1
|
Bhoi R, Mitra T, Tejaswi K, Manoj V, Ghatak S. Role of Ion Channels in Alzheimer's Disease Pathophysiology. J Membr Biol 2025; 258:187-212. [PMID: 40310500 PMCID: PMC12081594 DOI: 10.1007/s00232-025-00341-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/04/2025] [Indexed: 05/02/2025]
Abstract
Ion channels play an integral role in the normal functioning of the brain. They regulate neuronal electrical properties like synaptic activity, generation of action potentials, maintenance of resting membrane potential and neuronal plasticity, and modulate the physiology of non-neuronal cells like astrocytes and microglia. Dysregulation of ionic homeostasis and channelopathies are associated with various neurological disorders, including Alzheimer's disease (AD). Several families of ion channels are associated with AD pathophysiology and progression. In this review, we outline the current research centered around ion channel dysregulation during AD and discuss briefly the possibility of using ion channels as therapeutic targets.
Collapse
Affiliation(s)
- Ranjit Bhoi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Tuhina Mitra
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Kallam Tejaswi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Vaishnav Manoj
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Swagata Ghatak
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
2
|
Maurya R, Sharma A, Naqvi S. Decoding NLRP3 Inflammasome Activation in Alzheimer's Disease: A Focus on Receptor Dynamics. Mol Neurobiol 2025:10.1007/s12035-025-04918-1. [PMID: 40232645 DOI: 10.1007/s12035-025-04918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/03/2025] [Indexed: 04/16/2025]
Abstract
Alzheimer's disease (AD) is a leading neurodegenerative disorder marked by progressive cognitive decline and significant neuropsychiatric disturbances. Neuroinflammation, mediated by the NLRP3 inflammasome, is increasingly recognized as a critical factor in AD pathogenesis. The NLRP3 inflammasome, a crucial component of the innate immune system, is activated in response to both pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). In AD, amyloid-beta (Aβ) plaques and tau aggregates act as DAMPs, triggering NLRP3 inflammasome activation in microglia and astrocytes. This activation leads to the production of pro-inflammatory cytokines IL-1β and IL-18, contributing to chronic neuroinflammation and neuronal death. This review explores the intricate mechanisms involved in NLRP3 activation, with a particular focus on TREM-2, Msn Kinase MINK, NF-κB, Toll-like receptors, and P2X7 receptors. Understanding these mechanisms offers insight into the multifaceted regulation of the NLRP3 inflammasome and its impact on AD pathology. By elucidating the roles of TREM-2, MINK1, NF-κB, TLRs, and P2X7 receptors, this review highlights potential therapeutic targets for modulating NLRP3 activity. Targeting these pathways could offer novel strategies for mitigating neuroinflammation and slowing the progression of AD. The interplay between these receptors and signaling pathways underscores the complexity of NLRP3 inflammasome regulation and its significance in AD, providing a foundation for future research aimed at developing effective therapeutic interventions.
Collapse
Affiliation(s)
- Ranika Maurya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, UP, 226002, India
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, UP, 226002, India
| | - Saba Naqvi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, UP, 226002, India.
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, UP, 226002, India.
| |
Collapse
|
3
|
Kummer K, Choconta JL, Edenhofer ML, Bajpai A, Dharmalingam G, Kalpachidou T, Collier DA, Kress M. Anxiety-like behavior and altered hippocampal activity in a transgenic mouse model of Fabry disease. Neurobiol Dis 2025; 205:106797. [PMID: 39788162 DOI: 10.1016/j.nbd.2025.106797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/02/2025] [Accepted: 01/05/2025] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Fabry disease (FD) patients are known to be at high risk of developing neuropsychiatric symptoms such as anxiety, depression and cognitive deficits. Despite this, they are underdiagnosed and inadequately treated. It is unknown whether these symptoms arise from pathological glycosphingolipid deposits or from cerebrovascular abnormalities affecting neuronal functions in the central nervous system. We therefore aimed to fill this knowledge gap by exploring a transgenic FD mouse model with a combination of behavior, transcriptomic, functional and morphological assessments, with a particular focus on the hippocampus. RESULTS Male FD mice exhibited increased anxiety-like behavior in the open field test, accompanied by a reduced exploratory drive in the Barnes maze, which could be related to the increased deposition of globotriaosylceramide (Gb3) identified in the dentate gyrus (DG). Hippocampus single-cell sequencing further revealed that Gb3 accumulation was associated with differential gene expression in neuronal and non-neuronal cell populations with granule, excitatory and interneurons, as well as microglia and endothelial cells as the main clusters with the most dysregulated genes. Particularly FD hippocampal neurons showed decreased electrical baseline activity in the DG and increased activity in the CA3 region of acutely dissected hippocampal slices. CONCLUSIONS Our study highlights transcriptional and functional alterations in non-neuronal and neuronal cell clusters in the hippocampus of FD mice, which are suggested to be causally related to anxiety-like behavior developing as a consequence of FD pathology in mouse models of the disease and in patients.
Collapse
Affiliation(s)
- Kai Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Jeiny Luna Choconta
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
4
|
Bernhard FP, Schütte S, Heidenblut M, Oehme M, Rinné S, Decher N. A novel KCNC3 gene variant in the voltage-dependent Kv3.3 channel in an atypical form of SCA13 with dominant central vertigo. Front Cell Neurosci 2024; 18:1441257. [PMID: 39416683 PMCID: PMC11480015 DOI: 10.3389/fncel.2024.1441257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Potassium channel mutations play an important role in neurological diseases, such as spinocerebellar ataxia (SCA). SCA is a heterogeneous autosomal-dominant neurodegenerative disorder with multiple sub-entities, such as SCA13, which is characterized by mutations in the voltage-gated potassium channel Kv3.3 (KCNC3). In this study, we present a rare and atypical case of SCA13 with a predominant episodic central rotational vertigo, while the patient suffered only from mild progressive cerebellar symptoms, such as dysarthria, ataxia of gait and stand, and recently a cognitive impairment. In this patient, we identified a heterozygous variant in KCNC3 (c.2023G > A, p.Glu675Lys) by next-generation sequencing. This Kv3.3E675K variant was studied using voltage-clamp recordings in Xenopus oocytes. While typical SCA13 variants are dominant-negative, show shifts in the voltage-dependence of activation or an altered TBK1 regulation, the Kv3.3E675K variant caused only a reduction in current amplitude and a more pronounced cumulative inactivation. Thus, the differences to phenotypes observed in patients with classical SCA13 mutations may be related to the mechanism of the observed Kv3.3 loss-of-function. Treatment of our patient with riluzole, a drug that is known to also activate potassium channels, turned out to be partly beneficial. Strikingly, we found that the Kv3.3 and Kv3.3E675K inactivation and the frequency-dependent cumulative inactivation was antagonized by increased extracellular potassium levels. Thus, and most importantly, carefully elevated plasma potassium levels in the physiological range, or novel drugs attenuating Kv3.3 inactivation might provide novel therapeutic approaches to rescue potassium currents of SCA13 variants per se. In addition, our findings broaden the phenotypic spectrum of Kv3.3 variants, expanding it to atypical phenotypes of Kv3.3-associated neurological disorders.
Collapse
Affiliation(s)
- Felix P. Bernhard
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Sven Schütte
- Institute for Physiology and Pathophysiology and Center for Mind Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| | - Moritz Heidenblut
- Institute for Physiology and Pathophysiology and Center for Mind Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| | - Moritz Oehme
- Institute for Physiology and Pathophysiology and Center for Mind Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology and Center for Mind Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| | - Niels Decher
- Institute for Physiology and Pathophysiology and Center for Mind Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
5
|
Magliocca G, Esposito E, Tufano M, Piccialli I, Rubino V, Tedeschi V, Sisalli MJ, Carriero F, Ruggiero G, Secondo A, Annunziato L, Scorziello A, Pannaccione A. Involvement of K V3.4 Channel in Parkinson's Disease: A Key Player in the Control of Midbrain and Striatum Differential Vulnerability during Disease Progression? Antioxidants (Basel) 2024; 13:999. [PMID: 39199246 PMCID: PMC11351402 DOI: 10.3390/antiox13080999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disease in the elderly, is characterized by selective loss of dopaminergic neurons and accumulation of α-synuclein (α-syn), mitochondrial dysfunction, Ca2+ dyshomeostasis, and neuroinflammation. Since current treatments for PD merely address symptoms, there is an urgent need to identify the PD pathophysiological mechanisms to develop better therapies. Increasing evidence has identified KV3.4, a ROS-sensitive KV channel carrying fast-inactivating currents, as a potential therapeutic target against neurodegeneration. In fact, it has been hypothesized that KV3.4 channels could play a role in PD etiopathogenesis, controlling astrocytic activation and detrimental pathways in A53T mice, a well-known model of familial PD. Here, we showed that the A53T midbrain, primarily involved in the initial phase of PD pathogenesis, displayed an early upregulation of the KV3.4 channel at 4 months, followed by its reduction at 12 months, compared with age-matched WT. On the other hand, in the A53T striatum, the expression of KV3.4 remained high at 12 months, decreasing thereafter, in 16-month-old mice. The proteomic profile highlighted a different detrimental phenotype in A53T brain areas. In fact, the A53T striatum and midbrain differently expressed neuroprotective/detrimental pathways, with the variation of astrocytic p27kip1, XIAP, and Smac/DIABLO expression. Of note, a switch from protective to detrimental phenotype was characterized by the upregulation of Smac/DIABLO and downregulation of p27kip1 and XIAP. This occurred earlier in the A53T midbrain, at 12 months, compared with the striatum proteomic profile. In accordance, an upregulation of Smac/DIABLO and a downregulation of p27kip1 occurred in the A53T striatum only at 16 months, showing the slowest involvement of this brain area. Of interest, HIF-1α overexpression was associated with the detrimental profile in midbrain and its major vulnerability. At the cellular level, patch-clamp recordings revealed that primary A53T striatum astrocytes showed hyperpolarized resting membrane potentials and lower firing frequency associated with KV3.4 ROS-dependent hyperactivity, whereas primary A53T midbrain astrocytes displayed a depolarized resting membrane potential accompanied by a slight increase of KV3.4 currents. Accordingly, intracellular Ca2+ homeostasis was significantly altered in A53T midbrain astrocytes, in which the ER Ca2+ level was lower than in A53T striatum astrocytes and the respective littermate controls. Collectively, these results suggest that the early KV3.4 overexpression and ROS-dependent hyperactivation in astrocytes could take part in the different vulnerabilities of midbrain and striatum, highlighting astrocytic KV3.4 as a possible new therapeutic target in PD.
Collapse
Affiliation(s)
- Giorgia Magliocca
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy; (G.M.); (E.E.); (M.T.); (I.P.); (V.T.); (A.S.)
| | - Emilia Esposito
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy; (G.M.); (E.E.); (M.T.); (I.P.); (V.T.); (A.S.)
| | - Michele Tufano
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy; (G.M.); (E.E.); (M.T.); (I.P.); (V.T.); (A.S.)
| | - Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy; (G.M.); (E.E.); (M.T.); (I.P.); (V.T.); (A.S.)
| | - Valentina Rubino
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (M.J.S.); (G.R.)
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy; (G.M.); (E.E.); (M.T.); (I.P.); (V.T.); (A.S.)
| | - Maria Jose Sisalli
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (M.J.S.); (G.R.)
| | - Flavia Carriero
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy;
| | - Giuseppina Ruggiero
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (M.J.S.); (G.R.)
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy; (G.M.); (E.E.); (M.T.); (I.P.); (V.T.); (A.S.)
| | | | - Antonella Scorziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy; (G.M.); (E.E.); (M.T.); (I.P.); (V.T.); (A.S.)
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy; (G.M.); (E.E.); (M.T.); (I.P.); (V.T.); (A.S.)
| |
Collapse
|
6
|
Lia A, Di Spiezio A, Vitalini L, Tore M, Puja G, Losi G. Ion Channels and Ionotropic Receptors in Astrocytes: Physiological Functions and Alterations in Alzheimer's Disease and Glioblastoma. Life (Basel) 2023; 13:2038. [PMID: 37895420 PMCID: PMC10608464 DOI: 10.3390/life13102038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
The human brain is composed of nearly one hundred billion neurons and an equal number of glial cells, including macroglia, i.e., astrocytes and oligodendrocytes, and microglia, the resident immune cells of the brain. In the last few decades, compelling evidence has revealed that glial cells are far more active and complex than previously thought. In particular, astrocytes, the most abundant glial cell population, not only take part in brain development, metabolism, and defense against pathogens and insults, but they also affect sensory, motor, and cognitive functions by constantly modulating synaptic activity. Not surprisingly, astrocytes are actively involved in neurodegenerative diseases (NDs) and other neurological disorders like brain tumors, in which they rapidly become reactive and mediate neuroinflammation. Reactive astrocytes acquire or lose specific functions that differently modulate disease progression and symptoms, including cognitive impairments. Astrocytes express several types of ion channels, including K+, Na+, and Ca2+ channels, transient receptor potential channels (TRP), aquaporins, mechanoreceptors, and anion channels, whose properties and functions are only partially understood, particularly in small processes that contact synapses. In addition, astrocytes express ionotropic receptors for several neurotransmitters. Here, we provide an extensive and up-to-date review of the roles of ion channels and ionotropic receptors in astrocyte physiology and pathology. As examples of two different brain pathologies, we focus on Alzheimer's disease (AD), one of the most diffuse neurodegenerative disorders, and glioblastoma (GBM), the most common brain tumor. Understanding how ion channels and ionotropic receptors in astrocytes participate in NDs and tumors is necessary for developing new therapeutic tools for these increasingly common neurological conditions.
Collapse
Affiliation(s)
- Annamaria Lia
- Department Biomedical Science, University of Padova, 35131 Padova, Italy; (A.L.); (A.D.S.)
| | - Alessandro Di Spiezio
- Department Biomedical Science, University of Padova, 35131 Padova, Italy; (A.L.); (A.D.S.)
- Neuroscience Institute (CNR-IN), Padova Section, 35131 Padova, Italy
| | - Lorenzo Vitalini
- Department Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.V.); (G.P.)
| | - Manuela Tore
- Institute of Nanoscience (CNR-NANO), Modena Section, 41125 Modena, Italy;
- Department Biomedical Science, Metabolic and Neuroscience, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giulia Puja
- Department Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.V.); (G.P.)
| | - Gabriele Losi
- Institute of Nanoscience (CNR-NANO), Modena Section, 41125 Modena, Italy;
- Department Biomedical Science, Metabolic and Neuroscience, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
7
|
Alexander TD, Muqeem T, Zhi L, Tymanskyj SR, Covarrubias M. Tunable Action Potential Repolarization Governed by Kv3.4 Channels in Dorsal Root Ganglion Neurons. J Neurosci 2022; 42:8647-8657. [PMID: 36198500 PMCID: PMC9671581 DOI: 10.1523/jneurosci.1210-22.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/01/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022] Open
Abstract
The Kv3.4 channel regulates action potential (AP) repolarization in nociceptors and excitatory synaptic transmission in the spinal cord. We hypothesize that this is a tunable role governed by protein kinase-C-dependent phosphorylation of the Kv3.4 cytoplasmic N-terminal inactivation domain (NTID) at four nonequivalent sites. However, there is a paucity of causation evidence linking the phosphorylation status of Kv3.4 to the properties of the AP. To establish this link, we used adeno-associated viral vectors to specifically manipulate the expression and the effective phosphorylation status of Kv3.4 in cultured dorsal root ganglion (DRG) neurons from mixed-sex rat embryos at embryonic day 18. These vectors encoded GFP (background control), wild-type (WT) Kv3.4, phosphonull (PN) Kv3.4 mutant (PN = S[8,9,15,21]A), phosphomimic (PM) Kv3.4 mutant (PM = S[8,9,15,21]D), and a Kv3.4 nonconducting dominant-negative (DN) pore mutant (DN = W429F). Following viral infection of the DRG neurons, we evaluated transduction efficiency and Kv3.4 expression and function via fluorescence microscopy and patch clamping. All functional Kv3.4 constructs induced current overexpression with similar voltage dependence of activation. However, whereas Kv3.4-WT and Kv3.4-PN induced fast transient currents, the Kv3.4-PM induced currents exhibiting impaired inactivation. In contrast, the Kv3.4-DN abolished the endogenous Kv3.4 current. Consequently, Kv3.4-DN and Kv3.4-PM produced APs with the longest and shortest durations, respectively, whereas Kv3.4-WT and Kv3.4-PN produced intermediate results. Moreover, the AP widths and maximum rates of AP repolarization from these groups are negatively correlated. We conclude that the expression and effective phosphorylation status of the Kv3.4 NTID confer a tunable mechanism of AP repolarization, which may provide exquisite regulation of pain signaling in DRG neurons.SIGNIFICANCE STATEMENT The AP is an all-or-none millisecond-long electrical impulse that encodes information in the frequency and patterns of repetitive firing. However, signaling may also depend on the plasticity and diversity of the AP waveform. For instance, the shape and duration of the AP may regulate nociceptive synaptic transmission between a primary sensory afferent to a secondary neuron in the spinal cord. Here, we used mutants of the Kv3.4 voltage-gated potassium channel to manipulate its expression and effective phosphorylation status in dorsal root ganglion neurons and directly show how the expression and malleable inactivation properties of Kv3.4 govern the AP duration and repolarization rate. These results elucidate a mechanism of neural AP plasticity that may regulate pain signaling.
Collapse
Affiliation(s)
- Tyler D Alexander
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Vicki & Jack Farber Institute of Neuroscience at Jefferson Health, Philadelphia, Pennsylvania 19107
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Tanziyah Muqeem
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Vicki & Jack Farber Institute of Neuroscience at Jefferson Health, Philadelphia, Pennsylvania 19107
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Lianteng Zhi
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Vicki & Jack Farber Institute of Neuroscience at Jefferson Health, Philadelphia, Pennsylvania 19107
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Stephen R Tymanskyj
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Vicki & Jack Farber Institute of Neuroscience at Jefferson Health, Philadelphia, Pennsylvania 19107
- Jefferson Synaptic Biology Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Manuel Covarrubias
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Vicki & Jack Farber Institute of Neuroscience at Jefferson Health, Philadelphia, Pennsylvania 19107
- Jefferson Synaptic Biology Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
8
|
Mechanistic Insights into the Neuroprotective Potential of Sacred Ficus Trees. Nutrients 2022; 14:nu14224731. [PMID: 36432418 PMCID: PMC9695857 DOI: 10.3390/nu14224731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/16/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Ficus religiosa (Bo tree or sacred fig) and Ficus benghalensis (Indian banyan) are of immense spiritual and therapeutic importance. Various parts of these trees have been investigated for their antioxidant, antimicrobial, anticonvulsant, antidiabetic, anti-inflammatory, analgesic, hepatoprotective, dermoprotective, and nephroprotective properties. Previous reviews of Ficus mostly discussed traditional usages, photochemistry, and pharmacological activities, though comprehensive reviews of the neuroprotective potential of these Ficus species extracts and/or their important phytocompounds are lacking. The interesting phytocompounds from these trees include many bengalenosides, carotenoids, flavonoids (leucopelargonidin-3-O-β-d-glucopyranoside, leucopelargonidin-3-O-α-l-rhamnopyranoside, lupeol, cetyl behenate, and α-amyrin acetate), flavonols (kaempferol, quercetin, myricetin), leucocyanidin, phytosterols (bergapten, bergaptol, lanosterol, β-sitosterol, stigmasterol), terpenes (α-thujene, α-pinene, β-pinene, α-terpinene, limonene, β-ocimene, β-bourbonene, β-caryophyllene, α-trans-bergamotene, α-copaene, aromadendrene, α-humulene, alloaromadendrene, germacrene, γ-cadinene, and δ-cadinene), and diverse polyphenols (tannin, wax, saponin, leucoanthocyanin), contributing significantly to their pharmacological effects, ranging from antimicrobial action to neuroprotection. This review presents extensive mechanistic insights into the neuroprotective potential, especially important phytochemicals from F. religiosa and F. benghalensis. Owing to the complex pathophysiology of neurodegenerative disorders (NDDs), the currently existing drugs merely alleviate the symptoms. Hence, bioactive compounds with potent neuroprotective effects through a multitarget approach would be of great interest in developing pharmacophores for the treatment of NDDs.
Collapse
|
9
|
Li XT. The modulation of potassium channels by estrogens facilitates neuroprotection. Front Cell Dev Biol 2022; 10:998009. [PMID: 36393851 PMCID: PMC9643774 DOI: 10.3389/fcell.2022.998009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/11/2022] [Indexed: 08/31/2023] Open
Abstract
Estrogens, the sex hormones, have the potential to govern multiple cellular functions, such as proliferation, apoptosis, differentiation, and homeostasis, and to exert numerous beneficial influences for the cardiovascular system, nervous system, and bones in genomic and/or non-genomic ways. Converging evidence indicates that estrogens serve a crucial role in counteracting neurodegeneration and ischemic injury; they are thereby being considered as a potent neuroprotectant for preventing neurological diseases such as Alzheimer's disease and stroke. The underlying mechanism of neuroprotective effects conferred by estrogens is thought to be complex and multifactorial, and it remains obscure. It is well established that the K+ channels broadly expressed in a variety of neural subtypes determine the essential physiological features of neuronal excitability, and dysfunction of these channels is closely associated with diverse brain deficits, such as ataxia and epilepsy. A growing body of evidence supports a neuroprotective role of K+ channels in malfunctions of nervous tissues, with the channels even being a therapeutic target in clinical trials. As multitarget steroid hormones, estrogens also regulate the activity of distinct K+ channels to generate varying biological actions, and accumulated data delineate that some aspects of estrogen-mediated neuroprotection may arise from the impact on multiple K+ channels, including Kv, BK, KATP, and K2P channels. The response of these K+ channels after acute or chronic exposure to estrogens may oppose pathological abnormality in nervous cells, which serves to extend our understanding of these phenomena.
Collapse
Affiliation(s)
- Xian-Tao Li
- School of Medicine, Guizhou University, Guiyang, China
- Department of Neuroscience, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
10
|
Piccialli I, Sisalli MJ, de Rosa V, Boscia F, Tedeschi V, Secondo A, Pannaccione A. Increased K V2.1 Channel Clustering Underlies the Reduction of Delayed Rectifier K + Currents in Hippocampal Neurons of the Tg2576 Alzheimer's Disease Mouse. Cells 2022; 11:cells11182820. [PMID: 36139395 PMCID: PMC9497218 DOI: 10.3390/cells11182820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the progressive deterioration of cognitive functions. Cortical and hippocampal hyperexcitability intervenes in the pathological derangement of brain activity leading to cognitive decline. As key regulators of neuronal excitability, the voltage-gated K+ channels (KV) might play a crucial role in the AD pathophysiology. Among them, the KV2.1 channel, the main α subunit mediating the delayed rectifier K+ currents (IDR) and controlling the intrinsic excitability of pyramidal neurons, has been poorly examined in AD. In the present study, we investigated the KV2.1 protein expression and activity in hippocampal neurons from the Tg2576 mouse, a widely used transgenic model of AD. To this aim we performed whole-cell patch-clamp recordings, Western blotting, and immunofluorescence analyses. Our Western blotting results reveal that KV2.1 was overexpressed in the hippocampus of 3-month-old Tg2576 mice and in primary hippocampal neurons from Tg2576 mouse embryos compared with the WT counterparts. Electrophysiological experiments unveiled that the whole IDR were reduced in the Tg2576 primary neurons compared with the WT neurons, and that this reduction was due to the loss of the KV2.1 current component. Moreover, we found that the reduction of the KV2.1-mediated currents was due to increased channel clustering, and that glutamate, a stimulus inducing KV2.1 declustering, was able to restore the IDR to levels comparable to those of the WT neurons. These findings add new information about the dysregulation of ionic homeostasis in the Tg2576 AD mouse model and identify KV2.1 as a possible player in the AD-related alterations of neuronal excitability.
Collapse
|
11
|
Olah VJ, Goettemoeller AM, Rayaprolu S, Dammer EB, Seyfried NT, Rangaraju S, Dimidschstein J, Rowan MJM. Biophysical Kv3 channel alterations dampen excitability of cortical PV interneurons and contribute to network hyperexcitability in early Alzheimer's. eLife 2022; 11:75316. [PMID: 35727131 PMCID: PMC9278953 DOI: 10.7554/elife.75316] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
In Alzheimer’s disease (AD), a multitude of genetic risk factors and early biomarkers are known. Nevertheless, the causal factors responsible for initiating cognitive decline in AD remain controversial. Toxic plaques and tangles correlate with progressive neuropathology, yet disruptions in circuit activity emerge before their deposition in AD models and patients. Parvalbumin (PV) interneurons are potential candidates for dysregulating cortical excitability as they display altered action potential (AP) firing before neighboring excitatory neurons in prodromal AD. Here, we report a novel mechanism responsible for PV hypoexcitability in young adult familial AD mice. We found that biophysical modulation of Kv3 channels, but not changes in their mRNA or protein expression, were responsible for dampened excitability in young 5xFAD mice. These K+ conductances could efficiently regulate near-threshold AP firing, resulting in gamma-frequency-specific network hyperexcitability. Thus, biophysical ion channel alterations alone may reshape cortical network activity prior to changes in their expression levels. Our findings demonstrate an opportunity to design a novel class of targeted therapies to ameliorate cortical circuit hyperexcitability in early AD.
Collapse
Affiliation(s)
- Viktor J Olah
- Department of Cell Biology, Emory University, Atlanta, United States
| | | | - Sruti Rayaprolu
- Department of Neurology, Emory University, Atlanta, United States
| | - Eric B Dammer
- Department of Biochemistry, Emory University, Atlanta, United States
| | | | | | | | - Matthew J M Rowan
- Department of Cell Biology, Emory University, Atlanta, United States
| |
Collapse
|
12
|
Piccialli I, Tedeschi V, Caputo L, D’Errico S, Ciccone R, De Feo V, Secondo A, Pannaccione A. Exploring the Therapeutic Potential of Phytochemicals in Alzheimer’s Disease: Focus on Polyphenols and Monoterpenes. Front Pharmacol 2022; 13:876614. [PMID: 35600880 PMCID: PMC9114803 DOI: 10.3389/fphar.2022.876614] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/11/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic, complex neurodegenerative disorder mainly characterized by the irreversible loss of memory and cognitive functions. Different hypotheses have been proposed thus far to explain the etiology of this devastating disorder, including those centered on the Amyloid-β (Aβ) peptide aggregation, Tau hyperphosphorylation, neuroinflammation and oxidative stress. Nonetheless, the therapeutic strategies conceived thus far to treat AD neurodegeneration have proven unsuccessful, probably due to the use of single-target drugs unable to arrest the progressive deterioration of brain functions. For this reason, the theoretical description of the AD etiology has recently switched from over-emphasizing a single deleterious process to considering AD neurodegeneration as the result of different pathogenic mechanisms and their interplay. Moreover, much relevance has recently been conferred to several comorbidities inducing insulin resistance and brain energy hypometabolism, including diabetes and obesity. As consequence, much interest is currently accorded in AD treatment to a multi-target approach interfering with different pathways at the same time, and to life-style interventions aimed at preventing the modifiable risk-factors strictly associated with aging. In this context, phytochemical compounds are emerging as an enormous source to draw on in the search for multi-target agents completing or assisting the traditional pharmacological medicine. Intriguingly, many plant-derived compounds have proven their efficacy in counteracting several pathogenic processes such as the Aβ aggregation, neuroinflammation, oxidative stress and insulin resistance. Many strategies have also been conceived to overcome the limitations of some promising phytochemicals related to their poor pharmacokinetic profiles, including nanotechnology and synthetic routes. Considering the emerging therapeutic potential of natural medicine, the aim of the present review is therefore to highlight the most promising phytochemical compounds belonging to two major classes, polyphenols and monoterpenes, and to report the main findings about their mechanisms of action relating to the AD pathogenesis.
Collapse
Affiliation(s)
- Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Stefano D’Errico
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
- *Correspondence: Anna Pannaccione,
| |
Collapse
|
13
|
Li XT. Alzheimer's disease therapy based on acetylcholinesterase inhibitor/blocker effects on voltage-gated potassium channels. Metab Brain Dis 2022; 37:581-587. [PMID: 35098414 DOI: 10.1007/s11011-022-00921-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/24/2022] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder with progressive loss of memory and other cognitive functions. The pathogenesis of this disease is complex and multifactorial, and remains obscure until now. To enhance the declined level of acetylcholine (ACh) resulting from loss of cholinergic neurons, acetylcholinesterase (AChE) inhibitors are developed and successfully approved for AD treatment in the clinic, with a limited therapeutic effectiveness. At present, it is generally accepted that multi-target strategy is potently useful for designing novel drugs for AD. Accumulated evidence reveals that Kv channels, which are broadly expressed in brain and possess crucial functions in modulating the neuronal activity, are inhibited by several acetylcholinesterase (AChE) inhibitors, such as tacrine, bis(7)-tacrine, donepezil and galantamine. Inhibition of Kv channels by these AChE inhibitors can generate neuroprotective effects by either mitigating Aβ toxicity and neuronal apoptosis, or facilitating cell proliferation. These inhibitory effects provide additional explanations for clinical beneficial effectiveness of AChE inhibitors, meaning that Kv channel is a promising candidate target for novel drugs for AD therapy.
Collapse
Affiliation(s)
- Xian-Tao Li
- Department of Neuroscience, South-Central University for Nationalities, 182 Minyuan Road, Wuhan, 430074, China.
| |
Collapse
|
14
|
Yeap J, Sathyaprakash C, Toombs J, Tulloch J, Scutariu C, Rose J, Burr K, Davies C, Colom-Cadena M, Chandran S, Large CH, Rowan MJM, Gunthorpe MJ, Spires-Jones TL. Reducing voltage-dependent potassium channel Kv3.4 levels ameliorates synapse loss in a mouse model of Alzheimer's disease. Brain Neurosci Adv 2022; 6:23982128221086464. [PMID: 35359460 PMCID: PMC8961358 DOI: 10.1177/23982128221086464] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
Synapse loss is associated with cognitive decline in Alzheimer's disease, and owing to their plastic nature, synapses are an ideal target for therapeutic intervention. Oligomeric amyloid beta around amyloid plaques is known to contribute to synapse loss in mouse models and is associated with synapse loss in human Alzheimer's disease brain tissue, but the mechanisms leading from Aβ to synapse loss remain unclear. Recent data suggest that the fast-activating and -inactivating voltage-gated potassium channel subtype 3.4 (Kv3.4) may play a role in Aβ-mediated neurotoxicity. Here, we tested whether this channel could also be involved in Aβ synaptotoxicity. Using adeno-associated virus and clustered regularly interspaced short palindromic repeats technology, we reduced Kv3.4 expression in neurons of the somatosensory cortex of APP/PS1 mice. These mice express human familial Alzheimer's disease-associated mutations in amyloid precursor protein and presenilin-1 and develop amyloid plaques and plaque-associated synapse loss similar to that observed in Alzheimer's disease brain. We observe that reducing Kv3.4 levels ameliorates dendritic spine loss and changes spine morphology compared to control virus. In support of translational relevance, Kv3.4 protein was observed in human Alzheimer's disease and control brain and is associated with synapses in human induced pluripotent stem cell-derived cortical neurons. We also noted morphological changes in induced pluripotent stem cell neurones challenged with human Alzheimer's disease-derived brain homogenate containing Aβ but, in this in vitro model, total mRNA levels of Kv3.4 were found to be reduced, perhaps as an early compensatory mechanism for Aβ-induced damage. Overall, our results suggest that approaches to reduce Kv3.4 expression and/or function in the Alzheimer's disease brain could be protective against Aβ-induced synaptic alterations.
Collapse
Affiliation(s)
- Jie Yeap
- UK Dementia Research Institute and Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Chaitra Sathyaprakash
- UK Dementia Research Institute and Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Jamie Toombs
- UK Dementia Research Institute and Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Jane Tulloch
- UK Dementia Research Institute and Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Cristina Scutariu
- UK Dementia Research Institute and Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Jamie Rose
- UK Dementia Research Institute and Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Karen Burr
- UK Dementia Research Institute and Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Caitlin Davies
- UK Dementia Research Institute and Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Marti Colom-Cadena
- UK Dementia Research Institute and Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Siddharthan Chandran
- UK Dementia Research Institute and Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Charles H Large
- Autifony Therapeutics Limited, Stevenage Bioscience Catalyst, Stevenage, UK
| | | | - Martin J Gunthorpe
- Autifony Therapeutics Limited, Stevenage Bioscience Catalyst, Stevenage, UK
| | - Tara L Spires-Jones
- UK Dementia Research Institute and Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
15
|
Cammarota M, de Rosa V, Pannaccione A, Secondo A, Tedeschi V, Piccialli I, Fiorino F, Severino B, Annunziato L, Boscia F. Rebound effects of NCX3 pharmacological inhibition: A novel strategy to accelerate myelin formation in oligodendrocytes. Biomed Pharmacother 2021; 143:112111. [PMID: 34481380 DOI: 10.1016/j.biopha.2021.112111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
The Na+/Ca2+ exchanger NCX3 is an important regulator of sodium and calcium homeostasis in oligodendrocyte lineage. To date, no information is available on the effects resulting from prolonged exposure to NCX3 blockers and subsequent drug washout in oligodendroglia. Here, we investigated, by means of biochemical, morphological and functional analyses, the pharmacological effects of the NCX3 inhibitor, the 5-amino-N-butyl-2-(4-ethoxyphenoxy)-benzamide hydrochloride (BED), on NCXs expression and activity, as well as intracellular [Na+]i and [Ca2+]i levels, during treatment and following drug washout both in human MO3.13 oligodendrocytes and rat primary oligodendrocyte precursor cells (OPCs). BED exposure antagonized NCX activity, induced OPCs proliferation and [Na+]i accumulation. By contrast, 2 days of BED washout after 4 days of treatment significantly upregulated low molecular weight NCX3 proteins, reversed NCX activity, and increased intracellular [Ca2+]i. This BED-free effect was accompanied by an upregulation of NCX3 expression in oligodendrocyte processes and accelerated expression of myelin markers in rat primary oligodendrocytes. Collectively, our findings show that the pharmacological inhibition of the NCX3 exchanger with BED blocker maybe followed by a rebound increase in NCX3 expression and reversal activity that accelerate myelin sheet formation in oligodendrocytes. In addition, they indicate that a particular attention should be paid to the use of NCX inhibitors for possible rebound effects, and suggest that further studies will be necessary to investigate whether selective pharmacological modulation of NCX3 exchanger may be exploited to benefit demyelination and remyelination in demyelinating diseases.
Collapse
Affiliation(s)
- Mariarosaria Cammarota
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Valeria de Rosa
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy
| | | | - Beatrice Severino
- Department of Pharmacy, Federico II University of Naples, Naples, Italy
| | | | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy.
| |
Collapse
|
16
|
Vitale P, Salgueiro-Pereira AR, Lupascu CA, Willem M, Migliore R, Migliore M, Marie H. Analysis of Age-Dependent Alterations in Excitability Properties of CA1 Pyramidal Neurons in an APPPS1 Model of Alzheimer's Disease. Front Aging Neurosci 2021; 13:668948. [PMID: 34177555 PMCID: PMC8230571 DOI: 10.3389/fnagi.2021.668948] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/14/2021] [Indexed: 11/29/2022] Open
Abstract
Age-dependent accumulation of amyloid-β, provoking increasing brain amyloidopathy, triggers abnormal patterns of neuron activity and circuit synchronization in Alzheimer’s disease (AD) as observed in human AD patients and AD mouse models. Recent studies on AD mouse models, mimicking this age-dependent amyloidopathy, identified alterations in CA1 neuron excitability. However, these models generally also overexpress mutated amyloid precursor protein (APP) and presenilin 1 (PS1) and there is a lack of a clear correlation of neuronal excitability alterations with progressive amyloidopathy. The active development of computational models of AD points out the need of collecting such experimental data to build a reliable disease model exhibiting AD-like disease progression. We therefore used the feature extraction tool of the Human Brain Project (HBP) Brain Simulation Platform to systematically analyze the excitability profile of CA1 pyramidal neuron in the APPPS1 mouse model. We identified specific features of neuron excitability that best correlate either with over-expression of mutated APP and PS1 or increasing Aβ amyloidopathy. Notably, we report strong alterations in membrane time constant and action potential width and weak alterations in firing behavior. Also, using a CA1 pyramidal neuron model, we evidence amyloidopathy-dependent alterations in Ih. Finally, cluster analysis of these recordings showed that we could reliably assign a trace to its correct group, opening the door to a more refined, less variable analysis of AD-affected neurons. This inter-disciplinary analysis, bringing together experimentalists and modelers, helps to further unravel the neuronal mechanisms most affected by AD and to build a biologically plausible computational model of the AD brain.
Collapse
Affiliation(s)
- Paola Vitale
- Institute of Biophysics, National Research Council, Palermo, Italy
| | | | | | - Michael Willem
- Biomedical Center, Ludwig Maximilian University of Munich, Munich, Germany
| | - Rosanna Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Hélène Marie
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France
| |
Collapse
|
17
|
Piccialli I, Tedeschi V, Caputo L, Amato G, De Martino L, De Feo V, Secondo A, Pannaccione A. The Antioxidant Activity of Limonene Counteracts Neurotoxicity Triggered byAβ 1-42 Oligomers in Primary Cortical Neurons. Antioxidants (Basel) 2021; 10:antiox10060937. [PMID: 34207788 PMCID: PMC8227170 DOI: 10.3390/antiox10060937] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
Many natural-derived compounds, including the essential oils from plants, are investigated to find new potential protective agents in several neurodegenerative disorders such as Alzheimer's disease (AD). In the present study, we tested the neuroprotective effect of limonene, one of the main components of the genus Citrus, against the neurotoxicity elicited by Aβ1-42 oligomers, currently considered a triggering factor in AD. To this aim, we assessed the acetylcholinesterase activity by Ellman's colorimetric method, the mitochondrial dehydrogenase activity by MTT assay, the nuclear morphology by Hoechst 33258, the generation of reactive oxygen species (ROS) by DCFH-DA fluorescent dye, and the electrophysiological activity of KV3.4 potassium channel subunits by patch-clamp electrophysiology. Interestingly, the monoterpene limonene showed a specific activity against acetylcholinesterase with an IC50 almost comparable to that of galantamine, used as positive control. Moreover, at the concentration of 10 µg/mL, limonene counteracted the increase of ROS production triggered by Aβ1-42 oligomers, thus preventing the upregulation of KV3.4 activity. This, in turn, prevented cell death in primary cortical neurons, showing an interesting neuroprotective profile against Aβ1-42-induced toxicity. Collectively, the present results showed that the antioxidant properties of the main component of the genus Citrus, limonene, may be useful to prevent neuronal suffering induced by Aβ1-42 oligomers preventing the hyperactivity of KV3.4.
Collapse
Affiliation(s)
- Ilaria Piccialli
- Department of Neuroscience, Division of Pharmacology, Reproductive and Odontostomatological Sciences, School of Medicine, “Federico II” University of Naples, 80131 Naples, Italy; (I.P.); (V.T.)
| | - Valentina Tedeschi
- Department of Neuroscience, Division of Pharmacology, Reproductive and Odontostomatological Sciences, School of Medicine, “Federico II” University of Naples, 80131 Naples, Italy; (I.P.); (V.T.)
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (L.C.); (G.A.); (L.D.M.); (V.D.F.)
| | - Giuseppe Amato
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (L.C.); (G.A.); (L.D.M.); (V.D.F.)
| | - Laura De Martino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (L.C.); (G.A.); (L.D.M.); (V.D.F.)
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (L.C.); (G.A.); (L.D.M.); (V.D.F.)
| | - Agnese Secondo
- Department of Neuroscience, Division of Pharmacology, Reproductive and Odontostomatological Sciences, School of Medicine, “Federico II” University of Naples, 80131 Naples, Italy; (I.P.); (V.T.)
- Correspondence: (A.S.); (A.P.); Tel.: +39-0817463335 (A.P.)
| | - Anna Pannaccione
- Department of Neuroscience, Division of Pharmacology, Reproductive and Odontostomatological Sciences, School of Medicine, “Federico II” University of Naples, 80131 Naples, Italy; (I.P.); (V.T.)
- Correspondence: (A.S.); (A.P.); Tel.: +39-0817463335 (A.P.)
| |
Collapse
|
18
|
Maqoud F, Scala R, Hoxha M, Zappacosta B, Tricarico D. ATP-sensitive potassium channel subunits in the neuroinflammation: novel drug targets in neurodegenerative disorders. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:130-149. [PMID: 33463481 DOI: 10.2174/1871527320666210119095626] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/07/2020] [Accepted: 08/28/2020] [Indexed: 11/22/2022]
Abstract
Arachidonic acids and its metabolites modulate plenty of ligand-gated, voltage-dependent ion channels, and metabolically regulated potassium channels including ATP-sensitive potassium channels (KATP). KATP channels are hetero-multimeric complexes of sulfonylureas receptors (SUR1, SUR2A or SUR2B) and the pore-forming subunits (Kir6.1 and Kir6.2) likewise expressed in the pre-post synapsis of neurons and inflammatory cells, thereby affecting their proliferation and activity. KATP channels are involved in amyloid-β (Aβ)-induced pathology, therefore emerging as therapeutic targets against Alzheimer's and related diseases. The modulation of these channels can represent an innovative strategy for the treatment of neurodegenerative disorders; nevertheless, the currently available drugs are not selective for brain KATP channels and show contrasting effects. This phenomenon can be a consequence of the multiple physiological roles of the different varieties of KATP channels. Openings of cardiac and muscular KATP channel subunits, is protective against caspase-dependent atrophy in these tissues and some neurodegenerative disorders, whereas in some neuroinflammatory diseases benefits can be obtained through the inhibition of neuronal KATP channel subunits. For example, glibenclamide exerts an anti-inflammatory effect in respiratory, digestive, urological, and central nervous system (CNS) diseases, as well as in ischemia-reperfusion injury associated with abnormal SUR1-Trpm4/TNF-α or SUR1-Trpm4/ Nos2/ROS signaling. Despite this strategy is promising, glibenclamide may have limited clinical efficacy due to its unselective blocking action of SUR2A/B subunits also expressed in cardiovascular apparatus with pro-arrhythmic effects and SUR1 expressed in pancreatic beta cells with hypoglycemic risk. Alternatively, neuronal selective dual modulators showing agonist/antagonist actions on KATP channels can be an option.
Collapse
Affiliation(s)
- Fatima Maqoud
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, via Orabona 4, 70125-I. Italy
| | - Rosa Scala
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, via Orabona 4, 70125-I. Italy
| | - Malvina Hoxha
- Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, "Catholic University Our Lady of Good Counsel", Tirana. Albania
| | - Bruno Zappacosta
- Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, "Catholic University Our Lady of Good Counsel", Tirana. Albania
| | - Domenico Tricarico
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, via Orabona 4, 70125-I. Italy
| |
Collapse
|
19
|
Piccialli I, Tedeschi V, Boscia F, Ciccone R, Casamassa A, de Rosa V, Grieco P, Secondo A, Pannaccione A. The Anemonia sulcata Toxin BDS-I Protects Astrocytes Exposed to Aβ 1-42 Oligomers by Restoring [Ca 2+] i Transients and ER Ca 2+ Signaling. Toxins (Basel) 2020; 13:20. [PMID: 33396295 PMCID: PMC7823622 DOI: 10.3390/toxins13010020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/28/2022] Open
Abstract
Intracellular calcium concentration ([Ca2+]i) transients in astrocytes represent a highly plastic signaling pathway underlying the communication between neurons and glial cells. However, how this important phenomenon may be compromised in Alzheimer's disease (AD) remains unexplored. Moreover, the involvement of several K+ channels, including KV3.4 underlying the fast-inactivating currents, has been demonstrated in several AD models. Here, the effect of KV3.4 modulation by the marine toxin blood depressing substance-I (BDS-I) extracted from Anemonia sulcata has been studied on [Ca2+]i transients in rat primary cortical astrocytes exposed to Aβ1-42 oligomers. We showed that: (1) primary cortical astrocytes expressing KV3.4 channels displayed [Ca2+]i transients depending on the occurrence of membrane potential spikes, (2) BDS-I restored, in a dose-dependent way, [Ca2+]i transients in astrocytes exposed to Aβ1-42 oligomers (5 µM/48 h) by inhibiting hyperfunctional KV3.4 channels, (3) BDS-I counteracted Ca2+ overload into the endoplasmic reticulum (ER) induced by Aβ1-42 oligomers, (4) BDS-I prevented the expression of the ER stress markers including active caspase 12 and GRP78/BiP in astrocytes treated with Aβ1-42 oligomers, and (5) BDS-I prevented Aβ1-42-induced reactive oxygen species (ROS) production and cell suffering measured as mitochondrial activity and lactate dehydrogenase (LDH) release. Collectively, we proposed that the marine toxin BDS-I, by inhibiting the hyperfunctional KV3.4 channels and restoring [Ca2+]i oscillation frequency, prevented Aβ1-42-induced ER stress and cell suffering in astrocytes.
Collapse
Affiliation(s)
- Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, 80131 Napoli, Italy; (I.P.); (V.T.); (F.B.); (R.C.); (A.C.); (V.d.R.)
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, 80131 Napoli, Italy; (I.P.); (V.T.); (F.B.); (R.C.); (A.C.); (V.d.R.)
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, 80131 Napoli, Italy; (I.P.); (V.T.); (F.B.); (R.C.); (A.C.); (V.d.R.)
| | - Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, 80131 Napoli, Italy; (I.P.); (V.T.); (F.B.); (R.C.); (A.C.); (V.d.R.)
| | - Antonella Casamassa
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, 80131 Napoli, Italy; (I.P.); (V.T.); (F.B.); (R.C.); (A.C.); (V.d.R.)
| | - Valeria de Rosa
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, 80131 Napoli, Italy; (I.P.); (V.T.); (F.B.); (R.C.); (A.C.); (V.d.R.)
| | - Paolo Grieco
- Department of Pharmacy, School of Medicine, Federico II Universityof Naples, 80131 Napoli, Italy;
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, 80131 Napoli, Italy; (I.P.); (V.T.); (F.B.); (R.C.); (A.C.); (V.d.R.)
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, 80131 Napoli, Italy; (I.P.); (V.T.); (F.B.); (R.C.); (A.C.); (V.d.R.)
| |
Collapse
|
20
|
Bachmann M, Li W, Edwards MJ, Ahmad SA, Patel S, Szabo I, Gulbins E. Voltage-Gated Potassium Channels as Regulators of Cell Death. Front Cell Dev Biol 2020; 8:611853. [PMID: 33381507 PMCID: PMC7767978 DOI: 10.3389/fcell.2020.611853] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Ion channels allow the flux of specific ions across biological membranes, thereby determining ion homeostasis within the cells. Voltage-gated potassium-selective ion channels crucially contribute to the setting of the plasma membrane potential, to volume regulation and to the physiologically relevant modulation of intracellular potassium concentration. In turn, these factors affect cell cycle progression, proliferation and apoptosis. The present review summarizes our current knowledge about the involvement of various voltage-gated channels of the Kv family in the above processes and discusses the possibility of their pharmacological targeting in the context of cancer with special emphasis on Kv1.1, Kv1.3, Kv1.5, Kv2.1, Kv10.1, and Kv11.1.
Collapse
Affiliation(s)
- Magdalena Bachmann
- Department of Biology, University of Padova, Padua, Italy.,Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Weiwei Li
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Michael J Edwards
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Syed A Ahmad
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Sameer Patel
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padua, Italy.,Consiglio Nazionale delle Ricerche Institute of Neuroscience, Padua, Italy
| | - Erich Gulbins
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States.,Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
21
|
Song MS, Sim HJ, Kang S, Park S, Seo K, Lee SY. Pharmacological inhibition of Kv3 on oxidative stress-induced cataract progression. Biochem Biophys Res Commun 2020; 533:1255-1261. [PMID: 33066958 DOI: 10.1016/j.bbrc.2020.09.138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 09/30/2020] [Indexed: 02/02/2023]
Abstract
Oxidative stress is one of the most important risk factors for cataractogenesis. Previous studies have indicated that BDS-II, a Kv3 channel blocker, plays pivotal roles in oxidative stress-related diseases. This study demonstrates that BDS-II exerts a protective effect on cataractogenesis. Specifically, BDS-II was observed to inhibit lens opacity induced by H2O2. BDS-II was also determined to inhibit cataract progression in a sodium selenite-induced in vivo cataract model by inhibiting reduction of the total GSH. In addition, BDS-II was demonstrated to protect human lens epithelial cells against H2O2-induced cell death. Our results suggest that BDS-II is a potential pharmacological candidate in cataract therapy.
Collapse
Affiliation(s)
- Min Seok Song
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Republic of Korea
| | - Hun Ju Sim
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Republic of Korea
| | - Seonmi Kang
- Department of Veterinary Clinical Sciences and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangwan Park
- Department of Veterinary Clinical Sciences and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kangmoon Seo
- Department of Veterinary Clinical Sciences and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - So Yeong Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Republic of Korea.
| |
Collapse
|
22
|
Chow LWC, Leung YM. The versatile Kv channels in the nervous system: actions beyond action potentials. Cell Mol Life Sci 2020; 77:2473-2482. [PMID: 31894358 PMCID: PMC11104815 DOI: 10.1007/s00018-019-03415-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/16/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022]
Abstract
Voltage-gated K+ (Kv) channel opening repolarizes excitable cells by allowing K+ efflux. Over the last two decades, multiple Kv functions in the nervous system have been found to be unrelated to or beyond the immediate control of excitability, such as shaping action potential contours or regulation of inter-spike frequency. These functions include neuronal exocytosis and neurite formation, neuronal cell death, regulation of astrocyte Ca2+, glial cell and glioma proliferation. Some of these functions have been shown to be independent of K+ conduction, that is, they suggest the non-canonical functions of Kv channels. In this review, we focus on neuronal or glial plasmalemmal Kv channel functions which are unrelated to shaping action potentials or immediate control of excitability. Similar functions in other cell types will be discussed to some extent in appropriate contexts.
Collapse
Affiliation(s)
- Louis W C Chow
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
- UNIMED Medical Institute, Hong Kong, China
- Organisation for Oncology and Translational Research, Hong Kong, China
| | - Yuk- Man Leung
- Department of Physiology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
23
|
Pannaccione A, Piccialli I, Secondo A, Ciccone R, Molinaro P, Boscia F, Annunziato L. The Na +/Ca 2+exchanger in Alzheimer's disease. Cell Calcium 2020; 87:102190. [PMID: 32199208 DOI: 10.1016/j.ceca.2020.102190] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/26/2020] [Accepted: 03/01/2020] [Indexed: 12/19/2022]
Abstract
As a pivotal player in regulating sodium (Na+) and calcium (Ca2+) homeostasis and signalling in excitable cells, the Na+/Ca2+ exchanger (NCX) is involved in many neurodegenerative disorders in which an imbalance of intracellular Ca2+ and/or Na+ concentrations occurs, including Alzheimer's disease (AD). Although NCX has been mainly implicated in neuroprotective mechanisms counteracting Ca2+ dysregulation, several studies highlighted its role in the neuronal responses to intracellular Na+ elevation occurring in several pathophysiological conditions. Since the alteration of Na+ and Ca2+ homeostasis significantly contributes to synaptic dysfunction and neuronal loss in AD, it is of crucial importance to analyze the contribution of NCX isoforms in the homeostatic responses at neuronal and synaptic levels. Some studies found that an increase of NCX activity in brains of AD patients was correlated with neuronal survival, while other research groups found that protein levels of two NCX subtypes, NCX2 and NCX3, were modulated in parietal cortex of late stage AD brains. In particular, NCX2 positive synaptic terminals were increased in AD cohort while the number of NCX3 positive terminals were reduced. In addition, NCX1, NCX2 and NCX3 isoforms were up-regulated in those synaptic terminals accumulating amyloid-beta (Aβ), the neurotoxic peptide responsible for AD neurodegeneration. More recently, the hyperfunction of a specific NCX subtype, NCX3, has been shown to delay endoplasmic reticulum stress and apoptotic neuronal death in hippocampal neurons exposed to Aβ insult. Despite some issues about the functional role of NCX in synaptic failure and neuronal loss require further studies, these findings highlight the putative neuroprotective role of NCX in AD and open new strategies to develop new druggable targets for AD therapy.
Collapse
Affiliation(s)
- Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy.
| | - Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | | |
Collapse
|
24
|
Hu XM, Ren S, Li K, Li XT. Tacrine modulates Kv2.1 channel gene expression and cell proliferation. Int J Neurosci 2020; 130:781-787. [PMID: 31847645 DOI: 10.1080/00207454.2019.1705811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Purpose/Aim: Besides as a cholinesterase (ChE) inhibitor, tacrine is able to act on multiple targets such as nicotinic receptors (nAChRs) and voltage-gated K+ (Kv) channels. Kv2.1, a Kv channel subunit underlying delayed rectifier currents with slow kinetics of inactivation, is highly expressed in the mammalian brain, especially in the hippocampus. Nevertheless, limited data are available concerning the relationship between tacrine and Kv2.1 channels. In the present study, we explore the possible effects of tacrine on Kv2.1 channels in heterologous expression systems and N2A cells.Materials and methods: The change of expression and currents of Kv2.1 after treatment with tacrine was detected by PCR and whole-cell recordings, respectively. WST-8 experiments were performed to reveal the effects of tacrine on cell proliferation.Results: Incubation with tacrine induced a significant reduction of the mRNA level of Kv2.1 channels in HEK293 cells. The decline of corresponding currents carried by Kv2.1 was also observed. Moreover, the proliferation rates of HEK293 cells with Kv2.1 channel were substantially enhanced after treatment with this chemical for 24 h. Similar results were also detected after exposure to tacrine in N2A cells with native expression of Kv2.1 channels.Conclusion: These lines of evidence indicate that application of tacrine downregulates the expression of Kv2.1 channels and increase cell proliferation. The effect of tacrine on Kv2.1 channels may provide an alternative explanation for its neuroprotective action.
Collapse
Affiliation(s)
- Xi-Mu Hu
- Graduate Institute of South-Central University for Nationalities, Wuhan, China
| | - Sheng Ren
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Kai Li
- Graduate Institute of South-Central University for Nationalities, Wuhan, China
| | - Xian-Tao Li
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
25
|
Villa C, Suphesiz H, Combi R, Akyuz E. Potassium channels in the neuronal homeostasis and neurodegenerative pathways underlying Alzheimer's disease: An update. Mech Ageing Dev 2019; 185:111197. [PMID: 31862274 DOI: 10.1016/j.mad.2019.111197] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/27/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023]
Abstract
With more than 80 subunits, potassium (K+) channels represent a group of ion channels showing high degree of diversity and ubiquity. They play important role in the control of membrane depolarization and cell excitability in several tissues, including the brain. Controlling the intracellular and extracellular K+ flow in cells, they also modulate the hormone and neurotransmitter release, apoptosis and cell proliferation. It is therefore not surprising that an improper functioning of K+ channels in neurons has been associated with pathophysiology of a wide range of neurological disorders, especially Alzheimer's disease (AD). This review aims to give a comprehensive overview of the basic properties and pathophysiological functions of the main classes of K+ channels in the context of disease processes, also discussing the progress, challenges and opportunities to develop drugs targeting these channels as potential pharmacological approach for AD treatment.
Collapse
Affiliation(s)
- Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | | | - Romina Combi
- School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - Enes Akyuz
- Yozgat Bozok University, Medical Faculty, Department of Biophysics, Yozgat, Turkey.
| |
Collapse
|
26
|
Abstract
Historically neurodegenerative diseases, Alzheimer's disease (AD) in particular, have been viewed to be primarily caused and driven by neuronal mechanisms. Very recently, due to experimental, genetic, and epidemiologic evidence, immune mechanisms have entered the central stage and are now believed to contribute significantly to risk, onset, and disease progression of this class of disorders. Although immune activation of microglial cells may over time engage various signal transduction pathways, inflammasome activation, which represents a canonical and initiating pathway, seems to be one of the first responses to extracellular β-amyloid (Aβ) accumulation. Here we review the current understanding of inflammasome activation in AD.-Venegas, C., Heneka, M. T. Inflammasome-mediated innate immunity in Alzheimer's disease.
Collapse
Affiliation(s)
- Carmen Venegas
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany.,German Center for Neurodegenerative Disease (DZNE), Bonn, Germany; and.,Department of Infectious Diseases and Immunology, University of Massachussetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
27
|
de Rosa V, Secondo A, Pannaccione A, Ciccone R, Formisano L, Guida N, Crispino R, Fico A, Polishchuk R, D'Aniello A, Annunziato L, Boscia F. D-Aspartate treatment attenuates myelin damage and stimulates myelin repair. EMBO Mol Med 2019; 11:emmm.201809278. [PMID: 30559305 PMCID: PMC6328990 DOI: 10.15252/emmm.201809278] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glutamate signaling may orchestrate oligodendrocyte precursor cell (OPC) development and myelin regeneration through the activation of glutamate receptors at OPC‐neuron synapses. D‐Aspartate is a D‐amino acid exerting modulatory actions at glutamatergic synapses. Chronic administration of D‐Aspartate has been proposed as therapeutic treatment in diseases related to myelin dysfunction and NMDA receptors hypofunction, including schizophrenia and cognitive deficits. Here, we show, by using an in vivo remyelination model, that administration of D‐Aspartate during remyelination improved motor coordination, accelerated myelin recovery, and significantly increased the number of small‐diameter myelinated axons. Chronically administered during demyelination, D‐Aspartate also attenuated myelin loss and inflammation. Interestingly, D‐Aspartate exposure stimulated OPC maturation and accelerated developmental myelination in organotypic cerebellar slices. D‐Aspartate promoting effects on OPC maturation involved the activation of glutamate transporters, AMPA and NMDA receptors, and the Na+/Ca2+ exchanger NCX3. While blocking NMDA or NCX3 significantly prevented D‐Aspartate‐induced [Ca2+]i oscillations, blocking AMPA and glutamate transporters prevented both the initial and oscillatory [Ca2+]i response as well as D‐Aspartate‐induced inward currents in OPC. Our findings reveal that D‐Aspartate treatment may represent a novel strategy for promoting myelin recovery.
Collapse
Affiliation(s)
- Valeria de Rosa
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Luigi Formisano
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | | | - Roberta Crispino
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Annalisa Fico
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Roman Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Antimo D'Aniello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | | | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| |
Collapse
|
28
|
Wang YX, Xia ZH, Jiang X, Li LX, An D, Wang HG, Heng B, Liu YQ. Genistein Inhibits Aβ 25-35-Induced Neuronal Death with Changes in the Electrophysiological Properties of Voltage-Gated Sodium and Potassium Channels. Cell Mol Neurobiol 2019; 39:809-822. [PMID: 31037516 PMCID: PMC11462837 DOI: 10.1007/s10571-019-00680-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 04/25/2019] [Indexed: 01/07/2023]
Abstract
We established a model of Alzheimer's disease in vitro by exposing primary hippocampal neurons of neonatal Wistar rats to the β-Amyloid peptide fragment 25-35, Aβ25-35. We then observed the effects of genistein, a type of soybean isoflavone, on Aβ25-35-incubated hippocampal neuron viability, and the electrophysiological properties of voltage-gated sodium channels (NaV) and potassium channels (KV) in the hippocampal neurons. Aβ25-35 exposure reduced the viability of hippocampal neurons, decreased the peak amplitude of voltage-activated sodium channel currents (INa), and significantly reduced INa at different membrane potentials. Moreover, Aβ25-35 shifted the activation curve toward depolarization, shifted the inactivation curve toward hyperpolarization, and increased the time constant of recovery from inactivation. Aβ25-35 exposure significantly shifted the inactivation curve of transient outward K+ currents (IA) toward hyperpolarization and increased its time constant of recovery from inactivation. In addition, Aβ25-35 significantly decreased the peak density of outward-delayed rectifier potassium channel currents (IDR) and significantly reduced IDR value at different membrane potentials. We found that genistein partially reversed the decrease in hippocampal neuron viability, and the alterations in electrophysiological properties of NaV and KV induced by Aβ25-35. Our results suggest that genistein could inhibit Aβ25-35-induced neuronal damage with changes in the electrophysiological properties of NaV and KV.
Collapse
Affiliation(s)
- Yu-Xiang Wang
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhen-Hong Xia
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xue Jiang
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Li-Xia Li
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Di An
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hong-Gang Wang
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Bin Heng
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yan-Qiang Liu
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
29
|
Ciccone R, Piccialli I, Grieco P, Merlino F, Annunziato L, Pannaccione A. Synthesis and Pharmacological Evaluation of a Novel Peptide Based on Anemonia sulcata BDS-I Toxin as a New K V3.4 Inhibitor Exerting a Neuroprotective Effect Against Amyloid-β Peptide. Front Chem 2019; 7:479. [PMID: 31338361 PMCID: PMC6629785 DOI: 10.3389/fchem.2019.00479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/21/2019] [Indexed: 12/28/2022] Open
Abstract
There is increasing evidence that the fast-inactivating potassium current IA, encoded by KV3. 4 channels, plays an important role in Alzheimer's Disease (AD), since the neurotoxic β-amyloid peptide1-42 (Aβ1-42) increases the IA current triggering apoptotic processes. The specific inhibition of KV3.4 by the marine toxin extracted from Anemonia sulcata, named blood depressing substance-I (BDS-I), reverts the Aβ peptide-induced cell death. The aim of the present study was to identify the smallest fragments of BDS-I, obtained by peptide synthesis, able to inhibit KV3.4 currents. For this purpose, whole-cell patch clamp technique was used to evaluate the effects of BDS-I fragments on KV3.4 currents in CHO cells heterologously expressing KV3.4. We found that BDS-I[1-8] fragment, containing the N-terminal octapeptide sequence of full length BDS-I, was able to inhibit KV3.4 currents in a concentration dependent manner, whereas the scrambled sequence of BDS-I[1-8] and all the other fragments obtained from BDS-I full length were ineffective. As we demonstrated in a previous study, BDS-I full length is able to counteract Aβ1-42-induced enhancement of KV3.4 activity, preventing Aβ1-42-induced caspase-3 activation and the abnormal nuclear morphology in NGF-differentiated PC-12 cells. Similarly to BDS-I, we found that BDS-I[1-8] blocking KV3.4 currents prevented Aβ1-42-induced caspase-3 activation and apoptotic processes. Collectively, these results suggest that BDS-I[1-8] could represent a lead compound to be developed as a new drug targeting KV3.4 channels.
Collapse
Affiliation(s)
- Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Paolo Grieco
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Francesco Merlino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| |
Collapse
|
30
|
Abstract
Parkinson's disease (PD) is predominantly idiopathic in origin, and a large body of evidence indicates that gastrointestinal (GI) dysfunctions are a significant comorbid clinical feature; these dysfunctions include dysphagia, nausea, delayed gastric emptying, and severe constipation, all of which occur commonly before the onset of the well-known motor symptoms of PD. Based on a distinct distribution pattern of Lewy bodies (LB) in the enteric nervous system (ENS) and in the preganglionic neurons of the dorsal motor nucleus of the vagus (DMV), and together with the early onset of GI symptoms, it was suggested that idiopathic PD begins in the ENS and spreads to the central nervous system (CNS), reaching the DMV and the substantia nigra pars compacta (SNpc). These two areas are connected by a recently discovered monosynaptic nigro-vagal pathway, which is dysfunctional in rodent models of PD. An alternative hypothesis downplays the role of LB transport through the vagus nerve and proposes that PD pathology is governed by regional or cell-restricted factors as the leading cause of nigral neuronal degeneration. The purpose of this brief review is to summarize the neuronal electrophysiological findings in the SNpc and DMV in PD.
Collapse
Affiliation(s)
- Cecilia Bove
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine , Hershey, Pennsylvania
| | - R Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine , Hershey, Pennsylvania
| |
Collapse
|
31
|
Huang IY, Hsu YL, Chen CC, Chen MF, Wen ZH, Huang HT, Liu IY. Excavatolide-B Enhances Contextual Memory Retrieval via Repressing the Delayed Rectifier Potassium Current in the Hippocampus. Mar Drugs 2018; 16:md16110405. [PMID: 30366389 PMCID: PMC6266063 DOI: 10.3390/md16110405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 12/18/2022] Open
Abstract
Memory retrieval dysfunction is a symptom of schizophrenia, autism spectrum disorder (ASD), and absence epilepsy (AE), as well as an early sign of Alzheimer’s disease. To date, few drugs have been reported to enhance memory retrieval. Here, we found that a coral-derived natural product, excavatolide-B (Exc-B), enhances contextual memory retrieval in both wild-type and Cav3.2−/− mice via repressing the delayed rectifier potassium current, thus lowering the threshold for action potential initiation and enhancing induction of long-term potentiation (LTP). The human CACNA1H gene encodes a T-type calcium channel (Cav3.2), and its mutation is associated with schizophrenia, ASD, and AE, which are all characterized by abnormal memory function. Our previous publication demonstrated that Cav3.2−/− mice exhibit impaired contextual-associated memory retrieval, whilst their retrieval of spatial memory and auditory cued memory remain intact. The effect of Exc-B on enhancing the retrieval of context-associated memory provides a hope for novel drug development.
Collapse
Affiliation(s)
- Irene Y Huang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan.
| | - Yu-Luan Hsu
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan.
| | - Chien-Chang Chen
- Institute of Biomedical Sciences, Academia Sinica, 128, Academia road, Section 2, Nangang, Taipei 115, Taiwan.
| | - Mei-Fang Chen
- Cardiovascular and Metabolomics Research Center, Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan.
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| | - Hsien-Ting Huang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan.
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan.
| | - Ingrid Y Liu
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan.
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan.
| |
Collapse
|
32
|
Lu JY, Zhu QY, Zhang XX, Zhang FR, Huang WT, Ding XZ, Xia LQ, Luo HQ, Li NB. Directly repurposing waste optical discs with prefabricated nanogrooves as a platform for investigation of cell-substrate interactions and guiding neuronal growth. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 160:273-281. [PMID: 29852430 DOI: 10.1016/j.ecoenv.2018.05.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/08/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
Due to rapid change in information technology, many consumer electronics become electronic waste which is the fastest-growing pollution problems worldwide. In fact, many discarded electronics with prefabricated micro/nanostructures may provide a good basis to fulfill special needs of other fields, such as tissue engineering, biosensors, and energy. Herein, to take waste optical discs as an example, we demonstrate that discarded electronics can be directly repurposed as highly anisotropic platforms for in vitro investigation of cell behaviors, such as cell adhesion, cell alignment, and cell-cell interactions. The PC12 cells cultured on biocompatible DVD polycarbonate layers with flat and grooved morphology show a distinct cell morphology, indicating the topographical cue of nanogrooves plays a key role in guidance of neurites growth. By further monitoring cell morphology and alignment of PC12 cells cultured on the DVD nanogrooves at different differentiation times, we find that cell contact interaction with nanotopographies is dynamically adjustable with differentiation time from initial disorder to final order. This study adds a new dimension to not only solving the problems of supply of materials and fabrication of nanopatterns in neural tissue engineering, but may also offering a new promising way of waste minimization or reuse for environmental protection.
Collapse
Affiliation(s)
- Jiao Yang Lu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Qiu Yan Zhu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Xin Xing Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Fu Rui Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China.
| | - Xue Zhi Ding
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Li Qiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Hong Qun Luo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Nian Bing Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
33
|
β-Secretase BACE1 Promotes Surface Expression and Function of Kv3.4 at Hippocampal Mossy Fiber Synapses. J Neurosci 2018; 38:3480-3494. [PMID: 29507146 DOI: 10.1523/jneurosci.2643-17.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/19/2018] [Accepted: 02/28/2018] [Indexed: 12/16/2022] Open
Abstract
The β-secretase β-site APP-cleaving enzyme 1 (BACE1) is deemed a major culprit in Alzheimer's disease, but accumulating evidence indicates that there is more to the enzyme than driving the amyloidogenic processing of the amyloid precursor protein. For example, BACE1 has emerged as an important regulator of neuronal activity through proteolytic and, most unexpectedly, also through nonproteolytic interactions with several ion channels. Here, we identify and characterize the voltage-gated K+ channel 3.4 (Kv3.4) as a new and functionally relevant interaction partner of BACE1. Kv3.4 gives rise to A-type current with fast activating and inactivating kinetics and serves to repolarize the presynaptic action potential. We found that BACE1 and Kv3.4 are highly enriched and remarkably colocalized in hippocampal mossy fibers (MFs). In BACE1-/- mice of either sex, Kv3.4 surface expression was significantly reduced in the hippocampus and, in synaptic fractions thereof, Kv3.4 was specifically diminished, whereas protein levels of other presynaptic K+ channels such as KCa1.1 and KCa2.3 remained unchanged. The apparent loss of presynaptic Kv3.4 affected the strength of excitatory transmission at the MF-CA3 synapse in hippocampal slices of BACE1-/- mice when probed with the Kv3 channel blocker BDS-I. The effect of BACE1 on Kv3.4 expression and function should be bidirectional, as predicted from a heterologous expression system, in which BACE1 cotransfection produced a concomitant upregulation of Kv3.4 surface level and current based on a physical interaction between the two proteins. Our data show that, by targeting Kv3.4 to presynaptic sites, BACE1 endows the terminal with a powerful means to regulate the strength of transmitter release.SIGNIFICANCE STATEMENT The β-secretase β-site APP-cleaving enzyme 1 (BACE1) is infamous for its crucial role in the pathogenesis of Alzheimer's disease, but its physiological functions in the intact nervous system are only gradually being unveiled. Here, we extend previous work implicating BACE1 in the expression and function of voltage-gated Na+ and K+ channels. Specifically, we characterize voltage-gated K+ channel 3.4 (Kv3.4), a presynaptic K+ channel required for action potential repolarization, as a novel interaction partner of BACE1 at the mossy fiber (MF)-CA3 synapse of the hippocampus. BACE1 promotes surface expression of Kv3.4 at MF terminals, most likely by physically associating with the channel protein in a nonenzymatic fashion. We advance the BACE1-Kv3.4 interaction as a mechanism to strengthen the temporal control over transmitter release from MF terminals.
Collapse
|
34
|
Kaczmarek LK, Zhang Y. Kv3 Channels: Enablers of Rapid Firing, Neurotransmitter Release, and Neuronal Endurance. Physiol Rev 2017; 97:1431-1468. [PMID: 28904001 PMCID: PMC6151494 DOI: 10.1152/physrev.00002.2017] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/24/2017] [Accepted: 05/05/2017] [Indexed: 12/11/2022] Open
Abstract
The intrinsic electrical characteristics of different types of neurons are shaped by the K+ channels they express. From among the more than 70 different K+ channel genes expressed in neurons, Kv3 family voltage-dependent K+ channels are uniquely associated with the ability of certain neurons to fire action potentials and to release neurotransmitter at high rates of up to 1,000 Hz. In general, the four Kv3 channels Kv3.1-Kv3.4 share the property of activating and deactivating rapidly at potentials more positive than other channels. Each Kv3 channel gene can generate multiple protein isoforms, which contribute to the high-frequency firing of neurons such as auditory brain stem neurons, fast-spiking GABAergic interneurons, and Purkinje cells of the cerebellum, and to regulation of neurotransmitter release at the terminals of many neurons. The different Kv3 channels have unique expression patterns and biophysical properties and are regulated in different ways by protein kinases. In this review, we cover the function, localization, and modulation of Kv3 channels and describe how levels and properties of the channels are altered by changes in ongoing neuronal activity. We also cover how the protein-protein interaction of these channels with other proteins affects neuronal functions, and how mutations or abnormal regulation of Kv3 channels are associated with neurological disorders such as ataxias, epilepsies, schizophrenia, and Alzheimer's disease.
Collapse
Affiliation(s)
- Leonard K Kaczmarek
- Departments of Pharmacology and of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Yalan Zhang
- Departments of Pharmacology and of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
35
|
Song MS, Ryu PD, Lee SY. Kv3.4 is modulated by HIF-1α to protect SH-SY5Y cells against oxidative stress-induced neural cell death. Sci Rep 2017; 7:2075. [PMID: 28522852 PMCID: PMC5437029 DOI: 10.1038/s41598-017-02129-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 04/06/2017] [Indexed: 12/14/2022] Open
Abstract
The Kv3.4 channel is characterized by fast inactivation and sensitivity to oxidation. However, the physiological role of Kv3.4 as an oxidation-sensitive channel has yet to be investigated. Here, we demonstrate that Kv3.4 plays a pivotal role in oxidative stress-related neural cell damage as an oxidation-sensitive channel and that HIF-1α down-regulates Kv3.4 function, providing neuroprotection. MPP+ and CoCl2 are reactive oxygen species (ROS)-generating reagents that induce oxidative stress. However, only CoCl2 decreases the expression and function of Kv3.4. HIF-1α, which accumulates in response to CoCl2 treatment, is a key factor in Kv3.4 regulation. In particular, mitochondrial Kv3.4 was more sensitive to CoCl2. Blocking Kv3.4 function using BDS-II, a Kv3.4-specific inhibitor, protected SH-SY5Y cells against MPP+-induced neural cell death. Kv3.4 inhibition blocked MPP+-induced cytochrome c release from the mitochondrial intermembrane space to the cytosol and mitochondrial membrane potential depolarization, which are characteristic features of apoptosis. Our results highlight Kv3.4 as a possible new therapeutic paradigm for oxidative stress-related diseases, including Parkinson’s disease.
Collapse
Affiliation(s)
- Min Seok Song
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Pan Dong Ryu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - So Yeong Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
36
|
Boscia F, Pannaccione A, Ciccone R, Casamassa A, Franco C, Piccialli I, de Rosa V, Vinciguerra A, Di Renzo G, Annunziato L. The expression and activity of K V3.4 channel subunits are precociously upregulated in astrocytes exposed to Aβ oligomers and in astrocytes of Alzheimer's disease Tg2576 mice. Neurobiol Aging 2017; 54:187-198. [PMID: 28390823 DOI: 10.1016/j.neurobiolaging.2017.03.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/12/2022]
Abstract
Astrocyte dysfunction emerges early in Alzheimer's disease (AD) and may contribute to its pathology and progression. Recently, the voltage gated potassium channel KV3.4 subunit, which underlies the fast-inactivating K+ currents, has been recognized to be relevant for AD pathogenesis and is emerging as a new target candidate for AD. In the present study, we investigated both in in vitro and in vivo models of AD the expression and functional activity of KV3.4 potassium channel subunits in astrocytes. In primary astrocytes our biochemical, immunohistochemical, and electrophysiological studies demonstrated a time-dependent upregulation of KV3.4 expression and functional activity after exposure to amyloid-β (Aβ) oligomers. Consistently, astrocytic KV3.4 expression was upregulated in the cerebral cortex, hippocampus, and cerebellum of 6-month-old Tg2576 mice. Further, confocal triple labeling studies revealed that in 6-month-old Tg2576 mice, KV3.4 was intensely coexpressed with Aβ in nonplaque associated astrocytes. Interestingly, in the cortical and hippocampal regions of 12-month-old Tg2576 mice, plaque-associated astrocytes much more intensely expressed KV3.4 subunits, but not Aβ. More important, we evidenced that the selective knockdown of KV3.4 expression significantly downregulated both glial fibrillary acidic protein levels and Aβ trimers in the brain of 6-month-old Tg2576 mice. Collectively, our results demonstrate that the expression and function of KV3.4 channel subunits are precociously upregulated in cultured astrocytes exposed to Aβ oligomers and in reactive astrocytes of AD Tg2576 mice.
Collapse
Affiliation(s)
- Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Antonella Casamassa
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Cristina Franco
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Valeria de Rosa
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Gianfranco Di Renzo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Lucio Annunziato
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy; Fondazione IRCCS SDN, Naples, Italy.
| |
Collapse
|
37
|
Boddum K, Hougaard C, Xiao-Ying Lin J, von Schoubye NL, Jensen HS, Grunnet M, Jespersen T. K v3.1/K v3.2 channel positive modulators enable faster activating kinetics and increase firing frequency in fast-spiking GABAergic interneurons. Neuropharmacology 2017; 118:102-112. [PMID: 28242439 DOI: 10.1016/j.neuropharm.2017.02.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/26/2017] [Accepted: 02/22/2017] [Indexed: 10/20/2022]
Abstract
Due to their fast kinetic properties, Kv3.1 voltage gated potassium channels are important in setting and controlling firing frequency in neurons and pivotal in generating high frequency firing of interneurons. Pharmacological activation of Kv3.1 channels may possess therapeutic potential for treatment of epilepsy, hearing disorders, schizophrenia and cognitive impairments. Here we thoroughly investigate the selectivity and positive modulation of the two small molecules, EX15 and RE01, on Kv3 channels. Selectivity studies, conducted in Xenopus laevis oocytes confirmed a positive modulatory effect of the two compounds on Kv3.1 and to a minor extent on Kv3.2 channels. RE01 had no effect on the Kv3.3 and Kv3.4 channels, whereas EX15 had an inhibitory impact on the Kv3.4 mediated current. Voltage-clamp experiments in monoclonal hKv3.1b/HEK293 cells (34 °C) revealed that the two compounds indeed induced larger currents and faster activation kinetics. They also decrease the speed of deactivation and shifted the voltage dependence of activation, to a more negative activation threshold. Application of action potential clamping and repetitive stimulation protocols of hKv3.1b expressing HEK293 cells revealed that EX15 and RE01 significantly increased peak amplitude, half width and decay time of Kv3.1 mediated currents, even during high-frequency action potential clamping (250 Hz). In rat hippocampal slices, EX15 and RE01 increased neuronal excitability in fast-spiking interneurons in dentate gyrus. Action potential frequency was prominently increased at minor depolarizing steps, whereas more marginal effects of EX15 and RE01 were observed after stronger depolarizations. In conclusion, our results suggest that EX15 and RE01 positive modulation of Kv3.1 and Kv3.2 currents facilitate increased firing frequency in fast-spiking GABAergic interneurons.
Collapse
Affiliation(s)
- Kim Boddum
- Cardiac Physiology Laboratory, University of Copenhagen, Faculty of Health Sciences, Department of Biomedical Sciences, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark.
| | - Charlotte Hougaard
- Synaptic Transmission In vitro, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
| | - Julie Xiao-Ying Lin
- Cardiac Physiology Laboratory, University of Copenhagen, Faculty of Health Sciences, Department of Biomedical Sciences, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Nadia Lybøl von Schoubye
- Cardiac Physiology Laboratory, University of Copenhagen, Faculty of Health Sciences, Department of Biomedical Sciences, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Henrik Sindal Jensen
- Synaptic Transmission In vitro, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
| | - Morten Grunnet
- Synaptic Transmission In vitro, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
| | - Thomas Jespersen
- Cardiac Physiology Laboratory, University of Copenhagen, Faculty of Health Sciences, Department of Biomedical Sciences, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| |
Collapse
|
38
|
Sesti F. Oxidation of K(+) Channels in Aging and Neurodegeneration. Aging Dis 2016; 7:130-5. [PMID: 27114846 PMCID: PMC4809605 DOI: 10.14336/ad.2015.0901] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/01/2015] [Indexed: 01/26/2023] Open
Abstract
Reversible regulation of proteins by reactive oxygen species (ROS) is an important mechanism of neuronal plasticity. In particular, ROS have been shown to act as modulatory molecules of ion channels-which are key to neuronal excitability-in several physiological processes. However ROS are also fundamental contributors to aging vulnerability. When the level of excess ROS increases in the cell during aging, DNA is damaged, proteins are oxidized, lipids are degraded and more ROS are produced, all culminating in significant cell injury. From this arose the idea that oxidation of ion channels by ROS is one of the culprits for neuronal aging. Aging-dependent oxidative modification of voltage-gated potassium (K(+)) channels was initially demonstrated in the nematode Caenorhabditis elegans and more recently in the mammalian brain. Specifically, oxidation of the delayed rectifier KCNB1 (Kv2.1) and of Ca(2+)- and voltage sensitive K(+) channels have been established suggesting that their redox sensitivity contributes to altered excitability, progression of healthy aging and of neurodegenerative disease. Here I discuss the implications that oxidation of K(+) channels by ROS may have for normal aging, as well as for neurodegenerative disease.
Collapse
Affiliation(s)
- Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
39
|
Ping Y, Hahm ET, Waro G, Song Q, Vo-Ba DA, Licursi A, Bao H, Ganoe L, Finch K, Tsunoda S. Linking aβ42-induced hyperexcitability to neurodegeneration, learning and motor deficits, and a shorter lifespan in an Alzheimer's model. PLoS Genet 2015; 11:e1005025. [PMID: 25774758 PMCID: PMC4361604 DOI: 10.1371/journal.pgen.1005025] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/25/2015] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia in the elderly. β-amyloid (Aβ) accumulation in the brain is thought to be a primary event leading to eventual cognitive and motor dysfunction in AD. Aβ has been shown to promote neuronal hyperactivity, which is consistent with enhanced seizure activity in mouse models and AD patients. Little, however, is known about whether, and how, increased excitability contributes to downstream pathologies of AD. Here, we show that overexpression of human Aβ42 in a Drosophila model indeed induces increased neuronal activity. We found that the underlying mechanism involves the selective degradation of the A-type K+ channel, Kv4. An age-dependent loss of Kv4 leads to an increased probability of AP firing. Interestingly, we find that loss of Kv4 alone results in learning and locomotion defects, as well as a shortened lifespan. To test whether the Aβ42-induced increase in neuronal excitability contributes to, or exacerbates, downstream pathologies, we transgenically over-expressed Kv4 to near wild-type levels in Aβ42-expressing animals. We show that restoration of Kv4 attenuated age-dependent learning and locomotor deficits, slowed the onset of neurodegeneration, and partially rescued premature death seen in Aβ42-expressing animals. We conclude that Aβ42-induced hyperactivity plays a critical role in the age-dependent cognitive and motor decline of this Aβ42-Drosophila model, and possibly in AD.
Collapse
Affiliation(s)
- Yong Ping
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Eu-Teum Hahm
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Girma Waro
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Qian Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Dai-An Vo-Ba
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Ashley Licursi
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Han Bao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Logan Ganoe
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Kelly Finch
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Susan Tsunoda
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
40
|
Peers C, Boyle JP. Oxidative modulation of K+ channels in the central nervous system in neurodegenerative diseases and aging. Antioxid Redox Signal 2015; 22:505-21. [PMID: 25333910 DOI: 10.1089/ars.2014.6007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Oxidative stress and damage are well-established components of neurodegenerative diseases, contributing to neuronal death during disease progression. Here, we consider key K(+) channels as target proteins that can undergo oxidative modulation, describe what is understood about how this influences disease progression, and consider regulation of these channels by gasotransmitters as a means of cellular protection. RECENT ADVANCES Oxidative regulation of the delayed rectifier Kv2.1 and the Ca(2+)- and voltage-sensitive BK channel are established, but recent studies contest how their redox sensitivity contributes to altered excitability, progression of neurodegenerative diseases, and healthy aging. CRITICAL ISSUES Both Kv2.1 and BK channels have recently been established as target proteins for regulation by the gasotransmitters carbon monoxide and hydrogen sulfide. Establishing the molecular basis of such regulation, and exactly how this influences excitability and vulnerability to apoptotic cell death will determine whether such regulation can be exploited for therapeutic benefit. FUTURE DIRECTIONS Developing a more comprehensive picture of the oxidative modulation of K(+) channels (and, indeed, other ion channels) within the central nervous system in health and disease will enable us to better understand processes associated with healthy aging as well as distinct processes underlying progression of neurodegenerative diseases. Advances in the growing understanding of how gasotransmitters can regulate ion channels, including redox-sensitive K(+) channels, are a research priority for this field, and will establish their usefulness in design of future approaches for the treatment of such diseases.
Collapse
Affiliation(s)
- Chris Peers
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), Faculty of Medicine and Health, University of Leeds , Leeds, United Kingdom
| | | |
Collapse
|
41
|
Shah NH, Aizenman E. Voltage-gated potassium channels at the crossroads of neuronal function, ischemic tolerance, and neurodegeneration. Transl Stroke Res 2013; 5:38-58. [PMID: 24323720 DOI: 10.1007/s12975-013-0297-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/14/2013] [Accepted: 10/14/2013] [Indexed: 11/29/2022]
Abstract
Voltage-gated potassium (Kv) channels are widely expressed in the central and peripheral nervous system and are crucial mediators of neuronal excitability. Importantly, these channels also actively participate in cellular and molecular signaling pathways that regulate the life and death of neurons. Injury-mediated increased K(+) efflux through Kv2.1 channels promotes neuronal apoptosis, contributing to widespread neuronal loss in neurodegenerative disorders such as Alzheimer's disease and stroke. In contrast, some forms of neuronal activity can dramatically alter Kv2.1 channel phosphorylation levels and influence their localization. These changes are normally accompanied by modifications in channel voltage dependence, which may be neuroprotective within the context of ischemic injury. Kv1 and Kv7 channel dysfunction leads to neuronal hyperexcitability that critically contributes to the pathophysiology of human clinical disorders such as episodic ataxia and epilepsy. This review summarizes the neurotoxic, neuroprotective, and neuroregulatory roles of Kv channels and highlights the consequences of Kv channel dysfunction on neuronal physiology. The studies described in this review thus underscore the importance of normal Kv channel function in neurons and emphasize the therapeutic potential of targeting Kv channels in the treatment of a wide range of neurological diseases.
Collapse
Affiliation(s)
- Niyathi Hegde Shah
- Department of Neurobiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, E1456 BST, Pittsburgh, PA, 15261, USA,
| | | |
Collapse
|
42
|
Campolongo P, Ratano P, Ciotti MT, Florenzano F, Nori SL, Marolda R, Palmery M, Rinaldi AM, Zona C, Possenti R, Calissano P, Severini C. Systemic administration of substance P recovers beta amyloid-induced cognitive deficits in rat: involvement of Kv potassium channels. PLoS One 2013; 8:e78036. [PMID: 24265678 PMCID: PMC3827079 DOI: 10.1371/journal.pone.0078036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/16/2013] [Indexed: 11/18/2022] Open
Abstract
Reduced levels of Substance P (SP), an endogenous neuropeptide endowed with neuroprotective and anti-apoptotic properties, have been found in brain and spinal fluid of Alzheimer's disease (AD) patients. Potassium (K(+)) channel dysfunction is implicated in AD development and the amyloid-β (Aβ)-induced up-regulation of voltage-gated potassium channel subunits could be considered a significant step in Aβ brain toxicity. The aim of this study was to evaluate whether SP could reduce, in vivo, Aβ-induced overexpression of Kv subunits. Rats were intracerebroventricularly infused with amyloid-β 25-35 (Aβ25-35, 20 µg) peptide. SP (50 µg/Kg, i.p.) was daily administered, for 7 days starting from the day of the surgery. Here we demonstrate that the Aβ infused rats showed impairment in cognitive performances in the Morris water maze task 4 weeks after Aβ25-35 infusion and that this impairing effect was prevented by SP administration. Kv1.4, Kv2.1 and Kv4.2 subunit levels were quantified in hippocampus and in cerebral cortex by Western blot analysis and immunofluorescence. Interestingly, SP reduced Kv1.4 levels overexpressed by Aβ, both in hippocampus and cerebral cortex. Our findings provide in vivo evidence for a neuroprotective activity of systemic administration of SP in a rat model of AD and suggest a possible mechanism underlying this effect.
Collapse
Affiliation(s)
- Patrizia Campolongo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Patrizia Ratano
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | | | - Fulvio Florenzano
- Institute of Cell Biology and Neurobiology, CNR, Rome, Italy
- European Brain Research Institute, Rome, Italy
| | - Stefania Lucia Nori
- Department of Medicine and Surgery, University of Salerno Medicine Campus, Baronissi (SA), Italy
| | - Roberta Marolda
- Institute of Cell Biology and Neurobiology, CNR, Rome, Italy
| | - Maura Palmery
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Anna Maria Rinaldi
- Department of Neuroscience, University of Rome “Tor Vergata”, Rome, Italy
| | - Cristina Zona
- Department of Neuroscience, University of Rome “Tor Vergata”, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Roberta Possenti
- Department of Neuroscience, University of Rome “Tor Vergata”, Rome, Italy
| | | | - Cinzia Severini
- Institute of Cell Biology and Neurobiology, CNR, Rome, Italy
- * E-mail:
| |
Collapse
|
43
|
Liu H, Liu J, Liang S, Xiong H. Plasma gelsolin protects HIV-1 gp120-induced neuronal injury via voltage-gated K+ channel Kv2.1. Mol Cell Neurosci 2013. [DOI: 10.1016/j.mcn.2013.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
44
|
Evidence of accelerated evolution and ectodermal-specific expression of presumptive BDS toxin cDNAs from Anemonia viridis. Mar Drugs 2013; 11:4213-31. [PMID: 24177670 PMCID: PMC3853724 DOI: 10.3390/md11114213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/10/2013] [Accepted: 09/13/2013] [Indexed: 12/14/2022] Open
Abstract
Anemonia viridis is a widespread and extensively studied Mediterranean species of sea anemone from which a large number of polypeptide toxins, such as blood depressing substances (BDS) peptides, have been isolated. The first members of this class, BDS-1 and BDS-2, are polypeptides belonging to the β-defensin fold family and were initially described for their antihypertensive and antiviral activities. BDS-1 and BDS-2 are 43 amino acid peptides characterised by three disulfide bonds that act as neurotoxins affecting Kv3.1, Kv3.2 and Kv3.4 channel gating kinetics. In addition, BDS-1 inactivates the Nav1.7 and Nav1.3 channels. The development of a large dataset of A. viridis expressed sequence tags (ESTs) and the identification of 13 putative BDS-like cDNA sequences has attracted interest, especially as scientific and diagnostic tools. A comparison of BDS cDNA sequences showed that the untranslated regions are more conserved than the protein-coding regions. Moreover, the KA/KS ratios calculated for all pairwise comparisons showed values greater than 1, suggesting mechanisms of accelerated evolution. The structures of the BDS homologs were predicted by molecular modelling. All toxins possess similar 3D structures that consist of a triple-stranded antiparallel β-sheet and an additional small antiparallel β-sheet located downstream of the cleavage/maturation site; however, the orientation of the triple-stranded β-sheet appears to differ among the toxins. To characterise the spatial expression profile of the putative BDS cDNA sequences, tissue-specific cDNA libraries, enriched for BDS transcripts, were constructed. In addition, the proper amplification of ectodermal or endodermal markers ensured the tissue specificity of each library. Sequencing randomly selected clones from each library revealed ectodermal-specific expression of ten BDS transcripts, while transcripts of BDS-8, BDS-13, BDS-14 and BDS-15 failed to be retrieved, likely due to under-representation in our cDNA libraries. The calculation of the relative abundance of BDS transcripts in the cDNA libraries revealed that BDS-1, BDS-3, BDS-4, BDS-5 and BDS-6 are the most represented transcripts.
Collapse
|
45
|
Sachse CC, Kim YH, Agsten M, Huth T, Alzheimer C, Kovacs DM, Kim DY. BACE1 and presenilin/γ-secretase regulate proteolytic processing of KCNE1 and 2, auxiliary subunits of voltage-gated potassium channels. FASEB J 2013; 27:2458-67. [PMID: 23504710 DOI: 10.1096/fj.12-214056] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACE1 and presenilin (PS)/γ-secretase play a major role in Alzheimer's disease pathogenesis by regulating amyloid-β peptide generation. We recently showed that these secretases also regulate the processing of voltage-gated sodium channel auxiliary β-subunits and thereby modulate membrane excitability. Here, we report that KCNE1 and KCNE2, auxiliary subunits of voltage-gated potassium channels, undergo sequential cleavage mediated by either α-secretase and PS/γ-secretase or BACE1 and PS/γ-secretase in cells. Elevated α-secretase or BACE1 activities increased C-terminal fragment (CTF) levels of KCNE1 and 2 in human embryonic kidney (HEK293T) and rat neuroblastoma (B104) cells. KCNE-CTFs were then further processed by PS/γ-secretase to KCNE intracellular domains. These KCNE cleavages were specifically blocked by chemical inhibitors of the secretases in the same cell models. We also verified our results in mouse cardiomyocytes and cultured primary neurons. Endogenous KCNE1- and KCNE2-CTF levels increased by 2- to 4-fold on PS/γ-secretase inhibition or BACE1 overexpression in these cells. Furthermore, the elevated BACE1 activity increased KCNE1 processing and shifted KCNE1/KCNQ1 channel activation curve to more positive potentials in HEK cells. KCNE1/KCNQ1 channel is a cardiac potassium channel complex, and the positive shift would lead to a decrease in membrane repolarization during cardiac action potential. Together, these results clearly showed that KCNE1 and KCNE2 cleavages are regulated by BACE1 and PS/γ-secretase activities under physiological conditions. Our results also suggest a functional role of KCNE cleavage in regulating voltage-gated potassium channels.
Collapse
Affiliation(s)
- Carolyn C Sachse
- Neurobiology of Disease Laboratory, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Solntseva EI, Bukanova JV, Skrebitsky VG. Donepezil in low micromolar concentrations modulates voltage-gated potassium currents in pyramidal neurons of rat hippocampus. Biochem Biophys Res Commun 2013; 430:1066-71. [DOI: 10.1016/j.bbrc.2012.12.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/08/2012] [Indexed: 02/05/2023]
|
47
|
Wykes R, Kalmbach A, Eliava M, Waters J. Changes in the physiology of CA1 hippocampal pyramidal neurons in preplaque CRND8 mice. Neurobiol Aging 2012; 33:1609-23. [PMID: 21676499 PMCID: PMC3175257 DOI: 10.1016/j.neurobiolaging.2011.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/19/2011] [Accepted: 05/03/2011] [Indexed: 12/16/2022]
Abstract
Amyloid-β protein (Aβ) is thought to play a central pathogenic role in Alzheimer's disease. Aβ can impair synaptic transmission, but little is known about the effects of Aβ on intrinsic cellular properties. Here we compared the cellular properties of CA1 hippocampal pyramidal neurons in acute slices from preplaque transgenic (Tg+) CRND8 mice and wild-type (Tg-) littermates. CA1 pyramidal neurons from Tg+ mice had narrower action potentials with faster decays than neurons from Tg- littermates. Action potential-evoked intracellular Ca(2+) transients in the apical dendrite were smaller in Tg+ than in Tg- neurons. Resting calcium concentration was higher in Tg+ than in Tg- neurons. The difference in action potential waveform was eliminated by low concentrations of tetraethylammonium ions and of 4-aminopyridine, implicating a fast delayed-rectifier potassium current. Consistent with this suggestion, there was a small increase in immunoreactivity for Kv3.1b in stratum radiatum in Tg+ mice. These changes in intrinsic properties may affect information flow through the hippocampus and contribute to the behavioral deficits observed in mouse models and patients with early-stage Alzheimer's disease.
Collapse
Affiliation(s)
- Robert Wykes
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611
| | - Abigail Kalmbach
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611
| | - Marina Eliava
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611
| | - Jack Waters
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611
| |
Collapse
|
48
|
Alonso E, Fuwa H, Vale C, Suga Y, Goto T, Konno Y, Sasaki M, LaFerla FM, Vieytes MR, Giménez-Llort L, Botana LM. Design and synthesis of skeletal analogues of gambierol: attenuation of amyloid-β and tau pathology with voltage-gated potassium channel and N-methyl-D-aspartate receptor implications. J Am Chem Soc 2012; 134:7467-79. [PMID: 22475455 DOI: 10.1021/ja300565t] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gambierol is a potent neurotoxin that belongs to the family of marine polycyclic ether natural products and primarily targets voltage-gated potassium channels (K(v) channels) in excitable membranes. Previous work in the chemistry of marine polycyclic ethers has suggested the critical importance of the full length of polycyclic ether skeleton for potent biological activity. Although we have previously investigated structure-activity relationships (SARs) of the peripheral functionalities of gambierol, it remained unclear whether the whole polycyclic ether skeleton is needed for its cellular activity. In this work, we designed and synthesized two truncated skeletal analogues of gambierol comprising the EFGH- and BCDEFGH-rings of the parent compound, both of which surprisingly showed similar potency to gambierol on voltage-gated potassium channels (K(v)) inhibition. Moreover, we examined the effect of these compounds in an in vitro model of Alzheimer's disease (AD) obtained from triple transgenic (3xTg-AD) mice, which expresses amyloid beta (Aβ) accumulation and tau hyperphosphorylation. In vitro preincubation of the cells with the compounds resulted in significant inhibition of K(+) currents, a reduction in the extra- and intracellular levels of Aβ, and a decrease in the levels of hyperphosphorylated tau. In addition, pretreatment with these compounds reduced the steady-state level of the N-methyl-D-aspartate (NMDA) receptor subunit 2A without affecting the 2B subunit. The involvement of glutamate receptors was further suggested by the blockage of the effect of gambierol on tau hyperphosphorylation by glutamate receptor antagonists. The present study constitutes the first discovery of skeletally simplified, designed polycyclic ethers with potent cellular activity and demonstrates the utility of gambierol and its synthetic analogues as chemical probes for understanding the function of K(v) channels as well as the molecular mechanism of Aβ metabolism modulated by NMDA receptors.
Collapse
Affiliation(s)
- Eva Alonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Solntseva EI, Bukanova JV, Marchenko EV, Skrebitsky VG. Impact of amyloid-β peptide (1-42) on voltage-gated ion currents in molluscan neurons. Bull Exp Biol Med 2012; 151:671-4. [PMID: 22485204 DOI: 10.1007/s10517-011-1412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Different types of voltage-gated ion currents were recorded in isolated neurons of snail Helix pomatia using the two-microelectrode voltage-clamp technique. Application of amyloid-β peptide (1-42, 1-10 μM) in the bathing solution did not change delayed rectifier K(+)-current and leakage current, but enhanced inactivation of Ca(2+)-current and blocked Ca(2+)-dependent K(+)-current.
Collapse
Affiliation(s)
- E I Solntseva
- Research Center of Neurology, Russian Academy of Medical Sciences, Moscow, Russia.
| | | | | | | |
Collapse
|
50
|
Liu P, Jo S, Bean BP. Modulation of neuronal sodium channels by the sea anemone peptide BDS-I. J Neurophysiol 2012; 107:3155-67. [PMID: 22442564 DOI: 10.1152/jn.00785.2011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Blood-depressing substance I (BDS-I), a 43 amino-acid peptide from sea anemone venom, is used as a specific inhibitor of Kv3-family potassium channels. We found that BDS-I acts with even higher potency to modulate specific types of voltage-dependent sodium channels. In rat dorsal root ganglion (DRG) neurons, 3 μM BDS-I strongly enhanced tetrodotoxin (TTX)-sensitive sodium current but weakly inhibited TTX-resistant sodium current. In rat superior cervical ganglion (SCG) neurons, which express only TTX-sensitive sodium current, BDS-I enhanced current elicited by small depolarizations and slowed decay of currents at all voltages (EC(50) ∼ 300 nM). BDS-I acted with exceptionally high potency and efficacy on cloned human Nav1.7 channels, slowing inactivation by 6-fold, with an EC(50) of approximately 3 nM. BDS-I also slowed inactivation of sodium currents in N1E-115 neuroblastoma cells (mainly from Nav1.3 channels), with an EC(50) ∼ 600 nM. In hippocampal CA3 pyramidal neurons (mouse) and cerebellar Purkinje neurons (mouse and rat), BDS-I had only small effects on current decay (slowing inactivation by 20-50%), suggesting relatively weak sensitivity of Nav1.1 and Nav1.6 channels. The biggest effect of BDS-I in central neurons was to enhance resurgent current in Purkinje neurons, an effect reflected in enhancement of sodium current during the repolarization phase of Purkinje neuron action potentials. Overall, these results show that BDS-I acts to modulate sodium channel gating in a manner similar to previously known neurotoxin receptor site 3 anemone toxins but with different isoform sensitivity. Most notably, BDS-I acts with very high potency on human Nav1.7 channels.
Collapse
Affiliation(s)
- Pin Liu
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|