1
|
Schmitz N, Hodzic S, Riedemann T. Common and contrasting effects of 5-HTergic signaling in pyramidal cells and SOM interneurons of the mouse cortex. Neuropsychopharmacology 2025; 50:783-797. [PMID: 39511335 PMCID: PMC11914528 DOI: 10.1038/s41386-024-02022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/03/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a powerful modulator of neuronal activity within the central nervous system and dysfunctions of the serotonergic system have been linked to several neuropsychiatric disorders such as major depressive disorders or schizophrenia. The anterior cingulate cortex (aCC) plays an important role in cognitive capture of stimuli and valence processing and it is densely innervated by serotonergic fibers from the nucleus raphe. In order to understand how pathophysiological 5-HT signalling can lead to neuropsychiatric diseases, it is important to understand the physiological actions of 5-HT on cortical circuits. Therefore, we combined electrophysiological recordings with pharmacology and immunocytochemistry to investigate the effects of 5-HT on Somatostatin-positive interneurons (SOM-INs) and compared these to supragranular pyramidal cells (PCs). This comparison allowed us to identify common and contrasting effects of 5-HT on SOM-INs and PCs of the aCC resulting in a specific modulation of the excitation-to-inhibition balance in PCs but not in SOM-INs.
Collapse
Affiliation(s)
- Nathalie Schmitz
- Department of Physiological Genomics, Institute of Physiology, Biomedical Center, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Sadat Hodzic
- Department of Physiological Genomics, Institute of Physiology, Biomedical Center, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Therese Riedemann
- Department of Physiological Genomics, Institute of Physiology, Biomedical Center, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.
- Center of Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology, Paracelsus Medical University, Strubergasse 22, 5020, Salzburg, Austria.
| |
Collapse
|
2
|
Du C, Chen L, Liu G, Yuan F, Zhang Z, Rong M, Mo G, Liu C. Tick-Derived Peptide Blocks Potassium Channel TREK-1. Int J Mol Sci 2024; 25:8377. [PMID: 39125945 PMCID: PMC11312834 DOI: 10.3390/ijms25158377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Ticks transmit a variety of pathogens, including rickettsia and viruses, when they feed on blood, afflicting humans and other animals. Bioactive components acting on inflammation, coagulation, and the immune system were reported to facilitate ticks' ability to suck blood and transmit tick-borne diseases. In this study, a novel peptide, IstTx, from an Ixodes scapularis cDNA library was analyzed. The peptide IstTx, obtained by recombinant expression and purification, selectively inhibited a potassium channel, TREK-1, in a dose-dependent manner, with an IC50 of 23.46 ± 0.22 μM. The peptide IstTx exhibited different characteristics from fluoxetine, and the possible interaction of the peptide IstTx binding to the channel was explored by molecular docking. Notably, extracellular acidification raised its inhibitory efficacy on the TREK-1 channel. Our results found that the tick-derived peptide IstTx blocked the TREK-1 channel and provided a novel tool acting on the potassium channel.
Collapse
Affiliation(s)
- Canwei Du
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Linyan Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohao Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Fuchu Yuan
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410006, China
| | - Zheyang Zhang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Mingqiang Rong
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410006, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, No. 387-201 Heming Street, Chengdu 610212, China
| | - Guoxiang Mo
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Changjun Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
3
|
Contribution of Neuronal and Glial Two-Pore-Domain Potassium Channels in Health and Neurological Disorders. Neural Plast 2021; 2021:8643129. [PMID: 34434230 PMCID: PMC8380499 DOI: 10.1155/2021/8643129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/03/2021] [Indexed: 02/05/2023] Open
Abstract
Two-pore-domain potassium (K2P) channels are widespread in the nervous system and play a critical role in maintaining membrane potential in neurons and glia. They have been implicated in many stress-relevant neurological disorders, including pain, sleep disorder, epilepsy, ischemia, and depression. K2P channels give rise to leaky K+ currents, which stabilize cellular membrane potential and regulate cellular excitability. A range of natural and chemical effectors, including temperature, pressure, pH, phospholipids, and intracellular signaling molecules, substantially modulate the activity of K2P channels. In this review, we summarize the contribution of K2P channels to neuronal excitability and to potassium homeostasis in glia. We describe recently discovered functions of K2P channels in glia, such as astrocytic passive conductance and glutamate release, microglial surveillance, and myelin generation by oligodendrocytes. We also discuss the potential role of glial K2P channels in neurological disorders. In the end, we discuss current limitations in K2P channel researches and suggest directions for future studies.
Collapse
|
4
|
Francis-Oliveira J, Shieh IC, Vilar Higa GS, Barbosa MA, De Pasquale R. Maternal separation induces changes in TREK-1 and 5HT 1A expression in brain areas involved in the stress response in a sex-dependent way. Behav Brain Res 2020; 396:112909. [PMID: 32949645 DOI: 10.1016/j.bbr.2020.112909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/09/2020] [Accepted: 09/13/2020] [Indexed: 12/25/2022]
Abstract
Depression is a prevalent disease in modern society, and has been linked to stressful events at early ages. Women are more susceptible to depression, and the neural basis for this are still under investigation. Serotonin is known to be involved in depression, and a decrease in 5HT1A expression is observed on temporal and cortical areas in both men and women with depression. As knockout animals for TREK-1 are resilient to depression, this channel has emerged as a new potential pharmacological target for depression treatment. In this study, maternal separation (MS) was used to emulate early-life stress, and evaluate behaviour, as well as TREK-1 and 5HT1A expression in the brain using immunohistochemistry. In juvenile females, 5HT1A reduction coupled to increased TREK-1 in the dentate gyrus (DG) was associated with behavioural despair, as well as increased TREK-1 expression in basolateral amygdala (BLA) and prelimbic cortex (PL). In juvenile males, MS induced an increase in 5HT1A in the BLA, and in TREK-1 in the PL, while no behavioural despair was observed. Anhedonia and anxiety-like behaviour were not induced by MS. We conclude stress-induced increase in TREK-1 in PL and GD is associated to depression, while 5HT1A changes coupled to TREK-1 changes may be necessary to induce depression, with females being more vulnerable to MS effects than males. Thus, TREK-1 and 5HT1A may be potential pharmacological targets for antidepressants development.
Collapse
Affiliation(s)
- J Francis-Oliveira
- Dept of Physiology and Biophysics, Biomedical Sciences Institute I, São Paulo University, Ave Lineu Prestes 1524, 05508-000, São Paulo, SP, Brazil.
| | - I C Shieh
- Dept of Physiology and Biophysics, Biomedical Sciences Institute I, São Paulo University, Ave Lineu Prestes 1524, 05508-000, São Paulo, SP, Brazil
| | - G S Vilar Higa
- Neurogenetics Laboratory, Mathematics Computation Cognition Center, Rua Arcturus 03, 09606-070, São Bernardo do Campo, SP, Brazil
| | - M A Barbosa
- Dept of Physiology and Biophysics, Biomedical Sciences Institute I, São Paulo University, Ave Lineu Prestes 1524, 05508-000, São Paulo, SP, Brazil
| | - R De Pasquale
- Dept of Physiology and Biophysics, Biomedical Sciences Institute I, São Paulo University, Ave Lineu Prestes 1524, 05508-000, São Paulo, SP, Brazil
| |
Collapse
|
5
|
Citalopram reduces glutamatergic synaptic transmission in the auditory cortex via activation of 5-HT1A receptors. Neuroreport 2020; 30:1316-1322. [PMID: 31714483 DOI: 10.1097/wnr.0000000000001366] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Serotonin modulates cognitive processes and is related to various psychiatric disorders, including major depression. Administration of citalopram reduces the amplitude of auditory evoked potentials in depressed people and animal models, suggesting that 5-HT has an inhibitory role. Here, we characterize the modulation of excitatory post-synaptic currents by application of either 5-HT or agonists of 5-HT1A and 5-HT2 receptors, or by endogenous 5-HT evoked by citalopram on pyramidal neurons from layer II/III of rat auditory cortex. We found that application of 5-HT concentration-dependently reduces excitatory post-synaptic currents amplitude without changing the paired-pulse ratio, suggesting a post-synaptic modulation. We observed that selective agonists of 5-HT1A and 5-HT2 receptors [8-OH-DPAT (10 µM) and DOI (10 µM), respectively] mimic the effect of 5-HT on the excitatory post-synaptic currents. Effect of 5-HT was entirely blocked by co-application of the antagonists NAN-190 (1 µM) and ritanserin (200 nM). Similarly, citalopram application (1 μM) reduced the amplitude of the evoked excitatory post-synaptic currents. Reduction in the magnitude of the excitatory post-synaptic currents by endogenous 5-HT was interpolated in the dose-response curve elicited by exogenous 5-HT, yielding that citalopram raised the extracellular 5-HT concentration to 823 nM. Effect of citalopram was blocked by the previous application of NAN-190 but not ritanserin, indicating that citalopram reduces glutamatergic synaptic transmission via 5-HT1A receptors in layer II/III of the auditory cortex. These results suggest that the local activity of 5-HT contributes to decrease in the basal excitability of the auditory cortex for enhancing the detection of external relevant acoustic signals.
Collapse
|
6
|
Carter F, Chapman CA. Serotonin 5-HT 1A Receptor-Mediated Reduction of Excitatory Synaptic Transmission in Layers II/III of the Parasubiculum. Neuroscience 2019; 406:325-332. [PMID: 30902681 DOI: 10.1016/j.neuroscience.2019.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/25/2019] [Accepted: 03/11/2019] [Indexed: 12/26/2022]
Abstract
Serotonin (5-HT) has important effects on cognitive function within the hippocampal region where it modulates membrane potential and excitatory and inhibitory synaptic transmission. Here, we investigated how 5-HT modulates excitatory synaptic strength in layers II/III of the parasubiculum in rat brain slices. Bath-application of 1 or 10 μM 5-HT resulted in a strong, dose-dependent, and reversible reduction in the amplitude of field excitatory postsynaptic potentials (fEPSPs) recorded in the parasubiculum. The 5-HT reuptake blocker citalopram (10 μM) also reduced fEPSP amplitudes, indicating that 5-HT released within the slice inhibits synaptic transmission. The reduction of fEPSPs induced by 5-HT was blocked by the 5-HT1A receptor blocker NAN-190 (10 μM), but not by the 5-HT7 receptor blocker SB-269970 (10 μM). Moreover, the 5-HT1A agonist 8-OH-DPAT induced a reduction of fEPSP amplitude similar to that induced by 5-HT. The reduction was prevented by the 5-HT1A receptor blocker NAN-190. The reduction in fEPSPs induced by either 5-HT or by 8-OH-DPAT was accompanied by an increase in paired-pulse ratio, suggesting that it is due mainly to reduced glutamate release. Our data suggest that the effects of serotonin on cognitive function may depend in part upon a 5-HT1A-mediated reduction of excitatory synaptic transmission in the parasubiculum. This may also affect synaptic processing in the entorhinal cortex, which receives the major output projection of the parasubiculum.
Collapse
Affiliation(s)
- Francis Carter
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada H4B 1R6
| | - C Andrew Chapman
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada H4B 1R6.
| |
Collapse
|
7
|
Choi JH, Yarishkin O, Kim E, Bae Y, Kim A, Kim SC, Ryoo K, Cho CH, Hwang EM, Park JY. TWIK-1/TASK-3 heterodimeric channels contribute to the neurotensin-mediated excitation of hippocampal dentate gyrus granule cells. Exp Mol Med 2018; 50:1-13. [PMID: 30416196 PMCID: PMC6230555 DOI: 10.1038/s12276-018-0172-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 07/16/2018] [Accepted: 07/23/2018] [Indexed: 01/15/2023] Open
Abstract
Two-pore domain K+ (K2P) channels have been shown to modulate neuronal excitability. The physiological role of TWIK-1, the first identified K2P channel, in neuronal cells is largely unknown, and we reported previously that TWIK-1 contributes to the intrinsic excitability of dentate gyrus granule cells (DGGCs) in mice. In the present study, we investigated the coexpression of TWIK-1 and TASK-3, another K2P member, in DGGCs. Immunohistochemical staining data showed that TASK-3 proteins were highly localized in the proximal dendrites and soma of DGGCs, and this localization is similar to the expression pattern of TWIK-1. TWIK-1 was shown to associate with TASK-3 in DGGCs of mouse hippocampus and when both genes were overexpressed in COS-7 cells. shRNA-mediated gene silencing demonstrated that TWIK-1/TASK-3 heterodimeric channels displayed outwardly rectifying currents and contributed to the intrinsic excitability of DGGCs. Neurotensin-neurotensin receptor 1 (NT-NTSR1) signaling triggered the depolarization of DGGCs by inhibiting TWIK-1/TASK-3 heterodimeric channels, causing facilitated excitation of DGGCs. Taken together, our study clearly showed that TWIK-1/TASK-3 heterodimeric channels contribute to the intrinsic excitability of DGGCs and that their activities are regulated by NT-NTSR1 signaling.
Collapse
Affiliation(s)
- Jae Hyouk Choi
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul, 02792, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Oleg Yarishkin
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul, 02792, Republic of Korea
| | - Eunju Kim
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul, 02792, Republic of Korea.,School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Yeonju Bae
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Ajung Kim
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul, 02792, Republic of Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Seung-Chan Kim
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul, 02792, Republic of Korea.,School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Kanghyun Ryoo
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Chang-Hoon Cho
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Eun Mi Hwang
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul, 02792, Republic of Korea. .,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea. .,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
8
|
Cheng C, Deng PY, Ikeuchi Y, Yuede C, Li D, Rensing N, Huang J, Baldridge D, Maloney SE, Dougherty JD, Constantino J, Jahani-Asl A, Wong M, Wozniak DF, Wang T, Klyachko VA, Bonni A. Characterization of a Mouse Model of Börjeson-Forssman-Lehmann Syndrome. Cell Rep 2018; 25:1404-1414.e6. [PMID: 30403997 PMCID: PMC6261530 DOI: 10.1016/j.celrep.2018.10.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/18/2018] [Accepted: 10/11/2018] [Indexed: 01/10/2023] Open
Abstract
Mutations of the transcriptional regulator PHF6 cause the X-linked intellectual disability disorder Börjeson-Forssman-Lehmann syndrome (BFLS), but the pathogenesis of BFLS remains poorly understood. Here, we report a mouse model of BFLS, generated using a CRISPR-Cas9 approach, in which cysteine 99 within the PHD domain of PHF6 is replaced with phenylalanine (C99F). Mice harboring the patient-specific C99F mutation display deficits in cognitive functions, emotionality, and social behavior, as well as reduced threshold to seizures. Electrophysiological studies reveal that the intrinsic excitability of entorhinal cortical stellate neurons is increased in PHF6 C99F mice. Transcriptomic analysis of the cerebral cortex in C99F knockin mice and PHF6 knockout mice show that PHF6 promotes the expression of neurogenic genes and represses synaptic genes. PHF6-regulated genes are also overrepresented in gene signatures and modules that are deregulated in neurodevelopmental disorders of cognition. Our findings advance our understanding of the mechanisms underlying BFLS pathogenesis.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pan-Yue Deng
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA; Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110, USA
| | - Yoshiho Ikeuchi
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carla Yuede
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daofeng Li
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA; Department of Genetics, Washington University School of Medicine, 4515 McKinley Ave., St. Louis, MO 63108, USA
| | - Nicholas Rensing
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ju Huang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dustin Baldridge
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Susan E Maloney
- Department of Genetics, Washington University School of Medicine, 4515 McKinley Ave., St. Louis, MO 63108, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, 4515 McKinley Ave., St. Louis, MO 63108, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - John Constantino
- Department of Psychiatry, Division of Child Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Arezu Jahani-Asl
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC H3T 1E2, Canada; Lady Davis Research Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Michael Wong
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David F Wozniak
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Ting Wang
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA; Department of Genetics, Washington University School of Medicine, 4515 McKinley Ave., St. Louis, MO 63108, USA
| | - Vitaly A Klyachko
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA; Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110, USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
9
|
Cho CH, Hwang EM, Park JY. Emerging Roles of TWIK-1 Heterodimerization in the Brain. Int J Mol Sci 2017; 19:E51. [PMID: 29295556 PMCID: PMC5796001 DOI: 10.3390/ijms19010051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/29/2022] Open
Abstract
Two-pore domain K⁺ (K2P) channels play essential roles in regulating resting membrane potential and cellular excitability. Although TWIK-1 (TWIK-tandem of pore domains in a weak inward rectifying K⁺ channel) was the first identified member of the K2P channel family, it is only in recent years that the physiological roles of TWIK-1 have been studied in depth. A series of reports suggest that TWIK-1 may underlie diverse functions, such as intrinsic excitability of neurons, astrocytic passive conductance, and astrocytic glutamate release, as a homodimer or heterodimer with other K2P isotypes. Here, we summarize expression patterns and newly identified functions of TWIK-1 in the brain.
Collapse
Affiliation(s)
- Chang-Hoon Cho
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 136-703, Korea.
| | - Eun Mi Hwang
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul 02792, Korea.
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea.
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 136-703, Korea.
| |
Collapse
|
10
|
Evidence for astrocyte purinergic signaling in cortical sensory adaptation and serotonin-mediated neuromodulation. Mol Cell Neurosci 2017; 88:53-61. [PMID: 29277734 DOI: 10.1016/j.mcn.2017.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 12/16/2017] [Accepted: 12/19/2017] [Indexed: 11/22/2022] Open
Abstract
In the somatosensory cortex, inhibitory networks are involved in low frequency sensory input adaptation/habituation that can be observed as a paired-pulse depression when using a dual stimulus electrophysiological paradigm. Given that astrocytes have been shown to regulate inhibitory interneuron activity, we hypothesized that astrocytes are involved in cortical sensory adaptation/habituation and constitute effectors of the 5HT-mediated increase in frequency transmission. Using extracellular recordings of evoked excitatory postsynaptic potentials (eEPSPs) in layer II/III of somatosensory cortex, we used various pharmacological approaches to assess the recruitment of astrocyte signaling in paired-pulse depression and serotonin-mediated increase in the paired-pulse ratio (pulse 2/pulse 1). In the absence of neuromodulators or pharmacological agents, the first eEPSP is much larger in amplitude than the second due to the recruitment of long-lasting evoked GABAA-dependent inhibitory activity from the first stimulus. Disruption of glycolysis or mGluR5 signaling resulted in a very similar loss of paired-pulse depression in field recordings. Interestingly, paired-pulse depression was similarly sensitive to disruption by ATP P2Y and adenosine A2A receptor antagonists. In addition, we show that pharmacological disruption of paired-pulse depression by mGluR5, P2Y, and glycolysis inhibition precluded serotonin effects on frequency transmission (typically increased the paired-pulse ratio). These data highlight the possibility for astrocyte involvement in cortical inhibitory activity seen in this simple cortical network and that serotonin may act on astrocytes to exert some aspects of its modulatory influence.
Collapse
|
11
|
Leist M, Rinné S, Datunashvili M, Aissaoui A, Pape HC, Decher N, Meuth SG, Budde T. Acetylcholine-dependent upregulation of TASK-1 channels in thalamic interneurons by a smooth muscle-like signalling pathway. J Physiol 2017; 595:5875-5893. [PMID: 28714121 DOI: 10.1113/jp274527] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/10/2017] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS The ascending brainstem transmitter acetylcholine depolarizes thalamocortical relay neurons while it induces hyperpolarization in local circuit inhibitory interneurons. Sustained K+ currents are modulated in thalamic neurons to control their activity modes; for the interneurons the molecular nature of the underlying ion channels is as yet unknown. Activation of TASK-1 K+ channels results in hyperpolarization of interneurons and suppression of their action potential firing. The modulation cascade involves a non-receptor tyrosine kinase, c-Src. The present study identifies a novel pathway for the activation of TASK-1 channels in CNS neurons that resembles cholinergic signalling and TASK-1 current modulation during hypoxia in smooth muscle cells. ABSTRACT The dorsal part of the lateral geniculate nucleus (dLGN) is the main thalamic site for state-dependent transmission of visual information. Non-retinal inputs from the ascending arousal system and inhibition provided by γ-aminobutyric acid (GABA)ergic local circuit interneurons (INs) control neuronal activity within the dLGN. In particular, acetylcholine (ACh) depolarizes thalamocortical relay neurons by inhibiting two-pore domain potassium (K2P ) channels. Conversely, ACh also hyperpolarizes INs via an as-yet-unknown mechanism. By using whole cell patch-clamp recordings in brain slices and appropriate pharmacological tools we here report that stimulation of type 2 muscarinic ACh receptors induces IN hyperpolarization by recruiting the G-protein βγ subunit (Gβγ), class-1A phosphatidylinositol-4,5-bisphosphate 3-kinase, and cellular and sarcoma (c-Src) tyrosine kinase, leading to activation of two-pore domain weakly inwardly rectifying K+ channel (TWIK)-related acid-sensitive K+ (TASK)-1 channels. The latter was confirmed by the use of TASK-1-deficient mice. Furthermore inhibition of phospholipase Cβ as well as an increase in the intracellular level of phosphatidylinositol-3,4,5-trisphosphate facilitated the muscarinic effect. Our results have uncovered a previously unknown role of c-Src tyrosine kinase in regulating IN function in the brain and identified a novel mechanism by which TASK-1 channels are activated in neurons.
Collapse
Affiliation(s)
- Michael Leist
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Susanne Rinné
- Institut für Physiologie und Pathophysiologie, AG Vegetative Physiologie, Philipps-Universität, Deutschhausstraße 1-2, D-35037, Marburg, Germany
| | - Maia Datunashvili
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Ania Aissaoui
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Hans-Christian Pape
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Niels Decher
- Institut für Physiologie und Pathophysiologie, AG Vegetative Physiologie, Philipps-Universität, Deutschhausstraße 1-2, D-35037, Marburg, Germany
| | - Sven G Meuth
- Department of Neurology, Westfälische Wilhelms-Universität, Albert-Schweitzer-Campus 1, D-48149, Münster, Germany
| | - Thomas Budde
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| |
Collapse
|
12
|
Hönigsperger C, Nigro MJ, Storm JF. Physiological roles of Kv2 channels in entorhinal cortex layer II stellate cells revealed by Guangxitoxin-1E. J Physiol 2017; 595:739-757. [PMID: 27562026 PMCID: PMC5285721 DOI: 10.1113/jp273024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/19/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Kv2 channels underlie delayed-rectifier potassium currents in various neurons, although their physiological roles often remain elusive. Almost nothing is known about Kv2 channel functions in medial entorhinal cortex (mEC) neurons, which are involved in representing space, memory formation, epilepsy and dementia. Stellate cells in layer II of the mEC project to the hippocampus and are considered to be space-representing grid cells. We used the new Kv2 blocker Guangxitoxin-1E (GTx) to study Kv2 functions in these neurons. Voltage clamp recordings from mEC stellate cells in rat brain slices showed that GTx inhibited delayed-rectifier K+ current but not transient A-type current. In current clamp, GTx had multiple effects: (i) increasing excitability and bursting at moderate spike rates but reducing firing at high rates; (ii) enhancing after-depolarizations; (iii) reducing the fast and medium after-hyperpolarizations; (iv) broadening action potentials; and (v) reducing spike clustering. GTx is a useful tool for studying Kv2 channels and their functions in neurons. ABSTRACT The medial entorhinal cortex (mEC) is strongly involved in spatial navigation, memory, dementia and epilepsy. Although potassium channels shape neuronal activity, their roles in mEC are largely unknown. We used the new Kv2 blocker Guangxitoxin-1E (GTx; 10-100 nm) in rat brain slices to investigate Kv2 channel functions in mEC layer II stellate cells (SCs). These neurons project to the hippocampus and are considered to be grid cells representing space. Voltage clamp recordings from SCs nucleated patches showed that GTx inhibited a delayed rectifier K+ current activating beyond -30 mV but not transient A-type current. In current clamp, GTx (i) had almost no effect on the first action potential but markedly slowed repolarization of late spikes during repetitive firing; (ii) enhanced the after-depolarization (ADP); (iii) reduced fast and medium after-hyperpolarizations (AHPs); (iv) strongly enhanced burst firing and increased excitability at moderate spike rates but reduced spiking at high rates; and (v) reduced spike clustering and rebound potentials. The changes in bursting and excitability were related to the altered ADPs and AHPs. Kv2 channels strongly shape the activity of mEC SCs by affecting spike repolarization, after-potentials, excitability and spike patterns. GTx is a useful tool and may serve to further clarify Kv2 channel functions in neurons. We conclude that Kv2 channels in mEC SCs are important determinants of intrinsic properties that allow these neurons to produce spatial representation. The results of the present study may also be important for the accurate modelling of grid cells.
Collapse
Affiliation(s)
| | - Maximiliano J. Nigro
- Department of PhysiologyInstitute of Basal Medical SciencesUniversity of OsloOsloNorway
- Department of Physiology and NeuroscienceNeuroscience InstituteNew York UniversityNew York, NYUSA
| | - Johan F. Storm
- Department of PhysiologyInstitute of Basal Medical SciencesUniversity of OsloOsloNorway
| |
Collapse
|
13
|
Lucas SJ, Armstrong DL. Protein phosphatase modulation of somatostatin receptor signaling in the mouse hippocampus. Neuropharmacology 2015. [PMID: 26196943 DOI: 10.1016/j.neuropharm.2015.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Many inhibitory interneurones in the hippocampus release the neuropeptide somatostatin (SST) which inhibits neuronal excitability through Gi/Go-coupled receptors. To investigate the signaling pathways underlying the SST inhibition of neuronal excitability in the hippocampus, we performed perforated patch-clamp recordings from CA1 pyramidal neurones in acute brain slices from P14-P18 mice. Bath application of 1 μM SST reversibly reduces the frequency of action potential firing in response to depolarising current steps, and is associated with neuronal hyperpolarisation and a reduction in membrane resistance. This effect is mediated by potassium channels with KCNK-like pharmacology. In addition, in slices that have been cultured in vitro for seven days or more, SST also produces a hyperpolarisation independent reduction in action potential firing, which can be also observed in acute slices when the Ser/Thr protein phosphatases PP2A and PP4 are inhibited selectively with fostriecin. This hyperpolarisation independent effect of SST appears to be mediated by G-protein-activated inwardly rectifying K+ (GIRK) channels. Knockdown of protein phosphatase 5, by Cre recombinase mediated deletion of the floxed Ppp5c gene, blocks the hyperpolarisation independent effect of SST, and reduces the hyperpolarisation dependent effect in a manner consistent with increased SST receptor desensitisation. Thus, reversible protein phosphorylation provides a mechanism to enhance or diminish the inhibitory effect of SST, which could allow system level regulation of circuit excitability in the hippocampus.
Collapse
Affiliation(s)
- Sarah J Lucas
- Lab. Neurobiology, National Institute of Environmental Health Sciences, NIH, Durham, NC, 27709, USA.
| | - David L Armstrong
- Lab. Neurobiology, National Institute of Environmental Health Sciences, NIH, Durham, NC, 27709, USA
| |
Collapse
|
14
|
Rivas-Ramírez P, Cadaveira-Mosquera A, Lamas JA, Reboreda A. Muscarinic modulation of TREK currents in mouse sympathetic superior cervical ganglion neurons. Eur J Neurosci 2015; 42:1797-807. [PMID: 25899939 DOI: 10.1111/ejn.12930] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 03/30/2015] [Accepted: 04/20/2015] [Indexed: 01/05/2023]
Abstract
Muscarinic receptors play a key role in the control of neurotransmission in the autonomic ganglia, which has mainly been ascribed to the regulation of potassium M-currents and voltage-dependent calcium currents. Muscarinic agonists provoke depolarization of the membrane potential and a reduction in spike frequency adaptation in postganglionic neurons, effects that may be explained by M-current inhibition. Here, we report the presence of a riluzole-activated current (IRIL ) that flows through the TREK-2 channels, and that is also inhibited by muscarinic agonists in neurons of the mouse superior cervical ganglion (mSCG). The muscarinic agonist oxotremorine-M (Oxo-M) inhibited the IRIL by 50%, an effect that was abolished by pretreatment with atropine or pirenzepine, but was unaffected in the presence of himbacine. Moreover, these antagonists had similar effects on single-channel TREK-2 currents. IRIL inhibition was unaffected by pretreatment with pertussis toxin. The protein kinase C blocker bisindolylmaleimide did not have an effect, and neither did the inositol triphosphate antagonist 2-aminoethoxydiphenylborane. Nevertheless, the IRIL was markedly attenuated by the phospholipase C (PLC) inhibitor ET-18-OCH3. Finally, the phosphatidylinositol-3-kinase/phosphatidylinositol-4-kinase inhibitor wortmannin strongly attenuated the IRIL , whereas blocking phosphatidylinositol 4,5-bisphosphate (PIP2 ) depletion consistently prevented IRIL inhibition by Oxo-M. These results demonstrate that TREK-2 currents in mSCG neurons are inhibited by muscarinic agonists that activate M1 muscarinic receptors, reducing PIP2 levels via a PLC-dependent pathway. The similarities between the signaling pathways regulating the IRIL and the M-current in the same neurons reflect an important role of this new pathway in the control of autonomic ganglia excitability.
Collapse
Affiliation(s)
- P Rivas-Ramírez
- Department of Functional Biology and Health Sciences, Faculty of Biology - CINBIO-IBIV, University of Vigo, Campus Lagoas-Marcosende, 36310, Vigo, Spain
| | - A Cadaveira-Mosquera
- Department of Functional Biology and Health Sciences, Faculty of Biology - CINBIO-IBIV, University of Vigo, Campus Lagoas-Marcosende, 36310, Vigo, Spain
| | - J A Lamas
- Department of Functional Biology and Health Sciences, Faculty of Biology - CINBIO-IBIV, University of Vigo, Campus Lagoas-Marcosende, 36310, Vigo, Spain
| | - A Reboreda
- Department of Functional Biology and Health Sciences, Faculty of Biology - CINBIO-IBIV, University of Vigo, Campus Lagoas-Marcosende, 36310, Vigo, Spain
| |
Collapse
|
15
|
Jukkola P, Gu C. Regulation of neurovascular coupling in autoimmunity to water and ion channels. Autoimmun Rev 2015; 14:258-67. [PMID: 25462580 PMCID: PMC4303502 DOI: 10.1016/j.autrev.2014.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/15/2014] [Indexed: 12/27/2022]
Abstract
Much progress has been made in understanding autoimmune channelopathies, but the underlying pathogenic mechanisms are not always clear due to broad expression of some channel proteins. Recent studies show that autoimmune conditions that interfere with neurovascular coupling in the central nervous system (CNS) can lead to neurodegeneration. Cerebral blood flow that meets neuronal activity and metabolic demand is tightly regulated by local neural activity. This process of reciprocal regulation involves coordinated actions of a number of cell types, including neurons, glia, and vascular cells. In particular, astrocytic endfeet cover more than 90% of brain capillaries to assist blood-brain barrier (BBB) function, and wrap around synapses and nodes of Ranvier to communicate with neuronal activity. In this review, we highlight four types of channel proteins that are expressed in astrocytes, regarding their structures, biophysical properties, expression and distribution patterns, and related diseases including autoimmune disorders. Water channel aquaporin 4 (AQP4) and inwardly rectifying potassium (Kir4.1) channels are concentrated in astrocytic endfeet, whereas some voltage-gated Ca(2+) and two-pore domain K(+) channels are expressed throughout the cell body of reactive astrocytes. More channel proteins are found in astrocytes under normal and abnormal conditions. This research field will contribute to a better understanding of pathogenic mechanisms underlying autoimmune disorders.
Collapse
Affiliation(s)
- Peter Jukkola
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Chen Gu
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
16
|
Systemic lipopolysaccharide-mediated alteration of cortical neuromodulation involves increases in monoamine oxidase-A and acetylcholinesterase activity. J Neuroinflammation 2015; 12:37. [PMID: 25890242 PMCID: PMC4344755 DOI: 10.1186/s12974-015-0259-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 02/02/2015] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Lipopolysaccharide (LPS)-mediated sickness behaviour is known to be a result of increased inflammatory cytokines in the brain. Inflammatory cytokines have been shown to mediate increases in brain excitation by loss of GABAA-mediated inhibition through receptor internalization or inactivation. Inflammatory pathways, reactive oxygen species and stress are also known to increase monoamine oxidase-A (MAO-A) and acetylcholinesterase (ACh-E) activity. Given that neuromodulator actions on neural circuits largely depend on inhibitory pathways and are sensitive to alteration in corresponding catalytic enzyme activities, we assessed the impact of systemic LPS on neuromodulator-mediated shaping of a simple cortical network. METHODS Extracellular field recordings of evoked postsynaptic potentials in adult mouse somatosensory cortical slices were used to evaluate effects of a single systemic LPS challenge on neuromodulator function 1 week later. Neuromodulators were administered transiently as a bolus (100 μl) to the bath perfusate immediately upstream of the recording site to mimic phasic release of neuromodulators and enable assessment of response temporal dynamics. RESULTS Systemic LPS administration resulted in loss of both spontaneous and evoked inhibition as well as alterations in the temporal dynamics of neuromodulator effects on a paired-pulse paradigm. The effects on neuromodulator temporal dynamics were sensitive to the Monoamine oxidase-A (MAO-A) antagonist clorgyline (for norepinephrine and serotonin) and the ACh-E inhibitor donepezil (for acetylcholine). This is consistent with significant increases in total MAO and ACh-E activity found in hemi-brain samples from the LPS-treated group, supporting the notion that systemic LPS administration may lead to longer-lasting changes in inhibitory network function and enzyme (MAO/ACh-E) activity responsible for reduced neuromodulator actions. CONCLUSIONS Given the significant role of neuromodulators in behavioural state and cognitive processes, it is possible that an inflammatory-mediated change in neuromodulator action plays a role in LPS-induced cognitive effects and could help define the link between infection and neuropsychiatric/degenerative conditions.
Collapse
|
17
|
O'Kelly I. Endocytosis as a mode to regulate functional expression of two-pore domain potassium (K₂p) channels. Pflugers Arch 2014; 467:1133-42. [PMID: 25413469 PMCID: PMC4428836 DOI: 10.1007/s00424-014-1641-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 11/06/2022]
Abstract
Two-pore domain potassium (K2P) channels are implicated in an array of physiological and pathophysiological roles. As a result of their biophysical properties, these channels produce a background leak K+ current which has a direct effect on cellular membrane potential and activity. The regulation of potassium leak from cells through K2P channels is of critical importance to cell function, development and survival. Controlling the cell surface expression of these channels is one mode to regulate their function and is achieved through a balance between regulated channel delivery to and retrieval from the cell surface. Here, we explore the modes of retrieval of K2P channels from the plasma membrane and observe that K2P channels are endocytosed in both a clathrin-mediated and clathrin-independent manner. K2P channels use a variety of pathways and show altered internalisation and sorting in response to external cues. These pathways working in concert, equip the cell with a range of approaches to maintain steady state levels of channels and to respond rapidly should changes in channel density be required.
Collapse
Affiliation(s)
- Ita O'Kelly
- Human Development and Health, Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK, I.M.O'
| |
Collapse
|
18
|
Yarishkin O, Lee DY, Kim E, Cho CH, Choi JH, Lee CJ, Hwang EM, Park JY. TWIK-1 contributes to the intrinsic excitability of dentate granule cells in mouse hippocampus. Mol Brain 2014; 7:80. [PMID: 25406588 PMCID: PMC4240835 DOI: 10.1186/s13041-014-0080-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/24/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Two-pore domain K(+) (K2P) channels have been shown to modulate neuronal excitability. However, physiological function of TWIK-1, the first identified member of the mammalian K2P channel family, in neuronal cells is largely unknown. RESULTS We found that TWIK-1 proteins were expressed and localized mainly in the soma and proximal dendrites of dentate gyrus granule cells (DGGCs) rather than in distal dendrites or mossy fibers. Gene silencing demonstrates that the outwardly rectifying K(+) current density was reduced in TWIK-1-deficient granule cells. TWIK-1 deficiency caused a depolarizing shift in the resting membrane potential (RMP) of DGGCs and enhanced their firing rate in response to depolarizing current injections. Through perforant path stimulation, TWIK-1-deficient granule cells showed altered signal input-output properties with larger EPSP amplitude values and increased spiking compared to control DGGCs. In addition, supra-maximal perforant path stimulation evoked a graded burst discharge in 44% of TWIK-1-deficient cells, which implies impairment of EPSP-spike coupling. CONCLUSIONS These results showed that TWIK-1 is functionally expressed in DGGCs and contributes to the intrinsic excitability of these cells. The TWIK-1 channel is involved in establishing the RMP of DGGCs; it attenuates sub-threshold depolarization of the cells during neuronal activity, and contributes to EPSP-spike coupling in perforant path-to-granule cell synaptic transmission.
Collapse
Affiliation(s)
- Oleg Yarishkin
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul, 136-791, Republic of Korea.
| | - Da Yong Lee
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul, 136-791, Republic of Korea. .,Korea Research Institute of Bioscience and Biotechnology (KRIBB), Stem Cell Research Center, Daejeon, 305-806, Republic of Korea.
| | - Eunju Kim
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul, 136-791, Republic of Korea.
| | - Chang-Hoon Cho
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 136-703, Republic of Korea.
| | - Jae Hyouk Choi
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul, 136-791, Republic of Korea. .,Neuroscience Program, University of Science and Technology (UST), Daejeon, 305-350, Republic of Korea.
| | - C Justin Lee
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul, 136-791, Republic of Korea. .,Neuroscience Program, University of Science and Technology (UST), Daejeon, 305-350, Republic of Korea.
| | - Eun Mi Hwang
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul, 136-791, Republic of Korea. .,Neuroscience Program, University of Science and Technology (UST), Daejeon, 305-350, Republic of Korea.
| | - Jae-Yong Park
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul, 136-791, Republic of Korea. .,School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 136-703, Republic of Korea.
| |
Collapse
|
19
|
Zhang H, Dong H, Cilz NI, Kurada L, Hu B, Wada E, Bayliss DA, Porter JE, Lei S. Neurotensinergic Excitation of Dentate Gyrus Granule Cells via Gαq-Coupled Inhibition of TASK-3 Channels. Cereb Cortex 2014; 26:977-90. [PMID: 25405940 DOI: 10.1093/cercor/bhu267] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neurotensin (NT) is a 13-amino acid peptide and serves as a neuromodulator in the brain. Whereas NT has been implicated in learning and memory, the underlying cellular and molecular mechanisms are ill-defined. Because the dentate gyrus receives profound innervation of fibers containing NT and expresses high density of NT receptors, we examined the effects of NT on the excitability of dentate gyrus granule cells (GCs). Our results showed that NT concentration dependently increased action potential (AP) firing frequency of the GCs by the activation of NTS1 receptors resulting in the depolarization of the GCs. NT-induced enhancement of AP firing frequency was not caused indirectly by releasing glutamate, GABA, acetylcholine, or dopamine, but due to the inhibition of TASK-3 K(+) channels. NT-mediated excitation of the GCs was G protein dependent, but independent of phospholipase C, intracellular Ca(2+) release, and protein kinase C. Immunoprecipitation experiment demonstrates that the activation of NTS1 receptors induced the association of Gαq/11 and TASK-3 channels suggesting a direct coupling of Gαq/11 to TASK-3 channels. Endogenously released NT facilitated the excitability of the GCs contributing to the induction of long-term potentiation at the perforant path-GC synapses. Our results provide a cellular mechanism that helps to explain the roles of NT in learning and memory.
Collapse
Affiliation(s)
- Haopeng Zhang
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Hailong Dong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Nicholas I Cilz
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Lalitha Kurada
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Binqi Hu
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Etsuko Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, Tokyo, Japan
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - James E Porter
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Saobo Lei
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| |
Collapse
|
20
|
Activation of neurotensin receptor 1 facilitates neuronal excitability and spatial learning and memory in the entorhinal cortex: beneficial actions in an Alzheimer's disease model. J Neurosci 2014; 34:7027-42. [PMID: 24828655 DOI: 10.1523/jneurosci.0408-14.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurotensin (NT) is a tridecapeptide distributed in the CNS, including the entorhinal cortex (EC), a structure that is crucial for learning and memory and undergoes the earliest pathological alterations in Alzheimer's disease (AD). Whereas NT has been implicated in modulating cognition, the cellular and molecular mechanisms by which NT modifies cognitive processes and the potential therapeutic roles of NT in AD have not been determined. Here we examined the effects of NT on neuronal excitability and spatial learning in the EC, which expresses high density of NT receptors. Brief application of NT induced persistent increases in action potential firing frequency, which could last for at least 1 h. NT-induced facilitation of neuronal excitability was mediated by downregulation of TREK-2 K(+) channels and required the functions of NTS1, phospholipase C, and protein kinase C. Microinjection of NT or NTS1 agonist, PD149163, into the EC increased spatial learning as assessed by the Barnes Maze Test. Activation of NTS1 receptors also induced persistent increases in action potential firing frequency and significantly improved the memory status in APP/PS1 mice, an animal model of AD. Our study identifies a cellular substrate underlying learning and memory and suggests that NTS1 agonists may exert beneficial actions in an animal model of AD.
Collapse
|
21
|
Corticotropin-releasing factor facilitates epileptiform activity in the entorhinal cortex: roles of CRF2 receptors and PKA pathway. PLoS One 2014; 9:e88109. [PMID: 24505399 PMCID: PMC3913751 DOI: 10.1371/journal.pone.0088109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/08/2014] [Indexed: 11/19/2022] Open
Abstract
Whereas corticotropin-releasing factor (CRF) has been considered as the most potent epileptogenic neuropeptide in the brain, its action site and underlying mechanisms in epilepsy have not been determined. Here, we found that the entorhinal cortex (EC) expresses high level of CRF and CRF2 receptors without expression of CRF1 receptors. Bath application of CRF concentration-dependently increased the frequency of picrotoxin (PTX)-induced epileptiform activity recorded from layer III of the EC in entorhinal slices although CRF alone did not elicit epileptiform activity. CRF facilitated the induction of epileptiform activity in the presence of subthreshold concentration of PTX which normally would not elicit epileptiform activity. Bath application of the inhibitor for CRF-binding proteins, CRF6-33, also increased the frequency of PTX-induced epileptiform activity suggesting that endogenously released CRF is involved in epileptogenesis. CRF-induced facilitation of epileptiform activity was mediated via CRF2 receptors because pharmacological antagonism and knockout of CRF2 receptors blocked the facilitatory effects of CRF on epileptiform activity. Application of the adenylyl cyclase (AC) inhibitors blocked CRF-induced facilitation of epileptiform activity and elevation of intracellular cyclic AMP (cAMP) level by application of the AC activators or phosphodiesterase inhibitor increased the frequency of PTX-induced epileptiform activity, demonstrating that CRF-induced increases in epileptiform activity are mediated by an increase in intracellular cAMP. However, application of selective protein kinase A (PKA) inhibitors reduced, not completely blocked CRF-induced enhancement of epileptiform activity suggesting that PKA is only partially required. Our results provide a novel cellular and molecular mechanism whereby CRF modulates epilepsy.
Collapse
|
22
|
Liao CC, Lee LJ. Presynaptic 5-HT1B receptor-mediated synaptic suppression to the subplate neurons in the somatosensory cortex of neonatal rats. Neuropharmacology 2014; 77:81-9. [DOI: 10.1016/j.neuropharm.2013.08.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 11/28/2022]
|
23
|
Cano-Colino M, Almeida R, Compte A. Serotonergic modulation of spatial working memory: predictions from a computational network model. Front Integr Neurosci 2013; 7:71. [PMID: 24133418 PMCID: PMC3783948 DOI: 10.3389/fnint.2013.00071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 09/05/2013] [Indexed: 01/09/2023] Open
Abstract
Serotonin (5-HT) receptors of types 1A and 2A are strongly expressed in prefrontal cortex (PFC) neurons, an area associated with cognitive function. Hence, 5-HT could be effective in modulating prefrontal-dependent cognitive functions, such as spatial working memory (SWM). However, a direct association between 5-HT and SWM has proved elusive in psycho-pharmacological studies. Recently, a computational network model of the PFC microcircuit was used to explore the relationship between 5-HT and SWM (Cano-Colino et al., 2013). This study found that both excessive and insufficient 5-HT levels lead to impaired SWM performance in the network, and it concluded that analyzing behavioral responses based on confidence reports could facilitate the experimental identification of SWM behavioral effects of 5-HT neuromodulation. Such analyses may have confounds based on our limited understanding of metacognitive processes. Here, we extend these results by deriving three additional predictions from the model that do not rely on confidence reports. Firstly, only excessive levels of 5-HT should result in SWM deficits that increase with delay duration. Secondly, excessive 5-HT baseline concentration makes the network vulnerable to distractors at distances that were robust to distraction in control conditions, while the network still ignores distractors efficiently for low 5-HT levels that impair SWM. Finally, 5-HT modulates neuronal memory fields in neurophysiological experiments: Neurons should be better tuned to the cued stimulus than to the behavioral report for excessive 5-HT levels, while the reverse should happen for low 5-HT concentrations. In all our simulations agonists of 5-HT1A receptors and antagonists of 5-HT2A receptors produced behavioral and physiological effects in line with global 5-HT level increases. Our model makes specific predictions to be tested experimentally and advance our understanding of the neural basis of SWM and its neuromodulation by 5-HT receptors.
Collapse
Affiliation(s)
- Maria Cano-Colino
- Systems Neuroscience Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona, Spain
| | | | | |
Collapse
|
24
|
Cano-Colino M, Almeida R, Gomez-Cabrero D, Artigas F, Compte A. Serotonin regulates performance nonmonotonically in a spatial working memory network. ACTA ACUST UNITED AC 2013; 24:2449-63. [PMID: 23629582 DOI: 10.1093/cercor/bht096] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The prefrontal cortex (PFC) contains a dense network of serotonergic [serotonin, 5-hydroxytryptamine (5-HT)] axons, and endogenous 5-HT markedly modulates PFC neuronal function via several postsynaptic receptors. The therapeutic action of atypical antipsychotic drugs, acting mainly via 5-HT receptors, also suggests a role for serotonergic neurotransmission in cognitive functions. However, psychopharmacological studies have failed to find a consistent relationship between serotonergic transmission and cognitive functions of the PFC, including spatial working memory (SWM). Here, we built a computational network model to investigate 5-HT modulation of SWM in the PFC. We found that 5-HT modulates network's SWM performance nonmonotonically via 5-HT1A and 5-HT2A receptors, following an inverted U-shape. This relationship may contribute to blur the effects of serotonergic agents in previous SWM group-based behavioral studies. Our simulations also showed that errors occurring at low and high 5-HT concentrations are due to different network dynamics instabilities, suggesting that these 2 conditions can be distinguished experimentally based on their distinct dependency on experimental variables. We inferred specific predictions regarding the expected behavioral effects of serotonergic agents in 2 classic working-memory tasks. Our results underscore the relevance of identifying different error types in SWM tasks in order to reveal the association between neuromodulatory systems and SWM.
Collapse
Affiliation(s)
- Maria Cano-Colino
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rita Almeida
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, Department of Neuroscience
| | - David Gomez-Cabrero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Francesc Artigas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-CSIC, Barcelona, Spain and Centro de Investigación Biomédica en Salud Mental (CIBERSAM), Barcelona, Spain
| | - Albert Compte
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
25
|
Wang S, Kurada L, Cilz NI, Chen X, Xiao Z, Dong H, Lei S. Adenosinergic depression of glutamatergic transmission in the entorhinal cortex of juvenile rats via reduction of glutamate release probability and the number of releasable vesicles. PLoS One 2013; 8:e62185. [PMID: 23614032 PMCID: PMC3628342 DOI: 10.1371/journal.pone.0062185] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/19/2013] [Indexed: 02/05/2023] Open
Abstract
Adenosine is an inhibitory neuromodulator that exerts antiepileptic effects in the brain and the entorhinal cortex (EC) is an essential structure involved in temporal lobe epilepsy. Whereas microinjection of adenosine into the EC has been shown to exert powerful antiepileptic effects, the underlying cellular and molecular mechanisms in the EC have not been determined yet. We tested the hypothesis that adenosine-mediated modulation of synaptic transmission contributes to its antiepileptic effects in the EC. Our results demonstrate that adenosine reversibly inhibited glutamatergic transmission via activation of adenosine A1 receptors without effects on GABAergic transmission in layer III pyramidal neurons in the EC. Adenosine-induced depression of glutamatergic transmission was mediated by inhibiting presynaptic glutamate release probability and decreasing the number of readily releasable vesicles. Bath application of adenosine also reduced the frequency of the miniature EPSCs recorded in the presence of TTX suggesting that adenosine may interact with the exocytosis processes downstream of Ca2+ influx. Both Gαi/o proteins and the protein kinase A pathway were required for adenosine-induced depression of glutamatergic transmission. We further showed that bath application of picrotoxin to the EC slices induced stable epileptiform activity and bath application of adenosine dose-dependently inhibited the epileptiform activity in this seizure model. Adenosine-mediated depression of epileptiform activity was mediated by activation of adenosine A1 receptors and required the functions of Gαi/o proteins and protein kinase A pathway. Our results suggest that the depression of glutamatergic transmission induced by adenosine contributes to its antiepileptic effects in the EC.
Collapse
Affiliation(s)
- Shouping Wang
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Lalitha Kurada
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Nicholas I. Cilz
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Xiaotong Chen
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- Department of Emergency Medicine, Sun Yat-sen Memorial hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zhaoyang Xiao
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, P.R. China
| | - Hailong Dong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, P.R. China
| | - Saobo Lei
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- * E-mail:
| |
Collapse
|
26
|
Gao S, Guo X, Liu T, Liu J, Chen W, Xia Q, Chen Y, Tang Y. Serotonin modulates outward potassium currents in mouse olfactory receptor neurons. Physiol Res 2013; 62:455-62. [PMID: 23590600 DOI: 10.33549/physiolres.932413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Monoaminergic neurotransmitter 5-hydroxytryptamine (5-HT), also known as serotonin, plays important roles in modulating the function of the olfactory system. However, thus far, the knowledge about 5-HT and its receptors in olfactory receptor neurons (ORNs) and their physiological role have not been fully characterized. In the present study, reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed the presence of 5-HT(1A) and 5-HT(1B) receptor subtypes in mouse olfactory epithelium at the mRNA level. With subtype selective antibodies and standard immunohistochemical techniques, both receptor subtypes were found to be positively labeled. To further elucidate the molecular mechanisms of 5-HT act on the peripheral olfactory transduction, the whole-cell patch clamp techniques were used on freshly isolated ORNs. We found that 5-HT decreased the magnitude of outward K(+) current in a dose-dependent manner and these inhibitory effects were markedly attenuated by the 5-HT(1A) receptor blocker WAY-100635 and the 5-HT(1B) receptor antagonist GR55562. These data suggested that 5-HT may play a role in the modulation of peripheral olfactory signals by regulating outward potassium currents, both 5-HT(1A) and 5-HT(1B) receptors were involved in this regulation.
Collapse
Affiliation(s)
- S Gao
- Department of Otorhinolaryngology and Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ford KJ, Arroyo DA, Kay JN, Lloyd EE, Bryan RM, Sanes JR, Feller MB. A role for TREK1 in generating the slow afterhyperpolarization in developing starburst amacrine cells. J Neurophysiol 2013; 109:2250-9. [PMID: 23390312 DOI: 10.1152/jn.01085.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Slow afterhyperpolarizations (sAHPs) play an important role in establishing the firing pattern of neurons that in turn influence network activity. sAHPs are mediated by calcium-activated potassium channels. However, the molecular identity of these channels and the mechanism linking calcium entry to their activation are still unknown. Here we present several lines of evidence suggesting that the sAHPs in developing starburst amacrine cells (SACs) are mediated by two-pore potassium channels. First, we use whole cell and perforated patch voltage clamp recordings to characterize the sAHP conductance under different pharmacological conditions. We find that this conductance was calcium dependent, reversed at EK, blocked by barium, insensitive to apamin and TEA, and activated by arachidonic acid. In addition, pharmacological inhibition of calcium-activated phosphodiesterase reduced the sAHP. Second, we performed gene profiling on isolated SACs and found that they showed strong preferential expression of the two-pore channel gene kcnk2 that encodes TREK1. Third, we demonstrated that TREK1 knockout animals exhibited an altered frequency of retinal waves, a frequency that is set by the sAHPs in SACs. With these results, we propose a model in which depolarization-induced decreases in cAMP lead to disinhibition of the two-pore potassium channels and in which the kinetics of this biochemical pathway dictate the slow activation and deactivation of the sAHP conductance. Our model offers a novel pathway for the activation of a conductance that is physiologically important.
Collapse
Affiliation(s)
- Kevin J Ford
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Ramanathan G, Cilz NI, Kurada L, Hu B, Wang X, Lei S. Vasopressin facilitates GABAergic transmission in rat hippocampus via activation of V(1A) receptors. Neuropharmacology 2012; 63:1218-26. [PMID: 22884625 DOI: 10.1016/j.neuropharm.2012.07.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 10/28/2022]
Abstract
Whereas vasopressin has been shown to enhance memory possibly by increasing long-term potentiation and direct excitation of the pyramidal neurons in the hippocampus, the effects of vasopressin on GABAergic transmission in the hippocampus remain to be determined. Here we examined the effects of vasopressin on GABAergic transmission onto CA1 pyramidal neurons and our results demonstrate that bath application of [Arg(8)]-vasopressin (AVP) dose-dependently increased the frequency of spontaneous IPSCs (sIPSCs) recorded from CA1 pyramidal neurons via activation of V(1A) receptors. Immunohistological staining and western blot further confirmed that both CA1 pyramidal neurons and interneurons expressed V(1A) receptors. Bath application of AVP altered neither the frequency nor the amplitude of miniature IPSCs in the presence of tetradotoxin and failed to change significantly the amplitude of evoked IPSCs recorded from CA1 pyramidal neurons. AVP increased the firing frequency of action potentials by depolarizing the GABAergic interneurons in the stratum radiatum of CA1 region. AVP-mediated depolarization of interneurons was mediated by inhibition of a background K(+) conductance which was insensitive to extracellular tetraethylammonium, Cs(+), 4-aminopyridine, tertiapin-Q and Ba(2+). AVP-induced depolarization of interneurons was dependent on Gα(q/11) but independent of phospholipase C, intracellular Ca(2+) release and protein kinase C. The inhibitory effects of AVP-mediated modulation of GABA release onto CA1 pyramidal neurons were overwhelmed by its strong excitation of CA1 pyramidal neurons in physiological condition but revealed when its direct excitation of the pyramidal neurons was blocked suggesting that AVP-mediated modulation of GABAergic transmission fine-tunes the excitability of CA1 pyramidal neurons.
Collapse
Affiliation(s)
- Gunasekaran Ramanathan
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | | | | | | | | | | |
Collapse
|
29
|
Grisanti LA, Kurada L, Cilz NI, Porter JE, Lei S. Phospholipase C not protein kinase C is required for the activation of TRPC5 channels by cholecystokinin. Eur J Pharmacol 2012; 689:17-24. [PMID: 22683873 DOI: 10.1016/j.ejphar.2012.05.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/12/2012] [Accepted: 05/24/2012] [Indexed: 01/09/2023]
Abstract
Cholecystokinin (CCK) is one of the most abundant neuropeptides in the brain where it interacts with two G protein-coupled receptors (CCK1 and CCK2). Both types of CCK receptors are coupled to G(q/11) proteins resulting in increased function of phospholipase C (PLC) pathway. Whereas CCK has been suggested to increase neuronal excitability in the brain via activation of cationic channels, the types of cationic channels have not yet been identified. Here, we co-expressed CCK2 receptors and TRPC5 channels in human embryonic kidney (HEK) 293 cells and studied the effects of CCK on TRPC5 channels using patch-clamp techniques. Our results demonstrate that activation of CCK2 receptors robustly potentiates the function of TRPC5 channels. CCK-induced activation of TRPC5 channels requires the functions of G-proteins and PLC and depends on extracellular Ca(2+). The activation of TRPC5 channels mediated by CCK2 receptors is independent of IP(3) receptors and protein kinase C. CCK-induced opening of TRPC5 channels is not store-operated because application of thapsigargin to deplete intracellular Ca(2+) stores failed to alter CCK-induced TRPC5 channel currents significantly. Bath application of CCK also significantly increased the open probability of TRPC5 single channel currents in cell-attached patches. Because CCK exerts extensive effects in the brain, our results may provide a novel mechanism to explain its roles in modulating neuronal excitability.
Collapse
Affiliation(s)
- Laurel A Grisanti
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | | | | | | | | |
Collapse
|
30
|
Pastoll H, Ramsden HL, Nolan MF. Intrinsic electrophysiological properties of entorhinal cortex stellate cells and their contribution to grid cell firing fields. Front Neural Circuits 2012; 6:17. [PMID: 22536175 PMCID: PMC3334835 DOI: 10.3389/fncir.2012.00017] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 03/25/2012] [Indexed: 11/21/2022] Open
Abstract
The medial entorhinal cortex (MEC) is an increasingly important focus for investigation of mechanisms for spatial representation. Grid cells found in layer II of the MEC are likely to be stellate cells, which form a major projection to the dentate gyrus. Entorhinal stellate cells are distinguished by distinct intrinsic electrophysiological properties, but how these properties contribute to representation of space is not yet clear. Here, we review the ionic conductances, synaptic, and excitable properties of stellate cells, and examine their implications for models of grid firing fields. We discuss why existing data are inconsistent with models of grid fields that require stellate cells to generate periodic oscillations. An alternative possibility is that the intrinsic electrophysiological properties of stellate cells are tuned specifically to control integration of synaptic input. We highlight recent evidence that the dorsal-ventral organization of synaptic integration by stellate cells, through differences in currents mediated by HCN and leak potassium channels, influences the corresponding organization of grid fields. Because accurate cellular data will be important for distinguishing mechanisms for generation of grid fields, we introduce new data comparing properties measured with whole-cell and perforated patch-clamp recordings. We find that clustered patterns of action potential firing and the action potential after-hyperpolarization (AHP) are particularly sensitive to recording condition. Nevertheless, with both methods, these properties, resting membrane properties and resonance follow a dorsal-ventral organization. Further investigation of the molecular basis for synaptic integration by stellate cells will be important for understanding mechanisms for generation of grid fields.
Collapse
Affiliation(s)
- Hugh Pastoll
- Neuroinformatics Doctoral Training Centre, University of Edinburgh Edinburgh, UK
| | | | | |
Collapse
|
31
|
Li Y, Fan S, Yan J, Li B, Chen F, Xia J, Yu Z, Hu Z. Adenosine modulates the excitability of layer II stellate neurons in entorhinal cortex through A1 receptors. Hippocampus 2012; 21:265-80. [PMID: 20054814 DOI: 10.1002/hipo.20745] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Stellate neurons in layer II entorhinal cortex (EC) provide the main output from the EC to the hippocampus. It is believed that adenosine plays a crucial role in neuronal excitability and synaptic transmission in the CNS, however, the function of adenosine in the EC is still elusive. Here, the data reported showed that adenosine hyperpolarized stellate neurons in a concentration-dependent manner, accompanied by a decrease in firing frequency. This effect corresponded to the inhibition of the hyperpolarization-activated, cation nonselective (HCN) channels. Surprisingly, the adenosine-induced inhibition was blocked by 3 μM 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), a selective A(1) receptor antagonists, but not by 10 μM 3,7-dimethyl-1-propargylxanthine (DMPX), a selective A(2) receptor antagonists, indicating that activation of adenosine A(1) receptors were responsible for the direct inhibition. In addition, adenosine reduced the frequency but not the amplitude of miniature EPSCs and IPSCs, suggesting that the global depression of glutamatergic and GABAergic transmission is mediated by a decrease in glutamate and GABA release, respectively. Again the presynaptic site of action was mediated by adenosine A(1) receptors. Furthermore, inhibition of spontaneous glutamate and GABA release by adenosine A(1) receptor activation was mediated by voltage-dependent Ca(2+) channels and extracellular Ca(2+) . Therefore, these findings revealed direct and indirect mechanisms by which activation of adenosine A(1) receptors on the cell bodies of stellate neurons and on the presynaptic terminals could regulate the excitability of these neurons.
Collapse
Affiliation(s)
- Yang Li
- Department of Physiology, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang S, Chen X, Kurada L, Huang Z, Lei S. Activation of group II metabotropic glutamate receptors inhibits glutamatergic transmission in the rat entorhinal cortex via reduction of glutamate release probability. Cereb Cortex 2012; 22:584-94. [PMID: 21677028 PMCID: PMC3450593 DOI: 10.1093/cercor/bhr131] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Glutamate interacts with ionotropic and metabotropic glutamate receptors (mGluRs). Whereas the entorhinal cortex (EC) is a principal structure involved in learning and memory, the roles of mGluRs in synaptic transmission in the EC have not been completely determined. Here, we show that activation of group II mGluRs (mGluR II) induced robust depression of glutamatergic transmission in the EC. The mGluR II-induced depression was due to a selective reduction of presynaptic release probability without alterations of the quantal size and the number of release sites. The mechanisms underlying mGluR II-mediated suppression of glutamate release included the inhibition of presynaptic release machinery and the depression of presynaptic P/Q-type Ca(2+) channels. Whereas mGluR II-induced depression required the function of Gα(i/o) proteins, protein kinase A (PKA) pathway was only involved in mGluR II-mediated inhibition of release machinery and thereby partially required for mGluR II-induced inhibition of glutamate release. Presynaptic stimulation at 5 Hz for 10 min also induced depression of glutamatergic transmission via activation of presynaptic mGluR II suggesting an endogenous role for mGluR II in modulating glutamatergic transmission.
Collapse
Affiliation(s)
- Shouping Wang
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
- Department of Anesthesiology
| | - Xiaotong Chen
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, P. R. China
| | - Lalitha Kurada
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Zitong Huang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, P. R. China
| | - Saobo Lei
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| |
Collapse
|
33
|
Jin NG, Crow T. Serotonin regulates voltage-dependent currents in type I(e(A)) and I(i) interneurons of Hermissenda. J Neurophysiol 2011; 106:2557-69. [PMID: 21813747 DOI: 10.1152/jn.00550.2011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Serotonin (5-HT) has both direct and modulatory actions on central neurons contributing to behavioral arousal and cellular-synaptic plasticity in diverse species. In Hermissenda, 5-HT produces changes in intrinsic excitability of different types of identified interneurons in the circumesophageal nervous system. Using whole cell patch-clamp techniques we have examined membrane conductance changes produced by 5-HT that contribute to intrinsic excitability in two identified classes of interneurons, types I(i) and I(eA). Whole cell currents were examined before and after 5-HT application to the isolated nervous system. A 4-aminopyridine-sensitive transient outward K(+) current [I(K(A))], a tetraethylammonium-sensitive delayed rectifier K(+) current [I(K(V))], an inward rectifier K(+) current [I(K(IR))], and a hyperpolarization-activated current (I(h)) were characterized. 5-HT decreased the amplitude of I(K(A)) and I(K(V)) in both type I(i) and I(eA) interneurons. However, differences in 5-HT's effects on the activation-inactivation kinetics were observed in different types of interneurons. 5-HT produced a depolarizing shift in the activation curve of I(K(V)) and a hyperpolarizing shift in the inactivation curve of I(K(A)) in type I(i) interneurons. In contrast, 5-HT produced a depolarizing shift in the activation curve and a hyperpolarizing shift in the inactivation curve of both I(K(V)) and I(K(A)) in type I(eA) interneurons. In addition, 5-HT decreased the amplitude of I(K(IR)) in type I(i) interneurons and increased the amplitude of I(h) in type I(eA) interneurons. These results indicate that 5-HT-dependent changes in I(K(A)), I(K(V)), I(K(IR)), and I(h) contribute to multiple mechanisms that synergistically support modulation of increased intrinsic excitability associated with different functional classes of identified type I interneurons.
Collapse
Affiliation(s)
- Nan Ge Jin
- Dept. of Neurobiology and Anatomy, Univ. of Texas Medical School, 6431 Fannin St., Houston, TX 77030, USA
| | | |
Collapse
|
34
|
Zhong P, Yan Z. Differential regulation of the excitability of prefrontal cortical fast-spiking interneurons and pyramidal neurons by serotonin and fluoxetine. PLoS One 2011; 6:e16970. [PMID: 21383986 PMCID: PMC3044712 DOI: 10.1371/journal.pone.0016970] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 01/11/2011] [Indexed: 11/19/2022] Open
Abstract
Serotonin exerts a powerful influence on neuronal excitability. In this study, we investigated the effects of serotonin on different neuronal populations in prefrontal cortex (PFC), a major area controlling emotion and cognition. Using whole-cell recordings in PFC slices, we found that bath application of 5-HT dose-dependently increased the firing of FS (fast spiking) interneurons, and decreased the firing of pyramidal neurons. The enhancing effect of 5-HT in FS interneurons was mediated by 5-HT2 receptors, while the reducing effect of 5-HT in pyramidal neurons was mediated by 5-HT1 receptors. Fluoxetine, the selective serotonin reuptake inhibitor, also induced a concentration-dependent increase in the excitability of FS interneurons, but had little effect on pyramidal neurons. In rats with chronic fluoxetine treatment, the excitability of FS interneurons was significantly increased, while pyramidal neurons remained unchanged. Fluoxetine injection largely occluded the enhancing effect of 5-HT in FS interneurons, but did not alter the reducing effect of 5-HT in pyramidal neurons. These data suggest that the excitability of PFC interneurons and pyramidal neurons is regulated by exogenous 5-HT in an opposing manner, and FS interneurons are the major target of Fluoxetine. It provides a framework for understanding the action of 5-HT and antidepressants in altering PFC network activity.
Collapse
Affiliation(s)
- Ping Zhong
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Zhen Yan
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
35
|
Deng PY, Xiao Z, Lei S. Distinct modes of modulation of GABAergic transmission by Group I metabotropic glutamate receptors in rat entorhinal cortex. Hippocampus 2010; 20:980-93. [PMID: 19739246 DOI: 10.1002/hipo.20697] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Activation of metabotropic glutamate receptors (mGluRs) modulates synaptic transmission, whereas the roles of mGluRs in GABAergic transmission in the entorhinal cortex (EC) are elusive. Here, we examined the effects of mGluRs on GABAergic transmission onto the principal neurons in the superficial layers of the EC. Bath application of DHPG, a selective Group I mGluR agonist, increased the frequency and amplitude of spontaneous IPSCs (sIPSCs) whereas application of DCG-IV, an agonist for Group II mGluRs or L-AP4, an agonist for Group III mGluRs failed to change significantly sIPSC frequency and amplitude. Bath application of DHPG failed to change significantly the frequency and amplitude of miniature IPSCs (mIPSCs) recorded in the presence of tetradotoxin but significantly reduced the amplitude of IPSCs evoked by extracellular field stimulation or in synaptically connected interneuron-pyramidal neuron pairs in layer III of the EC. DHPG increased the frequency but reduced the amplitude of APs recorded from entorhinal interneurons. Bath application of DHPG generated membrane depolarization and increased the input resistance of GABAergic interneurons. DHPG-mediated depolarization of GABAergic interneurons was mediated by inhibition of background K(+) channels which are insensitive to extracellular Cs(+), TEA, 4-AP, and Ba(2+). DHPG-induced facilitation of sIPSCs was mediated by mGluR(5) and required the function of Galphaq but was independent of phospholipase C activity. Elevation of synaptic glutamate concentration by bath application of glutamate transporter inhibitors significantly increased sIPSC frequency and amplitude demonstrating a physiological role of mGluRs in GABAergic transmission. Our results provide a cellular and molecular mechanism to explain the physiological and pathological roles of mGluRs in the EC.
Collapse
Affiliation(s)
- Pan-Yue Deng
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58203, USA
| | | | | |
Collapse
|
36
|
Bittner S, Budde T, Wiendl H, Meuth SG. From the background to the spotlight: TASK channels in pathological conditions. Brain Pathol 2010; 20:999-1009. [PMID: 20529081 PMCID: PMC8094868 DOI: 10.1111/j.1750-3639.2010.00407.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 04/13/2010] [Indexed: 01/10/2023] Open
Abstract
TWIK-related acid-sensitive potassium channels (TASK1-3) belong to the family of two-pore domain (K(2P) ) potassium channels. Emerging knowledge about an involvement of TASK channels in cancer development, inflammation, ischemia and epilepsy puts the spotlight on a leading role of TASK channels under these conditions. TASK3 has been especially linked to cancer development. The pro-oncogenic potential of TASK3 could be shown in cell lines and in various tumor entities. Pathophysiological hallmarks in solid tumors (e.g. low pH and oxygen deprivation) regulate TASK3 channels. These conditions can also be found in (autoimmune) inflammation. Inhibition of TASK1,2,3 leads to a reduction of T cell effector function. It could be demonstrated that TASK1(-/-) mice are protected from experimental autoimmune inflammation while the same animals display increased infarct volumes after cerebral ischemia. Furthermore, TASK channels have both an anti-epileptic as well as a pro-epileptic potential. The relative contribution of these opposing influences depends on their cell type-specific expression and the conditions of the cellular environment. This indicates that TASK channels are per se neither protective nor detrimental but their functional impact depends on the "pathophysiological" scenario. Based on these findings TASK channels have evolved from "mere background" channels to key modulators in pathophysiological conditions.
Collapse
Affiliation(s)
- Stefan Bittner
- Department of Neurology, University of Wuerzburg, Wuerzburg, Germany
| | - Thomas Budde
- Institute of Physiology I, Westfaelische Wilhelms‐University Muenster, Muenster, Germany
| | - Heinz Wiendl
- Department of Neurology—Inflammatory disorders of the nervous system and neurooncology, University of Muenster, Muenster, Germany
| | - Sven G. Meuth
- Department of Neurology, University of Wuerzburg, Wuerzburg, Germany
- Department of Neurology—Inflammatory disorders of the nervous system and neurooncology, University of Muenster, Muenster, Germany
| |
Collapse
|
37
|
Cholecystokinin facilitates glutamate release by increasing the number of readily releasable vesicles and releasing probability. J Neurosci 2010; 30:5136-48. [PMID: 20392936 DOI: 10.1523/jneurosci.5711-09.2010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cholecystokinin (CCK), a neuropeptide originally discovered in the gastrointestinal tract, is abundantly distributed in the mammalian brains including the hippocampus. Whereas CCK has been shown to increase glutamate concentration in the perfusate of hippocampal slices and in purified rat hippocampal synaptosomes, the cellular and molecular mechanisms whereby CCK modulates glutamatergic function remain unexplored. Here, we examined the effects of CCK on glutamatergic transmission in the hippocampus using whole-cell recordings from hippocampal slices. Application of CCK increased AMPA receptor-mediated EPSCs at perforant path-dentate gyrus granule cell, CA3-CA3 and Schaffer collateral-CA1 synapses without effects at mossy fiber-CA3 synapses. CCK-induced increases in AMPA EPSCs were mediated by CCK-2 receptors and were not modulated developmentally and transcriptionally. CCK reduced the coefficient of variation and paired-pulse ratio of AMPA EPSCs suggesting that CCK facilitates presynaptic glutamate release. CCK increased the release probability and the number of readily releasable vesicles with no effects on the rate of recovery from vesicle depletion. CCK-mediated increases in glutamate release required the functions of phospholipase C, intracellular Ca(2+) release and protein kinase Cgamma. CCK released endogenously from hippocampal interneurons facilitated glutamatergic transmission. Our results provide a cellular and molecular mechanism to explain the roles of CCK in the brain.
Collapse
|
38
|
Yang JJ, Wang YT, Cheng PC, Kuo YJ, Huang RC. Cholinergic modulation of neuronal excitability in the rat suprachiasmatic nucleus. J Neurophysiol 2010; 103:1397-409. [PMID: 20071625 DOI: 10.1152/jn.00877.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The central cholinergic system regulates both the circadian clock and sleep-wake cycle and may participate in the feedback control of vigilance states on neural excitability in the suprachiasmatic nucleus (SCN) that houses the circadian clock. Here we investigate the mechanisms for cholinergic modulation of SCN neuron excitability. Cell-attached recordings indicate that the nonspecific cholinergic agonist carbachol (CCh) inhibited 55% and excited 21% SCN neurons, leaving 24% nonresponsive. Similar response proportions were produced by two muscarinic receptor [muscarinic acetylcholine receptor (mAChR)] agonists, muscarine and McN-A-343 (M1/4 agonist), but not by two nicotinic receptor (nAChR) agonists, nicotine and choline (alpha7-nAChR agonist), which, however, produced similar response proportions. Whole cell and perforated-patch recordings indicate that CCh inhibition of firing was mediated by membrane hyperpolarization due to activation of background K(+) currents, which were sensitive to submillimolar concentrations of Ba(2+) and to millimolar concentrations of TEA. RT-PCR analysis demonstrated the presence of mRNA for M1 to M5 mAChRs in SCN. The CCh-induced hyperpolarization and activation of background K(+) currents were blocked by M4 antagonists and to a lesser degree by M1 antagonists but were insensitive to the antagonists for M2 or M3, suggesting the involvement of M4 and M1 mAChRs in mediating CCh inhibition of firing. CCh enhancement of firing was mediated by membrane depolarization, as a result of postsynaptic inhibition of background K(+) currents. The multiple actions of cholinergic modulation via multiple receptors and ion channels may allow acetylcholine to finely control SCN neuron excitability in different physiological settings.
Collapse
Affiliation(s)
- Jyh-Jeen Yang
- Dept. of Physiology and Pharmacology, Chang Gung University School of Medicine, Kwei-San, Tao-Yuan, Taiwan
| | | | | | | | | |
Collapse
|
39
|
Feliciangeli S, Tardy MP, Sandoz G, Chatelain FC, Warth R, Barhanin J, Bendahhou S, Lesage F. Potassium channel silencing by constitutive endocytosis and intracellular sequestration. J Biol Chem 2009; 285:4798-805. [PMID: 19959478 DOI: 10.1074/jbc.m109.078535] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Tandem of P domains in a weak inwardly rectifying K(+) channel 1 (TWIK1) is a K(+) channel that produces unusually low levels of current. Replacement of lysine 274 by a glutamic acid (K274E) is associated with stronger currents. This mutation would prevent conjugation of a small ubiquitin modifier peptide to Lys-274, a mechanism proposed to be responsible for channel silencing. However, we found no biochemical evidence of TWIK1 sumoylation, and we showed that the conservative change K274R did not increase current, suggesting that K274E modifies TWIK1 gating through a charge effect. Now we rule out an eventual effect of K274E on TWIK1 trafficking, and we provide convincing evidence that TWIK1 silencing results from its rapid retrieval from the cell surface. TWIK1 is internalized via a dynamin-dependent mechanism and addressed to the recycling endosomal compartment. Mutation of a diisoleucine repeat located in its cytoplasmic C terminus (I293A,I294A) stabilizes TWIK1 at the plasma membrane, resulting in robust currents. The effects of I293A,I294A on channel trafficking and of K274E on channel activity are cumulative, promoting even more currents. Activation of serotoninergic receptor 5-HT(1)R or adrenoreceptor alpha2A-AR stimulates TWIK1 but has no effect on TWIK1I293A,I294A, suggesting that G(i) protein activation is a physiological signal for increasing the number of active channels at the plasma membrane.
Collapse
Affiliation(s)
- Sylvain Feliciangeli
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, and Université de Nice Sophia-Antipolis, Sophia-Antipolis, 06560 Valbonne, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Support for the involvement of the KCNK2 gene in major depressive disorder and response to antidepressant treatment. Pharmacogenet Genomics 2009; 19:735-41. [DOI: 10.1097/fpc.0b013e32832cbe61] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Deng PY, Xiao Z, Yang C, Rojanathammanee L, Grisanti L, Watt J, Geiger JD, Liu R, Porter JE, Lei S. GABA(B) receptor activation inhibits neuronal excitability and spatial learning in the entorhinal cortex by activating TREK-2 K+ channels. Neuron 2009; 63:230-43. [PMID: 19640481 DOI: 10.1016/j.neuron.2009.06.022] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 02/23/2009] [Accepted: 06/29/2009] [Indexed: 11/25/2022]
Abstract
The entorhinal cortex (EC) is regarded as the gateway to the hippocampus and thus is essential for learning and memory. Whereas the EC expresses a high density of GABA(B) receptors, the functions of these receptors in this region remain unexplored. Here, we examined the effects of GABA(B) receptor activation on neuronal excitability in the EC and spatial learning. Application of baclofen, a specific GABA(B) receptor agonist, inhibited significantly neuronal excitability in the EC. GABA(B) receptor-mediated inhibition in the EC was mediated via activating TREK-2, a type of two-pore domain K(+) channels, and required the functions of inhibitory G proteins and protein kinase A pathway. Depression of neuronal excitability in the EC underlies GABA(B) receptor-mediated inhibition of spatial learning as assessed by Morris water maze. Our study indicates that GABA(B) receptors exert a tight control over spatial learning by modulating neuronal excitability in the EC.
Collapse
Affiliation(s)
- Pan-Yue Deng
- Department of Pharmacology, Physiology, and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Xiao Z, Deng PY, Yang C, Lei S. Modulation of GABAergic transmission by muscarinic receptors in the entorhinal cortex of juvenile rats. J Neurophysiol 2009; 102:659-69. [PMID: 19494196 DOI: 10.1152/jn.00226.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whereas the entorhinal cortex (EC) receives profuse cholinergic innervations from the basal forebrain and activation of cholinergic receptors has been shown to modulate the activities of the principal neurons and promote the intrinsic oscillations in the EC, the effects of cholinergic receptor activation on GABAergic transmission in this brain region have not been determined. We examined the effects of muscarinic receptor activation on GABA(A) receptor-mediated synaptic transmission in the superficial layers of the EC. Application of muscarine dose-dependently increased the frequency and amplitude of spontaneous inhibitory postsynaptic currents (IPSCs) recorded from the principal neurons in layer II/III via activation of M(3) muscarinic receptors. Muscarine slightly reduced the frequency but had no effects on the amplitude of miniature IPSCs recorded in the presence of tetrodotoxin. Muscarine reduced the amplitude of IPSCs evoked by extracellular field stimulation and by depolarization of GABAergic interneurons in synaptically connected interneuron and pyramidal neuron pairs. Application of muscarine generated membrane depolarization and increased action potential firing frequency but reduced the amplitude of action potentials in GABAergic interneurons. Muscarine-induced depolarization of GABAergic interneurons was mediated by inhibition of background K(+) channels and independent of phospholipase C, intracellular Ca(2+) release, and protein kinase C. Our results demonstrate that activation of muscarinic receptors exerts diverse effects on GABAergic transmission in the EC.
Collapse
Affiliation(s)
- Zhaoyang Xiao
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58203, USA
| | | | | | | |
Collapse
|
43
|
Xiao Z, Deng PY, Rojanathammanee L, Yang C, Grisanti L, Permpoonputtana K, Weinshenker D, Doze VA, Porter JE, Lei S. Noradrenergic depression of neuronal excitability in the entorhinal cortex via activation of TREK-2 K+ channels. J Biol Chem 2009; 284:10980-91. [PMID: 19244246 DOI: 10.1074/jbc.m806760200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The entorhinal cortex is closely associated with the consolidation and recall of memories, Alzheimer disease, schizophrenia, and temporal lobe epilepsy. Norepinephrine is a neurotransmitter that plays a significant role in these physiological functions and neurological diseases. Whereas the entorhinal cortex receives profuse noradrenergic innervations from the locus coeruleus of the pons and expresses high densities of adrenergic receptors, the function of norepinephrine in the entorhinal cortex is still elusive. Accordingly, we examined the effects of norepinephrine on neuronal excitability in the entorhinal cortex and explored the underlying cellular and molecular mechanisms. Application of norepinephrine-generated hyperpolarization and decreased the excitability of the neurons in the superficial layers with no effects on neuronal excitability in the deep layers of the entorhinal cortex. Norepinephrine-induced hyperpolarization was mediated by alpha(2A) adrenergic receptors and required the functions of Galpha(i) proteins, adenylyl cyclase, and protein kinase A. Norepinephrine-mediated depression on neuronal excitability was mediated by activation of TREK-2, a type of two-pore domain K(+) channel, and mutation of the protein kinase A phosphorylation site on TREK-2 channels annulled the effects of norepinephrine. Our results indicate a novel action mode in which norepinephrine depresses neuronal excitability in the entorhinal cortex by disinhibiting protein kinase A-mediated tonic inhibition of TREK-2 channels.
Collapse
Affiliation(s)
- Zhaoyang Xiao
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58203
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kato M, Fukuda T, Wakeno M, Okugawa G, Takekita Y, Watanabe S, Yamashita M, Hosoi Y, Azuma J, Kinoshita T, Serretti A. Effect of 5-HT1A gene polymorphisms on antidepressant response in major depressive disorder. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:115-23. [PMID: 18484082 DOI: 10.1002/ajmg.b.30783] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Variability in antidepressant response is due to genetic and environmental factors. Among genetic factors, the ones controlling for availability of the drug at the target site are interesting candidates. Rs6295C/G SNP in the 5-HT1A gene (HTR1A) has been found to affect the expression and function of HTR1A. In fact rs6295C/G is in strong linkage disequilibrium with other polymorphisms of HTR1A suggesting that those functional effects could be associated with polymorphisms other than or together with the synonymous rs6295C/G. In the present study we examined the possible association of a panel of markers in strong linkage disequilibrium of the HTR1A with SSRI/SNRI response in 137 Japanese major depression subjects followed for 6 weeks. We observed a significant association of better response to antidepressant in rs10042486C/C (P < 0.0001), rs6295G/G (P < 0.0001) and rs1364043T/T (P = 0.018) genotype carriers (minor allele homozygotes), independently from clinical variables. Furthermore minor allele homozygous carriers in all these three SNPs were associated with treatment response by various assessment such as HAM-D score change over time (P = 0.001), week 2 (P < 0.0001), 4 (P = 0.007), and 6 (P = 0.048) as well as response rate (P = 0.0005) and remission rate (P = 0.004). We also pointed out the genotyping mis-definition of rs6295C/G in the previous four articles. In conclusion, this is the first study that reports a significant association of antidepressant response with rs10042486C/T and rs1364043T/G variants of HTR1A and also with rs10042486-rs6295-rs1364043 combination. This finding adds an important information for the pathway of detecting the genetics of antidepressant response even if results must be verified on larger samples.
Collapse
Affiliation(s)
- Masaki Kato
- Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Neuropharmacology of performance monitoring. Neurosci Biobehav Rev 2009; 33:48-60. [DOI: 10.1016/j.neubiorev.2008.08.011] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 08/12/2008] [Accepted: 08/12/2008] [Indexed: 11/23/2022]
|
46
|
Deng PY, Lei S. Serotonin increases GABA release in rat entorhinal cortex by inhibiting interneuron TASK-3 K+ channels. Mol Cell Neurosci 2008; 39:273-84. [PMID: 18687403 DOI: 10.1016/j.mcn.2008.07.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 06/23/2008] [Accepted: 07/08/2008] [Indexed: 11/20/2022] Open
Abstract
Whereas the entorhinal cortex (EC) receives profuse serotonergic innervations from the raphe nuclei in the brain stem and is critically involved in the generation of temporal lobe epilepsy, the function of serotonin (5-hydroxytryptamine, 5-HT) in the EC and particularly its roles in temporal lobe epilepsy are still elusive. Here we explored the cellular and molecular mechanisms underlying 5-HT-mediated facilitation of GABAergic transmission and depression of epileptic activity in the superficial layers of the EC. Application of 5-HT increased sIPSC frequency and amplitude recorded from the principal neurons in the EC with no effects on mIPSCs recorded in the presence of TTX. However, 5-HT reduced the amplitude of IPSCs evoked by extracellular field stimulation and in synaptically connected interneuron and pyramidal neuron pairs. Application of 5-HT generated membrane depolarization and increased action potential firing frequency but reduced the amplitude of action potentials in presynaptic interneurons suggesting that 5-HT still increases GABA release whereas the depressant effects of 5-HT on evoked IPSCs could be explained by 5-HT-induced reduction in action potential amplitude. The depolarizing effect of 5-HT was mediated by inhibition of TASK-3 K(+) channels in interneurons and required the functions of 5-HT(2A) receptors and Galpha(q/11) but was independent of phospholipase C activity. Application of 5-HT inhibited low-Mg(2+)-induced seizure activity in slices via 5-HT(1A) and 5-HT(2A) receptors suggesting that 5-HT-mediated depression of neuronal excitability and increase in GABA release contribute to its anti-epileptic effects in the EC.
Collapse
Affiliation(s)
- Pan-Yue Deng
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | | |
Collapse
|
47
|
Zhong P, Yuen EY, Yan Z. Modulation of neuronal excitability by serotonin-NMDA interactions in prefrontal cortex. Mol Cell Neurosci 2008; 38:290-9. [PMID: 18455431 DOI: 10.1016/j.mcn.2008.03.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 01/24/2008] [Accepted: 03/10/2008] [Indexed: 10/22/2022] Open
Abstract
Both serotonin and NMDA signaling in prefrontal cortex (PFC) are implicated in mental disorders, including depression and anxiety. To understand their potential contributions to PFC neuronal excitability, we examined the effect of co-activation of 5-HT and NMDA receptors on action potential firing elicited by depolarizing current injection in PFC pyramidal neurons. In the presence of NMDA, a low concentration of the 5-HT(1A) agonist 8-OH-DPAT substantially reduced the number of spikes, and a low concentration of the 5-HT(2A/C) agonist alpha-Me-5HT significantly enhanced it, while both agonists were ineffective when applied alone. The 8-OH-DPAT effect on firing was mediated by inhibition of protein kinase A (PKA), whereas the alpha-Me-5HT effect was mediated by activation of protein kinase C (PKC). Moreover, the extracellular signal-regulated kinase (ERK), a signaling molecule downstream of PKA and PKC, was involved in both 5-HT(1A) and 5-HT(2A/C) modulation of neuronal excitability. Biochemical evidence showed that 5-HT(1A) decreased, whereas 5-HT(2A/C) increased the activation of ERK in an NMDA-dependent manner. In animals exposed to acute stress, the enhancing effect of 5-HT(2A/C) on firing was lost, while the decreasing effect of 5-HT(1A) on firing was intact. Concomitantly, the effect of 5-HT(2A/C), but not 5-HT(1A), on ERK activation was abolished in stressed animals. Taken together, our results demonstrate that distinct 5-HT receptor subtypes, by interacting with NMDA receptors, differentially regulate PFC neuronal firing, and the complex effects of 5-HT receptors on excitability are selectively altered under stressful conditions, which are often associated with mental disorders.
Collapse
Affiliation(s)
- Ping Zhong
- Department of Physiology and Biophysics and New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York, Buffalo, NY 14214 USA
| | | | | |
Collapse
|
48
|
Perrier JF, Cotel F. Serotonin differentially modulates the intrinsic properties of spinal motoneurons from the adult turtle. J Physiol 2007; 586:1233-8. [PMID: 18096602 DOI: 10.1113/jphysiol.2007.145706] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This report considers serotonergic (5-HT) effects on spinal motoneurons, reviewing previous data and presenting a new study showing distinct effects of two 5-HT receptor subtypes. We previously investigated the effects of 5-HT on motoneurons in a slice preparation from the spinal cord of the adult turtle. In agreement with previous studies, we had found that 5-HT applied to the extracellular medium promoted a voltage sensitive plateau potential. However, we also reported that this effect was only observed in half of the motoneurons; 5-HT inhibited the firing of the other half of the motoneurons recorded from. To investigate the reasons for this, we applied 5-HT focally by means of the microiontophoresis technique. Facilitation of plateau potentials was observed when 5-HT was released at sites throughout the somatodendritic region. However, motoneurons were inhibited by 5-HT when selectively applied in the perisomatic region. These two effects could be induced in the same motoneuron. With pharmacological tools, we demonstrate here that the facilitation of plateau potentials is mediated by 5-HT(2) receptors and the inhibitory effect is due to the activation of 5-HT(1A/7) receptors.
Collapse
Affiliation(s)
- Jean-François Perrier
- Institute of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark.
| | | |
Collapse
|
49
|
Lei S, Deng PY, Porter JE, Shin HS. Adrenergic facilitation of GABAergic transmission in rat entorhinal cortex. J Neurophysiol 2007; 98:2868-77. [PMID: 17804573 DOI: 10.1152/jn.00679.2007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whereas the entorhinal cortex (EC) receives noradrenergic innervations from the locus coeruleus of the pons and expresses adrenergic receptors, the function of norepinephrine (NE) in the EC is still elusive. We examined the effects of NE on GABA(A) receptor-mediated synaptic transmission in the superficial layers of the EC. Application of NE dose-dependently increased the frequency and amplitude of spontaneous inhibitory postsynaptic currents (IPSCs) recorded from the principal neurons in layer II/III through activation of alpha(1) adrenergic receptors. NE increased the frequency and not the amplitude of miniature IPSCs (mIPSCs) recorded in the presence of TTX, suggesting that NE increases presynaptic GABA release with no effects on postsynaptic GABA(A) receptors. Application of Ca(2+) channel blockers (Cd(2+) and Ni(2+)), omission of Ca(2+) in the extracellular solution, or replacement of extracellular Na(+) with N-methyl-D-glucamine (NMDG) failed to alter NE-induced increase in mIPSC frequency, suggesting that Ca(2+) influx through voltage-gated Ca(2+) or other cationic channels is not required. Application of BAPTA-AM, thapsigargin, and ryanodine did not change NE-induced increase in mIPSC frequency, suggesting that Ca(2+) release from intracellular stores is not necessary for NE-induced increase in GABA release. Whereas alpha(1) receptors are coupled to G(q/11) resulting in activation of the phospholipase C (PLC) pathway, NE-mediated facilitation of GABAergic transmission was independent of PLC, protein kinase C, and tyrosine kinase activities. Our results suggest that NE-mediated facilitation of GABAergic function contributes to its antiepileptic effects in the EC.
Collapse
Affiliation(s)
- Saobo Lei
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA.
| | | | | | | |
Collapse
|