1
|
Zimmermann M, Fandrich M, Jakobi M, Röben B, Wurster I, Lerche S, Schulte C, Zimmermann S, Deuschle C, Schneiderhan-Marra N, Joos TO, Gasser T, Brockmann K. Tissue Factor and Its Cerebrospinal Fluid Protein Profiles in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1405-1416. [PMID: 39240648 PMCID: PMC11492048 DOI: 10.3233/jpd-240115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/03/2024] [Indexed: 09/07/2024]
Abstract
Background Prior investigations have elucidated pathophysiological interactions involving blood coagulation and neurodegenerative diseases. These interactions pertain to age-related effects and a mild platelet antiaggregant function of exogenous α-Synuclein. Objective Our study sought to explore whether cerebrospinal fluid (CSF) levels of tissue factor (TF), the initiator of the extrinsic pathway of hemostasis, differ between controls (CON) compared to patients with Parkinson's disease (PD) and dementia with Lewy bodies (DLB), considering that these conditions represent a spectrum of α-Synuclein pathology. We further investigated whether TF levels are associated with longitudinal progression in PD. Methods We examined CSF levels of TF in 479 PD patients, 67 patients diagnosed with DLB, and 16 CON in order to evaluate potential continuum patterns among DLB, PD, and CON. Of the 479 PD patients, 96 carried a GBA1 variant (PD GBA1), while the 383 non-carriers were classified as PD wildtype (PD WT). We considered both longitudinal clinical data as well as CSF measurements of common neurodegenerative markers (amyloid-β 1-42, h-Tau, p-Tau, NfL, α-Synuclein). Kaplan-Meier survival and Cox regression analysis stratified by TF tertile levels was conducted. Results Higher CSF levels of TF were associated with an older age at examination in PD and a significant later onset of postural instability in PD GBA1. TF levels were lower in male vs. female PD. DLB GBA1 exhibited the lowest TF levels, followed by PD GBA1, with CON showing the highest levels. Conclusions TF as representative of blood hemostasis could be an interesting CSF candidate to further explore in PD and DLB.
Collapse
Affiliation(s)
- Milan Zimmermann
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Tübingen, Germany
| | - Madeleine Fandrich
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | - Meike Jakobi
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | - Benjamin Röben
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Tübingen, Germany
| | - Isabel Wurster
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Tübingen, Germany
| | - Stefanie Lerche
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Tübingen, Germany
| | - Claudia Schulte
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Tübingen, Germany
| | - Shahrzad Zimmermann
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tübingen, Germany
| | - Christian Deuschle
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Tübingen, Germany
| | | | - Thomas O. Joos
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | - Thomas Gasser
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Tübingen, Germany
| | - Kathrin Brockmann
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Tübingen, Germany
| |
Collapse
|
2
|
Liang H, Zhang X, Hou Y, Zheng K, Hao H, He B, Li H, Sun C, Yang T, Song H, Cai R, Wang Y, Jiang H, Qi L, Wang Y. Super-high procoagulant activity of gecko thrombin: A gift from sky dragon. CNS Neurosci Ther 2023; 29:3081-3093. [PMID: 37144588 PMCID: PMC10493662 DOI: 10.1111/cns.14250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023] Open
Abstract
AIMS Gecko, the "sky dragon" named by Traditional Chinese Medicine, undergoes rapid coagulation and scarless regeneration following tail amputation in the natural ecology, providing a perfect opportunity to develop the efficient and safe drug for blood clotting. Here, gecko thrombin (gthrombin) was recombinantly prepared and comparatively studied on its procoagulant activity. METHODS The 3D structure of gthrombin was constructed using the homology modeling method of I-TASSER. The active gthrombin was prepared by the expression of gecko prethrombin-2 in 293 T cells, followed by purification with Ni2+ -chelating column chromatography prior to activation by snake venom-derived Ecarin. The enzymatic activities of gthrombin were assayed by hydrolysis of synthetic substrate S-2238 and the fibrinogen clotting. The vulnerable nerve cells were used to evaluate the toxicity of gthrombin at molecular and cellular levels. RESULTS The active recombinant gthrombin showed super-high catalytic and fibrinogenolytic efficiency than those of human under different temperatures and pH conditions. In addition, gthrombin made nontoxic effects on the central nerve cells including neurons, contrary to those of mammalian counterparts, which contribute to neuronal damage, astrogliosis, and demyelination. CONCLUSIONS A super-high activity but safe procoagulant candidate drug was identified from reptiles, which provided a promising perspective for clinical application in rapid blood clotting.
Collapse
Affiliation(s)
- Hao Liang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Xingyuan Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Yuxuan Hou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Kang Zheng
- Anti‐aging & Regenerative Medicine Research Institution, School of Life Sciences and MedicineShandong University of TechnologyZiboPR China
| | - Huifei Hao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Bingqiang He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Hui Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Chunshuai Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Ting Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Honghua Song
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Rixin Cai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Yingjie Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Haiyan Jiang
- Department of Emergency MedicineAffiliated Hospital of Nantong UniversityNantongPR China
| | - Lei Qi
- Department of Emergency MedicineAffiliated Hospital of Nantong UniversityNantongPR China
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| |
Collapse
|
3
|
Neal ML, Beier EE, Hossain MM, Boyle A, Zheng J, Kim C, Mhatre-Winters I, Wu LJ, Richardson JR. Voltage-Gated Proton Channel Hv1 Regulates Neuroinflammation and Dopaminergic Neurodegeneration in Parkinson's Disease Models. Antioxidants (Basel) 2023; 12:582. [PMID: 36978830 PMCID: PMC10044828 DOI: 10.3390/antiox12030582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Although the precise mechanisms for neurodegeneration in Parkinson's disease (PD) are unknown, evidence suggests that neuroinflammation is a critical factor in the pathogenic process. Here, we sought to determine whether the voltage-gated proton channel, Hv1 (HVCN1), which is expressed in microglia and regulates NADPH oxidase, is associated with dopaminergic neurodegeneration. We utilized data mining to evaluate the mRNA expression of HVCN1 in the brains of PD patients and controls and uncovered increased expression of the gene encoding Hv1, HVCN1, in the brains of PD patients compared to controls, specifically in male PD patients. In an acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 4 × 16 mg/kg) mouse model of PD, Hvcn1 gene expression was increased 2-fold in the striatum. MPTP administration to wild-type (WT) mice resulted in a ~65% loss of tyrosine hydroxylase positive neurons (TH+) in the substantia nigra (SN), while a ~39% loss was observed in Hv1 knockout (KO) mice. Comparable neuroprotective effects of Hv1 deficiency were found in a repeated-dose LPS model. Neuroprotection was associated with decreased pro-inflammatory cytokine levels and pro-oxidant factors in both neurotoxicant animal models. These in vivo results were confirmed in primary microglial cultures, with LPS treatment increasing Hvcn1 mRNA levels and Hv1 KO microglia failing to exhibit the LPS-mediated inflammatory response. Conditioned media from Hv1 KO microglia treated with LPS resulted in an attenuated loss of cultured dopamine neuron cell viability compared to WT microglia. Taken together, these data suggest that Hv1 is upregulated and mediates microglial pro-inflammatory cytokine production in parkinsonian models and therefore represents a novel target for neuroprotection.
Collapse
Affiliation(s)
- Matthew L. Neal
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Eric E. Beier
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Muhammad M. Hossain
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Alexa Boyle
- Department of Pharmaceutical Sciences, Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH 44201, USA
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chunki Kim
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Isha Mhatre-Winters
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jason R. Richardson
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
- Department of Pharmaceutical Sciences, Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH 44201, USA
| |
Collapse
|
4
|
Kim HN, Triplet EM, Radulovic M, Bouchal S, Kleppe LS, Simon WL, Yoon H, Scarisbrick IA. The thrombin receptor modulates astroglia-neuron trophic coupling and neural repair after spinal cord injury. Glia 2021; 69:2111-2132. [PMID: 33887067 PMCID: PMC8672305 DOI: 10.1002/glia.24012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 12/15/2022]
Abstract
Excessive activation of the thrombin receptor, protease activated receptor 1 (PAR1) is implicated in diverse neuropathologies from neurodegenerative conditions to neurotrauma. PAR1 knockout mice show improved outcomes after experimental spinal cord injury (SCI), however information regarding the underpinning cellular and molecular mechanisms is lacking. Here we demonstrate that genetic blockade of PAR1 in female mice results in improvements in sensorimotor co-ordination after thoracic spinal cord lateral compression injury. We document improved neuron preservation with increases in Synapsin-1 presynaptic proteins and GAP43, a growth cone marker, after a 30 days recovery period. These improvements were coupled to signs of enhanced myelin resiliency and repair, including increases in the number of mature oligodendrocytes, their progenitors and the abundance of myelin basic protein. These significant increases in substrates for neural recovery were accompanied by reduced astrocyte (Serp1) and microglial/monocyte (CD68 and iNOS) pro-inflammatory markers, with coordinate increases in astrocyte (S100A10 and Emp1) and microglial (Arg1) markers reflective of pro-repair activities. Complementary astrocyte-neuron co-culture bioassays suggest astrocytes with PAR1 loss-of-function promote both neuron survival and neurite outgrowth. Additionally, the pro-neurite outgrowth effects of switching off astrocyte PAR1 were blocked by inhibiting TrkB, the high affinity receptor for brain derived neurotrophic factor. Altogether, these studies demonstrate unique modulatory roles for PAR1 in regulating glial-neuron interactions, including the capacity for neurotrophic factor signaling, and underscore its position at neurobiological intersections critical for the response of the CNS to injury and the capacity for regenerative repair and restoration of function.
Collapse
Affiliation(s)
- Ha Neui Kim
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
| | - Erin M. Triplet
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
- Neuroscience Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester MN 55905
| | - Maja Radulovic
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
| | - Samantha Bouchal
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
| | - Laurel S. Kleppe
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
| | - Whitney L. Simon
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
| | - Hyesook Yoon
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
| | - Isobel A. Scarisbrick
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
- Neuroscience Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester MN 55905
| |
Collapse
|
5
|
Inhibition of protease-activated receptor 1 (PAR1) ameliorates cognitive performance and synaptic plasticity impairments in animal model of Alzheimer's diseases. Psychopharmacology (Berl) 2021; 238:1645-1656. [PMID: 33624157 DOI: 10.1007/s00213-021-05798-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/09/2021] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a progressive brain disorder accompanied with synaptic failures and decline in cognitive and learning processes. Protease-activated receptor 1 (PAR1) is the major thrombin receptor in the brain that is implicated in synaptic plasticity and memory formation. In the current study, we hypothesized that inhibition of PAR1 would theoretically prevent amyloid beta (Aβ) accumulation in the brain and then contribute to reduce risk of AD. The aim of the present study was to evaluate the effect of PAR1 inhibition by using SCH (as an inhibitor of PAR1) on spatial learning, memory, and synaptic plasticity in the CA1 region of the hippocampus in rat model of Alzheimer's disease. METHODS For the induction of Alzheimer's disease, amyloid beta (Aβ) 1-42 was injected in the CA1 region of the hippocampus. The rats were divided into four groups: group I (surgical sham); group II rat mode of Alzheimer's disease (AD); group III (SCH) (25 μg/kg) intraperitoneally (i.p.), and group IV (AD + SCH). After 14 days of protocol, the rats in group III received SCH and 30 min after injection behavioral and electrophysiological tests were performed. Learning and memory ability was assessed by Morris water maze and novel object recognition tests. Extracellular evoked field excitatory postsynaptic potentials (fEPSP) were recorded in the stratum radiatum of the CA1 area. RESULTS Our results showed that AD rats showed impairments in learning and memory, and long-term potentiation (LTP) was not induced in these rats. However, injection of SCH overcame the AD-induced impairment in LTP generation in the CA1 area of the hippocampus and improved learning and memory impairment.
Collapse
|
6
|
The pleiotropic effects of antithrombotic drugs in the metabolic-cardiovascular-neurodegenerative disease continuum: impact beyond reduced clotting. Clin Sci (Lond) 2021; 135:1015-1051. [PMID: 33881143 DOI: 10.1042/cs20201445] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/25/2022]
Abstract
Antithrombotic drugs are widely used for primary and secondary prevention, as well as treatment of many cardiovascular disorders. Over the past few decades, major advances in the pharmacology of these agents have been made with the introduction of new drug classes as novel therapeutic options. Accumulating evidence indicates that the beneficial outcomes of some of these antithrombotic agents are not solely related to their ability to reduce thrombosis. Here, we review the evidence supporting established and potential pleiotropic effects of four novel classes of antithrombotic drugs, adenosine diphosphate (ADP) P2Y12-receptor antagonists, Glycoprotein IIb/IIIa receptor Inhibitors, and Direct Oral Anticoagulants (DOACs), which include Direct Factor Xa (FXa) and Direct Thrombin Inhibitors. Specifically, we discuss the molecular evidence supporting such pleiotropic effects in the context of cardiovascular disease (CVD) including endothelial dysfunction (ED), atherosclerosis, cardiac injury, stroke, and arrhythmia. Importantly, we highlight the role of DOACs in mitigating metabolic dysfunction-associated cardiovascular derangements. We also postulate that DOACs modulate perivascular adipose tissue inflammation and thus, may reverse cardiovascular dysfunction early in the course of the metabolic syndrome. In this regard, we argue that some antithrombotic agents can reverse the neurovascular damage in Alzheimer's and Parkinson's brain and following traumatic brain injury (TBI). Overall, we attempt to provide an up-to-date comprehensive review of the less-recognized, beneficial molecular aspects of antithrombotic therapy beyond reduced thrombus formation. We also make a solid argument for the need of further mechanistic analysis of the pleiotropic effects of antithrombotic drugs in the future.
Collapse
|
7
|
Price R, Ferrari E, Gardoni F, Mercuri NB, Ledonne A. Protease-activated receptor 1 (PAR1) inhibits synaptic NMDARs in mouse nigral dopaminergic neurons. Pharmacol Res 2020; 160:105185. [PMID: 32891865 DOI: 10.1016/j.phrs.2020.105185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022]
Abstract
Protease-activated receptor 1 (PAR1) is a G protein-coupled receptor (GPCR), whose activation requires a proteolytic cleavage in the extracellular domain exposing a tethered ligand, which binds to the same receptor thus stimulating Gαq/11-, Gαi/o- and Gα12-13 proteins. PAR1, activated by serine proteases and matrix metalloproteases, plays multifaceted roles in neuroinflammation and neurodegeneration, in stroke, brain trauma, Alzheimer's diseases, and Parkinson's disease (PD). Substantia nigra pars compacta (SNpc) is among areas with highest PAR1 expression, but current evidence on its roles herein is restricted to mechanisms controlling dopaminergic (DAergic) neurons survival, with controversial data showing PAR1 either fostering or counteracting degeneration in PD models. Since PAR1 functions on SNpc DAergic neurons activity are unknown, we investigated if PAR1 affects glutamatergic transmission in this neuronal population. We analyzed PAR1's effects on NMDARs and AMPARs by patch-clamp recordings from DAergic neurons from mouse midbrain slices. Then, we explored subunit composition of PAR1-sensitive NMDARs, with selective antagonists, and mechanisms underlying PAR1-induced NMDARs modulation, by quantifying NMDARs surface expression. PAR1 activation inhibits synaptic NMDARs in SNpc DAergic neurons, without affecting AMPARs. PAR1-sensitive NMDARs contain GluN2B/GluN2D subunits. Moreover, PAR1-mediated NMDARs hypofunction is reliant on NMDARs internalization, as PAR1 stimulation increases NMDARs intracellular levels and pharmacological limitation of NMDARs endocytosis prevents PAR1-induced NMDARs inhibition. We reveal that PAR1 regulates glutamatergic transmission in midbrain DAergic cells. This might have implications in brain's DA-dependent functions and in neurological/psychiatric diseases linked to DAergic dysfunctions.
Collapse
Affiliation(s)
- Rachel Price
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Systems Medicine, Università di Roma Tor Vergata, Rome, Italy
| | - Elena Ferrari
- Department of Pharmacological and Biomolecolar Sciences, Università degli Studi di Milano, Milan, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecolar Sciences, Università degli Studi di Milano, Milan, Italy
| | - Nicola Biagio Mercuri
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Systems Medicine, Università di Roma Tor Vergata, Rome, Italy
| | - Ada Ledonne
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
8
|
Iannucci J, Renehan W, Grammas P. Thrombin, a Mediator of Coagulation, Inflammation, and Neurotoxicity at the Neurovascular Interface: Implications for Alzheimer's Disease. Front Neurosci 2020; 14:762. [PMID: 32792902 PMCID: PMC7393221 DOI: 10.3389/fnins.2020.00762] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
The societal burden of Alzheimer’s disease (AD) is staggering, with current estimates suggesting that 50 million people world-wide have AD. Identification of new therapeutic targets is a critical barrier to the development of disease-modifying therapies. A large body of data implicates vascular pathology and cardiovascular risk factors in the development of AD, indicating that there are likely shared pathological mediators. Inflammation plays a role in both cardiovascular disease and AD, and recent evidence has implicated elements of the coagulation system in the regulation of inflammation. In particular, the multifunctional serine protease thrombin has been found to act as a mediator of vascular dysfunction and inflammation in both the periphery and the central nervous system. In the periphery, thrombin contributes to the development of cardiovascular disease, including atherosclerosis and diabetes, by inducing endothelial dysfunction and related inflammation. In the brain, thrombin has been found to act on endothelial cells of the blood brain barrier, microglia, astrocytes, and neurons in a manner that promotes vascular dysfunction, inflammation, and neurodegeneration. Thrombin is elevated in the AD brain, and thrombin signaling has been linked to both tau and amyloid beta, pathological hallmarks of the disease. In AD mouse models, inhibiting thrombin preserves cognition and endothelial function and reduces neuroinflammation. Evidence linking atrial fibrillation with AD and dementia indicates that anticoagulant therapy may reduce the risk of dementia, with targeting thrombin shown to be particularly effective. It is time for “outside-the-box” thinking about how vascular risk factors, such as atherosclerosis and diabetes, as well as the coagulation and inflammatory pathways interact to promote increased AD risk. In this review, we present evidence that thrombin is a convergence point for AD risk factors and as such that thrombin-based therapeutics could target multiple points of AD pathology, including neurodegeneration, vascular activation, and neuroinflammation. The urgent need for disease-modifying drugs in AD demands new thinking about disease pathogenesis and an exploration of novel drug targets, we propose that thrombin inhibition is an innovative tactic in the therapeutic battle against this devastating disease.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- The George and Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| | - William Renehan
- The George and Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States
| | - Paula Grammas
- The George and Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
9
|
Johnson SL, Iannucci J, Seeram NP, Grammas P. Inhibiting thrombin improves motor function and decreases oxidative stress in the LRRK2 transgenic Drosophila melanogaster model of Parkinson's disease. Biochem Biophys Res Commun 2020; 527:532-538. [PMID: 32423817 DOI: 10.1016/j.bbrc.2020.04.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disease characterized by the presence of tremors, loss of dopaminergic neurons and accumulation of α-synuclein. While there is no single direct cause of PD, genetic mutations, exposure to pesticides, diet and traumatic brain injury have been identified as risk factors. Increasing evidence suggests that oxidative stress and neuroinflammation contribute to the pathogenesis of neuronal injury in neurodegenerative diseases such as PD and Alzheimer's disease (AD). We have previously documented that the multifunctional inflammatory mediator thrombin contributes to oxidative stress and neuroinflammation in AD. Here, for the first time, we explore the role of thrombin in a transgenic PD model, the LRRK2 mutant Drosophila melanogaster. Transgenic flies were treated with the direct thrombin inhibitor dabigatran for 7 days and locomotor activity and indices of oxidative stress evaluated. Our data show that dabigatran treatment significantly (p < 0.05) improved climbing activity, a measurement of locomotor ability, in male but had no effect on locomotor performance in female flies. Dabigatran treatment had no effect on tyrosine hydroxylase levels. Analysis of oxidative stress in male flies showed that dabigatran was able to significantly (p < 0.01) lower reactive oxygen species levels. Furthermore, Western blot analysis showed that the pro-oxidant proteins iNOS and NOX4 are elevated in LRRK2 male flies compared to wildtype and that treatment with dabigatran reduced expression of these proteins. Our results indicate that dabigatran treatment could improve motor function in PD by reducing oxidative stress. These data suggest that targeting thrombin may improve oxidative stress related pathologies in PD.
Collapse
Affiliation(s)
- Shelby L Johnson
- The George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA; Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Jaclyn Iannucci
- The George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA; Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Navindra P Seeram
- The George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA; Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Paula Grammas
- The George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA; Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| |
Collapse
|
10
|
Role of the protease-activated receptor 1 in regulating the function of glial cells within central and peripheral nervous system. J Neural Transm (Vienna) 2019; 126:1259-1271. [DOI: 10.1007/s00702-019-02075-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/31/2019] [Indexed: 02/07/2023]
|
11
|
MMP-1 overexpression selectively alters inhibition in D1 spiny projection neurons in the mouse nucleus accumbens core. Sci Rep 2018; 8:16230. [PMID: 30385861 PMCID: PMC6212422 DOI: 10.1038/s41598-018-34551-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/19/2018] [Indexed: 11/24/2022] Open
Abstract
Protease activated receptor-1 (PAR-1) and its ligand, matrix metalloproteinase-1 (MMP-1), are altered in several neurodegenerative diseases. PAR-1/MMP-1 signaling impacts neuronal activity in various brain regions, but their role in regulating synaptic physiology in the ventral striatum, which is implicated in motor function, is unknown. The ventral striatum contains two populations of GABAergic spiny projection neurons, D1 and D2 SPNs, which differ with respect to both synaptic inputs and projection targets. To evaluate the role of MMP-1/PAR-1 signaling in the regulation of ventral striatal synaptic function, we performed whole-cell recordings (WCR) from D1 and D2 SPNs in control mice, mice that overexpress MMP-1 (MMP-1OE), and MMP-1OE mice lacking PAR-1 (MMP-1OE/PAR-1KO). WCRs from MMP1-OE mice revealed an increase in spontaneous inhibitory post-synaptic current (sIPSC), miniature IPSC, and miniature excitatory PSC frequency in D1 SPNs but not D2 SPNs. This alteration may be partially PAR-1 dependent, as it was not present in MMP-1OE/PAR-1KO mice. Morphological reconstruction of D1 SPNs revealed increased dendritic complexity in the MMP-1OE, but not MMP-1OE/PAR-1KO mice. Moreover, MMP-1OE mice exhibited blunted locomotor responses to amphetamine, a phenotype also observed in MMP-1OE/PAR-1KO mice. Our data suggest PAR-1 dependent and independent MMP-1 signaling may lead to alterations in striatal neuronal function.
Collapse
|
12
|
Neal M, Richardson JR. Epigenetic regulation of astrocyte function in neuroinflammation and neurodegeneration. Biochim Biophys Acta Mol Basis Dis 2017; 1864:432-443. [PMID: 29113750 DOI: 10.1016/j.bbadis.2017.11.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/22/2017] [Accepted: 11/02/2017] [Indexed: 01/01/2023]
Abstract
Epigenetic mechanisms control various functions throughout the body, from cell fate determination in development to immune responses and inflammation. Neuroinflammation is one of the prime contributors to the initiation and progression of neurodegeneration in a variety of diseases, including Alzheimer's and Parkinson's diseases. Because astrocytes are the largest population of glial cells, they represent an important regulator of CNS function, both in health and disease. Only recently have studies begun to identify the epigenetic mechanisms regulating astrocyte responses in neurodegenerative diseases. These epigenetic mechanisms, along with the epigenetic marks involved in astrocyte development, could elucidate novel pathways to potentially modulate astrocyte-mediated neuroinflammation and neurotoxicity. This review examines the known epigenetic mechanisms involved in regulation of astrocyte function, from development to neurodegeneration, and links these mechanisms to potential astrocyte-specific roles in neurodegenerative disease with a focus on potential opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Matthew Neal
- Department of Pharmaceutical Sciences and Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH 44201, USA
| | - Jason R Richardson
- Department of Pharmaceutical Sciences and Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH 44201, USA.
| |
Collapse
|
13
|
De Luca C, Virtuoso A, Maggio N, Papa M. Neuro-Coagulopathy: Blood Coagulation Factors in Central Nervous System Diseases. Int J Mol Sci 2017; 18:E2128. [PMID: 29023416 PMCID: PMC5666810 DOI: 10.3390/ijms18102128] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 09/30/2017] [Accepted: 10/08/2017] [Indexed: 12/30/2022] Open
Abstract
Blood coagulation factors and other proteins, with modulatory effects or modulated by the coagulation cascade have been reported to affect the pathophysiology of the central nervous system (CNS). The protease-activated receptors (PARs) pathway can be considered the central hub of this regulatory network, mainly through thrombin or activated protein C (aPC). These proteins, in fact, showed peculiar properties, being able to interfere with synaptic homeostasis other than coagulation itself. These specific functions modulate neuronal networks, acting both on resident (neurons, astrocytes, and microglia) as well as circulating immune system cells and the extracellular matrix. The pleiotropy of these effects is produced through different receptors, expressed in various cell types, in a dose- and time-dependent pattern. We reviewed how these pathways may be involved in neurodegenerative diseases (amyotrophic lateral sclerosis, Alzheimer's and Parkinson's diseases), multiple sclerosis, ischemic stroke and post-ischemic epilepsy, CNS cancer, addiction, and mental health. These data open up a new path for the potential therapeutic use of the agonist/antagonist of these proteins in the management of several central nervous system diseases.
Collapse
Affiliation(s)
- Ciro De Luca
- Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Assunta Virtuoso
- Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Tel Hashomer, 52621 Ramat Gan, Israel.
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, 6997801 Tel Aviv, Israel.
| | - Michele Papa
- Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
- SYSBIO, Centre of Systems Biology, University of Milano-Bicocca, 20126 Milano, Italy.
| |
Collapse
|
14
|
Liu B, Teschemacher AG, Kasparov S. Astroglia as a cellular target for neuroprotection and treatment of neuro-psychiatric disorders. Glia 2017; 65:1205-1226. [PMID: 28300322 PMCID: PMC5669250 DOI: 10.1002/glia.23136] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 12/12/2022]
Abstract
Astrocytes are key homeostatic cells of the central nervous system. They cooperate with neurons at several levels, including ion and water homeostasis, chemical signal transmission, blood flow regulation, immune and oxidative stress defense, supply of metabolites and neurogenesis. Astroglia is also important for viability and maturation of stem-cell derived neurons. Neurons critically depend on intrinsic protective and supportive properties of astrocytes. Conversely, all forms of pathogenic stimuli which disturb astrocytic functions compromise neuronal functionality and viability. Support of neuroprotective functions of astrocytes is thus an important strategy for enhancing neuronal survival and improving outcomes in disease states. In this review, we first briefly examine how astrocytic dysfunction contributes to major neurological disorders, which are traditionally associated with malfunctioning of processes residing in neurons. Possible molecular entities within astrocytes that could underpin the cause, initiation and/or progression of various disorders are outlined. In the second section, we explore opportunities enhancing neuroprotective function of astroglia. We consider targeting astrocyte-specific molecular pathways which are involved in neuroprotection or could be expected to have a therapeutic value. Examples of those are oxidative stress defense mechanisms, glutamate uptake, purinergic signaling, water and ion homeostasis, connexin gap junctions, neurotrophic factors and the Nrf2-ARE pathway. We propose that enhancing the neuroprotective capacity of astrocytes is a viable strategy for improving brain resilience and developing new therapeutic approaches.
Collapse
Affiliation(s)
- Beihui Liu
- School of Physiology, Pharmacology and NeuroscienceUniversity of Bristol, University WalkBS8 1TDUnited Kingdom
| | - Anja G. Teschemacher
- School of Physiology, Pharmacology and NeuroscienceUniversity of Bristol, University WalkBS8 1TDUnited Kingdom
| | - Sergey Kasparov
- School of Physiology, Pharmacology and NeuroscienceUniversity of Bristol, University WalkBS8 1TDUnited Kingdom
- Institute for Chemistry and BiologyBaltic Federal UniversityKaliningradRussian Federation
| |
Collapse
|
15
|
Bushi D, Stein ES, Golderman V, Feingold E, Gera O, Chapman J, Tanne D. A Linear Temporal Increase in Thrombin Activity and Loss of Its Receptor in Mouse Brain following Ischemic Stroke. Front Neurol 2017; 8:138. [PMID: 28443061 PMCID: PMC5385331 DOI: 10.3389/fneur.2017.00138] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/24/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Brain thrombin activity is increased following acute ischemic stroke and may play a pathogenic role through the protease-activated receptor 1 (PAR1). In order to better assess these factors, we obtained a novel detailed temporal and spatial profile of thrombin activity in a mouse model of permanent middle cerebral artery occlusion (pMCAo). METHODS Thrombin activity was measured by fluorescence spectroscopy on coronal slices taken from the ipsilateral and contralateral hemispheres 2, 5, and 24 h following pMCAo (n = 5, 6, 5 mice, respectively). Its spatial distribution was determined by punch samples taken from the ischemic core and penumbra and further confirmed using an enzyme histochemistry technique (n = 4). Levels of PAR1 were determined using western blot. RESULTS Two hours following pMCAo, thrombin activity in the stroke core was already significantly higher than the contralateral area (11 ± 5 vs. 2 ± 1 mU/ml). At 5 and 24 h, thrombin activity continued to rise linearly (r = 0.998, p = 0.001) and to expand in the ischemic hemisphere beyond the ischemic core reaching deleterious levels of 271 ± 117 and 123 ± 14 mU/ml (mean ± SEM) in the basal ganglia and ischemic cortex, respectively. The peak elevation of thrombin activity in the ischemic core that was confirmed by fluorescence histochemistry was in good correlation with the infarcts areas. PAR1 levels in the ischemic core decreased as stroke progressed and thrombin activity increased. CONCLUSION In conclusion, there is a time- and space-related increase in brain thrombin activity in acute ischemic stroke that is closely related to the progression of brain damage. These results may be useful in the development of therapeutic strategies for ischemic stroke that involve the thrombin-PAR1 pathway in order to prevent secondary thrombin related brain damage.
Collapse
Affiliation(s)
- Doron Bushi
- Comprehensive Stroke Center, Department of Neurology, The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Shavit Stein
- Comprehensive Stroke Center, Department of Neurology, The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel
| | - Valery Golderman
- Comprehensive Stroke Center, Department of Neurology, The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ekaterina Feingold
- Comprehensive Stroke Center, Department of Neurology, The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orna Gera
- Comprehensive Stroke Center, Department of Neurology, The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joab Chapman
- Comprehensive Stroke Center, Department of Neurology, The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Tanne
- Comprehensive Stroke Center, Department of Neurology, The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
16
|
Schuldt G, Galanis C, Strehl A, Hick M, Schiener S, Lenz M, Deller T, Maggio N, Vlachos A. Inhibition of Protease-Activated Receptor 1 Does not Affect Dendritic Homeostasis of Cultured Mouse Dentate Granule Cells. Front Neuroanat 2016; 10:64. [PMID: 27378862 PMCID: PMC4904007 DOI: 10.3389/fnana.2016.00064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/27/2016] [Indexed: 12/25/2022] Open
Abstract
Protease-activated receptors (PARs) are widely expressed in the central nervous system (CNS). While a firm link between PAR1-activation and functional synaptic and intrinsic neuronal properties exists, studies on the role of PAR1 in neural structural plasticity are scarce. The physiological function of PAR1 in the brain remains not well understood. We here sought to determine whether prolonged pharmacologic PAR1-inhibition affects dendritic morphologies of hippocampal neurons. To address this question we employed live-cell microscopy of mouse dentate granule cell dendrites in 3-week old entorhino-hippocampal slice cultures prepared from Thy1-GFP mice. A subset of cultures were treated with the PAR1-inhibitor SCH79797 (1 μM; up to 3 weeks). No major effects of PAR1-inhibition on static and dynamic parameters of dentate granule cell dendrites were detected under control conditions. Granule cells of PAR1-deficient slice cultures showed unaltered dendritic morphologies, dendritic spine densities and excitatory synaptic strength. Furthermore, we report that PAR1-inhibition does not prevent dendritic retraction following partial deafferentation in vitro. Consistent with this finding, no major changes in PAR1-mRNA levels were detected in the denervated dentate gyrus (DG). We conclude that neural PAR1 is not involved in regulating the steady-state dynamics or deafferentation-induced adaptive changes of cultured dentate granule cell dendrites. These results indicate that drugs targeting neural PAR1-signals may not affect the stability and structural integrity of neuronal networks in healthy brain regions.
Collapse
Affiliation(s)
- Gerlind Schuldt
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt Frankfurt, Germany
| | - Christos Galanis
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt Frankfurt, Germany
| | - Andreas Strehl
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt Frankfurt, Germany
| | - Meike Hick
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt Frankfurt, Germany
| | - Sabine Schiener
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt Frankfurt, Germany
| | - Maximilian Lenz
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University FrankfurtFrankfurt, Germany; Institute of Anatomy II, Faculty of Medicine, Heinrich-Heine-University DüsseldorfDüsseldorf, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt Frankfurt, Germany
| | - Nicola Maggio
- Department of Neurology, The Sagol Center for Neurosciences, Sheba Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv UniversityTel Aviv, Israel; Talpiot Medical Leadership Program, Department of Neurology and J. Sagol Neuroscience Center, The Chaim Sheba Medical CenterTel HaShomer, Israel; Sagol School of Neuroscience, Tel Aviv UniversityTel Aviv, Israel
| | - Andreas Vlachos
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University FrankfurtFrankfurt, Germany; Institute of Anatomy II, Faculty of Medicine, Heinrich-Heine-University DüsseldorfDüsseldorf, Germany
| |
Collapse
|
17
|
Microglial ion channels as potential targets for neuroprotection in Parkinson's disease. Neural Plast 2013; 2013:587418. [PMID: 24288626 PMCID: PMC3832972 DOI: 10.1155/2013/587418] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/19/2013] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a chronic, degenerative neurological disorder that is estimated to affect at least 1 million individuals in the USA and over 10 million worldwide. It is thought that the loss of neurons and development of inclusion bodies occur gradually over decades until they progress to the point where ~60% of the dopamine neurons are lost and patients present with motor dysfunction. At present, it is not clear what causes this progression, and there are no current therapies that have been successful in preventing PD progression. Although there are many hypotheses regarding the mechanism of PD progression, neuroinflammation may be a major contributor to PD pathogenesis. Indeed, activated microglia and subsequent neuroinflammation have been consistently associated with the pathogenesis of PD. Thus, interference with this process could provide a means of neuroprotection in PD. This review will discuss the potential of targeting microglia to reduce neuroinflammation in PD. Further, we discuss the potential of microglial ion channels to serve as novel targets for neuroprotection in PD.
Collapse
|
18
|
Gupta V, Singh MK, Garg RK, Pant KK, Khattri S. Evaluation of peripheral matrix metalloproteinase-1 in Parkinson's disease: a case-control study. Int J Neurosci 2013; 124:88-92. [PMID: 23849018 DOI: 10.3109/00207454.2013.824438] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Several types of proteinases are implicated in extracellular matrix (ECM) degradation, but the major enzymes are considered to be matrix metalloproteinases (MMPs). Matrix metalloproteinase-1 (MMP-1) is a major proteinase of the MMP family. MMP-1 is critical for modeling and remodeling of the extracellular matrix. In the present study, we evaluated circulating level of MMP-1 in Parkinson's disease (PD) patients and controls. METHOD Enzyme linked immunosorbent assay (ELISA) was used to determine the serum level of MMP-1 in Parkinson's patients and matched healthy controls. RESULTS The mean age of Parkinson's patients (65%) and controls (62.5%) were 55.80 ± 9.69 and 54.05 ± 8.71 years respectively, with similar male/female ratio between patients and controls. The MMP-1 level was (p = 0.005) significantly lower in Parkinson's patients (2380.32 ± 2245.27 pg/ml) as compared to controls (4453.07 ± 3321.01 pg/ml). Poor correlation was found between MMP-1 level and disease duration (r = 0.36, p = 0.02), however it was statistically significant. CONCLUSION Significantly lower level of serum MMP-1 was found in PD patients in comparison to controls. This difference in MMP-1 level was more prominent in females.
Collapse
Affiliation(s)
- Vineeta Gupta
- 1Department of Pharmacology & Therapeutics, King George's Medical University , Lucknow, Uttar Pradesh , India
| | | | | | | | | |
Collapse
|
19
|
Almonte AG, Qadri LH, Sultan FA, Watson JA, Mount DJ, Rumbaugh G, Sweatt JD. Protease-activated receptor-1 modulates hippocampal memory formation and synaptic plasticity. J Neurochem 2012; 124:109-22. [PMID: 23113835 DOI: 10.1111/jnc.12075] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 09/21/2012] [Accepted: 10/22/2012] [Indexed: 11/28/2022]
Abstract
Protease-activated receptor-1 (PAR1) is an unusual G-protein coupled receptor (GPCR) that is activated through proteolytic cleavage by extracellular serine proteases. Although previous work has shown that inhibiting PAR1 activation is neuroprotective in models of ischemia, traumatic injury, and neurotoxicity, surprisingly little is known about PAR1's contribution to normal brain function. Here, we used PAR1-/- mice to investigate the contribution of PAR1 function to memory formation and synaptic function. We demonstrate that PAR1-/- mice have deficits in hippocampus-dependent memory. We also show that while PAR1-/- mice have normal baseline synaptic transmission at Schaffer collateral-CA1 synapses, they exhibit severe deficits in N-methyl-d-aspartate receptor (NMDAR)-dependent long-term potentiation (LTP). Mounting evidence indicates that activation of PAR1 leads to potentiation of NMDAR-mediated responses in CA1 pyramidal cells. Taken together, this evidence and our data suggest an important role for PAR1 function in NMDAR-dependent processes subserving memory formation and synaptic plasticity.
Collapse
Affiliation(s)
- Antoine G Almonte
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Manaenko A, Sun X, Kim CH, Yan J, Ma Q, Zhang JH. PAR-1 antagonist SCH79797 ameliorates apoptosis following surgical brain injury through inhibition of ASK1-JNK in rats. Neurobiol Dis 2012; 50:13-20. [PMID: 23000356 DOI: 10.1016/j.nbd.2012.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/06/2012] [Accepted: 09/10/2012] [Indexed: 11/19/2022] Open
Abstract
Neurosurgical procedures inevitably produce intraoperative hemorrhage. The subsequent entry of blood into the brain parenchyma results in the release of large amounts of thrombin, a known contributor to perihematomal edema formation and apoptosis after brain injury. The present study seeks to test 1) the effect of surgically induced brain injury (SBI) on thrombin activity, expression of thrombin's receptor PAR-1, and PAR-1 mediated apoptosis; 2) the effect of thrombin inhibition by argatroban and PAR-1 inhibition by SCH79797 on the development of secondary brain injury in the SBI model on rats. A total of 88 Sprague-Dawley male rats were randomly divided into sham, vehicle-, argatroban-, or SCH79797-treated groups. SBI involved partial resection of the right frontal lobe under inhalation isoflurane anesthesia. Sham-operated animals received only craniotomy. Thrombin activity, brain water content, and neurological deficits were measured at 24 h following SBI. Involvement of the Ask1/JNK pathway in PAR-1-induced post-SBI apoptosis was characterized by using Ask1 or JNK inhibitors. We observed that SBI increased thrombin activity, yet failed to demonstrate any effect on PAR-1 expression. Argatroban and SCH79797 reduced SBI-induced brain edema and neurological deficits in a dose-dependent manner. SBI-induced apoptosis seemed mediated by the PAR-1/Ask1/JNK pathways. Administration of SCH79797 ameliorated the apoptosis following SBI. Our findings indicate that PAR-1 antagonist protects against secondary brain injury after SBI by decreasing both brain edema and apoptosis by inactivating PAR-1/Ask1/JNK pathway. The anti-apoptotic effect of PAR-1 antagonists may provide a promising path for therapy following SBI.
Collapse
Affiliation(s)
- Anatol Manaenko
- Department of Basic Sciences, Loma Linda University, Loma Linda, California, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Wang T, Lee MH, Choi E, Pardo-Villamizar CA, Lee SB, Yang IH, Calabresi PA, Nath A. Granzyme B-induced neurotoxicity is mediated via activation of PAR-1 receptor and Kv1.3 channel. PLoS One 2012; 7:e43950. [PMID: 22952817 PMCID: PMC3430617 DOI: 10.1371/journal.pone.0043950] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 07/27/2012] [Indexed: 11/19/2022] Open
Abstract
Increasing evidence supports a critical role of T cells in neurodegeneration associated with acute and subacute brain inflammatory disorders. Granzyme B (GrB), released by activated T cells, is a cytotoxic proteinase which may induce perforin-independent neurotoxicity. Here, we studied the mechanism of perforin-independent GrB toxicity by treating primary cultured human neuronal cells with recombinant GrB. GrBactivated the protease-activated receptor (PAR)-1 receptor on the neuronal cell surface leading to decreased intracellular cyclic AMP levels. This was followed by increased expression and translocation of the voltage gated potassium channel, Kv1.3 to the neuronal cell membrane. Similar expression of Kv1.3 was also seen in neurons of the cerebral cortex adjacent to active inflammatory lesions in patients with multiple sclerosis. Kv1.3 expression was followed by activation of Notch-1 resulting in neurotoxicity. Blocking PAR-1, Kv1.3 or Notch-1 activation using specific pharmacological inhibitors or siRNAs prevented GrB-induced neurotoxicity. Furthermore, clofazimine protected against GrB-induced neurotoxicity in rat hippocampus, in vivo. These observations indicate that GrB released from T cells induced neurotoxicity by interacting with the membrane bound Gi-coupled PAR-1 receptor and subsequently activated Kv1.3 and Notch-1. These pathways provide novel targets to treat T cell-mediated neuroinflammatory disorders. Kv1.3 is of particular interest since it is expressed on the cell surface, only under pathological circumstances, and early in the cascade of events making it an attractive therapeutic target.
Collapse
Affiliation(s)
- Tongguang Wang
- Section of Infections of the Nervous System, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Myoung-Hwa Lee
- Section of Infections of the Nervous System, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Elliot Choi
- Section of Infections of the Nervous System, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Sung Bin Lee
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - In Hong Yang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Singapore Institute for Nanotechnology, National University of Singapore, Singapore, Singapore
| | - Peter A. Calabresi
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Avindra Nath
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Section of Infections of the Nervous System, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
22
|
Conant K, Lim ST, Randall B, Maguire-Zeiss KA. Matrix metalloproteinase dependent cleavage of cell adhesion molecules in the pathogenesis of CNS dysfunction with HIV and methamphetamine. Curr HIV Res 2012; 10:384-91. [PMID: 22591362 PMCID: PMC6035363 DOI: 10.2174/157016212802138733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 01/18/2012] [Accepted: 01/25/2012] [Indexed: 01/15/2023]
Abstract
Physiologically appropriate levels of matrix metalloproteinases (MMPs) are likely important to varied aspects of CNS function. In particular, these enzymes may contribute to neuronal activity dependent synaptic plasticity and to cell mobility in processes including stem cell migration and immune surveillance. Levels of MMPs may, however, be substantially increased in the setting of HIV infection with methamphetamine abuse. Elevated MMP levels might in turn influence integrity of the blood brain barrier, as has been demonstrated in published work. Herein we suggest that elevated levels of MMPs can also contribute to microglial activation as well as neuronal and synaptic injury through a mechanism that involves cleavage of specific cell and synaptic adhesion molecules.
Collapse
Affiliation(s)
- Katherine Conant
- Department of Neuroscience, Georgetown University Medical Center, Research Building EP-16, 3970 Reservoir Rd, Washington, DC 20007, USA.
| | | | | | | |
Collapse
|
23
|
Liu DZ, Ander BP. Cell cycle inhibition without disruption of neurogenesis is a strategy for treatment of aberrant cell cycle diseases: an update. ScientificWorldJournal 2012; 2012:491737. [PMID: 22547985 PMCID: PMC3323905 DOI: 10.1100/2012/491737] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 11/17/2011] [Indexed: 12/12/2022] Open
Abstract
Since publishing our earlier report describing a strategy for the treatment of central nervous system (CNS) diseases by inhibiting the cell cycle and without disrupting neurogenesis (Liu et al. 2010), we now update and extend this strategy to applications in the treatment of cancers as well. Here, we put forth the concept of "aberrant cell cycle diseases" to include both cancer and CNS diseases, the two unrelated disease types on the surface, by focusing on a common mechanism in each aberrant cell cycle reentry. In this paper, we also summarize the pharmacological approaches that interfere with classical cell cycle molecules and mitogenic pathways to block the cell cycle of tumor cells (in treatment of cancer) as well as to block the cell cycle of neurons (in treatment of CNS diseases). Since cell cycle inhibition can also block proliferation of neural progenitor cells (NPCs) and thus impair brain neurogenesis leading to cognitive deficits, we propose that future strategies aimed at cell cycle inhibition in treatment of aberrant cell cycle diseases (i.e., cancers or CNS diseases) should be designed with consideration of the important side effects on normal neurogenesis and cognition.
Collapse
Affiliation(s)
- Da-Zhi Liu
- Department of Neurology and the MIND Institute, University of California at Davis, Sacramento, CA 95817, USA.
| | | |
Collapse
|
24
|
Targeting proteinase-activated receptors: therapeutic potential and challenges. Nat Rev Drug Discov 2012; 11:69-86. [PMID: 22212680 DOI: 10.1038/nrd3615] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Proteinase-activated receptors (PARs), a family of four seven-transmembrane G protein-coupled receptors, act as targets for signalling by various proteolytic enzymes. PARs are characterized by a unique activation mechanism involving the proteolytic unmasking of a tethered ligand that stimulates the receptor. Given the emerging roles of these receptors in cancer as well as in disorders of the cardiovascular, musculoskeletal, gastrointestinal, respiratory and central nervous system, PARs have become attractive targets for the development of novel therapeutics. In this Review we summarize the mechanisms by which PARs modulate cell function and the roles they can have in physiology and diseases. Furthermore, we provide an overview of possible strategies for developing PAR antagonists.
Collapse
|
25
|
Sokolova E, Aleshin S, Reiser G. Expression of protease-activated receptor (PAR)-2, but not other PARs, is regulated by inflammatory cytokines in rat astrocytes. Neurochem Int 2012; 60:276-85. [PMID: 22227167 DOI: 10.1016/j.neuint.2011.12.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 11/23/2011] [Accepted: 12/23/2011] [Indexed: 01/09/2023]
Abstract
Protease-activated receptors (PARs) are widely expressed in the central nervous system (CNS) and are believed to play an important role in normal brain functioning as well as in development of various inflammatory and neurodegenerative disorders. Pathological conditions cause altered expression of PARs in brain cells and therefore altered responsiveness to PAR activation. The exact mechanisms of regulation of PAR expression are not well studied. Here, we evaluated in rat astrocytes the influence of LPS, pro-inflammatory cytokines TNFα and IL-1β and continuous PAR activation by PAR agonists on the expression levels of PARs. These stimuli are important in inflammatory and neurological disorders, where their levels are increased. We report that LPS as well as cytokines TNFα and IL-1β affected only the PAR-2 level, but their effects were opposite. LPS and TNFα increased the functional expression of PAR-2, whereas IL-1β down-regulated the functional response of PAR-2. Agonists of PAR-1 specifically increased mRNA level of PAR-2, but not protein level. Transcript levels of other PARs were not changed after PAR-1 activation. Stimulation of the cells with PAR-2 or PAR-4 agonists did not alter PAR levels. We found that up-regulation of PAR-2 is dependent on PKC activity, mostly via its Ca²⁺-sensitive isoforms. Two transcription factors, NFκB and AP-1, are involved in up-regulation of PAR-2. These findings provide new information about the regulation of expression of PAR subtypes in brain cells. This is of importance for targeting PARs, especially PAR-2, for the treatment of CNS disorders.
Collapse
Affiliation(s)
- Elena Sokolova
- Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Institut für Neurobiochemie, Leipziger Straße 44, D-39120 Magdeburg, Germany
| | | | | |
Collapse
|
26
|
Tufekci KU, Meuwissen R, Genc S, Genc K. Inflammation in Parkinson's disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 88:69-132. [PMID: 22814707 DOI: 10.1016/b978-0-12-398314-5.00004-0] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease that is characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta. Inflammatory responses manifested by glial reactions, T cell infiltration, and increased expression of inflammatory cytokines, as well as other toxic mediators derived from activated glial cells, are currently recognized as prominent features of PD. The consistent findings obtained by various animal models of PD suggest that neuroinflammation is an important contributor to the pathogenesis of the disease and may further propel the progressive loss of nigral dopaminergic neurons. Furthermore, although it may not be the primary cause of PD, additional epidemiological, genetic, pharmacological, and imaging evidence support the proposal that inflammatory processes in this specific brain region are crucial for disease progression. Recent in vitro studies, however, have suggested that activation of microglia and subsequently astrocytes via mediators released by injured dopaminergic neurons is involved. However, additional in vivo experiments are needed for a deeper understanding of the mechanisms involved in PD pathogenesis. Further insight on the mechanisms of inflammation in PD will help to further develop alternative therapeutic strategies that will specifically and temporally target inflammatory processes without abrogating the potential benefits derived by neuroinflammation, such as tissue restoration.
Collapse
Affiliation(s)
- Kemal Ugur Tufekci
- Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Izmir, Turkey
| | | | | | | |
Collapse
|
27
|
MPTP-meditated hippocampal dopamine deprivation modulates synaptic transmission and activity-dependent synaptic plasticity. Toxicol Appl Pharmacol 2011; 254:332-41. [DOI: 10.1016/j.taap.2011.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 05/06/2011] [Accepted: 05/08/2011] [Indexed: 11/20/2022]
|
28
|
Almonte AG, Sweatt JD. Serine proteases, serine protease inhibitors, and protease-activated receptors: roles in synaptic function and behavior. Brain Res 2011; 1407:107-22. [PMID: 21782155 DOI: 10.1016/j.brainres.2011.06.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 06/03/2011] [Accepted: 06/16/2011] [Indexed: 12/11/2022]
Abstract
Serine proteases, serine protease inhibitors, and protease-activated receptors have been intensively investigated in the periphery and their roles in a wide range of processes-coagulation, inflammation, and digestion, for example-have been well characterized (see Coughlin, 2000; Macfarlane et al., 2001; Molinari et al., 2003; Wang et al., 2008; Di Cera, 2009 for reviews). A growing number of studies demonstrate that these protein systems are widely expressed in many cell types and regions in mammalian brains. Accumulating lines of evidence suggest that the brain has co-opted the activities of these interesting proteins to regulate various processes underlying synaptic activity and behavior. In this review, we discuss emerging roles for serine proteases in the regulation of mechanisms underlying synaptic plasticity and memory formation.
Collapse
Affiliation(s)
- Antoine G Almonte
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
29
|
Adams MN, Ramachandran R, Yau MK, Suen JY, Fairlie DP, Hollenberg MD, Hooper JD. Structure, function and pathophysiology of protease activated receptors. Pharmacol Ther 2011; 130:248-82. [PMID: 21277892 DOI: 10.1016/j.pharmthera.2011.01.003] [Citation(s) in RCA: 280] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 01/03/2011] [Indexed: 12/18/2022]
Abstract
Discovered in the 1990s, protease activated receptors(1) (PARs) are membrane-spanning cell surface proteins that belong to the G protein coupled receptor (GPCR) family. A defining feature of these receptors is their irreversible activation by proteases; mainly serine. Proteolytic agonists remove the PAR extracellular amino terminal pro-domain to expose a new amino terminus, or tethered ligand, that binds intramolecularly to induce intracellular signal transduction via a number of molecular pathways that regulate a variety of cellular responses. By these mechanisms PARs function as cell surface sensors of extracellular and cell surface associated proteases, contributing extensively to regulation of homeostasis, as well as to dysfunctional responses required for progression of a number of diseases. This review examines common and distinguishing structural features of PARs, mechanisms of receptor activation, trafficking and signal termination, and discusses the physiological and pathological roles of these receptors and emerging approaches for modulating PAR-mediated signaling in disease.
Collapse
Affiliation(s)
- Mark N Adams
- Mater Medical Research Institute, Aubigny Place, Raymond Terrace, South Brisbane Qld 4101, Australia
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
INTRODUCTION Factor (F)Xa is well-known as an important player in the coagulation cascade responsible for thrombin generation. More recently, FXa emerged as an essential player in cell biology via activation of protease-activated receptors (PAR)-1 and -2. This pleiotropic role of FXa forms the basis for its potential contribution to the pathogenesis of several diseases. AREAS COVERED The role of FXa in pathophysiology is reviewed with special emphasis on its signal transduction properties. To this end, we first discuss the important role of FXa in the coagulation cascade, we continue with recent data on FXa induced signaling in pathophysiology with special emphasis on tissue remodeling and fibrosis and discuss the potential of FXa as an emerging drug target. EXPERT OPINION FXa is more than a passive intermediate in the coagulation cascade and FXa may in fact orchestrate fundamental processes during pathophysiology. Targeting FXa may be an exciting new therapeutic strategy in the treatment of (fibro)proliferative diseases for which current treatment options are limited.
Collapse
Affiliation(s)
- Keren Borensztajn
- Center for Experimental and Molecular Medicine, Academic Medical Center, Meibergdreef 9, NL-1105 AZ, Amsterdam, The Netherlands
| | | |
Collapse
|
31
|
Niego B, Samson AL, Petersen KU, Medcalf RL. Thrombin-induced activation of astrocytes in mixed rat hippocampal cultures is inhibited by soluble thrombomodulin. Brain Res 2011; 1381:38-51. [PMID: 21241677 DOI: 10.1016/j.brainres.2011.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 11/09/2010] [Accepted: 01/08/2011] [Indexed: 11/19/2022]
Abstract
Thrombin, a serine protease known for its role in coagulation, also induces a variety of protease activated receptor (PAR)-mediated responses in the central nervous system that contribute to many brain pathologies. Since the proteolytic specificity of thrombin is uniquely controlled by thrombomodulin (TM), we investigated the mechanisms by which thrombin and a recombinant soluble form of human TM (Solulin, INN: sothrombomodulin alpha; rhsTM) could influence rat hippocampal cultures. Treatment of hippocampal cultures with thrombin for up to 48h resulted in a significant morphological rearrangement with the formation of expansive cell-free areas (CFAs) and a reduction in cell viability; both effects were blocked by rhsTM. Treatment with the selective PAR-1 agonist, TRAP (SFLLRN) caused the formation of CFAs, suggesting that CFA formation involved PAR-1 signaling. Astrocytes prepared from PAR-1(-/-) mice also had an attenuated CFA response to thrombin. Thrombin-induced CFA formation was a consequence of cell movement and substantial changes in cell morphology, rather than due to cell detachment. Immunocytochemical and functional analyses revealed that the thrombin-sensitive cells within these hippocampal cultures were astrocytes. The effects of thrombin on CFA development were mediated by astrocyte-specific release of intracellular calcium and signalling through ERK1/2. rhsTM was able to attenuate thrombin-induced ERK1/2 phosphorylation. Finally, astrocytes were shown to maintain thrombin-sensitivity following neuronal depletion with NMDA, a result which was confirmed with pure astrocyte cultures. Hence thrombin mediates PAR-1-induced activation of hippocampal astrocytes, but not neurons, in a process that can be modulated by rhsTM.
Collapse
Affiliation(s)
- Be'eri Niego
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | | | | | | |
Collapse
|
32
|
Singh K, Singh S, Singhal NK, Sharma A, Parmar D, Singh MP. Nicotine- and caffeine-mediated changes in gene expression patterns of MPTP-lesioned mouse striatum: Implications in neuroprotection mechanism. Chem Biol Interact 2010; 185:81-93. [DOI: 10.1016/j.cbi.2010.03.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 02/27/2010] [Accepted: 03/07/2010] [Indexed: 01/21/2023]
|
33
|
Davydova ON, Yakovlev AA. Protease-activated receptors and neuroplasticity: Protease-activated receptors as a possible target for cathepsin B. NEUROCHEM J+ 2010. [DOI: 10.1134/s1819712410010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Liu DZ, Ander BP, Sharp FR. Cell cycle inhibition without disruption of neurogenesis is a strategy for treatment of central nervous system diseases. Neurobiol Dis 2009; 37:549-57. [PMID: 19944161 DOI: 10.1016/j.nbd.2009.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 11/10/2009] [Accepted: 11/18/2009] [Indexed: 12/12/2022] Open
Abstract
Classically, the cell cycle is regarded as the process leading to cellular proliferation. However, increasing evidence over the last decade supports the notion that neuronal cell cycle re-entry results in post-mitotic death. A mature neuron that re-enters the cell cycle can neither advance to a new G0 quiescent state nor revert to its earlier G0 state. This presents a critical dilemma to the neuron from which death may be an unavoidable but necessary outcome for adult neurons attempting to complete the cell cycle. In contrast, tumor cells that undergo aberrant cell cycle re-entry divide and can survive. Thus, cell cycle inhibition strategies are of interest in cancer treatment but may also represent an important means of protecting neurons. In this review, we put forth the concept of the "expanded cell cycle" and summarize the cell cycle proteins, signal transduction events and mitogenic molecules that can drive a neuron into the cell cycle in various CNS diseases. We also discuss the pharmacological approaches that interfere with the mitogenic pathways and prevent mature neurons from attempting cell cycle re-entry, protecting them from cell death. Lastly, future attempts at blocking the cell cycle to rescue mature neurons from injury should be designed so as to not block normal neurogenesis.
Collapse
Affiliation(s)
- Da-Zhi Liu
- Department of Neurology and the M.I.N.D. Institute, University of California at Davis, Sacramento, CA 95817, USA.
| | | | | |
Collapse
|
35
|
Schwab C, Klegeris A, McGeer PL. Inflammation in transgenic mouse models of neurodegenerative disorders. Biochim Biophys Acta Mol Basis Dis 2009; 1802:889-902. [PMID: 19883753 DOI: 10.1016/j.bbadis.2009.10.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 10/09/2009] [Accepted: 10/23/2009] [Indexed: 12/31/2022]
Abstract
Much evidence is available that inflammation contributes to the development of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease. Our review investigates how well current mouse models reflect this aspect of the pathogenesis. Transgenic models of AD have been available for several years and are the most extensively studied. Modulation of cytokine levels, activation of microglia and, to a lesser extent, activation of the complement system have been reported. Mouse models of PD and HD so far show less evidence for the involvement of inflammation. An increasing number of transgenic mouse strains is being created to model human neurodegenerative diseases. A perfect model should reflect all aspects of a disease. It is important to evaluate continuously the models for their match with the human disease and reevaluate them in light of new findings in human patients. Although none of the transgenic mouse models recapitulates all aspects of the human disorder they represent, all models have provided valuable information on basic molecular pathways. In particular, the mouse models of Alzheimer disease have also led to the development of new therapeutic strategies such as vaccination and modulation of microglial activity.
Collapse
Affiliation(s)
- Claudia Schwab
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T1Z3, Canada.
| | | | | |
Collapse
|
36
|
Lagrue E, Abert B, Nadal L, Tabone L, Bodard S, Medja F, Lombes A, Chalon S, Castelnau P. MPTP intoxication in mice: a useful model of Leigh syndrome to study mitochondrial diseases in childhood. Metab Brain Dis 2009; 24:321-35. [PMID: 19319673 DOI: 10.1007/s11011-009-9132-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 10/22/2008] [Indexed: 02/02/2023]
Abstract
The basal ganglia, which are interconnected in the striato-nigral dopaminergic network, are affected in several childhood diseases including Leigh syndrome (LS). LS is the most common mitochondrial disorder affecting children and usually arise from inhibition of the respiratory chain. This vulnerability is attributed to a particular susceptibility to energetic stress, with mitochondrial inhibition as a common pathogenic pathway. In this study we developed a LS model for neuroprotection trials in mice by using the complex I inhibitor MPTP. We first verified that MPTP significantly inhibits the mitochondrial complex I in the brain (p = 0.018). This model also reproduced the biochemical and pathological features of LS: MPTP increased plasmatic lactate levels (p = 0.023) and triggered basal ganglia degeneration, as evaluated through dopamine transporter (DAT) autoradiography, tyrosine hydroxylase (TH) immunohistochemistry, and dopamine dosage. Striatal DAT levels were markedly decreased after MPTP treatment (p = 0.003). TH immunoreactivity was reduced in the striatum and substantia nigra (p = 0.005), and striatal dopamine was significantly reduced (p < 0.01). Taken together, these results confirm that acute MPTP intoxication in young mice provides a reproducible pharmacological paradigm of LS, thus opening new avenues for neuroprotection research.
Collapse
Affiliation(s)
- E Lagrue
- Unité Imagerie et Cerveau, Inserm, U930, Tours, France
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yanamadala V, Negoro H, Denker BM. Heterotrimeric G proteins and apoptosis: intersecting signaling pathways leading to context dependent phenotypes. Curr Mol Med 2009; 9:527-45. [PMID: 19601805 PMCID: PMC2822437 DOI: 10.2174/156652409788488784] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Apoptosis, a programmed cell death mechanism, is a fundamental process during the normal development and somatic maintenance of all multicellular organisms and thus is highly conserved and tightly regulated through numerous signaling pathways. Apoptosis is of particular clinical importance as its dysregulation contributes significantly to numerous human diseases, primarily through changes in the expression and activation of key apoptotic regulators. Each of the four families of heterotrimeric G proteins (G(s), G(i/o), G(q/11) and G(12/13)) has been implicated in numerous cellular signaling processes, including proliferation, transformation, migration, differentiation, and apoptosis. Heterotrimeric G protein signaling is an important but not widely studied mechanism regulating apoptosis. G protein Signaling and Apoptosis broadly cover two large bodies of literature and share numerous signaling pathways. Examination of the intersection between these two areas is the focus of this review. Several studies have implicated signaling through each of the four heterotrimeric G protein families to regulate apoptosis within numerous disease contexts, but the mechanism(s) are not well defined. Each G protein family has been shown to stimulate and/or inhibit apoptosis in a context-dependent fashion through regulating numerous downstream effectors including the Bcl-2 family, NF-kappaB, PI3 Kinase, MAP Kinases, and small GTPases. These cell-type specific and G protein coupled receptor dependent effects have led to a complex body of literature of G protein regulation of apoptosis. Here, we review the literature and summarize apoptotic signaling through each of the four heterotrimeric G protein families (and the relevant G protein coupled receptors), and discuss limitations and future directions for research on regulating apoptosis through G protein coupled mechanisms. Continued investigation in this field is essential for the identification of important targets for pharmacological intervention in numerous diseases.
Collapse
Affiliation(s)
- Vijay Yanamadala
- Renal Division, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Hideyuki Negoro
- Renal Division, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Bradley M. Denker
- Renal Division, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
38
|
McClain JA, Phillips LL, Fillmore HL. Increased MMP-3 and CTGF expression during lipopolysaccharide-induced dopaminergic neurodegeneration. Neurosci Lett 2009; 460:27-31. [PMID: 19463894 DOI: 10.1016/j.neulet.2009.05.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 03/27/2009] [Accepted: 05/15/2009] [Indexed: 12/17/2022]
Abstract
Accumulating evidence indicates that neuroinflammation contributes significantly to progressive dopaminergic (DA) neurodegeneration in Parkinson's disease (PD). Altered matrix metalloproteinase-3 (MMP-3) expression has been reported in several neuroinflammatory paradigms; however, its relationship to inflammation-induced DA neurotoxicity has not been explored. To this end, we investigated the temporal expression pattern of MMP-3 and one of its downstream targets, connective tissue growth factor (CTGF), following lipopolysaccharide (LPS)-induced DA neurodegeneration. LPS was directly injected into the substantia nigra of male Sprague-Dawley rats. Lesion formation was confirmed with immunohistochemistry 48 h post-injection. MMP-3 and CTGF were measured by western blot 12, 24, and 48 h post-injection. In association with neurodegeneration, MMP-3 expression and activation was significantly increased 24 and 48 h after LPS injection. In addition, CTGF expression increased 5-fold at the 24h time point. The temporal changes in MMP-3 and CTGF expression corresponded to the neurodegenerative phase of this model, suggesting that these two proteins may participate in neuroinflammation-induced DA neurotoxicity.
Collapse
Affiliation(s)
- Justin A McClain
- Virginia Commonwealth University, Department of Physiology and Biophysics, United States
| | | | | |
Collapse
|
39
|
Zhou Q, Li J, Wang H, Yin Y, Zhou J. Identification of nigral dopaminergic neuron-enriched genes in adult rats. Neurobiol Aging 2009; 32:313-26. [PMID: 19303663 DOI: 10.1016/j.neurobiolaging.2009.02.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 02/05/2009] [Accepted: 02/09/2009] [Indexed: 11/30/2022]
Abstract
Dopaminergic (DA) neurons in the substantia nigra play crucial roles in movement control and other physiological activities. Degeneration of these neurons is closely associated with Parkinson's disease. However, the molecular identity of nigral DA neurons is not fully understood. To identify nigral DA neuron-enriched genes, we used microarrays to compare the genome-wide gene expression profiles in 6-hydroxydopamine-lesioned, and control, substantia nigra. We identified a total of 88 unique differentially expressed gene transcripts. The spatial expression patterns of a set of these genes, including Slc10a4, Rit2, F2r, Snx10 and Slc24a3, were validated by in situ hybridization. It was revealed that their expression was highly specific in the substantia nigra. Thus we identified a set of genes that are highly expressed in nigral DA neurons, and may be involved in the maintenance and survival of nigral DA neurons in the adult rat brain. Our study also provides a general approach for profiling cell type-specific gene expression in the mature mammalian brain.
Collapse
Affiliation(s)
- Qinbo Zhou
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | | | | | | |
Collapse
|
40
|
Coagulation factor Xa signaling: the link between coagulation and inflammatory bowel disease? Trends Pharmacol Sci 2009; 30:8-16. [DOI: 10.1016/j.tips.2008.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 10/22/2008] [Accepted: 10/23/2008] [Indexed: 02/06/2023]
|
41
|
Vandell AG, Larson N, Laxmikanthan G, Panos M, Blaber SI, Blaber M, Scarisbrick IA. Protease-activated receptor dependent and independent signaling by kallikreins 1 and 6 in CNS neuron and astroglial cell lines. J Neurochem 2008; 107:855-70. [PMID: 18778305 PMCID: PMC2692621 DOI: 10.1111/j.1471-4159.2008.05658.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
While protease-activated receptors (PARs) are known to mediate signaling events in CNS, contributing both to normal function and pathogenesis, the endogenous activators of CNS PARs are poorly characterized. In this study, we test the hypothesis that kallikreins (KLKs) represent an important pool of endogenous activators of CNS PARs. Specifically, KLK1 and KLK6 were examined for their ability to evoke intracellular Ca(2+) flux in a PAR-dependent fashion in NSC34 neurons and Neu7 astrocytes. Both KLKs were also examined for their ability to activate mitogen-activated protein kinases (extracellular signal-regulated kinases, C-Jun N-terminal kinases, and p38) and protein kinase B (AKT) intracellular signaling cascades. Cumulatively, these studies show that KLK6, but not KLK1, signals through PARs. KLK6 evoked intracellular Ca(2+) flux was mediated by PAR1 in neurons and both PAR1 and PAR2 in astrocytes. Importantly, both KLK1 and KLK6 altered the activation state of mitogen-activated protein kinases and AKT, suggestive of important roles for each in CNS neuron and glial differentiation, and survival. The cellular specificity of CNS-KLK activity was underscored by observations that both proteases promoted AKT activation in astrocytes, but inhibited such signaling in neurons. PAR1 and bradykinin receptor inhibitors were used to demonstrate that KLK1-mediated activation of extracellular signal-regulated kinases in neurons occurred in a non-PAR, bradykinin 2 (B2) receptor-dependent fashion, while similar signaling by KLK6 was mediated by the combined activation of PAR1 and B2. Cumulatively results indicate KLK6, but not KLK1 is an activator of CNS PARs, and that both KLKs are poised to signal in a B2 receptor-dependent fashion to regulate multiple signal transduction pathways relevant to CNS physiologic function and dysfunction.
Collapse
Affiliation(s)
- Alexander G. Vandell
- Molecular Neuroscience Program, Mayo Medical and Graduate School, Rochester, Minnesota, USA
| | - Nadya Larson
- Department of Physical Medicine and Rehabilitation, Mayo Medical and Graduate School, Rochester, Minnesota, USA
| | - Gurunathan Laxmikanthan
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Michael Panos
- Department of Neurology, Mayo Medical and Graduate School, Rochester, Minnesota, USA
| | - Sachiko I. Blaber
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Michael Blaber
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Isobel A. Scarisbrick
- Molecular Neuroscience Program, Mayo Medical and Graduate School, Rochester, Minnesota, USA
- Department of Physical Medicine and Rehabilitation, Mayo Medical and Graduate School, Rochester, Minnesota, USA
- Department of Neurology, Mayo Medical and Graduate School, Rochester, Minnesota, USA
| |
Collapse
|
42
|
Borensztajn K, Peppelenbosch MP, Spek CA. Factor Xa: at the crossroads between coagulation and signaling in physiology and disease. Trends Mol Med 2008; 14:429-40. [DOI: 10.1016/j.molmed.2008.08.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 08/01/2008] [Accepted: 08/01/2008] [Indexed: 01/16/2023]
|
43
|
Luo W, Wang Y, Reiser G. Protease-activated receptors in the brain: receptor expression, activation, and functions in neurodegeneration and neuroprotection. ACTA ACUST UNITED AC 2007; 56:331-45. [PMID: 17915333 DOI: 10.1016/j.brainresrev.2007.08.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 08/15/2007] [Accepted: 08/18/2007] [Indexed: 11/15/2022]
Abstract
Protease-activated receptors (PARs) are G protein-coupled receptors that regulate the cellular response to extracellular serine proteases, like thrombin, trypsin, and tryptase. The PAR family consists of four members: PAR-1, -3, and -4 as thrombin receptors and PAR-2 as the trypsin/tryptase receptor, which are abundantly expressed in the brain throughout development. Recent evidence has supported the direct involvement of PARs in brain development and function. The expression of PARs in the brain is differentially upregulated or downregulated under pathological conditions in neurodegenerative disorders, like Parkinson's disease, Alzheimer's disease, multiple sclerosis, stroke, and human immunodeficiency virus-associated dementia. Activation of PARs mediates cell death or cell survival in the brain, depending on the amplitude and the duration of agonist stimulation. Interference or potentiation of PAR activation is beneficial in animal models of neurodegenerative diseases. Therefore, PARs mediate either neurodegeneration or neuroprotection in neurodegenerative diseases and represent attractive therapeutic targets for treatment of brain injuries. Here, we review the abnormal expression of PARs in the brain under pathological conditions, the functions of PARs in neurodegenerative disorders, and the molecular mechanisms involved.
Collapse
Affiliation(s)
- Weibo Luo
- Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | | | | |
Collapse
|