value compared with i.p. injection of dFdC (300 mg/kg i.p.). In conclusion, the hypoxia, which commonly exists in non-small cell lung carcinoma or other solid tumors resistant to radiotherapy or chemotherapy, is a favorable determinant to enhance the antitumor activity of L-OddC in vivo.
Collapse
Affiliation(s)
- Wing Lam
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|