1
|
Bijata M, Wirth A, Wlodarczyk J, Ponimaskin E. The interplay of serotonin 5-HT1A and 5-HT7 receptors in chronic stress. J Cell Sci 2024; 137:jcs262219. [PMID: 39279505 PMCID: PMC11491811 DOI: 10.1242/jcs.262219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024] Open
Abstract
Serotonin regulates multiple physiological and pathological processes in the brain, including mood and cognition. The serotonin receptors 5-HT1AR (also known as HTR1A) and 5-HT7R (also known as HTR7) have emerged as key players in stress-related disorders, particularly depression. These receptors can form heterodimers, which influence their functions. Here, we explored the developmental dynamics of 5-HT1AR and 5-HT7R expression and validated heterodimerization levels in the brain of control and stressed mice. In control animals, we found that there was an increase in 5-HT1AR expression over 5-HT7R in the prefrontal cortex (PFC) and hippocampus during development. Using a chronic unpredictable stress as a depression model, we found an increase in 5-HT7R expression exclusively in the PFC of resilient animals, whereas no changes in 5-HT1AR expression between control and anhedonic mice were obtained. Quantitative in situ analysis of heterodimerization revealed the PFC as the region exhibiting the highest abundance of 5-HT1AR-5-HT7R heterodimers. More importantly, upon chronic stress, the amount of heterodimers was significantly reduced only in PFC of anhedonic mice, whereas it was not affected in resilient animals. These results suggest an important role of brain-region-specific 5-HT1AR-5-HT7R heterodimerization for establishing depressive-like behaviour and for development of resiliency.
Collapse
Affiliation(s)
- Monika Bijata
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Alexander Wirth
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Jakub Wlodarczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
2
|
Kalinichenko L, Kornhuber J, Sinning S, Haase J, Müller CP. Serotonin Signaling through Lipid Membranes. ACS Chem Neurosci 2024; 15:1298-1320. [PMID: 38499042 PMCID: PMC10995955 DOI: 10.1021/acschemneuro.3c00823] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
Serotonin (5-HT) is a vital modulatory neurotransmitter responsible for regulating most behaviors in the brain. An inefficient 5-HT synaptic function is often linked to various mental disorders. Primarily, membrane proteins controlling the expression and activity of 5-HT synthesis, storage, release, receptor activation, and inactivation are critical to 5-HT signaling in synaptic and extra-synaptic sites. Moreover, these signals represent information transmission across membranes. Although the lipid membrane environment is often viewed as fairly stable, emerging research suggests significant functional lipid-protein interactions with many synaptic 5-HT proteins. These protein-lipid interactions extend to almost all the primary lipid classes that form the plasma membrane. Collectively, these lipid classes and lipid-protein interactions affect 5-HT synaptic efficacy at the synapse. The highly dynamic lipid composition of synaptic membranes suggests that these lipids and their interactions with proteins may contribute to the plasticity of the 5-HT synapse. Therefore, this broader protein-lipid model of the 5-HT synapse necessitates a reconsideration of 5-HT's role in various associated mental disorders.
Collapse
Affiliation(s)
- Liubov
S. Kalinichenko
- Department
of Psychiatry and Psychotherapy, University
Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Johannes Kornhuber
- Department
of Psychiatry and Psychotherapy, University
Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Steffen Sinning
- Department
of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Jana Haase
- School
of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Christian P. Müller
- Department
of Psychiatry and Psychotherapy, University
Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
- Institute
of Psychopharmacology, Central Institute of Mental Health, Medical
Faculty Mannheim, Heidelberg University, 69047, Mannheim, Germany
| |
Collapse
|
3
|
Chalhoub G, McCormick PJ. Palmitoylation and G-protein coupled receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 193:195-211. [PMID: 36357078 DOI: 10.1016/bs.pmbts.2022.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
More and more it is being appreciated that not all GPCRs are the same, sub-populations of GPCRs exist within a cell and function differently than others. The question is, how does one regulate a given sub-population? One way is through the addition of post-translational modifications to G-protein coupled receptors (GPCR). This process has long been known to occur and play a role in trafficking, pharmacology and ultimately function. This chapter will focus on one particular modification, that of S-palmitoylation, and its impact on GPCR function. We will discuss the history of this modification on these receptors and the connection with disease. We will highlight several examples from the literature of where palmitoylation impacts GPCR function.
Collapse
Affiliation(s)
- Georges Chalhoub
- Department of Endocrinology, Queen Mary University of London, London, United Kingdom
| | - Peter J McCormick
- Department of Endocrinology, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
4
|
Patwardhan A, Cheng N, Trejo J. Post-Translational Modifications of G Protein-Coupled Receptors Control Cellular Signaling Dynamics in Space and Time. Pharmacol Rev 2021; 73:120-151. [PMID: 33268549 PMCID: PMC7736832 DOI: 10.1124/pharmrev.120.000082] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family comprising >800 signaling receptors that regulate numerous cellular and physiologic responses. GPCRs have been implicated in numerous diseases and represent the largest class of drug targets. Although advances in GPCR structure and pharmacology have improved drug discovery, the regulation of GPCR function by diverse post-translational modifications (PTMs) has received minimal attention. Over 200 PTMs are known to exist in mammalian cells, yet only a few have been reported for GPCRs. Early studies revealed phosphorylation as a major regulator of GPCR signaling, whereas later reports implicated a function for ubiquitination, glycosylation, and palmitoylation in GPCR biology. Although our knowledge of GPCR phosphorylation is extensive, our knowledge of the modifying enzymes, regulation, and function of other GPCR PTMs is limited. In this review we provide a comprehensive overview of GPCR post-translational modifications with a greater focus on new discoveries. We discuss the subcellular location and regulatory mechanisms that control post-translational modifications of GPCRs. The functional implications of newly discovered GPCR PTMs on receptor folding, biosynthesis, endocytic trafficking, dimerization, compartmentalized signaling, and biased signaling are also provided. Methods to detect and study GPCR PTMs as well as PTM crosstalk are further highlighted. Finally, we conclude with a discussion of the implications of GPCR PTMs in human disease and their importance for drug discovery. SIGNIFICANCE STATEMENT: Post-translational modification of G protein-coupled receptors (GPCRs) controls all aspects of receptor function; however, the detection and study of diverse types of GPCR modifications are limited. A thorough understanding of the role and mechanisms by which diverse post-translational modifications regulate GPCR signaling and trafficking is essential for understanding dysregulated mechanisms in disease and for improving and refining drug development for GPCRs.
Collapse
Affiliation(s)
- Anand Patwardhan
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - Norton Cheng
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - JoAnn Trejo
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
5
|
Attenuated palmitoylation of serotonin receptor 5-HT1A affects receptor function and contributes to depression-like behaviors. Nat Commun 2019; 10:3924. [PMID: 31477731 PMCID: PMC6718429 DOI: 10.1038/s41467-019-11876-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 07/24/2019] [Indexed: 12/20/2022] Open
Abstract
The serotonergic system and in particular serotonin 1A receptor (5-HT1AR) are implicated in major depressive disorder (MDD). Here we demonstrated that 5-HT1AR is palmitoylated in human and rodent brains, and identified ZDHHC21 as a major palmitoyl acyltransferase, whose depletion reduced palmitoylation and consequently signaling functions of 5-HT1AR. Two rodent models for depression-like behavior show reduced brain ZDHHC21 expression and attenuated 5-HT1AR palmitoylation. Moreover, selective knock-down of ZDHHC21 in the murine forebrain induced depression-like behavior. We also identified the microRNA miR-30e as a negative regulator of Zdhhc21 expression. Through analysis of the post-mortem brain samples in individuals with MDD that died by suicide we find that miR-30e expression is increased, while ZDHHC21 expression, as well as palmitoylation of 5-HT1AR, are reduced within the prefrontal cortex. Our study suggests that downregulation of 5-HT1AR palmitoylation is a mechanism involved in depression, making the restoration of 5-HT1AR palmitoylation a promising clinical strategy for the treatment of MDD. Palmitoylation is a post translational modification that regulates GPCR activity. Here the authors show that palmitoylation of 5-HT1AR by the palmitoyltransferase enzyme ZDHHC21 contributes to depression-like behaviour in rodents and might be implicated in major depressive disorder.
Collapse
|
6
|
Abstract
Lipid microenvironments in the plasma membrane are known to influence many signal transduction pathways. Several of those pathways are critical for both the etiology and treatment of depression. Further, several signaling proteins are modified, covalently, by lipids, a process that alters their interface with the microenvironments mentioned above. This review presents a brief discussion of the interface of the above elements as well as a discussion about the participation of lipids and lipid moieties in the action of antidepressants.
Collapse
Affiliation(s)
- Nathan H Wray
- University of Illinois College of Medicine, Department of Physiology & Biophysics, Chicago, IL, United States; The Graduate Program in Neuroscience, Chicago, IL, United States
| | - Mark M Rasenick
- University of Illinois College of Medicine, Department of Physiology & Biophysics, Chicago, IL, United States; The Graduate Program in Neuroscience, Chicago, IL, United States; Department of Psychiatry, Chicago, IL, United States; The Jesse Brown VAMC, Chicago, IL, United States.
| |
Collapse
|
7
|
Gutierrez MG, Deyell J, White KL, Dalle Ore LC, Cherezov V, Stevens RC, Malmstadt N. The lipid phase preference of the adenosine A 2A receptor depends on its ligand binding state. Chem Commun (Camb) 2019; 55:5724-5727. [PMID: 31038495 PMCID: PMC6561478 DOI: 10.1039/c8cc10130b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Giant unilamellar protein vesicles (GUPs) were formed with the adenosine A2A receptor (A2AR) incorporated in the lipid bilayer and protein partitioning into the liquid ordered and liquid disordered phases was observed. When no ligand is bound, A2AR partitions preferentially into the liquid disordered phase of GUPs, while ligand-bound A2AR partitions into the liquid ordered phase.
Collapse
Affiliation(s)
- M Gertrude Gutierrez
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Liu JJ, Hezghia A, Shaikh SR, Cenido JF, Stark RE, Mann JJ, Sublette ME. Regulation of monoamine transporters and receptors by lipid microdomains: implications for depression. Neuropsychopharmacology 2018; 43:2165-2179. [PMID: 30022062 PMCID: PMC6135777 DOI: 10.1038/s41386-018-0133-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/24/2018] [Accepted: 06/18/2018] [Indexed: 12/16/2022]
Abstract
Lipid microdomains ("rafts") are dynamic, nanoscale regions of the plasma membrane enriched in cholesterol and glycosphingolipids, that possess distinctive physicochemical properties including higher order than the surrounding membrane. Lipid microdomain integrity is thought to affect neurotransmitter signaling by regulating membrane-bound protein signaling. Among the proteins potentially affected are monoaminergic receptors and transporters. As dysfunction of monoaminergic neurotransmission is implicated in major depressive disorder and other neuropsychiatric conditions, interactions with lipid microdomains may be of clinical importance. This systematic review evaluates what is known about the molecular relationships of monoamine transporter and receptor regulation to lipid microdomains. The PubMed/MeSH database was searched for original studies published in English through August 2017 concerning relationships between lipid microdomains and serotonin, dopamine and norepinephrine transporters and receptors. Fifty-seven publications were identified and assessed. Strong evidence implicates lipid microdomains in the regulation of serotonin and norepinephrine transporters; serotonin 1A, 2A, 3A, and 7A receptors; and dopamine D1 and β2 adrenergic receptors. Results were conflicting or more complex regarding lipid microdomain associations with the dopamine transporter, D2, D3, and D5 receptors; and negative with respect to β1 adrenergic receptors. Indirect evidence suggests that antidepressants, lipid-lowering drugs, and polyunsaturated fatty acids may exert effects on depression and suicide by altering the lipid milieu, thereby affecting monoaminergic transporter and receptor signaling. The lipid composition of membrane subdomains is involved in localization and trafficking of specific monoaminergic receptors and transporters. Elucidating precise mechanisms whereby lipid microdomains modulate monoamine neurotransmission in clinical contexts can have critical implications for pharmacotherapeutic targeting.
Collapse
Affiliation(s)
- Joanne J Liu
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Chestnut Hill Hospital, Philadelphia, PA, USA
| | - Adrienne Hezghia
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joshua F Cenido
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
| | - Ruth E Stark
- Department of Chemistry and Biochemistry and CUNY Institute for Macromolecular Assemblies, The City College of New York, New York, NY, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA
| | - J John Mann
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
- Department of Radiology, Columbia University, New York, NY, USA
| | - M Elizabeth Sublette
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA.
- Department of Psychiatry, Columbia University, New York, NY, USA.
| |
Collapse
|
9
|
Daray FM, Mann JJ, Sublette ME. How lipids may affect risk for suicidal behavior. J Psychiatr Res 2018; 104:16-23. [PMID: 29920417 PMCID: PMC6102068 DOI: 10.1016/j.jpsychires.2018.06.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/30/2018] [Accepted: 06/08/2018] [Indexed: 01/06/2023]
Abstract
Suicide and nonfatal suicidal behaviors are major causes of mortality and morbidity worldwide. Variability in rates of suicide and suicidal behaviors within and between countries has been attributed to population and individual risk factors, including economic status and cultural differences, both of which can have suicide risk effects mediated through a variety of factors, of which perhaps the least understood is the role of diet. We therefore review the scientific literature concerning two major dietary lipid classes, cholesterol and polyunsaturated fatty acids (PUFAs), that have been associated with higher risk of suicide attempts and suicide. We consider potential mechanistic intermediates including serotonin transporters and receptors, toll-like receptors (TLRs), nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), and peroxisome proliferator activated receptors (PPARs). Based on this review, we describe a theoretical model linking cholesterol and PUFA status to suicide risk, taking into account the effects of cholesterol-lowering interventions on PUFA balance, membrane lipid microdomains (rafts) as a nexus of interaction between cholesterol and omega-3 PUFAs, and downstream effects on serotonergic neurotransmission and specific inflammatory pathways.
Collapse
Affiliation(s)
- Federico M. Daray
- Institute of Pharmacology. School of Medicine. University of Buenos Aires, Paraguay 2155, piso 9, Ciudad Autónoma de Buenos Aires, Argentina, C1121ABG
| | - J. John Mann
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032,Division of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032,Department of Radiology, Columbia University, 622 West 168th St, New York, NY 10032
| | - M. Elizabeth Sublette
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032,Division of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032,To whom correspondence should be addressed: New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032, Tel: 646 774-7514, Fax: 646 774-7589,
| |
Collapse
|
10
|
Pick H, Alves AC, Vogel H. Single-Vesicle Assays Using Liposomes and Cell-Derived Vesicles: From Modeling Complex Membrane Processes to Synthetic Biology and Biomedical Applications. Chem Rev 2018; 118:8598-8654. [PMID: 30153012 DOI: 10.1021/acs.chemrev.7b00777] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The plasma membrane is of central importance for defining the closed volume of cells in contradistinction to the extracellular environment. The plasma membrane not only serves as a boundary, but it also mediates the exchange of physical and chemical information between the cell and its environment in order to maintain intra- and intercellular functions. Artificial lipid- and cell-derived membrane vesicles have been used as closed-volume containers, representing the simplest cell model systems to study transmembrane processes and intracellular biochemistry. Classical examples are studies of membrane translocation processes in plasma membrane vesicles and proteoliposomes mediated by transport proteins and ion channels. Liposomes and native membrane vesicles are widely used as model membranes for investigating the binding and bilayer insertion of proteins, the structure and function of membrane proteins, the intramembrane composition and distribution of lipids and proteins, and the intermembrane interactions during exo- and endocytosis. In addition, natural cell-released microvesicles have gained importance for early detection of diseases and for their use as nanoreactors and minimal protocells. Yet, in most studies, ensembles of vesicles have been employed. More recently, new micro- and nanotechnological tools as well as novel developments in both optical and electron microscopy have allowed the isolation and investigation of individual (sub)micrometer-sized vesicles. Such single-vesicle experiments have revealed large heterogeneities in the structure and function of membrane components of single vesicles, which were hidden in ensemble studies. These results have opened enormous possibilities for bioanalysis and biotechnological applications involving unprecedented miniaturization at the nanometer and attoliter range. This review will cover important developments toward single-vesicle analysis and the central discoveries made in this exciting field of research.
Collapse
Affiliation(s)
- Horst Pick
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Ana Catarina Alves
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Horst Vogel
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
11
|
Kondaurova EM, Ilchibaeva TV, Tsybko AS, Ponimaskin ЕG, Naumenko VS. Expression of palmitoyl transferases in brain structures of mice genetically predisposed to depressive-like behavior. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
12
|
Abstract
Depression is the leading cause of disability worldwide, and even though many forms of therapy exist, about one third of patients treated with conventional antidepressants do not experience a response. For these reasons, new approaches to treat depression, including fish oil, are being investigated. Fish oil is known to have many beneficial side effects, and clinical trials demonstrate that supplementation with fish oil is beneficial in the management of depression. Fish oil contains omega-3 polyunsaturated fatty acids (PUFA), and there are several mechanisms by which PUFAs are thought to induce an antidepressant effect, including anti-inflammatory action and direct effects on membrane properties. This review will analyze and evaluate the clinical trials surrounding fish oil use in the treatment of depression, and will also review the likely sites of action of PUFAs at the cell membrane with special attention being placed on lipid rafts and G-proteins.
Collapse
Affiliation(s)
- Mansoor D Burhani
- Department of Physiology & Biophysics, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Mark M Rasenick
- Department of Physiology & Biophysics, University of Illinois College of Medicine, Chicago, IL 60612, USA.,Department of Psychiatry, University of Illinois College of Medicine, Chicago, IL 60612, USA.,Jesse Brown VAMC, Chicago, IL 60612, USA
| |
Collapse
|
13
|
Zaręba-Kozioł M, Figiel I, Bartkowiak-Kaczmarek A, Włodarczyk J. Insights Into Protein S-Palmitoylation in Synaptic Plasticity and Neurological Disorders: Potential and Limitations of Methods for Detection and Analysis. Front Mol Neurosci 2018; 11:175. [PMID: 29910712 PMCID: PMC5992399 DOI: 10.3389/fnmol.2018.00175] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/09/2018] [Indexed: 12/20/2022] Open
Abstract
S-palmitoylation (S-PALM) is a lipid modification that involves the linkage of a fatty acid chain to cysteine residues of the substrate protein. This common posttranslational modification (PTM) is unique among other lipid modifications because of its reversibility. Hence, like phosphorylation or ubiquitination, it can act as a switch that modulates various important physiological pathways within the cell. Numerous studies revealed that S-PALM plays a crucial role in protein trafficking and function throughout the nervous system. Notably, the dynamic turnover of palmitate on proteins at the synapse may provide a key mechanism for rapidly changing synaptic strength. Indeed, palmitate cycling on postsynaptic density-95 (PSD-95), the major postsynaptic density protein at excitatory synapses, regulates the number of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and thus affects synaptic transmission. Accumulating evidence suggests a relationship between impairments in S-PALM and severe neurological disorders. Therefore, determining the precise levels of S-PALM may be essential for understanding the ways in which this PTM is regulated in the brain and controls synaptic dynamics. Protein S-PALM can be characterized using metabolic labeling methods and biochemical tools. Both approaches are discussed herein in the context of specific methods and their advantages and disadvantages. This review clearly shows progress in the field, which has led to the development of new, more sensitive techniques that enable the detection of palmitoylated proteins and allow predictions of potential palmitate binding sites. Unfortunately, one significant limitation of these approaches continues to be the inability to use them in living cells.
Collapse
Affiliation(s)
- Monika Zaręba-Kozioł
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Izabela Figiel
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Bartkowiak-Kaczmarek
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
14
|
Palmitoylation as a Functional Regulator of Neurotransmitter Receptors. Neural Plast 2018; 2018:5701348. [PMID: 29849559 PMCID: PMC5903346 DOI: 10.1155/2018/5701348] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/29/2018] [Indexed: 12/11/2022] Open
Abstract
The majority of neuronal proteins involved in cellular signaling undergo different posttranslational modifications significantly affecting their functions. One of these modifications is a covalent attachment of a 16-C palmitic acid to one or more cysteine residues (S-palmitoylation) within the target protein. Palmitoylation is a reversible modification, and repeated cycles of palmitoylation/depalmitoylation might be critically involved in the regulation of multiple signaling processes. Palmitoylation also represents a common posttranslational modification of the neurotransmitter receptors, including G protein-coupled receptors (GPCRs) and ligand-gated ion channels (LICs). From the functional point of view, palmitoylation affects a wide span of neurotransmitter receptors activities including their trafficking, sorting, stability, residence lifetime at the cell surface, endocytosis, recycling, and synaptic clustering. This review summarizes the current knowledge on the palmitoylation of neurotransmitter receptors and its role in the regulation of receptors functions as well as in the control of different kinds of physiological and pathological behavior.
Collapse
|
15
|
Xu G, Wu SF, Gu GX, Teng ZW, Ye GY, Huang J. Pharmacological characterization of dopamine receptors in the rice striped stem borer, Chilo suppressalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 83:80-93. [PMID: 28302436 DOI: 10.1016/j.ibmb.2017.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/10/2017] [Accepted: 03/12/2017] [Indexed: 06/06/2023]
Abstract
Dopamine is an important neurotransmitter and neuromodulator in both vertebrates and invertebrates and is the most abundant monoamine present in the central nervous system of insects. A complement of functionally distinct dopamine receptors mediate the signal transduction of dopamine by modifying intracellular Ca2+ and cAMP levels. In the present study, we pharmacologically characterized three types of dopamine receptors, CsDOP1, CsDOP2 and CsDOP3, from the rice striped stem borer, Chilo suppressalis. All three receptors show considerable sequence identity with orthologous dopamine receptors. The phylogenetic analysis also clusters the receptors within their respective groups. Transcript levels of CsDOP1, CsDOP2 and CsDOP3 were all expressed at high levels in the central nervous system, indicating their important roles in neural processes. After heterologous expression in HEK 293 cells, CsDOP1, CsDOP2 and CsDOP3 were dose-dependently activated by dopamine and synthetic dopamine receptor agonists. They can also be blocked by different series of antagonists. This study offers important information on three dopamine receptors from C. suppressalis that will provide the basis for forthcoming studies investigating their roles in behaviors and physiology, and facilitate the development of new insecticides for pest control.
Collapse
Affiliation(s)
- Gang Xu
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Shun-Fan Wu
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China.
| | - Gui-Xiang Gu
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Zi-Wen Teng
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jia Huang
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Oddi S, Stepniewski TM, Totaro A, Selent J, Scipioni L, Dufrusine B, Fezza F, Dainese E, Maccarrone M. Palmitoylation of cysteine 415 of CB 1 receptor affects ligand-stimulated internalization and selective interaction with membrane cholesterol and caveolin 1. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:523-532. [PMID: 28215712 DOI: 10.1016/j.bbalip.2017.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/02/2017] [Accepted: 02/10/2017] [Indexed: 10/20/2022]
Abstract
We previously demonstrated that CB1 receptor is palmitoylated at cysteine 415, and that such a post-translational modification affects its biological activity. To assess the molecular mechanisms responsible for modulation of CB1 receptor function by S-palmitoylation, in this study biochemical and morphological approaches were paralleled with computational analyses. Molecular dynamics simulations suggested that this acyl chain stabilizes helix 8 as well as the interaction of CB1 receptor with membrane cholesterol. In keeping with these in silico data, experimental results showed that the non-palmitoylated CB1 receptor was unable to interact efficaciously with caveolin 1, independently of its activation state. Moreover, in contrast with the wild-type receptor, the lack of S-palmitoylation in the helix 8 made the mutant CB1 receptor completely irresponsive to agonist-induced effects in terms of both lipid raft partitioning and receptor internalization. Overall, our results support the notion that palmitoylation of cysteine 415 modulates the conformational state of helix 8 and influences the interactions of CB1 receptor with cholesterol and caveolin 1, suggesting that the palmitoyl chain may serve as a functional interface for CB1 receptor localization and function.
Collapse
Affiliation(s)
- Sergio Oddi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy; European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, Rome, Italy.
| | - Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Antonio Totaro
- European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, Rome, Italy
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Lucia Scipioni
- European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, Rome, Italy; Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Beatrice Dufrusine
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Filomena Fezza
- European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, Rome, Italy; Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Rome, Italy
| | - Enrico Dainese
- European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, Rome, Italy; Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Mauro Maccarrone
- European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, Rome, Italy; Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.
| |
Collapse
|
17
|
Du J, Zhu M, Bao H, Li B, Dong Y, Xiao C, Zhang GY, Henter I, Rudorfer M, Vitiello B. The Role of Nutrients in Protecting Mitochondrial Function and Neurotransmitter Signaling: Implications for the Treatment of Depression, PTSD, and Suicidal Behaviors. Crit Rev Food Sci Nutr 2017; 56:2560-2578. [PMID: 25365455 DOI: 10.1080/10408398.2013.876960] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Numerous studies have linked severe stress to the development of major depressive disorder (MDD) and suicidal behaviors. Furthermore, recent preclinical studies from our laboratory and others have demonstrated that in rodents, chronic stress and the stress hormone cortisol cause oxidative damage to mitochondrial function and membrane lipids in the brain. Mitochondria play a key role in synaptic neurotransmitter signaling by providing adenosine triphosphate (ATP), mediating lipid and protein synthesis, buffering intracellular calcium, and regulating apoptotic and resilience pathways. Membrane lipids are similarly essential to central nervous system (CNS) function because cholesterol, polyunsaturated fatty acids, and sphingolipids form a lipid raft region, a special lipid region on the membrane that mediates neurotransmitter signaling through G-protein-coupled receptors and ion channels. Low serum cholesterol levels, low antioxidant capacity, and abnormal early morning cortisol levels are biomarkers consistently associated with both depression and suicidal behaviors. In this review, we summarize the manner in which nutrients can protect against oxidative damage to mitochondria and lipids in the neuronal circuits associated with cognitive and affective behaviors. These nutrients include ω3 fatty acids, antioxidants (vitamin C and zinc), members of the vitamin B family (Vitamin B12 and folic acid), and magnesium. Accumulating data have shown that these nutrients can enhance neurocognitive function, and may have therapeutic benefits for depression and suicidal behaviors. A growing body of studies suggests the intriguing possibility that regular consumption of these nutrients may help prevent the onset of mood disorders and suicidal behaviors in vulnerable individuals, or significantly augment the therapeutic effect of available antidepressants. These findings have important implications for the health of both military and civilian populations.
Collapse
Affiliation(s)
- Jing Du
- a School of Medicine, Yunnan University , Kunming , Yunnan , China.,c Laboratory of Molecular Pathophysiology, Intramural Research Program, NIMH, NIH , Bethesda , Maryland , USA
| | - Ming Zhu
- a School of Medicine, Yunnan University , Kunming , Yunnan , China
| | - Hongkun Bao
- a School of Medicine, Yunnan University , Kunming , Yunnan , China
| | - Bai Li
- a School of Medicine, Yunnan University , Kunming , Yunnan , China
| | - Yilong Dong
- a School of Medicine, Yunnan University , Kunming , Yunnan , China
| | - Chunjie Xiao
- a School of Medicine, Yunnan University , Kunming , Yunnan , China
| | - Grace Y Zhang
- c Laboratory of Molecular Pathophysiology, Intramural Research Program, NIMH, NIH , Bethesda , Maryland , USA
| | - Ioline Henter
- d Molecular Imaging Branch, Intramural Research Program, NIMH, NIH , Bethesda , Maryland , USA
| | - Matthew Rudorfer
- b Division of Service and Intervention Research, NIMH, NIH , Rockville , Maryland , USA
| | - Benedetto Vitiello
- b Division of Service and Intervention Research, NIMH, NIH , Rockville , Maryland , USA
| |
Collapse
|
18
|
Prasanna X, Jafurulla M, Sengupta D, Chattopadhyay A. The ganglioside GM1 interacts with the serotonin 1A receptor via the sphingolipid binding domain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2818-2826. [DOI: 10.1016/j.bbamem.2016.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 07/18/2016] [Accepted: 08/18/2016] [Indexed: 12/24/2022]
|
19
|
Gahbauer S, Böckmann RA. Membrane-Mediated Oligomerization of G Protein Coupled Receptors and Its Implications for GPCR Function. Front Physiol 2016; 7:494. [PMID: 27826255 PMCID: PMC5078798 DOI: 10.3389/fphys.2016.00494] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022] Open
Abstract
The dimerization or even oligomerization of G protein coupled receptors (GPCRs) causes ongoing, controversial debates about its functional role and the coupled biophysical, biochemical or biomedical implications. A continously growing number of studies hints to a relation between oligomerization and function of GPCRs and strengthens the assumption that receptor assembly plays a key role in the regulation of protein function. Additionally, progress in the structural analysis of GPCR-G protein and GPCR-ligand interactions allows to distinguish between actively functional and non-signaling complexes. Recent findings further suggest that the surrounding membrane, i.e., its lipid composition may modulate the preferred dimerization interface and as a result the abundance of distinct dimeric conformations. In this review, the association of GPCRs and the role of the membrane in oligomerization will be discussed. An overview of the different reported oligomeric interfaces is provided and their capability for signaling discussed. The currently available data is summarized with regard to the formation of GPCR oligomers, their structures and dependency on the membrane microenvironment as well as the coupling of oligomerization to receptor function.
Collapse
Affiliation(s)
| | - Rainer A. Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander University of Erlangen-NürnbergErlangen, Germany
| |
Collapse
|
20
|
Borroni MV, Vallés AS, Barrantes FJ. The lipid habitats of neurotransmitter receptors in brain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2662-2670. [PMID: 27424801 DOI: 10.1016/j.bbamem.2016.07.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/05/2016] [Accepted: 07/12/2016] [Indexed: 12/17/2022]
Abstract
Neurotransmitter receptors, the macromolecules specialized in decoding the chemical signals encrypted in the chemical signaling mechanism in the nervous system, occur either at the somatic cell surface of chemically excitable cells or at specialized subcellular structures, the synapses. Synapses have lipid compositions distinct from the rest of the cell membrane, suggesting that neurotransmitter receptors and their scaffolding and adaptor protein partners require specific lipid habitats for optimal operation. In this review we discuss some paradigmatic cases of neurotransmitter receptor-lipid interactions, highlighting the chemical nature of the intervening lipid species and providing examples of the receptor mechanisms affected by interaction with lipids. The focus is on the effects of cholesterol, glycerophospholipids and covalent fatty acid acylation on neurotransmitter receptors. We also briefly discuss the role of lipid phase states involving lateral heterogeneities of the host membrane known to modulate membrane transport, protein sorting and signaling. Modulation of neurotransmitter receptors by lipids occurs at multiple levels, affecting a wide span of activities including their trafficking, sorting, stability, residence lifetime at the cell surface, endocytosis, and recycling, among other important functional properties at the synapse.
Collapse
Affiliation(s)
- María Virginia Borroni
- Instituto de Tecnología en Polímeros y Nanotecnología (ITPN) Av. Las Heras 2214 C1127AAQ Buenos Aires Argentina
| | - Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, B8000FWB Bahía Blanca, Argentina
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, UCA-CONICET, Faculty of Medical Sciences, Catholic University of Argentina, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina.
| |
Collapse
|
21
|
Yokukansan Increases 5-HT1A Receptors in the Prefrontal Cortex and Enhances 5-HT1A Receptor Agonist-Induced Behavioral Responses in Socially Isolated Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:726471. [PMID: 26681968 PMCID: PMC4670863 DOI: 10.1155/2015/726471] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 12/02/2022]
Abstract
The traditional Japanese medicine yokukansan has an anxiolytic effect, which occurs after repeated administration. In this study, to investigate the underlying mechanisms, we examined the effects of repeated yokukansan administration on serotonin 1A (5-HT1A) receptor density and affinity and its expression at both mRNA and protein levels in the prefrontal cortex (PFC) of socially isolated mice. Moreover, we examined the effects of yokukansan on a 5-HT1A receptor-mediated behavioral response. Male mice were subjected to social isolation stress for 6 weeks and simultaneously treated with yokukansan. Thereafter, the density and affinity of 5-HT1A receptors were analyzed by a receptor-binding assay. Levels of 5-HT1A receptor protein and mRNA were also measured. Furthermore, (±)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT; a 5-HT1A receptor agonist) was injected intraperitoneally, and rearing behavior was examined. Social isolation stress alone did not affect 5-HT1A receptor density or affinity. However, yokukansan significantly increased receptor density and decreased affinity concomitant with unchanged protein and mRNA levels. Yokukansan also enhanced the 8-OH-DPAT-induced decrease in rearing behavior. These results suggest that yokukansan increases 5-HT1A receptors in the PFC of socially isolated mice and enhances their function, which might underlie its anxiolytic effects.
Collapse
|
22
|
Steinke KV, Gorinski N, Wojciechowski D, Todorov V, Guseva D, Ponimaskin E, Fahlke C, Fischer M. Human CLC-K Channels Require Palmitoylation of Their Accessory Subunit Barttin to Be Functional. J Biol Chem 2015; 290:17390-400. [PMID: 26013830 DOI: 10.1074/jbc.m114.631705] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Indexed: 11/06/2022] Open
Abstract
CLC-K/barttin chloride channels are essential for NaCl re-absorption in Henle's loop and for potassium secretion by the stria vascularis in the inner ear. Here, we studied the posttranslational modification of such channels by palmitoylation of their accessory subunit barttin. We found that barttin is palmitoylated in vivo and in vitro and identified two conserved cysteine residues at positions 54 and 56 as palmitoylation sites. Point mutations at these two residues reduce the macroscopic current amplitudes in cells expressing CLC-K/barttin channels proportionally to the relative reduction in palmitoylated barttin. CLC-K/barttin expression, plasma membrane insertion, and single channel properties remain unaffected, indicating that these mutations decrease the number of active channels. R8W and G47R, two naturally occurring barttin mutations identified in patients with Bartter syndrome type IV, reduce barttin palmitoylation and CLC-K/barttin channel activity. Palmitoylation of the accessory subunit barttin might thus play a role in chloride channel dysfunction in certain variants of Bartter syndrome. We did not observe pronounced alteration of barttin palmitoylation upon increased salt and water intake or water deprivation, indicating that this posttranslational modification does not contribute to long term adaptation to variable water intake. Our results identify barttin palmitoylation as a novel posttranslational modification of CLC-K/barttin chloride channels.
Collapse
Affiliation(s)
- Kim Vanessa Steinke
- From the Institut für Neurophysiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Nataliya Gorinski
- From the Institut für Neurophysiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Daniel Wojciechowski
- From the Institut für Neurophysiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany, Institute of Complex Systems, Zelluläre Biophysik (ICS-4), FZ Jülich, 52428 Jülich, Germany, and
| | - Vladimir Todorov
- Laboratory for Experimental Nephrology, Division of Nephrology, University Hospital Dresden, 01307 Dresden Germany
| | - Daria Guseva
- From the Institut für Neurophysiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Evgeni Ponimaskin
- From the Institut für Neurophysiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Christoph Fahlke
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), FZ Jülich, 52428 Jülich, Germany, and
| | - Martin Fischer
- From the Institut für Neurophysiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany,
| |
Collapse
|
23
|
Darmon M, Al Awabdh S, Emerit MB, Masson J. Insights into Serotonin Receptor Trafficking: Cell Membrane Targeting and Internalization. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:97-126. [PMID: 26055056 DOI: 10.1016/bs.pmbts.2015.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Serotonin receptors (5-HTRs) mediate both central and peripheral control on numerous physiological functions such as sleep/wake cycle, thermoregulation, food intake, nociception, locomotion, sexual behavior, gastrointestinal motility, blood coagulation, and cardiovascular homeostasis. Six families of the G-protein-coupled receptors comprise most of serotonin receptors besides the conserved 5-HT3R Cys-loop type which belongs to the family of Cys-loop ligand-gated cation channel receptors. Many of these receptors are targets of pharmaceutical drugs, justifying the importance for elucidating their coupling, signaling and functioning. Recently, special interest has been focused on their trafficking inside cell lines or neurons in conjunction with their interaction with partner proteins. In this review, we describe the trafficking of 5-HTRs including their internalization, desensitization, or addressing to the plasma membrane depending on specific mechanisms which are peculiar for each class of serotonin receptor.
Collapse
Affiliation(s)
- Michèle Darmon
- INSERM U894, Centre de Psychiatrie et Neurosciences, Paris, France; Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Sana Al Awabdh
- INSERM U894, Centre de Psychiatrie et Neurosciences, Paris, France; Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Michel-Boris Emerit
- INSERM U894, Centre de Psychiatrie et Neurosciences, Paris, France; Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Justine Masson
- INSERM U894, Centre de Psychiatrie et Neurosciences, Paris, France; Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
24
|
Brejchová J, Sýkora J, Ostašov P, Merta L, Roubalová L, Janáček J, Hof M, Svoboda P. TRH-receptor mobility and function in intact and cholesterol-depleted plasma membrane of HEK293 cells stably expressing TRH-R-eGFP. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:781-96. [DOI: 10.1016/j.bbamem.2014.11.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/24/2014] [Accepted: 11/26/2014] [Indexed: 01/03/2023]
|
25
|
Liu JJ, Green P, John Mann J, Rapoport SI, Sublette ME. Pathways of polyunsaturated fatty acid utilization: implications for brain function in neuropsychiatric health and disease. Brain Res 2015; 1597:220-46. [PMID: 25498862 PMCID: PMC4339314 DOI: 10.1016/j.brainres.2014.11.059] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/11/2014] [Accepted: 11/27/2014] [Indexed: 12/28/2022]
Abstract
Essential polyunsaturated fatty acids (PUFAs) have profound effects on brain development and function. Abnormalities of PUFA status have been implicated in neuropsychiatric diseases such as major depression, bipolar disorder, schizophrenia, Alzheimer's disease, and attention deficit hyperactivity disorder. Pathophysiologic mechanisms could involve not only suboptimal PUFA intake, but also metabolic and genetic abnormalities, defective hepatic metabolism, and problems with diffusion and transport. This article provides an overview of physiologic factors regulating PUFA utilization, highlighting their relevance to neuropsychiatric disease.
Collapse
Affiliation(s)
- Joanne J Liu
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA; New York Medical College, Valhalla, NY, USA
| | - Pnina Green
- Laboratory of Metabolic Research, Felsenstein Medical Research Center, Tel Aviv University, Petach Tikva, Israel
| | - J John Mann
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University, New York, NY, USA; Department of Radiology, Columbia University, New York, NY, USA
| | - Stanley I Rapoport
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - M Elizabeth Sublette
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University, New York, NY, USA.
| |
Collapse
|
26
|
Gutierrez MG, Malmstadt N. Human serotonin receptor 5-HT(1A) preferentially segregates to the liquid disordered phase in synthetic lipid bilayers. J Am Chem Soc 2014; 136:13530-3. [PMID: 25211019 PMCID: PMC4183657 DOI: 10.1021/ja507221m] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
We
demonstrate successful incorporation of the G protein coupled
receptor 5-HT1A into giant unilamellar vesicles using an
agarose rehydration method. With direct observation using fluorescence
techniques, we report preferential segregation of 5-HT1A into the cholesterol-poor liquid disordered phase of the membrane,
contradicting previous reports of lipid raft segregation. Furthermore,
altering the concentration of cholesterol and sphingomyelin
in ternary mixtures does not alter 5-HT1A segregation into
the liquid disordered phase.
Collapse
Affiliation(s)
- M Gertrude Gutierrez
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California , 925 Bloom Walk, Los Angeles, California 90089, United States
| | | |
Collapse
|
27
|
Glebov K, Voronezhskaya EE, Khabarova MY, Ivashkin E, Nezlin LP, Ponimaskin EG. Mechanisms underlying dual effects of serotonin during development of Helisoma trivolvis (Mollusca). BMC DEVELOPMENTAL BIOLOGY 2014; 14:14. [PMID: 24625099 PMCID: PMC4007640 DOI: 10.1186/1471-213x-14-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 02/21/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Serotonin (5-HT) is well known as widely distributed modulator of developmental processes in both vertebrates and invertebrates. It is also the earliest neurotransmitter to appear during neuronal development. In aquatic invertebrates, which have larvae in their life cycle, 5-HT is involved in regulation of stages transition including larval metamorphosis and settlement. However, molecular and cellular mechanisms underlying developmental transition in aquatic invertebrate species are yet poorly understood. Earlier we demonstrated that in larvae of freshwater molluscs and marine polychaetes, endogenous 5-HT released from the neurons of the apical sensory organ (ASO) in response to external stimuli retarded larval development at premetamorphic stages, and accelerated it at metamorphic stages. Here we used a freshwater snail Helisoma trivolvis to study molecular mechanisms underlying these dual developmental effects of 5-HT. RESULTS Larval development of H. trivolvis includes transition from premetamorphic to metamorphic stages and shares the main features of metamorphosis with free-swimming aquatic larvae. Three types of 5-HT receptors (5-HT1-, 5-HT4- and 5-HT7-like) are functionally active at premetamorphic (trochophore, veliger) and metamorphic (veliconcha) stages, and expression patterns of these receptors and respective G proteins undergo coordinated changes during development. Stimulation of these receptors modulated cAMP-dependent regulation of cell divisions. Expression of 5-HT4- and 5-HT7-like receptors and their downstream Gs protein was down-regulated during the transition of pre- to metamorphic stage, while expression of 5-HT1 -like receptor and its downstream Gi protein was upregulated. In accordance with relative amount of these receptors, stimulation of 5-HTRs at premetamorphic stages induces developmental retardation, while their stimulation at metamorphic stages induces developmental acceleration. CONCLUSIONS We present a novel molecular mechanism that underlies stage-specific changes in developmental tempo of H. trivolvis larvae in response to endogenous 5-HT produced by the neurons of the ASO. We suggest that consecutive changes in expression patterns of different receptors and their downstream partners in the course of larval development represent the molecular base of larval transition from premetamorphic (non-competent) to metamorphic (competent) state.
Collapse
Affiliation(s)
| | | | | | | | | | - Evgeni G Ponimaskin
- DFG-Research Center Molecular Physiology of the Brain (CMPB), Göttingen, Germany.
| |
Collapse
|
28
|
Xu C, Zhang W, Rondard P, Pin JP, Liu J. Complex GABAB receptor complexes: how to generate multiple functionally distinct units from a single receptor. Front Pharmacol 2014; 5:12. [PMID: 24575041 PMCID: PMC3920572 DOI: 10.3389/fphar.2014.00012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/22/2014] [Indexed: 01/05/2023] Open
Abstract
The main inhibitory neurotransmitter, GABA, acts on both ligand-gated and G protein-coupled receptors, the GABAA/C and GABAB receptors, respectively. The later play important roles in modulating many synapses, both at the pre- and post-synaptic levels, and are then still considered as interesting targets to treat a number of brain diseases, including addiction. For many years, several subtypes of GABAB receptors were expected, but cloning revealed only two genes that work in concert to generate a single type of GABAB receptor composed of two subunits. Here we will show that the signaling complexity of this unit receptor type can be largely increased through various ways, including receptor stoichiometry, subunit isoforms, cell-surface expression and localization, crosstalk with other receptors, or interacting proteins. These recent data revealed how complexity of a receptor unit can be increased, observation that certainly are not unique to the GABAB receptor.
Collapse
Affiliation(s)
- Chanjuan Xu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan, China
| | - Wenhua Zhang
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan, China
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle, CNRS UMR5203, INSERM U661, Universités de Montpellier I & II Montpellier, France
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, CNRS UMR5203, INSERM U661, Universités de Montpellier I & II Montpellier, France
| | - Jianfeng Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
29
|
Characterization of an invertebrate-type dopamine receptor of the American cockroach, Periplaneta americana. Int J Mol Sci 2014; 15:629-53. [PMID: 24398985 PMCID: PMC3907829 DOI: 10.3390/ijms15010629] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 12/20/2013] [Accepted: 12/24/2013] [Indexed: 12/22/2022] Open
Abstract
We have isolated a cDNA coding for a putative invertebrate-type dopamine receptor (Peadop2) from P. americana brain by using a PCR-based strategy. The mRNA is present in samples from brain and salivary glands. We analyzed the distribution of the PeaDOP2 receptor protein with specific affinity-purified polyclonal antibodies. On Western blots, PeaDOP2 was detected in protein samples from brain, subesophageal ganglion, thoracic ganglia, and salivary glands. In immunocytochemical experiments, we detected PeaDOP2 in neurons with their somata being located at the anterior edge of the medulla bilaterally innervating the optic lobes and projecting to the ventro-lateral protocerebrum. In order to determine the functional and pharmacological properties of the cloned receptor, we generated a cell line constitutively expressing PeaDOP2. Activation of PeaDOP2-expressing cells with dopamine induced an increase in intracellular cAMP. In contrast, a C-terminally truncated splice variant of this receptor did not exhibit any functional property by itself. The molecular and pharmacological characterization of the first dopamine receptor from P. americana provides the basis for forthcoming studies focusing on the significance of the dopaminergic system in cockroach behavior and physiology.
Collapse
|
30
|
Li Q, Muma NA. Estradiol potentiates 8-OH-DPAT-induced sumoylation of 5-HT₁A receptor: characterization and subcellular distribution of sumoylated 5-HT₁A receptors. Psychoneuroendocrinology 2013; 38:2542-53. [PMID: 23786880 PMCID: PMC3797200 DOI: 10.1016/j.psyneuen.2013.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/24/2013] [Accepted: 05/24/2013] [Indexed: 10/26/2022]
Abstract
Sumoylation is a recently described post-translational modification and only a few sumoylated neurotransmitter receptors are known. Through the present studies, we discovered that serotonin1A receptors (5-HT1A-Rs) can be sumoylated by SUMO1 (small-ubiquitin-related modifier 1) protein. The SUMO1-5-HT1A-R is ∼55kDa, is located in the membrane fraction, but not the cytosol, and is distributed in all of the brain regions expressing 5-HT1A-Rs examined. Acute stimulation of 5-HT1A-Rs significantly increased SUMO1-5-HT1A-R in rat hypothalamus. Pre-treatment with estradiol for 2 days, which causes a partial desensitization of 5-HT1A-R signaling, potentiated agonist-induced increases in SUMO1-5-HT1A-Rs in the hypothalamus of ovariectomized rats. Using discontinuous gradient centrifugation followed by digitonin treatment, we found that the majority of SUMO1-5-HT1A-Rs is co-localized with endoplasmic-reticulum and trans-Golgi-network markers. Although a small proportion of SUMO1-5-HT1A-Rs are located in the detergent resistant microdomain (DRM) that contain active G-protein coupled receptors, their distribution was different from that of the Gαz protein that couples to the receptors. These data suggest that the SUMO1-5-HT1A-Rs are an inactive form of 5-HT1A-Rs, a finding further supported by results showing minimal 5-HT1A-R agonist binding to SUMO1-5-HT1A-Rs. Furthermore, SUMO1-5-HT1A-Rs in the DRM were increased by treatment with a 5-HT1A-R agonist, 8-OH-DPAT ((+)8-hydroxy-2-dipropylaminotetralin). Together, these data suggest that sumoylation of 5-HT1A-Rs may be related to 5-HT1A-R trafficking and internalization, which may contribute to 5-HT1A-R desensitization. Since 5-HT1A-Rs play an important role in mood regulation, the present results significantly impact on the understanding of the pathogenesis of affective disorders and development of better therapeutic approaches for these diseases.
Collapse
Affiliation(s)
| | - Nancy A. Muma
- Corresponding author: Nancy A. Muma, Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, 5064 Malott Hall, Lawrence, Kansas 66045, , Phone: 785-864-4002, Fax: 785-864-5219
| |
Collapse
|
31
|
Zhang H, Liu Y, Xu J, Zhang F, Liang H, Du X, Zhang H. Membrane microdomain determines the specificity of receptor-mediated modulation of Kv7/M potassium currents. Neuroscience 2013; 254:70-9. [PMID: 24036375 DOI: 10.1016/j.neuroscience.2013.08.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 01/18/2023]
Abstract
The Kv7/M current is one of the major mechanisms controlling neuronal excitability, which can be modulated by activation of the G protein-coupled receptor (GPCR) via distinct signaling pathways. Membrane microdomains known as lipid rafts have been implicated in the specificity of various cell signaling pathways. The aim of this study was to understand the role of lipid rafts in the specificity of Kv7/M current modulation by activation of GPCR. Methyl-β-cyclodextrin (MβCD), often used to disrupt the integrity of lipid rafts, significantly reduced the bradykinin receptor (B2R)-induced but not muscarinic receptor (M1R)-induced inhibition of the Kv7/M current. B2R and related signaling molecules but not M1R were found in caveolin-containing raft fractions of the rat superior cervical ganglia. Furthermore, activation of B2R resulted in translocation of additional B2R into the lipid rafts, which was not observed for the activation of M1R. The increase of B2R-induced intracellular Ca(2+) was also greatly reduced after MβCD treatment. Finally, B2R but not M1R was found to interact with the IP3 receptor. In conclusion, the present study implicates an important role for lipid rafts in mediating specificity for GPCR-mediated inhibition of the Kv7/M current.
Collapse
Affiliation(s)
- H Zhang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, Hebei Province, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei Province, China; Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The covalent attachment of palmitic acid to one or more cysteine residues (S-palmitoylation) is a widespread modification of signalling proteins. With the finding that palmitoylation is a dynamic process, it is now widely accepted that repeated cycles of palmitoylation/depalmitoylation could be involved in the regulation of multiple signalling processes. Palmitoylation also represents a common post-translational modification of the GPCRs (G-protein-coupled receptors). Functionally, palmitoylation of GPCRs has been shown to play a central role in the regulation of multiple receptor functions, including determining the efficiency and selectivity of G-protein coupling, receptor phosphorylation and desensitization, endocytosis and transport to the plasma membrane. The present review summarizes our current knowledge of the palmitoylation of serotonin (5-hydroxytryptamine) receptors and its role in the regulation of receptor functions.
Collapse
|
33
|
Zhou R, Niwa S, Guillaud L, Tong Y, Hirokawa N. A Molecular Motor, KIF13A, Controls Anxiety by Transporting the Serotonin Type 1A Receptor. Cell Rep 2013; 3:509-19. [DOI: 10.1016/j.celrep.2013.01.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 11/09/2012] [Accepted: 01/14/2013] [Indexed: 01/05/2023] Open
|
34
|
Canto I, Soh UJK, Trejo J. Allosteric modulation of protease-activated receptor signaling. Mini Rev Med Chem 2012; 12:804-11. [PMID: 22681248 DOI: 10.2174/138955712800959116] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 08/17/2011] [Accepted: 09/02/2011] [Indexed: 12/23/2022]
Abstract
The protease-activated receptors (PARs) are G protein-coupled receptors (GPCRs) that are uniquely activated by proteolysis. PARs mediate hemostasis, thrombosis, inflammation, embryonic development and progression of certain malignant cancers. The family of PARs include four members: PAR1, PAR2, PAR3 and PAR4. PARs harbor a cryptic ligand sequence within their N-terminus that is exposed following proteolytic cleavage. The newly formed PAR Nterminus functions as a tethered ligand that binds intramolecularly to the receptor to trigger transmembrane signaling. This unique mechanism of activation would indicate that regardless of the activating protease, cleavage of PARs would unmask a tethered ligand sequence that would induce a similar active receptor conformation and signaling response. However, this is not the case. Recent studies demonstrate that PARs can be differentially activated by synthetic peptide agonists, proteases or through dimerization, that ultimately result in distinct cellular responses. In some cases, allosteric modulation of PARs involves compartmentalization in caveolae, plasma membrane microdomains enriched in cholesterol. Here, we discuss some mechanisms that lead to allosteric modulation of PAR signaling.
Collapse
Affiliation(s)
- I Canto
- Department of Pharmacology, School of Medicine, University of California, San Diego, Biomedical Sciences Building, Room 3044A, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA.
| | | | | |
Collapse
|
35
|
Gorinski N, Kowalsman N, Renner U, Wirth A, Reinartz MT, Seifert R, Zeug A, Ponimaskin E, Niv MY. Computational and experimental analysis of the transmembrane domain 4/5 dimerization interface of the serotonin 5-HT(1A) receptor. Mol Pharmacol 2012; 82:448-63. [PMID: 22669805 DOI: 10.1124/mol.112.079137] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Experimental evidence suggests that most members of class A G-protein coupled receptors (GPCRs) can form homomers and heteromers in addition to functioning as single monomers. In particular, serotonin (5-HT) receptors were shown to homodimerize and heterodimerize with other GPCRs, although the details and the physiological role of the oligomerization has not yet been fully elucidated. Here we used computational modeling of the 5-HT(1A) receptor monomer and dimer to predict residues important for dimerization. Based on these results, we carried out rationally designed site-directed mutagenesis. The ability of the mutants to dimerize was evaluated using different FRET-based approaches. The reduced levels of acceptor photobleaching-Förster resonance energy transfer (FRET) and the lower number of monomers participating in oligomers, as assessed by lux-FRET, confirmed the decreased ability of the mutants to dimerize and the involvement of the predicted contacts (Trp175(4.64), Tyr198(5.41), Arg151(4.40), and Arg152(4.41)) at the interface. This information was reintroduced as constraints for computational protein-protein docking to obtain a high-quality dimer model. Analysis of the refined model as well as molecular dynamics simulations of wild-type (WT) and mutant dimers revealed compensating interactions in dimers composed of WT and W175A mutant. This provides an explanation for the requirement of mutations of Trp175(4.64) in both homomers for disrupting dimerization. Our iterative computational-experimental study demonstrates that transmembrane domains TM4/TM5 can form an interaction interface in 5-HT(1A) receptor dimers and indicates that specific amino acid interactions maintain this interface. The mutants and the optimized model of the dimer structure may be used in functional studies of serotonin dimers.
Collapse
MESH Headings
- Animals
- Cell Membrane/genetics
- Cell Membrane/metabolism
- Fluorescence Resonance Energy Transfer/methods
- Glycosylation
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mutagenesis, Site-Directed/methods
- Mutation
- Neuroblastoma/genetics
- Neuroblastoma/metabolism
- Photobleaching
- Protein Multimerization
- Protein Structure, Tertiary
- Receptor, Serotonin, 5-HT1A/chemistry
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Serotonin/genetics
- Serotonin/metabolism
- Transfection/methods
- Tumor Cells, Cultured
Collapse
|
36
|
Sebastião AM, Colino-Oliveira M, Assaife-Lopes N, Dias RB, Ribeiro JA. Lipid rafts, synaptic transmission and plasticity: impact in age-related neurodegenerative diseases. Neuropharmacology 2012; 64:97-107. [PMID: 22820274 DOI: 10.1016/j.neuropharm.2012.06.053] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/23/2012] [Accepted: 06/26/2012] [Indexed: 10/28/2022]
Abstract
The synapse is a crowded area. In the last years, the concept that proteins can be organized in different membrane domains according to their structure has emerged. Cholesterol-rich membrane domains, or lipid rafts, form an organized portion of the membrane that is thought to concentrate signaling molecules. Accumulating evidence has shown that both the pre-synaptic and post-synaptic sites are highly enriched in lipid rafts, which are likely to organize and maintain synaptic proteins in their precise localization. Here we review recent studies highlighting the importance of lipid rafts for synaptic function and plasticity, as well as their relevance for age or disease-related cognitive impairment. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- Ana M Sebastião
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisbon, Portugal.
| | | | | | | | | |
Collapse
|
37
|
Sahu SK, Saxena R, Chattopadhyay A. Cholesterol depletion modulates detergent resistant fraction of human serotonin(1A) receptors. Mol Membr Biol 2012; 29:290-8. [PMID: 22594670 DOI: 10.3109/09687688.2012.688147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Insolubility of membrane components in non-ionic detergents such as Triton X-100 at low temperature is a widely used biochemical criterion to identify, isolate and characterize membrane domains. In this work, we monitored the detergent insolubility of the serotonin(1A) receptor in CHO cell membranes and its modulation by membrane cholesterol. The serotonin(1A) receptor is an important member of the G-protein coupled receptor family. It is implicated in the generation and modulation of various cognitive, behavioral and developmental functions and serves as a drug target. Our results show that a significant fraction (∼28%) of the serotonin(1A) receptor resides in detergent-resistant membranes (DRMs). Interestingly, the fraction of the serotonin(1A) receptor in DRMs exhibits a reduction upon membrane cholesterol depletion. In addition, we show that contents of DRM markers such as flotillin-1, caveolin-1 and GM₁ are altered in DRMs upon cholesterol depletion. These results assume significance since the function of the serotonin(1A) receptor has previously been shown to be affected by membrane lipids, specifically cholesterol. Our results are relevant in the context of membrane organization of the serotonin(1A) receptor in particular, and G-protein coupled receptors in general.
Collapse
Affiliation(s)
- Santosh Kumar Sahu
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | | | | |
Collapse
|
38
|
Oddi S, Dainese E, Sandiford S, Fezza F, Lanuti M, Chiurchiù V, Totaro A, Catanzaro G, Barcaroli D, De Laurenzi V, Centonze D, Mukhopadhyay S, Selent J, Howlett AC, Maccarrone M. Effects of palmitoylation of Cys(415) in helix 8 of the CB(1) cannabinoid receptor on membrane localization and signalling. Br J Pharmacol 2012; 165:2635-51. [PMID: 21895628 PMCID: PMC3423250 DOI: 10.1111/j.1476-5381.2011.01658.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 07/15/2011] [Accepted: 08/05/2011] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The CB(1) cannabinoid receptor is regulated by its association with membrane microdomains such as lipid rafts. Here, we investigated the role of palmitoylation of the CB(1) receptor by analysing the functional consequences of site-specific mutation of Cys(415) , the likely site of palmitoylation at the end of helix 8, in terms of membrane association, raft targeting and signalling. EXPERIMENTAL APPROACH The palmitoylation state of CB(1) receptors in rat forebrain was assessed by depalmitoylation/repalmitoylation experiments. Cys(415) was replaced with alanine by site-directed mutagenesis. Green fluorescence protein chimeras of both wild-type and mutant receptors were transiently expressed and functionally characterized in SH-SY5Y cells and HEK-293 cells by means of confocal microscopy, cytofluorimetry and competitive binding assays. Confocal fluorescence recovery after photobleaching was used to assess receptor membrane dynamics, whereas signalling activity was assessed by [(35) S]GTPγS, cAMP and co-immunoprecipitation assays. KEY RESULTS Endogenous CB(1) receptors in rat brain were palmitoylated. Mutation of Cys(415) prevented the palmitoylation of the receptor in transfected cells and reduced its recruitment to plasma membrane and lipid rafts; it also increased protein diffusional mobility. The same mutation markedly reduced the functional coupling of CB(1) receptors with G-proteins and adenylyl cyclase, whereas depalmitoylation abolished receptor association with a specific subset of G-proteins. CONCLUSIONS AND IMPLICATIONS CB(1) receptors were post-translationally modified by palmitoylation. Mutation of Cys(415) provides a receptor that is functionally impaired in terms of membrane targeting and signalling. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7.
Collapse
Affiliation(s)
- Sergio Oddi
- Department of Biomedical Sciences, University of TeramoTeramo, Italy
- European Center for Brain Research (CERC)/Santa Lucia Foundation I.R.C.C.S.Rome, Italy
| | - Enrico Dainese
- Department of Biomedical Sciences, University of TeramoTeramo, Italy
- European Center for Brain Research (CERC)/Santa Lucia Foundation I.R.C.C.S.Rome, Italy
| | - Simone Sandiford
- Neuroscience/Drug Abuse Research Program, Biomedical Biotechnology Research Institute, North Carolina Central UniversityDurham, NC, USA
| | - Filomena Fezza
- European Center for Brain Research (CERC)/Santa Lucia Foundation I.R.C.C.S.Rome, Italy
- Department of Experimental Medicine and Biochemical Sciences, University of Rome ‘Tor Vergata’Rome, Italy
| | - Mirko Lanuti
- Department of Biomedical Sciences, University of TeramoTeramo, Italy
- European Center for Brain Research (CERC)/Santa Lucia Foundation I.R.C.C.S.Rome, Italy
| | - Valerio Chiurchiù
- European Center for Brain Research (CERC)/Santa Lucia Foundation I.R.C.C.S.Rome, Italy
| | - Antonio Totaro
- European Center for Brain Research (CERC)/Santa Lucia Foundation I.R.C.C.S.Rome, Italy
| | - Giuseppina Catanzaro
- Department of Biomedical Sciences, University of TeramoTeramo, Italy
- European Center for Brain Research (CERC)/Santa Lucia Foundation I.R.C.C.S.Rome, Italy
| | - Daniela Barcaroli
- Department of Biomedical Sciences, University of Chieti-Pescara ‘G. d'Annunzio’Chieti, Italy
| | - Vincenzo De Laurenzi
- Department of Biomedical Sciences, University of Chieti-Pescara ‘G. d'Annunzio’Chieti, Italy
| | - Diego Centonze
- European Center for Brain Research (CERC)/Santa Lucia Foundation I.R.C.C.S.Rome, Italy
- Department of Neurosciences, University of Rome ‘Tor Vergata’Rome, Italy
| | - Somnath Mukhopadhyay
- Neuroscience/Drug Abuse Research Program, Biomedical Biotechnology Research Institute, North Carolina Central UniversityDurham, NC, USA
| | - Jana Selent
- Research Group of biomedical Informatics (GRIB-IMIM), University of Pompeu Fabra, Barcelona Biomedical Research Park (PRBB)Barcelona, Spain
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest University Health SciencesWinston-Salem, NC, USA
| | - Mauro Maccarrone
- Department of Biomedical Sciences, University of TeramoTeramo, Italy
- European Center for Brain Research (CERC)/Santa Lucia Foundation I.R.C.C.S.Rome, Italy
| |
Collapse
|
39
|
Chattopadhyay A, Paila YD, Shrivastava S, Tiwari S, Singh P, Fantini J. Sphingolipid-Binding Domain in the Serotonin1A Receptor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 749:279-93. [DOI: 10.1007/978-1-4614-3381-1_19] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Purkayastha S, Ford J, Kanjilal B, Diallo S, Del Rosario Inigo J, Neuwirth L, El Idrissi A, Ahmed Z, Wieraszko A, Azmitia EC, Banerjee P. Clozapine functions through the prefrontal cortex serotonin 1A receptor to heighten neuronal activity via calmodulin kinase II-NMDA receptor interactions. J Neurochem 2011; 120:396-407. [PMID: 22044428 DOI: 10.1111/j.1471-4159.2011.07565.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aberrant dopamine release in the prefrontal cortex (PFC) is believed to underlie schizophrenia, but the mechanistic pathway through which a widely used antipsychotic, clozapine (Clz), evokes neurotransmitter-releasing electrical stimulation is unclear. We analyzed Clz-evoked regulation of neuronal activity in the PFC by stimulating axons in layers IV and V and recording the electrical effect in the post-synaptic pyramidal cells of layers II and III. We observed a Clz-evoked increase in population spike (PS), which was mediated by serotonin 1A receptor (5-HT(1A)-R), phospholipase Cβ, and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). Immunoblotting demonstrated that the Clz-activation of CaMKII was 5-HT(1A)-R-mediated. Intriguingly, the NMDA receptor (NMDA-R) antagonist (±)2-amino-5-phosphonovaleric acid (APV) eliminated the Clz-mediated increase in PS, suggesting that the 5-HT(1A)-R, NMDA-R and CaMKII form a synergistic triad, which boosts excitatory post-synaptic potential (EPSP), thereby enhancing PS. In corroboration, Clz as well as NMDA augmented field EPSP (fEPSP), and WAY100635 (a 5-HT(1A)-R antagonist), APV, and a CaMKII inhibitor eliminated this increase. As previously shown, CaMKII binds to the NMDA-R 2B (NR2B) subunit to become constitutively active, thereby inducing α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor recruitment to the post-synaptic membrane and an increase in fEPSP. Co-immunoprecipitation demonstrated that Clz potentiates interactions among CaMKII, NR2B, and 5-HT(1A)-R, possibly in the membrane rafts of the post-synaptic density (PSD), because pretreatment with methyl-β-cyclodextrin (MCD), an agent that disrupts rafts, inhibited both co-immunoprecipitation as well as fEPSP. In summary, Clz functions in the PFC by orchestrating a synergism among 5-HT(1A)-R, CaMKII, and NMDA-R, which augments excitability in the PFC neurons of layers II/III.
Collapse
Affiliation(s)
- Sudarshana Purkayastha
- CSI/IBR Center for Developmental Neuroscience, The College of Staten Island, Staten Island, New York 10314, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Oates J, Watts A. Uncovering the intimate relationship between lipids, cholesterol and GPCR activation. Curr Opin Struct Biol 2011; 21:802-7. [DOI: 10.1016/j.sbi.2011.09.007] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/23/2011] [Accepted: 09/29/2011] [Indexed: 11/16/2022]
|
42
|
Kokkola T, Kruse C, Roy-Pogodzik EM, Pekkinen J, Bauch C, Hönck HH, Hennemann H, Kreienkamp HJ. Somatostatin receptor 5 is palmitoylated by the interacting ZDHHC5 palmitoyltransferase. FEBS Lett 2011; 585:2665-70. [DOI: 10.1016/j.febslet.2011.07.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 07/07/2011] [Accepted: 07/15/2011] [Indexed: 11/17/2022]
|
43
|
Manzke T, Niebert M, Koch UR, Caley A, Vogelgesang S, Bischoff AM, Hülsmann S, Ponimaskin E, Müller U, Smart TG, Harvey RJ, Richter DW. [Serotonin receptor 1A-modulated dephosphorylation of glycine receptor α3: a new molecular mechanism of breathing control for compensation of opioid-induced respiratory depression without loss of analgesia]. Schmerz 2011; 25:272-81. [PMID: 21499860 DOI: 10.1007/s00482-011-1044-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To control the breathing rhythm the medullary respiratory network generates periodic salvo activities for inspiration, post-inspiration and expiration. These are under permanent modulatory control by serotonergic neurons of the raphe which governs the degree of phosphorylation of the inhibitory glycine receptor α3. The specific activation of serotonin receptor type 1A (5-HTR(1A)), which is strongly expressed in the respiratory neurons, functions via inhibition of adenylate cyclase and the resulting reduction of the intracellular cAMP level and a gradual dephosphorylation of the glycine receptor type α3 (GlyRα3). This 5-HTR(1A)-GlyRα3 signal pathway is independent of the µ-opioidergic transduction pathway and via a synaptic inhibition caused by an increase in GlyRα3 stimulates a disinhibition of some target neurons not only from excitatory but also from inhibitory neurons. Our physiological investigations show that this 5-HTR(1A)-GlyRα3 modulation allows treatment of respiratory depression due to opioids without affecting the desired analgesic effects of opioids. The molecular mechanism presented here opens new pharmacological possibilities to treat opioid-induced respiratory depression and respiratory disorders due to disturbed inhibitory synaptic transmission, such as hyperekplexia.
Collapse
Affiliation(s)
- T Manzke
- Abteilung Neuro- und Sinnesphysiologie, Universität Göttingen, Humboldtallee 23, 37073 Göttingen, Deutschland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Björk K, Svenningsson P. Modulation of monoamine receptors by adaptor proteins and lipid rafts: role in some effects of centrally acting drugs and therapeutic agents. Annu Rev Pharmacol Toxicol 2011; 51:211-42. [PMID: 20887195 DOI: 10.1146/annurev-pharmtox-010510-100520] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The monoamines and their cognate receptors are widespread in the central nervous system and are vital for normal brain function. Dysfunction in these systems underlies several psychiatric and neurological disease states, and consequently monoamines are targets of a host of pharmacotherapies. This review provides an overview on how monoamine receptors are regulated by adaptor proteins and lipid rafts with emphasis on interactions in nerve cells. Monoamine receptors have prominent intracellular loops that provide binding sites for adaptor proteins. Receptor function is further modulated by cholesterol and submembranous microdomains termed lipid rafts. These interactions determine several facets of G protein-coupled receptor (GPCR) function including trafficking, localization, and signaling. Possible roles of adaptor proteins and lipid rafts in disease states and in mediating actions of drugs and therapeutic agents are also discussed.
Collapse
Affiliation(s)
- Karl Björk
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
45
|
Saxena R, Chattopadhyay A. Membrane organization and dynamics of the serotonin1A receptor in live cells. J Neurochem 2011; 116:726-33. [PMID: 21214564 DOI: 10.1111/j.1471-4159.2010.07037.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The G-protein coupled receptor (GPCR) superfamily is one of the largest classes of molecules involved in signal transduction across the plasma membrane. The serotonin(1A) receptor is a representative member of the GPCR superfamily and serves as an important target in the development of therapeutic agents for neuropsychiatric disorders such as anxiety and depression. In the context of the pharmacological relevance of the serotonin(1A) receptor, the membrane organization and dynamics of this receptor in the cellular environment assume relevance. We have highlighted results, obtained from fluorescence microscopy-based approaches, related to domain organization and dynamics of the serotonin(1A) receptor. A fraction of serotonin(1A) receptors displays detergent insolubility, monitored using green fluorescent protein, that increases upon depletion of membrane cholesterol. Fluorescence recovery after photobleaching measurements with varying bleach spot sizes show that lateral diffusion parameters of serotonin(1A) receptors in normal cells are consistent with models describing diffusion of molecules in a homogenous membrane. Interestingly, these characteristics are altered in cholesterol-depleted cells. Taken together, we conclude that the serotonin(1A) receptor exhibits dynamic confinement in the cellular plasma membranes. Progress in understanding GPCR organization and dynamics would result in better insight into our overall understanding of GPCR function in health and disease.
Collapse
Affiliation(s)
- Roopali Saxena
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, Andhra Pradesh, India
| | | |
Collapse
|
46
|
Manzke T, Niebert M, Koch UR, Caley A, Vogelgesang S, Hülsmann S, Ponimaskin E, Müller U, Smart TG, Harvey RJ, Richter DW. Serotonin receptor 1A-modulated phosphorylation of glycine receptor α3 controls breathing in mice. J Clin Invest 2010; 120:4118-28. [PMID: 20978350 PMCID: PMC2964980 DOI: 10.1172/jci43029] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 08/25/2010] [Indexed: 11/17/2022] Open
Abstract
Rhythmic breathing movements originate from a dispersed neuronal network in the medulla and pons. Here, we demonstrate that rhythmic activity of this respiratory network is affected by the phosphorylation status of the inhibitory glycine receptor α3 subtype (GlyRα3), which controls glutamatergic and glycinergic neuronal discharges, subject to serotonergic modulation. Serotonin receptor type 1A-specific (5-HTR1A-specific) modulation directly induced dephosphorylation of GlyRα3 receptors, which augmented inhibitory glycine-activated chloride currents in HEK293 cells coexpressing 5-HTR1A and GlyRα3. The 5-HTR1A-GlyRα3 signaling pathway was distinct from opioid receptor signaling and efficiently counteracted opioid-induced depression of breathing and consequential apnea in mice. Paradoxically, this rescue of breathing originated from enhanced glycinergic synaptic inhibition of glutamatergic and glycinergic neurons and caused disinhibition of their target neurons. Together, these effects changed respiratory phase alternations and ensured rhythmic breathing in vivo. GlyRα3-deficient mice had an irregular respiratory rhythm under baseline conditions, and systemic 5-HTR1A activation failed to remedy opioid-induced respiratory depression in these mice. Delineation of this 5-HTR1A-GlyRα3 signaling pathway offers a mechanistic basis for pharmacological treatment of opioid-induced apnea and other breathing disturbances caused by disorders of inhibitory synaptic transmission, such as hyperekplexia, hypoxia/ischemia, and brainstem infarction.
Collapse
Affiliation(s)
- Till Manzke
- Department of Neuro- and Sensory Physiology, University of Göttingen, Göttingen, Germany.
DFG Research Center Molecular Physiology of the Brain (CMPB), Göttingen, Germany.
Department of Child and Adolescent Psychiatry, University of Göttingen, Göttingen, Germany.
Department of Pharmacology, School of Pharmacy, London, United Kingdom.
Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom.
Institute for Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Germany
| | - Marcus Niebert
- Department of Neuro- and Sensory Physiology, University of Göttingen, Göttingen, Germany.
DFG Research Center Molecular Physiology of the Brain (CMPB), Göttingen, Germany.
Department of Child and Adolescent Psychiatry, University of Göttingen, Göttingen, Germany.
Department of Pharmacology, School of Pharmacy, London, United Kingdom.
Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom.
Institute for Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Germany
| | - Uwe R. Koch
- Department of Neuro- and Sensory Physiology, University of Göttingen, Göttingen, Germany.
DFG Research Center Molecular Physiology of the Brain (CMPB), Göttingen, Germany.
Department of Child and Adolescent Psychiatry, University of Göttingen, Göttingen, Germany.
Department of Pharmacology, School of Pharmacy, London, United Kingdom.
Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom.
Institute for Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Germany
| | - Alex Caley
- Department of Neuro- and Sensory Physiology, University of Göttingen, Göttingen, Germany.
DFG Research Center Molecular Physiology of the Brain (CMPB), Göttingen, Germany.
Department of Child and Adolescent Psychiatry, University of Göttingen, Göttingen, Germany.
Department of Pharmacology, School of Pharmacy, London, United Kingdom.
Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom.
Institute for Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Germany
| | - Steffen Vogelgesang
- Department of Neuro- and Sensory Physiology, University of Göttingen, Göttingen, Germany.
DFG Research Center Molecular Physiology of the Brain (CMPB), Göttingen, Germany.
Department of Child and Adolescent Psychiatry, University of Göttingen, Göttingen, Germany.
Department of Pharmacology, School of Pharmacy, London, United Kingdom.
Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom.
Institute for Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Germany
| | - Swen Hülsmann
- Department of Neuro- and Sensory Physiology, University of Göttingen, Göttingen, Germany.
DFG Research Center Molecular Physiology of the Brain (CMPB), Göttingen, Germany.
Department of Child and Adolescent Psychiatry, University of Göttingen, Göttingen, Germany.
Department of Pharmacology, School of Pharmacy, London, United Kingdom.
Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom.
Institute for Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Germany
| | - Evgeni Ponimaskin
- Department of Neuro- and Sensory Physiology, University of Göttingen, Göttingen, Germany.
DFG Research Center Molecular Physiology of the Brain (CMPB), Göttingen, Germany.
Department of Child and Adolescent Psychiatry, University of Göttingen, Göttingen, Germany.
Department of Pharmacology, School of Pharmacy, London, United Kingdom.
Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom.
Institute for Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Germany
| | - Ulrike Müller
- Department of Neuro- and Sensory Physiology, University of Göttingen, Göttingen, Germany.
DFG Research Center Molecular Physiology of the Brain (CMPB), Göttingen, Germany.
Department of Child and Adolescent Psychiatry, University of Göttingen, Göttingen, Germany.
Department of Pharmacology, School of Pharmacy, London, United Kingdom.
Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom.
Institute for Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Germany
| | - Trevor G. Smart
- Department of Neuro- and Sensory Physiology, University of Göttingen, Göttingen, Germany.
DFG Research Center Molecular Physiology of the Brain (CMPB), Göttingen, Germany.
Department of Child and Adolescent Psychiatry, University of Göttingen, Göttingen, Germany.
Department of Pharmacology, School of Pharmacy, London, United Kingdom.
Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom.
Institute for Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Germany
| | - Robert J. Harvey
- Department of Neuro- and Sensory Physiology, University of Göttingen, Göttingen, Germany.
DFG Research Center Molecular Physiology of the Brain (CMPB), Göttingen, Germany.
Department of Child and Adolescent Psychiatry, University of Göttingen, Göttingen, Germany.
Department of Pharmacology, School of Pharmacy, London, United Kingdom.
Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom.
Institute for Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Germany
| | - Diethelm W. Richter
- Department of Neuro- and Sensory Physiology, University of Göttingen, Göttingen, Germany.
DFG Research Center Molecular Physiology of the Brain (CMPB), Göttingen, Germany.
Department of Child and Adolescent Psychiatry, University of Göttingen, Göttingen, Germany.
Department of Pharmacology, School of Pharmacy, London, United Kingdom.
Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom.
Institute for Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Germany
| |
Collapse
|
47
|
Regulation of serotonin receptor function in the nervous system by lipid rafts and adaptor proteins. Exp Cell Res 2010; 316:1351-6. [DOI: 10.1016/j.yexcr.2010.02.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 02/28/2010] [Indexed: 01/03/2023]
|
48
|
Novak EM, Lee EK, Innis SM, Keller BO. Identification of novel protein targets regulated by maternal dietary fatty acid composition in neonatal rat liver. J Proteomics 2009; 73:41-9. [DOI: 10.1016/j.jprot.2009.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Revised: 05/15/2009] [Accepted: 07/25/2009] [Indexed: 10/20/2022]
|
49
|
Fantini J, Barrantes FJ. Sphingolipid/cholesterol regulation of neurotransmitter receptor conformation and function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2345-61. [PMID: 19733149 DOI: 10.1016/j.bbamem.2009.08.016] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Revised: 07/17/2009] [Accepted: 08/28/2009] [Indexed: 10/20/2022]
Abstract
Like all other monomeric or multimeric transmembrane proteins, receptors for neurotransmitters are surrounded by a shell of lipids which form an interfacial boundary between the protein and the bulk membrane. Among these lipids, cholesterol and sphingolipids have attracted much attention because of their well-known propensity to segregate into ordered platform domains commonly referred to as lipid rafts. In this review we present a critical analysis of the molecular mechanisms involved in the interaction of cholesterol/sphingolipids with neurotransmitter receptors, in particular acetylcholine and serotonin receptors, chosen as representative members of ligand-gated ion channels and G protein-coupled receptors. Cholesterol and sphingolipids interact with these receptors through typical binding sites located in both the transmembrane helices and the extracellular loops. By altering the conformation of the receptors ("chaperone-like" effect), these lipids can regulate neurotransmitter binding, signal transducing functions, and, in the case of multimeric receptors, subunit assembly and subsequent receptor trafficking to the cell surface. Several sphingolipids (especially gangliosides) also exhibit low/moderate affinity for neurotransmitters. We suggest that such lipids could facilitate (i) the attachment of neurotransmitters to the post-synaptic membrane and in some cases (ii) their subsequent delivery to specific protein receptors. Overall, various experimental approaches provide converging evidence that the biological functions of neurotransmitters and their receptors are highly dependent upon sphingolipids and cholesterol, which are active partners of synaptic transmission. Several decades of research have been necessary to untangle the skein of a complex network of molecular interactions between neurotransmitters, their receptors, cholesterol and sphingolipids. This sophisticated crosstalk between all four distinctive partners may allow a fine biochemical tuning of synaptic transmission.
Collapse
Affiliation(s)
- Jacques Fantini
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), University of Aix-Marseille 2 and Aix-Marseille 3, CNRS UMR 6231, INRA USC 2027, Faculté des Sciences de St. Jérôme, Laboratoire des Interactions Moléculaires et Systèmes Membranaires, Marseille, France
| | | |
Collapse
|
50
|
Park PSH, Sapra KT, Jastrzebska B, Maeda T, Maeda A, Pulawski W, Kono M, Lem J, Crouch RK, Filipek S, Müller DJ, Palczewski K. Modulation of molecular interactions and function by rhodopsin palmitylation. Biochemistry 2009; 48:4294-304. [PMID: 19348429 PMCID: PMC2710298 DOI: 10.1021/bi900417b] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rhodopsin is palmitylated at two cysteine residues in its carboxyl terminal region. We have looked at the effects of palmitylation on the molecular interactions formed by rhodopsin using single-molecule force spectroscopy and the function of rhodopsin using both in vitro and in vivo approaches. A knockin mouse model expressing palmitate-deficient rhodopsin was used for live animal in vivo studies and to obtain native tissue samples for in vitro assays. We specifically looked at the effects of palmitylation on the chromophore-binding pocket, interactions of rhodopsin with transducin, and molecular interactions stabilizing the receptor structure. The structure of rhodopsin is largely unperturbed by the absence of palmitate linkage. The binding pocket for the chromophore 11-cis-retinal is minimally altered as palmitate-deficient rhodopsin exhibited the same absorbance spectrum as wild-type rhodopsin. Similarly, the rate of release of all-trans-retinal after light activation was the same both in the presence and absence of palmitylation. Significant differences were observed in the rate of transducin activation by rhodopsin and in the force required to unfold the last stable structural segment in rhodopsin at its carboxyl terminal end. A 1.3-fold reduction in the rate of transducin activation by rhodopsin was observed in the absence of palmitylation. Single-molecule force spectroscopy revealed a 2.1-fold reduction in the normalized force required to unfold the carboxyl terminal end of rhodopsin. The absence of palmitylation in rhodopsin therefore destabilizes the molecular interactions formed in the carboxyl terminal end of the receptor, which appears to hinder the activation of transducin by light-activated rhodopsin.
Collapse
Affiliation(s)
- Paul S.-H. Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | - K. Tanuj Sapra
- Biotechnology Center, University of Technology, 01307 Dresden, Germany
| | - Beata Jastrzebska
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | - Tadao Maeda
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | - Akiko Maeda
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | - Wojciech Pulawski
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Masahiro Kono
- Department Ophthalmology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Janis Lem
- Department of Ophthalmology, Program in Genetics, Program in Neuroscience, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111
| | - Rosalie K. Crouch
- Department Ophthalmology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Slawomir Filipek
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
- Faculty of Chemistry, University of Warsaw, 02-093, Warsaw, Poland
| | - Daniel J. Müller
- Biotechnology Center, University of Technology, 01307 Dresden, Germany
| | - Krzysztof Palczewski
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|