1
|
Corsaro A, Tremonti B, Bajetto A, Barbieri F, Thellung S, Florio T. Chemokine signaling in tumors: potential role of CXC chemokines and their receptors as glioblastoma therapeutic targets. Expert Opin Ther Targets 2024; 28:937-952. [PMID: 39582130 DOI: 10.1080/14728222.2024.2433130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
INTRODUCTION Glioblastoma is the most aggressive brain tumor, typically associated with poor prognosis. Its treatment is challenging due to the peculiar glioblastoma cell biology and its microenvironment complexity. Specifically, a small fraction of glioma stem cells within the tumor mass drives tumor growth and invasiveness by hijacking brain resident and immune cells. This process also involves modification of extracellular matrix components, such as collagen and glycoproteins, where the secretion of soluble mediators, particularly CXC chemokines, plays a significant role. AREAS COVERED We analyze the critical role of chemokines in glioblastoma tumorigenesis, proliferation, angiogenesis, tumor progression, and brain parenchyma invasiveness. Recent evidence highlights how chemokines and their receptors impact glioblastoma biology and represent potential therapeutic targets. Several studies show that chemokines modulate glioblastoma development by acting on glioma stem cell proliferation and self-renewal, promoting vasculogenic mimicry, and altering the extracellular matrix to facilitate tumor invasiveness. EXPERT OPINION There is clear evidence supporting CXC receptors (such as CXCR1, 2, 3, 4, and ACKR3/CXCR7) and their signaling pathways as promising pharmacological targets. This in-depth review of chemokine roles in glioblastoma development provides a critical evaluation of the possible clinical translation of innovative compounds targeting these ligand/receptor systems, leading to improved therapeutic outcomes for glioblastoma patients.
Collapse
Affiliation(s)
- Alessandro Corsaro
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| | - Beatrice Tremonti
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| | - Adriana Bajetto
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| | - Federica Barbieri
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
- IRCCS Policlinico San Martino, Genova, Italy
| | - Stefano Thellung
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
- IRCCS Policlinico San Martino, Genova, Italy
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
- IRCCS Policlinico San Martino, Genova, Italy
| |
Collapse
|
2
|
Bao S, Darvishi M, H Amin A, Al-Haideri MT, Patra I, Kashikova K, Ahmad I, Alsaikhan F, Al-Qaim ZH, Al-Gazally ME, Kiasari BA, Tavakoli-Far B, Sidikov AA, Mustafa YF, Akhavan-Sigari R. CXC chemokine receptor 4 (CXCR4) blockade in cancer treatment. J Cancer Res Clin Oncol 2023; 149:7945-7968. [PMID: 36905421 DOI: 10.1007/s00432-022-04444-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/19/2022] [Indexed: 03/12/2023]
Abstract
CXC chemokine receptor type 4 (CXCR4) is a member of the G protein-coupled receptors (GPCRs) superfamily and is specific for CXC chemokine ligand 12 (CXCL12, also known as SDF-1), which makes CXCL12/CXCR4 axis. CXCR4 interacts with its ligand, triggering downstream signaling pathways that influence cell proliferation chemotaxis, migration, and gene expression. The interaction also regulates physiological processes, including hematopoiesis, organogenesis, and tissue repair. Multiple evidence revealed that CXCL12/CXCR4 axis is implicated in several pathways involved in carcinogenesis and plays a key role in tumor growth, survival, angiogenesis, metastasis, and therapeutic resistance. Several CXCR4-targeting compounds have been discovered and used for preclinical and clinical cancer therapy, most of which have shown promising anti-tumor activity. In this review, we summarized the physiological signaling of the CXCL12/CXCR4 axis and described the role of this axis in tumor progression, and focused on the potential therapeutic options and strategies to block CXCR4.
Collapse
Affiliation(s)
- Shunshun Bao
- The First Clinical Medical College, Xuzhou Medical University, 221000, Xuzhou, China
| | - Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medicinal Sciences, Tehran, Iran
| | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
- Zoology Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Maysoon T Al-Haideri
- Department of Physiotherapy, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Indrajit Patra
- An Independent Researcher, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | | | | | - Bahman Abedi Kiasari
- Virology Department, Faculty of Veterinary Medicine, The University of Tehran, Tehran, Iran.
| | - Bahareh Tavakoli-Far
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran.
- Department of Physiology and Pharmacology, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| | - Akmal A Sidikov
- Rector, Ferghana Medical Institute of Public Health, Ferghana, Uzbekistan
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tübingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
3
|
Schuler LA, Murdoch FE. Endogenous and Therapeutic Estrogens: Maestro Conductors of the Microenvironment of ER+ Breast Cancers. Cancers (Basel) 2021; 13:3725. [PMID: 34359625 PMCID: PMC8345134 DOI: 10.3390/cancers13153725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/25/2022] Open
Abstract
Estrogen receptor alpha (ERα) marks heterogeneous breast cancers which display a repertoire of somatic genomic mutations and an immune environment that differs from other breast cancer subtypes. These cancers also exhibit distinct biological behaviors; despite an overall better prognosis than HER2+ or triple negative breast cancers, disseminated dormant cells can lead to disease recurrence decades after the initial diagnosis and treatment. Estrogen is the best studied driver of these cancers, and antagonism or reduction of estrogen activity is the cornerstone of therapeutic approaches. In addition to reducing proliferation of ERα+ cancer cells, these treatments also alter signals to multiple other target cells in the environment, including immune cell subpopulations, cancer-associated fibroblasts, and endothelial cells via several distinct estrogen receptors. In this review, we update progress in our understanding of the stromal cells populating the microenvironments of primary and metastatic ER+ tumors, the effects of estrogen on tumor and stromal cells to modulate immune activity and the extracellular matrix, and net outcomes in experimental and clinical studies. We highlight new approaches that will illuminate the unique biology of these cancers, provide the foundation for developing new treatment and prevention strategies, and reduce mortality of this disease.
Collapse
Affiliation(s)
- Linda A. Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | | |
Collapse
|
4
|
Luker GD, Yang J, Richmond A, Scala S, Festuccia C, Schottelius M, Wester HJ, Zimmermann J. At the Bench: Pre-clinical evidence for multiple functions of CXCR4 in cancer. J Leukoc Biol 2021; 109:969-989. [PMID: 33104270 PMCID: PMC8254203 DOI: 10.1002/jlb.2bt1018-715rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Signaling through chemokine receptor, C-X-C chemokine receptor type 4 (CXCR4) regulates essential processes in normal physiology, including embryogenesis, tissue repair, angiogenesis, and trafficking of immune cells. Tumors co-opt many of these fundamental processes to directly stimulate proliferation, invasion, and metastasis of cancer cells. CXCR4 signaling contributes to critical functions of stromal cells in cancer, including angiogenesis and multiple cell types in the tumor immune environment. Studies in animal models of several different types of cancers consistently demonstrate essential functions of CXCR4 in tumor initiation, local invasion, and metastasis to lymph nodes and distant organs. Data from animal models support clinical observations showing that integrated effects of CXCR4 on cancer and stromal cells correlate with metastasis and overall poor prognosis in >20 different human malignancies. Small molecules, Abs, and peptidic agents have shown anticancer efficacy in animal models, sparking ongoing efforts at clinical translation for cancer therapy. Investigators also are developing companion CXCR4-targeted imaging agents with potential to stratify patients for CXCR4-targeted therapy and monitor treatment efficacy. Here, pre-clinical studies demonstrating functions of CXCR4 in cancer are reviewed.
Collapse
Affiliation(s)
- Gary D Luker
- Departments of Radiology, Biomedical Engineering, and Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jinming Yang
- School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Ann Richmond
- School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Stefania Scala
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Napoli, Italy
| | - Claudio Festuccia
- Department of Applied Clinical Science and Biotechnologies, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Margret Schottelius
- Department of Nuclear Medicine, Centre Hospitalier Universitaire Vaudois, and Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Hans-Jürgen Wester
- Department of Chemistry, Technical University of Munich, Garching, Germany
| | | |
Collapse
|
5
|
Smit MJ, Schlecht-Louf G, Neves M, van den Bor J, Penela P, Siderius M, Bachelerie F, Mayor F. The CXCL12/CXCR4/ACKR3 Axis in the Tumor Microenvironment: Signaling, Crosstalk, and Therapeutic Targeting. Annu Rev Pharmacol Toxicol 2020; 61:541-563. [PMID: 32956018 DOI: 10.1146/annurev-pharmtox-010919-023340] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Elevated expression of the chemokine receptors CXCR4 and ACKR3 and of their cognate ligand CXCL12 is detected in a wide range of tumors and the tumor microenvironment (TME). Yet, the molecular mechanisms by which the CXCL12/CXCR4/ACKR3 axis contributes to the pathogenesis are complex and not fully understood. To dissect the role of this axis in cancer, we discuss its ability to impinge on canonical and less conventional signaling networks in different cancer cell types; its bidirectional crosstalk, notably with receptor tyrosine kinase (RTK) and other factors present in the TME; and the infiltration of immune cells that supporttumor progression. We discuss current and emerging avenues that target the CXCL12/CXCR4/ACKR3 axis. Coordinately targeting both RTKs and CXCR4/ACKR3 and/or CXCL12 is an attractive approach to consider in multitargeted cancer therapies. In addition, inhibiting infiltrating immune cells or reactivating the immune system along with modulating the CXCL12/CXCR4/ACKR3 axis in the TME has therapeutic promise.
Collapse
Affiliation(s)
- Martine J Smit
- Department of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, Netherlands;
| | - Géraldine Schlecht-Louf
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92140 Clamart, France
| | - Maria Neves
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92140 Clamart, France.,Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CSIC/UAM), 28049 Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Jelle van den Bor
- Department of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, Netherlands;
| | - Petronila Penela
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CSIC/UAM), 28049 Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Marco Siderius
- Department of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, Netherlands;
| | - Françoise Bachelerie
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92140 Clamart, France
| | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CSIC/UAM), 28049 Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
6
|
Morein D, Erlichman N, Ben-Baruch A. Beyond Cell Motility: The Expanding Roles of Chemokines and Their Receptors in Malignancy. Front Immunol 2020; 11:952. [PMID: 32582148 PMCID: PMC7287041 DOI: 10.3389/fimmu.2020.00952] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/23/2020] [Indexed: 01/10/2023] Open
Abstract
The anti-tumor activities of some members of the chemokine family are often overcome by the functions of many chemokines that are strongly and causatively linked with increased tumor progression. Being key leukocyte attractants, chemokines promote the presence of inflammatory pro-tumor myeloid cells and immune-suppressive cells in tumors and metastases. In parallel, chemokines elevate additional pro-cancerous processes that depend on cell motility: endothelial cell migration (angiogenesis), recruitment of mesenchymal stem cells (MSCs) and site-specific metastasis. However, the array of chemokine activities in cancer expands beyond such “typical” migration-related processes and includes chemokine-induced/mediated atypical functions that do not activate directly motility processes; these non-conventional chemokine functions provide the tumor cells with new sets of detrimental tools. Within this scope, this review article addresses the roles of chemokines and their receptors at atypical levels that are exerted on the cancer cell themselves: promoting tumor cell proliferation and survival; controlling tumor cell senescence; enriching tumors with cancer stem cells; inducing metastasis-related functions such as epithelial-to-mesenchymal transition (EMT) and elevated expression of matrix metalloproteinases (MMPs); and promoting resistance to chemotherapy and to endocrine therapy. The review also describes atypical effects of chemokines at the tumor microenvironment: their ability to up-regulate/stabilize the expression of inhibitory immune checkpoints and to reduce the efficacy of their blockade; to induce bone remodeling and elevate osteoclastogenesis/bone resorption; and to mediate tumor-stromal interactions that promote cancer progression. To illustrate this expanding array of atypical chemokine activities at the cancer setting, the review focuses on major metastasis-promoting inflammatory chemokines—including CXCL8 (IL-8), CCL2 (MCP-1), and CCL5 (RANTES)—and their receptors. In addition, non-conventional activities of CXCL12 which is a key regulator of tumor progression, and its CXCR4 receptor are described, alongside with the other CXCL12-binding receptor CXCR7 (RDC1). CXCR7, a member of the subgroup of atypical chemokine receptors (ACKRs) known also as ACKR3, opens the gate for discussion of atypical activities of additional ACKRs in cancer: ACKR1 (DARC, Duffy), ACKR2 (D6), and ACKR4 (CCRL1). The mechanisms involved in chemokine activities and the signals delivered by their receptors are described, and the clinical implications of these findings are discussed.
Collapse
Affiliation(s)
- Dina Morein
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nofar Erlichman
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Adit Ben-Baruch
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Neves M, Perpiñá-Viciano C, Penela P, Hoffmann C, Mayor F. Modulation of CXCR4-Mediated Gi1 Activation by EGF Receptor and GRK2. ACS Pharmacol Transl Sci 2020; 3:627-634. [PMID: 33073183 PMCID: PMC7553016 DOI: 10.1021/acsptsci.0c00021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Indexed: 12/14/2022]
Abstract
![]()
The CXCL12 chemokine
receptor CXCR4 belongs to the GPCR superfamily
and is often overexpressed in cancer, being involved in tumor progression
and metastasis. How CXCR4 signaling integrates with other relevant
oncogenic transduction pathways and the role of GPCR regulatory mechanisms
in such contexts are not well-understood. Recent data indicate concurrent
upregulation in certain tumors of CXCR4, EGF receptor (EGFR), and
G protein-coupled receptor kinase 2 (GRK2), a signaling node functionally
linked to both receptor types. We have investigated in a model system
the effect of the EGFR and GRK2 status on CXCL12/CXCR4-mediated activation
of Gi, the earliest step downstream of receptor activation. We find
that overexpressed and activated EGFR reduces CXCR4-mediated Gi1 activation
and that GRK2 phosphorylation at tyrosine residues is required to
exert its inhibitory actions on CXCR4–Gi stimulation, suggesting
a shared path of modulation. Our data point to a role for GRK2 in
the crosstalk of the CXCR4 and EGFR signal transduction pathways in
pathological contexts characterized by concurrent overactivation of
these proteins.
Collapse
Affiliation(s)
- Maria Neves
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Universidad Autonoma de Madrid, C/Nicolás Cabrera 1, 28049 Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
| | - Cristina Perpiñá-Viciano
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany.,Institute for Molecular Cell Biology, CMB-Center for Molecular Biomedicine, University Hospital Jena, Friedrich-Schiller University Jena, Hans-Knöll-Strasse 2, 07745 Jena, Germany
| | - Petronila Penela
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Universidad Autonoma de Madrid, C/Nicolás Cabrera 1, 28049 Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Carsten Hoffmann
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany.,Institute for Molecular Cell Biology, CMB-Center for Molecular Biomedicine, University Hospital Jena, Friedrich-Schiller University Jena, Hans-Knöll-Strasse 2, 07745 Jena, Germany
| | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Universidad Autonoma de Madrid, C/Nicolás Cabrera 1, 28049 Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
8
|
Mousavi A. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy. Immunol Lett 2019; 217:91-115. [PMID: 31747563 DOI: 10.1016/j.imlet.2019.11.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/01/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023]
Abstract
Chemokines are small molecules called "chemotactic cytokines" and regulate many processes like leukocyte trafficking, homing of immune cells, maturation, cytoskeletal rearrangement, physiology, migration during development, and host immune responses. These proteins bind to their corresponding 7-membrane G-protein-coupled receptors. Chemokines and their receptors are anti-inflammatory factors in autoimmune conditions, so consider as potential targets for neutralization in such diseases. They also express by cancer cells and function as angiogenic factors, and/or survival/growth factors that enhance tumor angiogenesis and development. Among chemokines, the CXCL12/CXCR4 axis has significantly been studied in numerous cancers and autoimmune diseases. CXCL12 is a homeostatic chemokine, which is acts as an anti-inflammatory chemokine during autoimmune inflammatory responses. In cancer cells, CXCL12 acts as an angiogenic, proliferative agent and regulates tumor cell apoptosis as well. CXCR4 has a role in leukocyte chemotaxis in inflammatory situations in numerous autoimmune diseases, as well as the high levels of CXCR4, observed in different types of human cancers. These findings suggest CXCL12/CXCR4 as a potential therapeutic target for therapy of autoimmune diseases and open a new approach to targeted-therapy of cancers by neutralizing CXCL12 and CXCR4. In this paper, we reviewed the current understanding of the role of the CXCL12/CXCR4 axis in disease pathology and cancer biology, and discuss its therapeutic implications in cancer and diseases.
Collapse
|
9
|
Nassiri I, Inga A, Meškytė EM, Alessandrini F, Ciribilli Y, Priami C. Regulatory Crosstalk of Doxorubicin, Estradiol and TNFα Combined Treatment in Breast Cancer-derived Cell Lines. Sci Rep 2019; 9:15172. [PMID: 31645610 PMCID: PMC6811586 DOI: 10.1038/s41598-019-51349-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 09/28/2019] [Indexed: 11/10/2022] Open
Abstract
We present a new model of ESR1 network regulation based on analysis of Doxorubicin, Estradiol, and TNFα combination treatment in MCF-7. We used Doxorubicin as a therapeutic agent, TNFα as marker and mediator of an inflammatory microenvironment and 17β-Estradiol (E2) as an agonist of Estrogen Receptors, known predisposing factor for hormone-driven breast cancer, whose pharmacological inhibition reduces the risk of breast cancer recurrence. Based on the results of transcriptomics analysis, we found 71 differentially expressed genes that are specific for the combination treatment with Doxorubicin + Estradiol + TNFα in comparison with single or double treatments. The responsiveness to the triple treatment was examined for seven genes by qPCR, of which six were validated, and then extended to four additional cell lines differing for p53 and/or ER status. The results of differential regulation enrichment analysis highlight the role of the ESR1 network that included 36 of 71 specific differentially expressed genes. We propose that the combined activation of p53 and NF-kB transcription factors significantly influences ligand-dependent, ER-driven transcriptional responses, also of the ESR1 gene itself. These results provide a model of coordinated interaction of TFs to explain the Doxorubicin, E2 and TNFα induced repression mechanisms.
Collapse
Affiliation(s)
- Isar Nassiri
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.,The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, TN, Italy
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Department CIBIO, University of Trento, 38123, Trento, Italy
| | - Erna Marija Meškytė
- Laboratory of Molecular Cancer Genetics, Department CIBIO, University of Trento, 38123, Trento, Italy.,Department of Biological Models, Life Sciences Centre, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Federica Alessandrini
- Laboratory of Molecular Cancer Genetics, Department CIBIO, University of Trento, 38123, Trento, Italy
| | - Yari Ciribilli
- Laboratory of Molecular Cancer Genetics, Department CIBIO, University of Trento, 38123, Trento, Italy
| | - Corrado Priami
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, TN, Italy. .,Dipartimento di Informatica, Università di Pisa, Pisa, Italy.
| |
Collapse
|
10
|
Mallick A, Taylor S. Therapeutic potential of estradiol in treating breast cancer. BREAST CANCER MANAGEMENT 2019. [DOI: 10.2217/bmt-2019-0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Avijit Mallick
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, Ontario L8S4K1, Canada
| | - Shane Taylor
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, Ontario L8S4K1, Canada
| |
Collapse
|
11
|
Wu CH, Chuang HY, Wang CL, Hsu CY, Long CY, Hsieh TH, Tsai EM. Estradiol induces cell proliferation in MCF‑7 mammospheres through HER2/COX‑2. Mol Med Rep 2019; 19:2341-2349. [PMID: 30664162 DOI: 10.3892/mmr.2019.9879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 10/02/2018] [Indexed: 11/06/2022] Open
Abstract
Cluster of differentiation (CD)44+/CD24- breast cancer cells have stem cell‑like characteristics and are potent initiators of tumorigenesis. Mammosphere cells can partially initiate breast tumorigenesis by inducing estradiol (E2)‑dependent breast cancer cells. However, the mechanisms by which E2 mediates cancer formation in MCF‑7 mammosphere (MS) cells have remained elusive. In the present study, MS cells were isolated by sphere culture. It was possible to maintain these MS cells in culture for long periods of time, while retaining the CD44+/CD24- stem cell marker status. The CD44+/CD24- status was confirmed by flow cytometry. Furthermore, the stem‑cell markers Musashi‑1, cytokeratin (CK)7 and CK19 were identified by immunofluorescence microscopy. It was revealed that treatment of MS cells with E2 increased the expression of CD44, whereas decreased the expression of CD24 on MS cells. In addition, treatment with E2 increased colony formation by MS cells. E2 also induced cyclooxygenase‑2 (COX‑2) expression in MS cells, which promoted their proliferation through the estrogen receptor/human epidermal growth factor receptor 2 (HER2)/mitogen‑activated protein kinase/phosphoinositide‑3 kinase signaling pathway. The results suggested a tumorigenic mechanism by which E2 promotes tumor cell proliferation via HER2/COX‑2 signaling. The present study provided evidence for the molecular impact of E2 on breast tumorigenesis, and suggested possible strategies for preventing and treating human breast cancer.
Collapse
Affiliation(s)
- Chin-Hu Wu
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Sanmin, Kaohsiung 807, Taiwan R.O.C
| | - Hui-Yu Chuang
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Sanmin, Kaohsiung 807, Taiwan R.O.C
| | - Chiu-Lin Wang
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Sanmin, Kaohsiung 807, Taiwan R.O.C
| | - Chia-Yi Hsu
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Sanmin, Kaohsiung 807, Taiwan R.O.C
| | - Cheng-Yu Long
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Sanmin, Kaohsiung 807, Taiwan R.O.C
| | - Tsung-Hua Hsieh
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Sanmin, Kaohsiung 807, Taiwan R.O.C
| | - Eing-Mei Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Sanmin, Kaohsiung 807, Taiwan R.O.C
| |
Collapse
|
12
|
Gatti M, Solari A, Pattarozzi A, Campanella C, Thellung S, Maniscalco L, De Maria R, Würth R, Corsaro A, Bajetto A, Ratto A, Ferrari A, Daga A, Barbieri F, Florio T. In vitro and in vivo characterization of stem-like cells from canine osteosarcoma and assessment of drug sensitivity. Exp Cell Res 2018; 363:48-64. [PMID: 29305964 DOI: 10.1016/j.yexcr.2018.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 12/19/2022]
Abstract
Cancer stem cell (CSC) self-renewing and drug resistance cause treatment failure and tumor recurrence. Osteosarcoma is an aggressive bone tumor characterized by biological and molecular heterogeneity, possibly dependent on CSCs. CSC identification in osteosarcoma and their efficient targeting are still open questions. Spontaneous canine osteosarcoma shares clinical and biological features with the human tumors, representing a model for translational studies. We characterized three CSC-enriched canine osteosarcoma cultures. In serum-free conditions, these CSC cultures grow as anchorage-independent spheroids, show mesenchymal-like properties and in vivo tumorigenicity, recapitulating the heterogeneity of the original osteosarcoma. Osteosarcoma CSCs express stem-related factors (Sox2, Oct4, CD133) and chemokine receptors and ligands (CXCR4, CXCL12) involved in tumor proliferation and self-renewal. Standard drugs for osteosarcoma treatment (doxorubicin and cisplatin) affected CSC-enriched and parental primary cultures, showing different efficacy within tumors. Moreover, metformin, a type-2 diabetes drug, significantly inhibits osteosarcoma CSC viability, migration and self-renewal and, in co-treatment with doxorubicin and cisplatin, enhances drug cytotoxicity. Collectively, we demonstrate that canine osteosarcoma primary cultures contain CSCs exhibiting distinctive sensitivity to anticancer agents, as a reliable experimental model to assay drug efficacy. We also provide proof-of-principle of metformin efficacy, alone or in combination, as pharmacological strategy to target osteosarcoma CSCs.
Collapse
Affiliation(s)
- Monica Gatti
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy
| | - Agnese Solari
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy
| | - Alessandra Pattarozzi
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy
| | - Chiara Campanella
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila 39, 16129 Genova, Italy
| | - Stefano Thellung
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy
| | - Lorella Maniscalco
- Department of Veterinary Sciences, University of Torino, Largo Braccini 2, 10095 Grugliasco (Torino), Italy
| | - Raffaella De Maria
- Department of Veterinary Sciences, University of Torino, Largo Braccini 2, 10095 Grugliasco (Torino), Italy
| | - Roberto Würth
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy
| | - Alessandro Corsaro
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy
| | - Adriana Bajetto
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy
| | - Alessandra Ratto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila 39, 16129 Genova, Italy
| | - Angelo Ferrari
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila 39, 16129 Genova, Italy
| | - Antonio Daga
- IRCCS-AOU San Martino-IST, Largo Benzi 10, 16132 Genova, Italy
| | - Federica Barbieri
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy.
| | - Tullio Florio
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy.
| |
Collapse
|
13
|
CXCR4 targeted dendrimer for anti-cancer drug delivery and breast cancer cell migration inhibition. Eur J Pharm Biopharm 2017; 119:310-321. [PMID: 28694161 DOI: 10.1016/j.ejpb.2017.07.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/10/2017] [Accepted: 07/06/2017] [Indexed: 12/26/2022]
Abstract
CXCR4 and its ligand CXCL12 play a critical role in the metastasis of various types of cancer including breast cancer. Breast tumors preferentially metastasize to the lung, bones and distant lymph nodes, secreting high levels of CXCL12. We hypothesized that targeted inhibition of CXCR4 in breast cancer cells should suppress CXCR4-positive tumor cells toward secondary metastatic sites. In the present study, the efficacy of CXCR4 targeted dendrimers carrying DOX (LFC131-DOX-D4) on cellular binding, cytotoxicity, and migration of BT-549-Luc and T47D breast cancer cells was investigated. PAMAM dendrimers encapsulating DOX was surface functionalized with LFC131 peptide which recognized CXCR4 expressed on the surface of breast cancer cells. The LFC131-DOX-D4 bound to breast cancer cells resulting in significantly enhanced in vitro cellular toxicity as compared with non-targeted dendrimers. The LFC131-D4 exhibited remarkable reduced migration of BT-549-Luc breast cancer cells toward chemoattractant. This report demonstrated the potential utility of LFC131-dendrimer conjugates for breast cancer therapy and metastasis.
Collapse
|
14
|
Habauzit D, Martin C, Kerdivel G, Pakdel F. Rapid assessment of estrogenic compounds by CXCL-test illustrated by the screening of the UV-filter derivative benzophenones. CHEMOSPHERE 2017; 173:253-260. [PMID: 28110015 DOI: 10.1016/j.chemosphere.2017.01.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/24/2016] [Accepted: 01/05/2017] [Indexed: 06/06/2023]
Abstract
CXCL-test is a method that uses the estrogen-dependent secretion of the natural endogenous chemokine CXCL12 to evaluate the estrogenic activity of molecules. CXCL12 chemokine is involved in the estrogen dependent proliferation of breast cancer cells. Its measure is an indicator of cell proliferation and is used as an alternative test to classical proliferation test. Here we aimed to optimize this test, first to increase the number of tested molecules in a single assay and then to decrease the number of intermediate steps. The optimized CXCL-test was finally used for the evaluation of the estrogenic potency of emerging chemical pollutants: the UV filter benzophenones (BPs). The effect of BPs on CXCL12 secretion was also validated by real time quantitative RT-PCR. The optimized CXCL-test allowed a fast and direct assessment of estrogenic potency of molecules. The estrogenic activities of benzophenones were characterized and divided in two groups. The first one contains weak estrogenic compounds (BP, BP1, BP2, BP3, 234BP and 2344'BP). The second one contains medium estrogenic compounds (4BP, 44'BP, BP8, THB).
Collapse
Affiliation(s)
- Denis Habauzit
- Institut de Recherche en Santé - Environnement - Travail (IRSET), Inserm U1085, TREC Team, University of Rennes 1, Rennes, France.
| | - Catherine Martin
- Institut de Recherche en Santé - Environnement - Travail (IRSET), Inserm U1085, TREC Team, University of Rennes 1, Rennes, France
| | - Gwenneg Kerdivel
- Institut de Recherche en Santé - Environnement - Travail (IRSET), Inserm U1085, TREC Team, University of Rennes 1, Rennes, France
| | - Farzad Pakdel
- Institut de Recherche en Santé - Environnement - Travail (IRSET), Inserm U1085, TREC Team, University of Rennes 1, Rennes, France.
| |
Collapse
|
15
|
Li RH, Huang WH, Wu JD, Du CW, Zhang GJ. EGFR expression is associated with cytoplasmic staining of CXCR4 and predicts poor prognosis in triple-negative breast carcinomas. Oncol Lett 2017; 13:695-703. [PMID: 28356948 PMCID: PMC5351258 DOI: 10.3892/ol.2016.5489] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 09/27/2016] [Indexed: 02/05/2023] Open
Abstract
The purpose of the present study was to investigate the significance of C-X-C motif chemokine receptor type 4 (CXCR4) and epidermal growth factor receptors (EGFRs) in triple-negative breast cancer (TNBC). CXCR4 and EGFR expression levels were immunohistochemically determined in 207 primary breast cancer specimens. The associations between receptor expression and clinicopathological characteristics were analyzed, and receptor expression was also assessed as a prognostic factor. In the human MDA-MB-231 TNBC cell line, CXCR4 or EGFR was stably knocked down by short hairpin RNA, and the biological behavior of the cells, including migration, invasion and tumorigenesis, was investigated. The results revealed that TNBC was associated with younger age, higher histological grade and an aggressive phenotype. CXCR4 and EGFR were highly expressed in patients with TNBC, and those with high CXCR4 or EGFR expression exhibited an unfavorable prognosis in terms of disease-free survival and overall survival. In MDA-MB-231 cells, the expression of CXCR4 protein was decreased following EGFR silencing, while CXCR4 knockdown also caused a decrease in EGFR protein levels. The migratory and invasive capabilities of MDA-MB-231 cells were decreased following the knockdown of CXCR4 or EGFR expression. A strong correlation between CXCR4 and EGFR expression was identified in patients with TNBC. The results suggest that elevated expression levels of these two receptors may serve as predictive factors for poor prognosis in patients with TNBC. In addition, tumor proliferation, migration, invasion and tumorigenesis are weakened in MDA-MB-231 cells following suppression of CXCR4 or EGFR expression. Therefore, EGFR and CXCR4 may be potential therapeutic targets for TNBC.
Collapse
Affiliation(s)
- Rong-Hui Li
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Chang Jiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Wen-He Huang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Jun-Dong Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Cai-Wen Du
- Chang Jiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of Breast Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Guo-Jun Zhang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Chang Jiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou, Guangdong 515041, P.R. China
- Correspondence to: Professor Guo-Jun Zhang, The Breast Center, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, Guangdong 515041, P.R. China, E-mail:
| |
Collapse
|
16
|
Angeletti F, Fossati G, Pattarozzi A, Würth R, Solari A, Daga A, Masiello I, Barbieri F, Florio T, Comincini S. Inhibition of the Autophagy Pathway Synergistically Potentiates the Cytotoxic Activity of Givinostat (ITF2357) on Human Glioblastoma Cancer Stem Cells. Front Mol Neurosci 2016; 9:107. [PMID: 27833530 PMCID: PMC5081386 DOI: 10.3389/fnmol.2016.00107] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/07/2016] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence highlighted the role of cancer stem cells (CSCs) in the development of tumor resistance to therapy, particularly in glioblastoma (GBM). Therefore, the development of new therapies, specifically directed against GBM CSCs, constitutes an important research avenue. Considering the extended range of cancer-related pathways modulated by histone acetylation/deacetylation processes, we studied the anti-proliferative and pro-apoptotic efficacy of givinostat (GVS), a pan-histone deacetylase inhibitor, on cell cultures enriched in CSCs, isolated from nine human GBMs. We report that GVS induced a significant reduction of viability and self-renewal ability in all GBM CSC cultures; conversely, GVS exposure did not cause a significant cytotoxic activity toward differentiated GBM cells and normal mesenchymal human stem cells. Analyzing the cellular and molecular mechanisms involved, we demonstrated that GVS affected CSC viability through the activation of programmed cell death pathways. In particular, a marked stimulation of macroautophagy was observed after GVS treatment. To understand the functional link between GVS treatment and autophagy activation, different genetic and pharmacological interfering strategies were used. We show that the up-regulation of the autophagy process, obtained by deprivation of growth factors, induced a reduction of CSC sensitivity to GVS, while the pharmacological inhibition of the autophagy pathway and the silencing of the key autophagy gene ATG7, increased the cell death rate induced by GVS. Altogether these findings suggest that autophagy represents a pro-survival mechanism activated by GBM CSCs to counteract the efficacy of the anti-proliferative activity of GVS. In conclusion, we demonstrate that GVS is a novel pharmacological tool able to target GBM CSC viability and its efficacy can be enhanced by autophagy inhibitory strategies.
Collapse
Affiliation(s)
| | - Gianluca Fossati
- Preclinical Research Department Italfarmaco Research Center, Italfarmaco S.p.A Cinisello Balsamo, Italy
| | - Alessandra Pattarozzi
- Department of Internal Medicine, Centre of Excellence for Biomedical Research, University of Genova Genova, Italy
| | - Roberto Würth
- Department of Internal Medicine, Centre of Excellence for Biomedical Research, University of Genova Genova, Italy
| | - Agnese Solari
- Department of Internal Medicine, Centre of Excellence for Biomedical Research, University of Genova Genova, Italy
| | - Antonio Daga
- Regenerative Medicine, IRCCS Azienda Ospedaliera Universitaria San Martino - IST Genova, Italy
| | - Irene Masiello
- Department of Biology and Biotechnology, University of Pavia Pavia, Italy
| | - Federica Barbieri
- Department of Internal Medicine, Centre of Excellence for Biomedical Research, University of Genova Genova, Italy
| | - Tullio Florio
- Department of Internal Medicine, Centre of Excellence for Biomedical Research, University of Genova Genova, Italy
| | - Sergio Comincini
- Department of Biology and Biotechnology, University of Pavia Pavia, Italy
| |
Collapse
|
17
|
TRPV6 modulates proliferation of human pancreatic neuroendocrine BON-1 tumour cells. Biosci Rep 2016; 36:BSR20160106. [PMID: 27450545 PMCID: PMC4995500 DOI: 10.1042/bsr20160106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/22/2016] [Indexed: 11/27/2022] Open
Abstract
Highly Ca2+ permeable receptor potential channel vanilloid type 6 (TRPV6) modulates a variety of biological functions including calcium-dependent cell growth and apoptosis. So far, the role of TRPV6 in controlling growth of pancreatic neuroendocrine tumour (NET) cells is unknown. In the present study, we characterize the expression of TRPV6 in pancreatic BON-1 and QGP-1 NET cells. Furthermore, we evaluate the impact of TRPV6 on intracellular calcium, the activity of nuclear factor of activated T-cells (NFAT) and proliferation of BON-1 cells. TRPV6 expression was assessed by real-time PCR and Western blot. TRPV6 mRNA expression and protein production were down-regulated by siRNA. Changes in intracellular calcium levels were detected by fluorescence calcium imaging (fura-2/AM). NFAT activity was studied by NFAT reporter assay; cell proliferation by bromodeoxyuridine (BrdU), MTT and propidium iodine staining. TRPV6 mRNA and protein are present in BON-1 and QGP-1 NET-cells. Down-regulation of TRPV6 attenuates BON-1 cell proliferation. TRPV6 down-regulation is associated with decreased Ca2+ response pattern and reduced NFAT activity. In conclusion, TRPV6 is expressed in pancreatic NETs and modulates cell proliferation via Ca2+-dependent mechanism, which is accompanied by NFAT activation.
Collapse
|
18
|
Evaluation of Local CYP17A1 and CYP19A1 Expression Levels as Prognostic Factors in Postmenopausal Invasive Ductal Breast Cancer Cases. Biochem Genet 2016; 54:784-802. [PMID: 27365044 DOI: 10.1007/s10528-016-9756-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/23/2016] [Indexed: 10/21/2022]
Abstract
There is growing attention focused on local estrogen production in the breast tissue and its possible role in breast cancer initiation and progression. Understanding the underlying mechanisms for estrogen synthesis and the microenvironment consisting of tumor and its surrounding adipose tissue might open new avenues in breast cancer prevention, prognosis and treatment. In order to obtain insight, we compared peritumoral and tumor tissue expressions of CYP17A1 and CYP19A1 genes, which play an important role in estrogen biosynthesis. The paired tissue samples of 20 postmenopausal ER+/PR+ patients diagnosed with invasive ductal breast cancer were studied. In addition, 12 breast tissue samples obtained from premenopausal women without a history of breast cancer were also investigated as representative of normal conditions. Peritumoral adipose tissues expressed CYP19A1 approximately threefold higher than tumor itself (p = 0.001). A nonsignificant trend toward low expression of CYP17A1 was observed in peritumoral compared to tumor tissue (p = 0.687). Clinicopathological parameters and patient characteristics which are accepted as risk factors for breast cancer were also associated with individual and combined expressions of CYP17A1 and CYP19A1. This study offers that evaluation of CYP17A1 and CYP19A1 local expression levels might be useful for deciding on personalized treatment approaches and more accurate diagnosis, when evaluated together with several clinicopathological and disease risk factors. Considering the key role of these CYPs in estrogen synthesis, determining their expression levels may be useful as a postdiagnostic marker and for choosing the right treatment method in addition to the conventional approach.
Collapse
|
19
|
Yu L, Andruska N, Zheng X, Shapiro DJ. Anticipatory activation of the unfolded protein response by epidermal growth factor is required for immediate early gene expression and cell proliferation. Mol Cell Endocrinol 2016; 422:31-41. [PMID: 26551735 PMCID: PMC4919024 DOI: 10.1016/j.mce.2015.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 12/13/2022]
Abstract
The onco-protein epidermal growth factor (EGF) initiates a cascade that includes activation of the ERK and AKT signaling pathways and alters gene expression. We describe a new action of EGF-EGF receptor (EGFR), rapid anticipatory activation of the endoplasmic reticulum stress sensor, the unfolded protein response (UPR). Within 2 min, EGF elicits EGFR dependent activation of phospholipase C γ (PLCγ), producing inositol triphosphate (IP3), which binds to IP3 receptor (IP3R), opening the endoplasmic reticulum IP3R Ca(2+) channels, resulting in increased intracellular Ca(2+). This calcium release leads to transient and moderate activation of the IRE1α and ATF6α arms of the UPR, resulting in induction of BiP chaperone. Knockdown or inhibition of EGFR, PLCγ or IP3R blocks the increase in intracellular Ca(2+). While blocking the increase in intracellular Ca(2+) by locking the IP3R calcium channel with 2-APB had no effect on EGF activation of the ERK or AKT signaling pathways, it abolished the rapid EGF-mediated induction and repression of gene expression. Knockdown of ATF6α or XBP1, which regulate UPR-induced chaperone production, inhibited EGF stimulated cell proliferation. Supporting biological relevance, increased levels of EGF receptor during tumor progression were correlated with increased expression of the UPR gene signature. Anticipatory activation of the UPR is a new role for EGF. Since UPR activation occurs in <2 min, it is an initial cell response when EGF binds EGFR.
Collapse
Affiliation(s)
- Liqun Yu
- Department of Biochemistry, University of Illinois, Urbana, IL, 61801, USA
| | - Neal Andruska
- Department of Biochemistry, University of Illinois, Urbana, IL, 61801, USA; College of Medicine, University of Illinois, USA
| | - Xiaobin Zheng
- Department of Biochemistry, University of Illinois, Urbana, IL, 61801, USA
| | - David J Shapiro
- Department of Biochemistry, University of Illinois, Urbana, IL, 61801, USA; University of Illinois Cancer Center, USA; College of Medicine, University of Illinois, USA.
| |
Collapse
|
20
|
Park SJ, Kim JG, Kim ND, Yang K, Shim JW, Heo K. Estradiol, TGF-β1 and hypoxia promote breast cancer stemness and EMT-mediated breast cancer migration. Oncol Lett 2016; 11:1895-1902. [PMID: 26998096 DOI: 10.3892/ol.2016.4115] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 12/11/2015] [Indexed: 12/25/2022] Open
Abstract
Breast cancer is one of the most common cancer types among women, acting as a distinct cause of mortality, and has a high incidence of recurrence. External stimuli, including 17β-estradiol (E2), transforming growth factor (TGF)-β1 and hypoxia, may be important in breast cancer growth and metastasis. However, the effects of these stimuli on breast cancer stem cell (CSC) regulation have not been fully investigated. In the present study, the proportion of cluster of differentiation (CD)44+/CD24-/low cells increased following treatment with E2, TGF-β1 and hypoxia in MCF-7 cells. The expression of CSC markers, including SOX2, KLF4 and ABCG2, was upregulated continually by E2, TGF-β1 and hypoxia. In addition, the expression levels of epithelial-mesenchymal transition-associated factors increased following treatment with E2, TGF-β1 and hypoxia. Therefore, the migration ability of E2-, TGF-β1- and hypoxia-treated MCF-7 cells was enhanced compared with control cells. In addition, the enhancement of apoptosis by 5-flurouracil or radiation was abolished following treatment with E2, TGF-β1 and hypoxia. These results indicate that E2, TGF-β1 and hypoxia are important for regulating breast CSCs, and that the modulation of the microenvironment in tumors may improve the efficiency of breast cancer therapy.
Collapse
Affiliation(s)
- Seong-Joon Park
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; Department of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Joong-Gook Kim
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea
| | - Nam Deuk Kim
- Department of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Kwangmo Yang
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; Department of Radiation Oncology, Dongnam Institute of Radiological & Medical Sciences, Busan 46033, Republic of Korea; Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Jae Woong Shim
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea
| | - Kyu Heo
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea
| |
Collapse
|
21
|
Abstract
OBJECTIVES Although Ki67 measurement by immunohistochemistry has been widely used as a prognostic index in cancers, it has not been reported in malignant peritoneal mesothelioma (MPM). Hence, this study examines the prognostic significance of Ki67 in MPM. METHODS Specimens from 42 MPM patients were screened for Ki67 expression using immunohistochemistry. Ki67 expression was classified into 2 groups on the basis of expression (<25%=low; ≥25%=high) using standard methods. Using Kaplan-Meier survival analysis, the significance of Ki67 was assessed in different clinicopathologic categories. RESULTS High expression of Ki67 (≥25% by immunohistochemical evaluation) was correlated with poor survival in the overall group (P=0.001); male sex (P=0.001); female sex (P=0.001); epithelioid tumors (P=0.001): male epithelioid (P=0.001), female epithelioid (P=0.003); peritoneal cancer index (PCI): PCI<20 (P=0.001), PCI≥20 (P=0.002); and age at diagnosis (AAD): AAD<60 years (P=0.001), AAD≥60 years (P=0.004). Independent of Ki67, male sex (P=0.007), sarcomatoid histology (P=0.001), PCI≥20 (P=0.013), and AAD≥60 years (P=0.004) correlated with poor survival. Multivariate analysis showed that only AAD≥60 years (P=0.049) and high Ki67 expression for all tumors (P=0.031), male sex (P=0.038), female sex (P=0.021), epithelioid tumors (P=0.044), and AAD<60 years (P=0.029) were statistically significant. CONCLUSIONS Ki67 expression affects prognosis in MPM patients and helps to predict survival within the various clinicopathologic categories.
Collapse
|
22
|
Metformin repositioning as antitumoral agent: selective antiproliferative effects in human glioblastoma stem cells, via inhibition of CLIC1-mediated ion current. Oncotarget 2015; 5:11252-68. [PMID: 25361004 PMCID: PMC4294381 DOI: 10.18632/oncotarget.2617] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/21/2014] [Indexed: 12/25/2022] Open
Abstract
Epidemiological and preclinical studies propose that metformin, a first-line drug for type-2 diabetes, exerts direct antitumor activity. Although several clinical trials are ongoing, the molecular mechanisms of this effect are unknown. Here we show that chloride intracellular channel-1 (CLIC1) is a direct target of metformin in human glioblastoma cells. Metformin exposure induces antiproliferative effects in cancer stem cell-enriched cultures, isolated from three individual WHO grade IV human glioblastomas. These effects phenocopy metformin-mediated inhibition of a chloride current specifically dependent on CLIC1 functional activity. CLIC1 ion channel is preferentially active during the G1-S transition via transient membrane insertion. Metformin inhibition of CLIC1 activity induces G1 arrest of glioblastoma stem cells. This effect was time-dependent, and prolonged treatments caused antiproliferative effects also for low, clinically significant, metformin concentrations. Furthermore, substitution of Arg29 in the putative CLIC1 pore region impairs metformin modulation of channel activity. The lack of drugs affecting cancer stem cell viability is the main cause of therapy failure and tumor relapse. We identified CLIC1 not only as a modulator of cell cycle progression in human glioblastoma stem cells but also as the main target of metformin's antiproliferative activity, paving the way for novel and needed pharmacological approaches to glioblastoma treatment.
Collapse
|
23
|
Belkaid A, Duguay SR, Ouellette RJ, Surette ME. 17β-estradiol induces stearoyl-CoA desaturase-1 expression in estrogen receptor-positive breast cancer cells. BMC Cancer 2015; 15:440. [PMID: 26022099 PMCID: PMC4446951 DOI: 10.1186/s12885-015-1452-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/19/2015] [Indexed: 12/16/2022] Open
Abstract
Background To sustain cell growth, cancer cells exhibit an altered metabolism characterized by increased lipogenesis. Stearoyl-CoA desaturase-1 (SCD-1) catalyzes the production of monounsaturated fatty acids that are essential for membrane biogenesis, and is required for cell proliferation in many cancer cell types. Although estrogen is required for the proliferation of many estrogen-sensitive breast carcinoma cells, it is also a repressor of SCD-1 expression in liver and adipose. The current study addresses this apparent paradox by investigating the impact of estrogen on SCD-1 expression in estrogen receptor-α-positive breast carcinoma cell lines. Methods MCF-7 and T47D mammary carcinomas cells and immortalized MCF-10A mammary epithelial cells were hormone-starved then treated or not with 17β-estradiol. SCD-1 activity was assessed by measuring cellular monounsaturated/saturated fatty acid (MUFA/SFA) ratios, and SCD-1 expression was measured by qPCR, immunoblot, and immunofluorescence analyses. The role of SCD-1 in cell proliferation was measured following treatment with the SCD-1 inhibitor A959372 and following SCD-1 silencing using siRNA. The involvement of IGF-1R on SCD-1 expression was measured using the IGF-1R antagonist AG1024. The expression of SREBP-1c, a transcription factor that regulates SCD-1, was measured by qPCR, and by immunoblot analyses. Results 17β-estradiol significantly induced cell proliferation and SCD-1 activity in MCF-7 and T47D cells but not MCF-10A cells. Accordingly, 17β-estradiol significantly increased SCD-1 mRNA and protein expression in MCF-7 and T47D cells compared to untreated cells. Treatment of MCF-7 cells with 4-OH tamoxifen or siRNA silencing of estrogen receptor-α largely prevented 17β-estradiol-induced SCD-1 expression. 17β-estradiol increased SREBP-1c expression and induced the mature active 60 kDa form of SREBP-1. The selective SCD-1 inhibitor or siRNA silencing of SCD-1 blocked the 17β-estradiol-induced cell proliferation and increase in cellular MUFA/SFA ratios. IGF-1 also induced SCD-1 expression, but to a lesser extent than 17β-estradiol. The IGF-1R antagonist partially blocked 17β-estradiol-induced cell proliferation and SCD-1 expression, suggesting the impact of 17β-estradiol on SCD-1 expression is partially mediated though IGF-1R signaling. Conclusions This study illustrates for the first time that, in contrast to hepatic and adipose tissue, estrogen induces SCD-1 expression and activity in breast carcinoma cells. These results support SCD-1 as a therapeutic target in estrogen-sensitive breast cancer.
Collapse
Affiliation(s)
- Anissa Belkaid
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine Maillet Ave, Moncton, NB, E1A 3E9, Canada. .,Atlantic Cancer Research Institute, Moncton, NB, Canada.
| | - Sabrina R Duguay
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine Maillet Ave, Moncton, NB, E1A 3E9, Canada.
| | | | - Marc E Surette
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine Maillet Ave, Moncton, NB, E1A 3E9, Canada.
| |
Collapse
|
24
|
Barbieri F, Thellung S, Ratto A, Carra E, Marini V, Fucile C, Bajetto A, Pattarozzi A, Würth R, Gatti M, Campanella C, Vito G, Mattioli F, Pagano A, Daga A, Ferrari A, Florio T. In vitro and in vivo antiproliferative activity of metformin on stem-like cells isolated from spontaneous canine mammary carcinomas: translational implications for human tumors. BMC Cancer 2015; 15:228. [PMID: 25884842 PMCID: PMC4397725 DOI: 10.1186/s12885-015-1235-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 03/20/2015] [Indexed: 12/21/2022] Open
Abstract
Background Cancer stem cells (CSCs) are considered the cell subpopulation responsible for breast cancer (BC) initiation, growth, and relapse. CSCs are identified as self-renewing and tumor-initiating cells, conferring resistance to chemo- and radio-therapy to several neoplasias. Nowadays, th (about 10mM)e pharmacological targeting of CSCs is considered an ineludible therapeutic goal. The antidiabetic drug metformin was reported to suppress in vitro and in vivo CSC survival in different tumors and, in particular, in BC preclinical models. However, few studies are available on primary CSC cultures derived from human postsurgical BC samples, likely because of the limited amount of tissue available after surgery. In this context, comparative oncology is acquiring a relevant role in cancer research, allowing the analysis of larger samples from spontaneous pet tumors that represent optimal models for human cancer. Methods Isolation of primary canine mammary carcinoma (CMC) cells and enrichment in stem-like cell was carried out from fresh tumor specimens by culturing cells in stem-permissive conditions. Phenotypic and functional characterization of CMC-derived stem cells was performed in vitro, by assessment of self-renewal, long-lasting proliferation, marker expression, and drug sensitivity, and in vivo, by tumorigenicity experiments. Corresponding cultures of differentiated CMC cells were used as internal reference. Metformin efficacy on CMC stem cell viability was analyzed both in vitro and in vivo. Results We identified a subpopulation of CMC cells showing human breast CSC features, including expression of specific markers (i.e. CD44, CXCR4), growth as mammospheres, and tumor-initiation in mice. These cells show resistance to doxorubicin but were highly sensitive to metformin in vitro. Finally, in vivo metformin administration significantly impaired CMC growth in NOD-SCID mice, associated with a significant depletion of CSCs. Conclusions Similarly to the human counterpart, CMCs contain stem-like subpopulations representing, in a comparative oncology context, a valuable translational model for human BC, and, in particular, to predict the efficacy of antitumor drugs. Moreover, metformin represents a potential CSC-selective drug for BC, as effective (neo-)adjuvant therapy to eradicate CSC in mammary carcinomas of humans and animals. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1235-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Federica Barbieri
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy. .,Centro di Eccellenza per la Ricerca Biomedica (CEBR), University of Genova, Genoa, Italy.
| | - Stefano Thellung
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy. .,Centro di Eccellenza per la Ricerca Biomedica (CEBR), University of Genova, Genoa, Italy.
| | - Alessandra Ratto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, and National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Genoa, Italy.
| | - Elisa Carra
- Dipartimento di Medicina Sperimentale, University of Genova, Genoa, Italy.
| | - Valeria Marini
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy.
| | - Carmen Fucile
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy.
| | - Adriana Bajetto
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy.
| | - Alessandra Pattarozzi
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy.
| | - Roberto Würth
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy.
| | - Monica Gatti
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy.
| | - Chiara Campanella
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, and National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Genoa, Italy.
| | - Guendalina Vito
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, and National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Genoa, Italy.
| | - Francesca Mattioli
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy.
| | - Aldo Pagano
- Dipartimento di Medicina Sperimentale, University of Genova, Genoa, Italy. .,IRCCS AOU San Martino - IST, Genoa, Italy.
| | | | - Angelo Ferrari
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, and National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Genoa, Italy.
| | - Tullio Florio
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy. .,Centro di Eccellenza per la Ricerca Biomedica (CEBR), University of Genova, Genoa, Italy.
| |
Collapse
|
25
|
Wright AF, Ewart MA, Mair K, Nilsen M, Dempsie Y, Loughlin L, Maclean MR. Oestrogen receptor alpha in pulmonary hypertension. Cardiovasc Res 2015; 106:206-16. [PMID: 25765937 PMCID: PMC4615797 DOI: 10.1093/cvr/cvv106] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/27/2015] [Indexed: 11/14/2022] Open
Abstract
Aims Pulmonary arterial hypertension (PAH) occurs more frequently in women with mutations in bone morphogenetic protein receptor type 2 (BMPR2) and dysfunctional BMPR2 signalling underpinning heritable PAH. We have previously shown that serotonin can uncover a pulmonary hypertensive phenotype in BMPR2+/− mice and that oestrogen can increase serotinergic signalling in human pulmonary arterial smooth muscle cells (hPASMCs). Hence, here we wished to characterize the expression of oestrogen receptors (ERs) in male and female human pulmonary arteries and have examined the influence of oestrogen and serotonin on BMPR2 and ERα expression. Methods and results By immunohistochemistry, we showed that ERα, ERβ, and G-protein-coupled receptors are expressed in human pulmonary arteries localizing mainly to the smooth muscle layer which also expresses the serotonin transporter (SERT). Protein expression of ERα protein was higher in female PAH patient hPASMCs compared with male and serotonin also increased the expression of ERα. 17β-estradiol induced proliferation of hPASMCs via ERα activation and this engaged mitogen-activated protein kinase and Akt signalling. Female mice over-expressing SERT (SERT+ mice) develop PH and the ERα antagonist MPP attenuated the development of PH in normoxic and hypoxic female SERT+ mice. The therapeutic effects of MPP were accompanied by increased expression of BMPR2 in mouse lung. Conclusion ERα is highly expressed in female hPASMCs from PAH patients and mediates oestrogen-induced proliferation of hPASMCs via mitogen-activated protein kinase and Akt signalling. Serotonin can increase ERα expression in hPASMCs and antagonism of ERα reverses serotonin-dependent PH in the mouse and increases BMPR2 expression.
Collapse
Affiliation(s)
- Audrey F Wright
- College of Medical, Veterinary, and Life Sciences, Research Institute of Cardiovascular and Medical Sciences, University of Glasgow, Room 448, West Medical Building/Wolfson Link Building, Glasgow G12 8QQ, UK
| | - Marie-Ann Ewart
- College of Medical, Veterinary, and Life Sciences, Research Institute of Cardiovascular and Medical Sciences, University of Glasgow, Room 448, West Medical Building/Wolfson Link Building, Glasgow G12 8QQ, UK
| | - Kirsty Mair
- College of Medical, Veterinary, and Life Sciences, Research Institute of Cardiovascular and Medical Sciences, University of Glasgow, Room 448, West Medical Building/Wolfson Link Building, Glasgow G12 8QQ, UK
| | - Margaret Nilsen
- College of Medical, Veterinary, and Life Sciences, Research Institute of Cardiovascular and Medical Sciences, University of Glasgow, Room 448, West Medical Building/Wolfson Link Building, Glasgow G12 8QQ, UK
| | - Yvonne Dempsie
- School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA
| | - Lynn Loughlin
- College of Medical, Veterinary, and Life Sciences, Research Institute of Cardiovascular and Medical Sciences, University of Glasgow, Room 448, West Medical Building/Wolfson Link Building, Glasgow G12 8QQ, UK
| | - Margaret R Maclean
- College of Medical, Veterinary, and Life Sciences, Research Institute of Cardiovascular and Medical Sciences, University of Glasgow, Room 448, West Medical Building/Wolfson Link Building, Glasgow G12 8QQ, UK
| |
Collapse
|
26
|
Costa D, Gigoni A, Würth R, Cancedda R, Florio T, Pagano A. Metformin inhibition of neuroblastoma cell proliferation is differently modulated by cell differentiation induced by retinoic acid or overexpression of NDM29 non-coding RNA. Cancer Cell Int 2014; 14:59. [PMID: 25120382 PMCID: PMC4128937 DOI: 10.1186/1475-2867-14-59] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/04/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Metformin is a widely used oral hypoglycemizing agent recently proposed as potential anti-cancer drug. In this study we report the antiproliferative effect of metformin treatment in a high risk neuroblastoma cell model, focusing on possible effects associated to different levels of differentiation and/or tumor initiating potential. METHODS Antiproliferative and cytotoxic effects of metformin were tested in human SKNBE2 and SH-SY5Y neuroblastoma cell lines and in SKNBE2 cells in which differentiation is induced by retinoic acid treatment or stable overexpression of NDM29 non-coding RNA, both conditions characterized by a neuron-like differentiated phenotype. RESULTS We found that metformin significantly inhibits the proliferation of NB cells, an effect that correlates with the inhibition of Akt, while AMPK activity resulted unchanged. Notably, metformin effects were modulated in a different ways by differentiating stimuli, being abolished after retinoic acid treatment but potentiated by overexpression of NDM29. CONCLUSION These data suggest the efficacy of metformin as neuroblastoma anticancer agent, and support the requirement of further studies on the possible role of the differentiation status on the antiproliferative effects of this drug.
Collapse
Affiliation(s)
- Delfina Costa
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy ; IRCCS-AOU San Martino-IST, Genova, Italy
| | - Arianna Gigoni
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy ; IRCCS-AOU San Martino-IST, Genova, Italy
| | - Roberto Würth
- Internal Medicine (DIMI), University of Genova, Genova, Italy
| | - Ranieri Cancedda
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy ; IRCCS-AOU San Martino-IST, Genova, Italy
| | - Tullio Florio
- Internal Medicine (DIMI), University of Genova, Genova, Italy ; Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Aldo Pagano
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy ; IRCCS-AOU San Martino-IST, Genova, Italy
| |
Collapse
|
27
|
Zhou Z, Deng H, Yan W, Luo M, Tu W, Xia Y, He J, Han P, Fu Y, Tian D. AEG-1 promotes anoikis resistance and orientation chemotaxis in hepatocellular carcinoma cells. PLoS One 2014; 9:e100372. [PMID: 24941119 PMCID: PMC4062488 DOI: 10.1371/journal.pone.0100372] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 05/27/2014] [Indexed: 12/17/2022] Open
Abstract
Metastasis contributes to the poor prognosis of hepatocellular carcinoma (HCC). Anoikis resistance and orientation chemotaxis are two important and sequential events in tumor cell metastasis. The process of tumor metastasis is known to be regulated by AEG-1, an important oncogene that plays a critical role in tumor metastasis, though the effects of this oncogene on anoikis resistance and orientation chemotaxis in HCC cells are currently unknown. To directly assess the role of AEG-1 in these processes, we up-regulated AEG-1 expression via exogenous transfection in SMMC-7721 cells, which express low endogenous levels of AEG-1; and down-regulated AEG-1 expression via siRNA-mediated knockdown in MHCC-97H and HCC-LM3 cells, which express high endogenous levels of AEG-1. Our data directly demonstrate that AEG-1 promotes cell growth as assessed by cell proliferation/viability and cell cycle analysis. Furthermore, the prevention of anoikis by AEG-1 correlates with decreased activation of caspase-3. AEG-1-dependent anoikis resistance is activated via the PI3K/Akt pathway and is characterized by the regulation of Bcl-2 and Bad. The PI3K inhibitor LY294002 reverses the AEG-1 dependent effects on Akt phosphorylation, Bcl-2 expression and anoikis resistance. AEG-1 also promotes orientation chemotaxis of suspension-cultured cells towards supernatant from Human Pulmonary Microvascular Endothelial Cells (HPMECs). Our results show that AEG-1 activates the expression of the metastasis-associated chemokine receptor CXCR4, and that its ligand, CXCL12, is secreted by HPMECs. Furthermore, the CXCR4 antoagonist AMD3100 decreases AEG-1-induced orientation chemotaxis. These results define a pathway by which AEG-1 regulates anoikis resistance and orientation chemotaxis during HCC cell metastasis.
Collapse
Affiliation(s)
- Zhenzhen Zhou
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Deng
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Luo
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Tu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujia Xia
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayi He
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Han
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - De'an Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|
28
|
Würth R, Bajetto A, Harrison JK, Barbieri F, Florio T. CXCL12 modulation of CXCR4 and CXCR7 activity in human glioblastoma stem-like cells and regulation of the tumor microenvironment. Front Cell Neurosci 2014; 8:144. [PMID: 24904289 PMCID: PMC4036438 DOI: 10.3389/fncel.2014.00144] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/06/2014] [Indexed: 12/16/2022] Open
Abstract
Chemokines are crucial autocrine and paracrine players in tumor development. In particular, CXCL12, through its receptors CXCR4 and CXCR7, affects tumor progression by controlling cancer cell survival, proliferation and migration, and, indirectly, via angiogenesis or recruiting immune cells. Glioblastoma (GBM) is the most prevalent primary malignant brain tumor in adults and despite current multimodal therapies it remains almost incurable. The aggressive and recurrent phenotype of GBM is ascribed to high growth rate, invasiveness to normal brain, marked angiogenesis, ability to escape the immune system and resistance to standard of care therapies. Tumor molecular and cellular heterogeneity severely hinders GBM therapeutic improvement. In particular, a subpopulation of chemo- and radio-therapy resistant tumorigenic cancer stem-like cells (CSCs) is believed to be the main responsible for tumor cell dissemination to the brain. GBM cells display heterogeneous expression levels of CXCR4 and CXCR7 that are overexpressed in CSCs, representing a molecular correlate for the invasive potential of GBM. The microenvironment contribution in GBM development is increasingly emphasized. An interplay exists between CSCs, differentiated GBM cells, and the microenvironment, mainly through secreted chemokines (e.g., CXCL12) causing recruitment of fibroblasts, endothelial, mesenchymal and inflammatory cells to the tumor, via specific receptors such as CXCR4. This review covers recent developments on the role of CXCL12/CXCR4-CXCR7 networks in GBM progression and the potential translational impact of their targeting. The biological and molecular understanding of the heterogeneous GBM cell behavior, phenotype and signaling is still limited. Progress in the identification of chemokine-dependent mechanisms that affect GBM cell survival, trafficking and chemo-attractive functions, opens new perspectives for development of more specific therapeutic approaches that include chemokine-based drugs.
Collapse
Affiliation(s)
- Roberto Würth
- Sezione di Farmacologia, Dipartimento di Medicina Interna, University of Genova Genova, Italy ; Centro di Eccellenza per la Ricerca Biomedica, University of Genova Genova, Italy
| | - Adriana Bajetto
- Sezione di Farmacologia, Dipartimento di Medicina Interna, University of Genova Genova, Italy ; Centro di Eccellenza per la Ricerca Biomedica, University of Genova Genova, Italy
| | - Jeffrey K Harrison
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida Gainesville, FL, USA
| | - Federica Barbieri
- Sezione di Farmacologia, Dipartimento di Medicina Interna, University of Genova Genova, Italy ; Centro di Eccellenza per la Ricerca Biomedica, University of Genova Genova, Italy
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna, University of Genova Genova, Italy ; Centro di Eccellenza per la Ricerca Biomedica, University of Genova Genova, Italy
| |
Collapse
|
29
|
Barbieri F, Thellung S, Würth R, Gatto F, Corsaro A, Villa V, Nizzari M, Albertelli M, Ferone D, Florio T. Emerging Targets in Pituitary Adenomas: Role of the CXCL12/CXCR4-R7 System. Int J Endocrinol 2014; 2014:753524. [PMID: 25484899 PMCID: PMC4248486 DOI: 10.1155/2014/753524] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/21/2014] [Indexed: 12/15/2022] Open
Abstract
Chemokines are chemotactic regulators of immune surveillance in physiological and pathological conditions such as inflammation, infection, and cancer. Several chemokines and cognate receptors are constitutively expressed in the central nervous system, not only in glial and endothelial cells but also in neurons, controlling neurogenesis, neurite outgrowth, and axonal guidance during development. In particular, the chemokine CXCL12 and its receptors, CXCR4 and CXCR7, form a functional network that controls plasticity in different brain areas, influencing neurotransmission, neuromodulation, and cell migration, and the dysregulation of this chemokinergic axis is involved in several neurodegenerative, neuroinflammatory, and malignant diseases. CXCR4 primarily mediates the transduction of proliferative signals, while CXCR7 seems to be mainly responsible for scavenging CXCL12. Importantly, the multiple intracellular signalling generated by CXCL12 interaction with its receptors influences hypothalamic modulation of neuroendocrine functions, although a direct modulation of pituitary functioning via autocrine/paracrine mechanisms was also reported. Both CXCL12 and CXCR4 are constitutively overexpressed in pituitary adenomas and their signalling induces cell survival and proliferation, as well as hormonal hypersecretion. In this review we focus on the physiological and pathological functions of immune-related cyto- and chemokines, mainly focusing on the CXCL12/CXCR4-7 axis, and their role in pituitary tumorigenesis. Accordingly, we discuss the potential targeting of CXCR4 as novel pharmacological approach for pituitary adenomas.
Collapse
Affiliation(s)
- Federica Barbieri
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
- *Federica Barbieri:
| | - Stefano Thellung
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Roberto Würth
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Federico Gatto
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Alessandro Corsaro
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Valentina Villa
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Mario Nizzari
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Manuela Albertelli
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Diego Ferone
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Tullio Florio
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| |
Collapse
|
30
|
Vitale RM, Gatti M, Carbone M, Barbieri F, Felicità V, Gavagnin M, Florio T, Amodeo P. Minimalist hybrid ligand/receptor-based pharmacophore model for CXCR4 applied to a small-library of marine natural products led to the identification of phidianidine a as a new CXCR4 ligand exhibiting antagonist activity. ACS Chem Biol 2013; 8:2762-70. [PMID: 24102412 DOI: 10.1021/cb400521b] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we present a minimal hybrid ligand/receptor-based pharmacophore model (PM) for CXCR4, a chemokine receptor deeply involved in several pathologies, such as HIV infection, rheumatoid arthritis, cancer development/progression, and metastasization. This model, considerably simpler than those thus far proposed for this receptor, has been used to search for new CXCR4 inhibitors in a small marine natural product library available at ICB-CNR Institute (Pozzuoli, NA, Italy), since natural products, with their naturally selected chemical and functional diversity, represent a rich source of bioactive scaffolds; computational approaches allow searching for new scaffolds with a minimal waste of possibly precious natural product samples; and our "stripped-down" model substantially increases the probabilities of identifying potential hits even in small-sized libraries. This search, also validated by a systematic virtual screening of the same library, has led to the identification of a new CXCR4 ligand, phidianidine A (PHIA). Docking studies supported PHIA activity and suggested its possible binding modes to CXCR4. Using the CXCR4-expressing/CXCR7-negative GH4C1 cell line we show that PHIA inhibits CXCL12-induced DNA synthesis, cell migration, and ERK1/2 activation. The specificity of these effects was confirmed by the lack of PHIA activity in GH4C1 cells, in which siRNA highly reduces CXCR4 expression and the lack of cytoxicity of PHIA was also verified. Thus, PHIA represents a promising lead for a new family of CXCR4 modulators with wide margins of improvement in potency and specificity offered by the small and very simple underlying PM.
Collapse
Affiliation(s)
- Rosa Maria Vitale
- Institute of Biomolecular Chemistry (ICB) of the National Research Council (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Monica Gatti
- Section
of Pharmacology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy
| | - Marianna Carbone
- Institute of Biomolecular Chemistry (ICB) of the National Research Council (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Federica Barbieri
- Section
of Pharmacology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy
- Center
of Excellence for Biomedical Research (CEBR), University of Genova, 16132 Genova, Italy
| | - Vera Felicità
- Institute of Biomolecular Chemistry (ICB) of the National Research Council (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
- Department
of Health Science, “Magna Græcia”, University, 88100, Catanzaro, Italy
| | - Margherita Gavagnin
- Institute of Biomolecular Chemistry (ICB) of the National Research Council (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Tullio Florio
- Section
of Pharmacology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy
- Center
of Excellence for Biomedical Research (CEBR), University of Genova, 16132 Genova, Italy
| | - Pietro Amodeo
- Institute of Biomolecular Chemistry (ICB) of the National Research Council (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| |
Collapse
|
31
|
Gatti M, Pattarozzi A, Bajetto A, Würth R, Daga A, Fiaschi P, Zona G, Florio T, Barbieri F. Inhibition of CXCL12/CXCR4 autocrine/paracrine loop reduces viability of human glioblastoma stem-like cells affecting self-renewal activity. Toxicology 2013; 314:209-20. [DOI: 10.1016/j.tox.2013.10.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/11/2013] [Accepted: 10/12/2013] [Indexed: 12/25/2022]
|
32
|
CXCR4 Expression and Treatment with SDF-1α or Plerixafor Modulate Proliferation and Chemosensitivity of Colon Cancer Cells. Transl Oncol 2013; 6:124-32. [PMID: 23544165 DOI: 10.1593/tlo.12268] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 01/22/2013] [Accepted: 01/28/2013] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Signaling through stromal cell-derived factor-1α (SDF-1α), strongly secreted by bone marrow stromal cells and the CXC chemokine receptor 4 (CXCR4) exposed on tumor cells has pivotal roles in proliferation, metastasis, and tumor cell "dormancy." Dormancy is associated with cytostatic drug resistance and is probably a property of tumor stem cells and minimal residual disease. Thus, hampering the SDF-1α/CXCR4 cross talk by a CXCR4 antagonist like Plerixafor (AMD3100) should overcome tumor cell dormancy bymobilization of tumor cells from "sanctuary" niches. Our aim was to elucidate the direct effects exerted by SDF-1α and Plerixafor on proliferation, chemosensitivity, and apoptosis of CXCR4-expressing tumor cells. METHODS The ability of SDF-1α and Plerixafor to regulate intracellular signaling, proliferation, and invasion was investigated using two colon cancer cell lines (HT-29 and SW480) with either high endogenous or lentiviral expression of CXCR4 compared to their respective low CXCR4-expressing counterparts as a model system. Efficacy of Plerixafor on sensitivity of these cell lines against 5-fluorouracil, irinotecan, or oxaliplatin was determined in a cell viability assay as well as stroma-dependent cytotoxicity and apoptosis assays. RESULTS SDF-1α increased proliferation, invasion, and ERK signaling of endogenously and lentivirally CXCR4-expressing cells. Exposure to Plerixafor reduced proliferation, invasion, and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling. Combination of chemotherapy with Plerixafor showed an additive effect on chemosensitivity and apoptosis in CXCR4-overexpressing cells. An SDF-1-secreting feeder layer provideda"protective niche" for CXCR4-overexpressing cells resulting in decreased chemosensitivity. CONCLUSION CXCR4-antagonistic therapy mobilizes and additionally sensitizes tumor cells toward cytoreductive chemotherapy.
Collapse
|
33
|
Würth R, Pattarozzi A, Gatti M, Bajetto A, Corsaro A, Parodi A, Sirito R, Massollo M, Marini C, Zona G, Fenoglio D, Sambuceti G, Filaci G, Daga A, Barbieri F, Florio T. Metformin selectively affects human glioblastoma tumor-initiating cell viability: A role for metformin-induced inhibition of Akt. Cell Cycle 2012; 12:145-56. [PMID: 23255107 DOI: 10.4161/cc.23050] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cell theory postulates that a small population of tumor-initiating cells is responsible for the development, progression and recurrence of several malignancies, including glioblastoma. In this perspective, tumor-initiating cells represent the most relevant target to obtain effective cancer treatment. Metformin, a first-line drug for type II diabetes, was reported to possess anticancer properties affecting the survival of cancer stem cells in breast cancer models. We report that metformin treatment reduced the proliferation rate of tumor-initiating cell-enriched cultures isolated from four human glioblastomas. Metformin also impairs tumor-initiating cell spherogenesis, indicating a direct effect on self-renewal mechanisms. Interestingly, analyzing by FACS the antiproliferative effects of metformin on CD133-expressing subpopulation, a component of glioblastoma cancer stem cells, a higher reduction of proliferation was observed as compared with CD133-negative cells, suggesting a certain degree of cancer stem cell selectivity in its effects. In fact, glioblastoma cell differentiation strongly reduced sensitivity to metformin treatment. Metformin effects in tumor-initiating cell-enriched cultures were associated with a powerful inhibition of Akt-dependent cell survival pathway, while this pathway was not affected in differentiated cells. The specificity of metformin antiproliferative effects toward glioblastoma tumor-initiating cells was confirmed by the lack of significant inhibition of normal human stem cells (umbilical cord-derived mesenchymal stem cells) in vitro proliferation after metformin exposure. Altogether, these data clearly suggest that metformin exerts antiproliferative activity on glioblastoma cells, showing a higher specificity toward tumor-initiating cells, and that the inhibition of Akt pathway may represent a possible intracellular target of this effect.
Collapse
Affiliation(s)
- Roberto Würth
- Department of Internal Medicine, University of Genova, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ferrari A, Petterino C, Ratto A, Campanella C, Wurth R, Thellung S, Vito G, Barbieri F, Florio T. CXCR4 expression in feline mammary carcinoma cells: evidence of a proliferative role for the SDF-1/CXCR4 axis. BMC Vet Res 2012; 8:27. [PMID: 22417013 PMCID: PMC3364888 DOI: 10.1186/1746-6148-8-27] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 03/14/2012] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Mammary tumours frequently develop in female domestic cats being highly malignant in a large percentage of cases. Chemokines regulate many physiological and pathological processes including organogenesis, chemotaxis of inflammatory cells, as well as tumour progression and metastasization. In particular, the chemokine/receptor pair SDF-1/CXCR4 has been involved in the regulation of metastatic potential of neoplastic cells, including breast cancer. The aim of this study was the immunohistochemical defininition of the expression profile of CXCR4 in primary and metastatic feline mammary carcinomas and the evaluation of the role of SDF-1 in feline mammary tumour cell proliferation. RESULTS A total of 45 mammary surgical samples, including 33 primary tumours (31 carcinomas and 2 adenomas), 6 metastases, and 4 normal mammary tissues were anlyzed. Tumor samples were collected from a total number of 26 animals, as in some cases concurrent occurrence of neoplasm in more than one mammary gland was observed. Tissues were processed for standard histological examination, and all lesions were classified according to the World Health Organization criteria. CXCR4 expression in neoplastic cells was evaluated by immunohistochemistry. The level of CXCR4 immunoreactivity was semi-quantitatively estimated as CXCR4 score evaluating both the number of positive cells and the intensity of staining. Six primary, fibroblast-free primary cultures were obtained from fresh feline mammary carcinomas and characterized by immunofluorescence for CXCR4 and malignant mammary cell marker expression. SDF-1-dependent in vitro proliferative effects were also assayed. CXCR4 expression was observed in 29 out of 31 malignant tissues with a higher CXCR4 score observed in 4 out of 6 metastatic lesions than in the respective primary tumours. In 2 benign lesions analyzed, only the single basaloid adenoma showed a mild positive immunostaining against CXCR4. Normal tissue did not show CXCR4 immunoreactivity. CXCR4 score was statistically significantly associated with the histological features of the samples, showing an increase accordingly with the degree of neoplastic transformation (from normal tissue to metastatic lesions). Finally, in the primary cultures obtained from 6 primary feline mammary carcinomas CXCR4 expression was detected in all cells and its activation by SDF-1 in vitro treatment caused a significant increase in the proliferation rate in 5 out of 6 tumours. CONCLUSIONS These results indicate that malignant feline mammary tumours commonly express CXCR4, with a higher level in malignant tumours, and, in most of the cases analysed, metastatic cells display stronger immunoreactivity for CXCR4 than the corresponding primary tumours. Moreover, CXCR4 activation in primary cultures of feline mammary carcinomas causes increase in the proliferative rate. Thus, SDF-1/CXCR4 system seems to play a tumorigenic in feline mammary gland malignancy and in vitro cultures from these tumour samples may represent an experimental model to investigate the biological and pharmacological role of this chemokinergic axis.
Collapse
Affiliation(s)
- Angelo Ferrari
- Section of Pharmacology, Department of Internal Medicine, University of Genova, Viale Benedetto XV 2, 16132 Genova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Relationship between breast cancer risk factors and mammographic breast density in the Fernald Community Cohort. Br J Cancer 2012; 106:996-1003. [PMID: 22281662 PMCID: PMC3305977 DOI: 10.1038/bjc.2012.1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background: We investigated associations of known breast cancer risk factors with breast density, a well-established and very strong predictor of breast cancer risk. Methods: This nested case–control study included breast cancer-free women, 265 with high and 860 with low breast density. Women were required to be 40–80 years old and should have a body mass index (BMI) <35 at the time of the index mammogram. Information on covariates was obtained from annual questionnaires. Results: In the overall analysis, breast density was inversely associated with BMI at mammogram (P for trend<0.001), and parity (P for trend=0.02) and positively associated with alcohol consumption (ever vs never: odds ratio 2.0, 95% confidence interval 1.4–2.8). Alcohol consumption was positively associated with density, and the association was stronger in women with a family history of breast cancer (P<0.001) and in women with hormone replacement therapy (HRT) history (P<0.001). Parity was inversely associated with density in all subsets, except premenopausal women and women without a family history. The association of parity with density was stronger in women with HRT history (P<0.001). Conclusion: The associations of alcohol and parity with breast density appear to be in reverse direction, but stronger in women with a family history of breast cancer and women who ever used HRT.
Collapse
|
36
|
Singh KP, Treas J, Tyagi T, Gao W. DNA demethylation by 5-aza-2-deoxycytidine treatment abrogates 17 beta-estradiol-induced cell growth and restores expression of DNA repair genes in human breast cancer cells. Cancer Lett 2011; 316:62-9. [PMID: 22082530 DOI: 10.1016/j.canlet.2011.10.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/11/2011] [Accepted: 10/15/2011] [Indexed: 12/20/2022]
Abstract
Prolonged exposure to elevated levels of estrogen is a risk factor for breast cancer. Though increased cell growth and loss of DNA repair capacity is one of the proposed mechanisms for estrogen-induced cancers, the mechanism through which estrogen induces cell growth and decreases DNA repair capacity is not clear. DNA hypermethylation is known to inactivate DNA repair genes and apoptotic response in cancer cells. Therefore, the objective of this study was to determine the role of DNA hypermethylation in estrogen-induced cell growth and regulation of DNA repair genes expression in breast cancer cells. To achieve this objective, the estrogen-responsive MCF-7 cells either pretreated with 5-aza-2-deoxycytidine (5-aza-dC) or untreated (as control) were exposed to 17 beta-estradiol (E2), and its effect on cell growth and expression of DNA repair genes were measured. The result revealed that 5-aza-dC abrogates the E2-induced growth in MCF-7 cells. An increased expression of OGG1, MSH4, and MLH1 by 5-aza-dC treatment alone, suggest the DNA hypermethylation as a potential cause for decreased expression of these genes in MCF-7 cells. The decreased expression of ERCC1, XPC, OGG1, and MLH1 by E2 alone and its restoration by co-treatment with 5-aza-dC further suggest that E2 reduces the expression of these DNA repair genes potentially through promoter hypermethylation. Reactivation of mismatch repair (MMR) gene MLH1 and abrogation of E2-induced cell growth by 5-aza-dC treatment suggest that estrogen causes increased growth in breast cancer cells potentially through the inhibition of MMR-mediated apoptotic response. In summary, this study suggests that estrogen increases cell growth and decreases the DNA repair capacity in breast cancer cells, at least in part, through epigenetic mechanism.
Collapse
Affiliation(s)
- Kamaleshwar P Singh
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX 79409, USA.
| | | | | | | |
Collapse
|
37
|
Vitamin D and mammographic breast density: a systematic review. Cancer Causes Control 2011; 23:1-13. [PMID: 21984232 DOI: 10.1007/s10552-011-9851-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 09/28/2011] [Indexed: 12/31/2022]
Abstract
Studies suggest a protective relationship between Vitamin D and breast cancer risk. Several studies assessed the association of Vitamin D with mammographic breast density, a known and strong breast cancer risk factor. Understanding the potential role of Vitamin D in the modification of breast density might open new avenues in breast cancer prevention. This systematic review summarizes published studies that investigated the association between Vitamin D and mammographic breast density and offers suggestions for strategies to advance our scientific knowledge.
Collapse
|
38
|
Barbieri F, Würth R, Favoni RE, Pattarozzi A, Gatti M, Ratto A, Ferrari A, Bajetto A, Florio T. Receptor tyrosine kinase inhibitors and cytotoxic drugs affect pleural mesothelioma cell proliferation: insight into EGFR and ERK1/2 as antitumor targets. Biochem Pharmacol 2011; 82:1467-77. [PMID: 21787763 DOI: 10.1016/j.bcp.2011.07.073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/04/2011] [Accepted: 07/06/2011] [Indexed: 11/15/2022]
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive chemotherapy-resistant cancer. Up-regulation of epidermal growth factor receptor (EGFR) plays an important role in MPM development and EGFR-tyrosine kinase inhibitors (TKIs) may represent novel therapeutic options. We tested the effects of the EGFR TKIs gefitinib and erlotinib and TKIs targeted to other growth factors (VEGFR and PDGFR), in comparison to standard antineoplastic agents, in two human MPM cell lines, IST-Mes2 and ZL55. All drugs showed IC(50) values in the micromolar range: TKIs induced cytostatic effects at concentrations up to the IC(50,) while conventional drug growth-inhibitory activity was mainly cytotoxic. Moreover, the treatment of IST-Mes2 with TKIs (gefitinib and imatinib mesylate) in combination with cisplatin and gemcitabine did not show additivity. Focusing on the molecular mechanisms underlying the antiproliferative and pro-apoptotic effects of EGFR-TKIs, we observed that gefitinib induced the formation and stabilization of inactive EGFR homodimers, even in absence of EGF, as demonstrated by EGFR B(max) and number of sites/cell. The analysis of downstream effectors of EGFR signaling demonstrated that EGF-induced proliferation, reverted by gefitinib, involved ERK1/2 activation, independently from Akt pathway. Gefitinib inhibits MPM cell growth and survival, preventing EGF-dependent activation of ERK1/2 pathway by blocking EGFR-TK phosphorylation and stabilizing inactive EGFR dimers. Along with the molecular definition of TKIs pharmacological efficacy in vitro, these results may contribute to delve deep into the promising but still controversial role for targeted and conventional drugs in the therapy of MPM.
Collapse
Affiliation(s)
- Federica Barbieri
- Laboratory of Pharmacology, Department of Oncology, Biology and Genetics, University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Huang C, Gu H, Wang Y, Wang M. Estrogen-induced SDF-1 production is mediated by estrogen receptor-α in female hearts after acute ischemia and reperfusion. Surgery 2011; 150:197-203. [PMID: 21719062 DOI: 10.1016/j.surg.2011.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 05/13/2011] [Indexed: 11/17/2022]
Abstract
BACKGROUND Gender differences exist in myocardial response to acute ischemia/reperfusion (I/R) injury and estrogen mediates cardioprotection in the female heart after I/R. Accumulating evidence has indicated that stromal cell-derived factor-1 (SDF-1) is increased in the ischemic heart and initiates cardioprotective effects. However, it is unknown whether SDF-1 plays a role in gender-specific response to myocardial I/R and in estrogen-induced acute protection. Therefore, we hypothesize that (1) increased SDF-1 production will be observed in female hearts compared with male hearts in response to I/R, which is attributable to the effect of estrogen; and that (2) estrogen receptor (ER)α, not ERβ mediates estrogen-contributed SDF-1 expression in female hearts after I/R. METHODS Heart tissue subjected to I/R injury was assessed for myocardial expression of SDF-1 (by enzyme-linked immunosorbent assay) and SDF-1 receptor-CXCR4 (Western blot). Groups were as follows: Rat hearts from adult male, female, ovariectomized female (OVX F), and male and OVX F supplemented with chronic 17β-estradiol (E2), and mouse hearts from adult male and female wild-type, ERα knockout (ERαKO) and ERβKO. RESULTS I/R significantly increased myocardial SDF-1 expression in both genders. Higher levels of SDF-1 existed in female hearts after I/R compared with males. Depletion of endogenous estrogen by ovariectomy reduced cardiac SDF-1 production in females after I/R. E2 supplementation significantly restored SDF-1 expression in OVX F and males compared with their counterparts. Notably, ablation of ERα, not ERβ, markedly decreased SDF-1 production in females after I/R. Unlike SDF-1, cardiac CXCR4 expression was not affected by gender, sex hormone, or ERs in the ischemic heart. CONCLUSION Our study represents the first evidence that female hearts exhibit higher levels of SDF-1 expression compared with males after acute I/R. This increased myocardial SDF-1 production in females is partly owing to effect of estrogen through ERα, but not ERβ.
Collapse
Affiliation(s)
- Chunyan Huang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | |
Collapse
|
40
|
Hynes NE, Gattelli A. P-Rex1, a guanine exchange factor that is overexpressed in breast cancer, is a convergence node for ErbB and CXCR4 signaling. Mol Cell 2011; 41:5-7. [PMID: 21211718 DOI: 10.1016/j.molcel.2010.12.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In a recent issue of Molecular Cell, Kazanietz and colleagues (Sosa et al., 2010) show that P-Rex1, a Rac1 GEF, is overexpressed in ER+ and/or ErbB2+ breast cancers, suggesting that P-Rex1 might be a convergence node downstream of these receptors and an attractive therapeutic target.
Collapse
Affiliation(s)
- Nancy E Hynes
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
| | | |
Collapse
|
41
|
Dai Y, Chen S, Shah R, Pei XY, Wang L, Almenara JA, Kramer LB, Dent P, Grant S. Disruption of Src function potentiates Chk1-inhibitor-induced apoptosis in human multiple myeloma cells in vitro and in vivo. Blood 2011; 117:1947-1957. [PMID: 21148814 PMCID: PMC3056642 DOI: 10.1182/blood-2010-06-291146] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 12/05/2010] [Indexed: 02/05/2023] Open
Abstract
Ras/MEK/ERK pathway activation represents an important compensatory response of human multiple myeloma (MM) cells to checkpoint kinase 1 (Chk1) inhibitors. To investigate the functional roles of Src in this event and potential therapeutic significance, interactions between Src and Chk1 inhibitors (eg, UCN-01 or Chk1i) were examined in vitro and in vivo. The dual Src/Abl inhibitors BMS354825 and SKI-606 blocked Chk1-inhibitor-induced extracellular signal-regulated kinase 1/2 (ERK1/2) activation, markedly increasing apoptosis in association with BimEL up-regulation, p34(cdc2) activation, and DNA damage in MM cell lines and primary CD138(+) MM samples. Loss-of-function Src mutants (K297R, K296R/Y528F) or shRNA knock-down of Src prevented the ERK1/2 activation induced by Chk1 inhibitors and increased apoptosis. Conversely, constitutively active Ras or mitogen-activated protein kinase/ERK kinase 1 (MEK1) significantly diminished the ability of Src inhibitors to potentiate Chk1-inhibitor lethality. Moreover, Src/Chk1-inhibitor cotreatment attenuated MM-cell production of vascular endothelial growth factor and other angiogenic factors (eg, ANG [angiogenin], TIMP1/2 [tissue inhibitor of metalloproteinases 1/2], and RANTES [regulated on activation normal T-cell expressed and secreted]), and inhibited in vitro angiogenesis. Finally, coadministration of BMS354825 and UCN-01 suppressed human MM tumor growth in a murine xenograft model, increased apoptosis, and diminished angiogenesis. These findings suggest that Src kinase is required for Chk1-inhibitor-mediated Ras → ERK1/2 signaling activation, and that disruption of this event sharply potentiates the anti-MM activity of Chk1 inhi-bitors in vitro and in vivo.
Collapse
Affiliation(s)
- Yun Dai
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, and the Massey Cancer Center, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Estrogens in the breast tissue: a systematic review. Cancer Causes Control 2011; 22:529-40. [PMID: 21286801 DOI: 10.1007/s10552-011-9729-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 01/17/2011] [Indexed: 01/24/2023]
Abstract
The role of estrogens in breast carcinogenesis has been investigated at the level of whole body (plasma) and cell (molecular, receptors, etc.). Growing attention focused on the breast tissue being an intracrine organ, with potentially important local estrogen production in the breast. However, very little is known about the local breast tissue estrogen levels. Understanding the role of the tissue estrogens in breast carcinogenesis might open new avenues in breast cancer prevention. This systematic review summarizes published studies that measured local estrogen levels in the breast and offers suggestions for strategies to fill gaps in our existing scientific knowledge.
Collapse
|
43
|
Sosa MS, Lopez-Haber C, Yang C, Wang H, Lemmon MA, Busillo JM, Luo J, Benovic JL, Klein-Szanto A, Yagi H, Gutkind JS, Parsons RE, Kazanietz MG. Identification of the Rac-GEF P-Rex1 as an essential mediator of ErbB signaling in breast cancer. Mol Cell 2010; 40:877-892. [PMID: 21172654 PMCID: PMC3038344 DOI: 10.1016/j.molcel.2010.11.029] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 08/21/2010] [Accepted: 10/18/2010] [Indexed: 02/08/2023]
Abstract
While the small GTPase Rac1 and its effectors are well-established mediators of mitogenic and motile signaling by tyrosine kinase receptors and have been implicated in breast tumorigenesis, little is known regarding the exchange factors (Rac-GEFs) that mediate ErbB receptor responses. Here, we identify the PIP(3)-Gβγ-dependent Rac-GEF P-Rex1 as an essential mediator of Rac1 activation, motility, cell growth, and tumorigenesis driven by ErbB receptors in breast cancer cells. Notably, activation of P-Rex1 in breast cancer cells requires the convergence of inputs from ErbB receptors and a Gβγ- and PI3Kγ-dependent pathway. Moreover, we identified the GPCR CXCR4 as a crucial mediator of P-Rex1/Rac1 activation in response to ErbB ligands. P-Rex1 is highly overexpressed in human breast cancers and their derived cell lines, particularly those with high ErbB2 and ER expression. In addition to the prognostic and therapeutic implications, our findings reveal an ErbB effector pathway that is crucial for breast cancer progression.
Collapse
Affiliation(s)
- Maria Soledad Sosa
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Cynthia Lopez-Haber
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Chengfeng Yang
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI
| | - Hongbin Wang
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Mark A. Lemmon
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - John M. Busillo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA
| | - Jiansong Luo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA
| | - Jeffrey L. Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA
| | | | - Hiroshi Yagi
- Oral and Pharyngeal Cancer Branch, NIDCR, Bethesda, MD
| | | | - Ramon E. Parsons
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY
| | - Marcelo G. Kazanietz
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA
| |
Collapse
|
44
|
Rhodes LV, Short SP, Neel NF, Salvo VA, Zhu Y, Elliott S, Wei Y, Yu D, Sun M, Muir SE, Fonseca JP, Bratton MR, Segar C, Tilghman SL, Sobolik-Delmaire T, Horton LW, Zaja-Milatovic S, Collins-Burow BM, Wadsworth S, Beckman BS, Wood CE, Fuqua SA, Nephew KP, Dent P, Worthylake RA, Curiel TJ, Hung MC, Richmond A, Burow ME. Cytokine receptor CXCR4 mediates estrogen-independent tumorigenesis, metastasis, and resistance to endocrine therapy in human breast cancer. Cancer Res 2010; 71:603-13. [PMID: 21123450 DOI: 10.1158/0008-5472.can-10-3185] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Estrogen independence and progression to a metastatic phenotype are hallmarks of therapeutic resistance and mortality in breast cancer patients. Metastasis has been associated with chemokine signaling through the SDF-1-CXCR4 axis. Thus, the development of estrogen independence and endocrine therapy resistance in breast cancer patients may be driven by SDF-1-CXCR4 signaling. Here we report that CXCR4 overexpression is indeed correlated with worse prognosis and decreased patient survival irrespective of the status of the estrogen receptor (ER). Constitutive activation of CXCR4 in poorly metastatic MCF-7 cells led to enhanced tumor growth and metastases that could be reversed by CXCR4 inhibition. CXCR4 overexpression in MCF-7 cells promoted estrogen independence in vivo, whereas exogenous SDF-1 treatment negated the inhibitory effects of treatment with the anti-estrogen ICI 182,780 on CXCR4-mediated tumor growth. The effects of CXCR4 overexpression were correlated with SDF-1-mediated activation of downstream signaling via ERK1/2 and p38 MAPK (mitogen activated protein kinase) and with an enhancement of ER-mediated gene expression. Together, these results show that enhanced CXCR4 signaling is sufficient to drive ER-positive breast cancers to a metastatic and endocrine therapy-resistant phenotype via increased MAPK signaling. Our findings highlight CXCR4 signaling as a rational therapeutic target for the treatment of ER-positive, estrogen-independent breast carcinomas needing improved clinical management.
Collapse
Affiliation(s)
- Lyndsay V Rhodes
- Department of Medicine, Section of Hematology and Medical Oncology, Center for Bioenvironmental Research, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bonig H, Papayannopoulou T. Vagrant stem cells draft their gene companions. Cell Stem Cell 2010; 7:547-8. [PMID: 21040892 PMCID: PMC3006234 DOI: 10.1016/j.stem.2010.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In a recent issue of Nature Medicine, Ryan et al. (2010) uncover genetic modifiers of G-CSF responses by hematopoietic progenitors. The authors document a negative role of EGFR signaling and, provided an analogous pathway functions in humans, propose a potential new angle to promote clinical blood stem cell mobilization.
Collapse
Affiliation(s)
- Halvard Bonig
- University of Washington, Department of Medicine/Hematology, Seattle, WA
- German Red Cross Blood Service, Department of Cellular Therapeutics/Cell Processing (GMP), Frankfurt, Germany
| | | |
Collapse
|
46
|
Castelnuovo M, Massone S, Tasso R, Fiorino G, Gatti M, Robello M, Gatta E, Berger A, Strub K, Florio T, Dieci G, Cancedda R, Pagano A. An Alu‐like RNA promotes cell differentiation and reduces malignancy of human neuroblastoma cells. FASEB J 2010; 24:4033-46. [DOI: 10.1096/fj.10-157032] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Manuele Castelnuovo
- Department of Oncology, Biology, and GeneticsUniversity of Genoa Genoa Italy
- National Institute for Cancer Research Genoa Genoa Italy
| | - Sara Massone
- Department of Oncology, Biology, and GeneticsUniversity of Genoa Genoa Italy
- National Institute for Cancer Research Genoa Genoa Italy
| | - Roberta Tasso
- Department of Oncology, Biology, and GeneticsUniversity of Genoa Genoa Italy
- National Institute for Cancer Research Genoa Genoa Italy
| | - Gloria Fiorino
- Department of Biochemistry and Molecular BiologyUniversity of Parma Parma Italy
| | - Monica Gatti
- Department of Oncology, Biology, and GeneticsUniversity of Genoa Genoa Italy
| | - Mauro Robello
- Department of PhysicsUniversity of Genoa Genoa Italy
| | - Elena Gatta
- Department of PhysicsUniversity of Genoa Genoa Italy
| | - Audrey Berger
- Department of Cell BiologyUniversity of Genève Geneva Switzerland
| | - Katharina Strub
- Department of Cell BiologyUniversity of Genève Geneva Switzerland
| | - Tullio Florio
- Department of Oncology, Biology, and GeneticsUniversity of Genoa Genoa Italy
| | - Giorgio Dieci
- Department of Biochemistry and Molecular BiologyUniversity of Parma Parma Italy
| | - Ranieri Cancedda
- Department of Oncology, Biology, and GeneticsUniversity of Genoa Genoa Italy
- National Institute for Cancer Research Genoa Genoa Italy
| | - Aldo Pagano
- Department of Oncology, Biology, and GeneticsUniversity of Genoa Genoa Italy
- Department of PhysicsUniversity of Genoa Genoa Italy
| |
Collapse
|
47
|
Chen L, Xuan J, Riggins RB, Wang Y, Hoffman EP, Clarke R. Multilevel support vector regression analysis to identify condition-specific regulatory networks. Bioinformatics 2010; 26:1416-22. [PMID: 20375112 PMCID: PMC2872001 DOI: 10.1093/bioinformatics/btq144] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 03/11/2010] [Accepted: 04/02/2010] [Indexed: 12/21/2022] Open
Abstract
MOTIVATION The identification of gene regulatory modules is an important yet challenging problem in computational biology. While many computational methods have been proposed to identify regulatory modules, their initial success is largely compromised by a high rate of false positives, especially when applied to human cancer studies. New strategies are needed for reliable regulatory module identification. RESULTS We present a new approach, namely multilevel support vector regression (ml-SVR), to systematically identify condition-specific regulatory modules. The approach is built upon a multilevel analysis strategy designed for suppressing false positive predictions. With this strategy, a regulatory module becomes ever more significant as more relevant gene sets are formed at finer levels. At each level, a two-stage support vector regression (SVR) method is utilized to help reduce false positive predictions by integrating binding motif information and gene expression data; a significant analysis procedure is followed to assess the significance of each regulatory module. To evaluate the effectiveness of the proposed strategy, we first compared the ml-SVR approach with other existing methods on simulation data and yeast cell cycle data. The resulting performance shows that the ml-SVR approach outperforms other methods in the identification of both regulators and their target genes. We then applied our method to breast cancer cell line data to identify condition-specific regulatory modules associated with estrogen treatment. Experimental results show that our method can identify biologically meaningful regulatory modules related to estrogen signaling and action in breast cancer. AVAILABILITY AND IMPLEMENTATION The ml-SVR MATLAB package can be downloaded at http://www.cbil.ece.vt.edu/software.htm.
Collapse
Affiliation(s)
- Li Chen
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | | | | | | | | | | |
Collapse
|
48
|
Dahal BK, Cornitescu T, Tretyn A, Pullamsetti SS, Kosanovic D, Dumitrascu R, Ghofrani HA, Weissmann N, Voswinckel R, Banat GA, Seeger W, Grimminger F, Schermuly RT. Role of Epidermal Growth Factor Inhibition in Experimental Pulmonary Hypertension. Am J Respir Crit Care Med 2010; 181:158-67. [DOI: 10.1164/rccm.200811-1682oc] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
49
|
Kobayashi T, Tsuda H, Moriya T, Yamasaki T, Kikuchi R, Ueda S, Omata J, Yamamoto J, Matsubara O. Expression pattern of stromal cell-derived factor-1 chemokine in invasive breast cancer is correlated with estrogen receptor status and patient prognosis. Breast Cancer Res Treat 2009; 123:733-45. [PMID: 20020198 DOI: 10.1007/s10549-009-0672-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 12/01/2009] [Indexed: 11/27/2022]
Abstract
Chemokine receptor CXCR4 is known to be crucially involved in tumor progression, but the role of its ligand, stromal cell-derived factor-1 (SDF-1), remains unclear. The present study was conducted to clarify the clinicopathological and prognostic impact of SDF-1 expression in invasive breast cancers. Expression of SDF-1 mRNA and protein was examined in five breast cancer cell lines with or without estradiol treatment. In 52 surgically resected breast cancers, the level of SDF-1 mRNA in frozen samples and the pattern of SDF-1 protein immunoreactivity in formalin-fixed paraffin-embedded tissue sections were compared. In another cohort of 223 breast cancers, the correlation between SDF-1 immunoreactivity and clinicopathological parameters was examined using a tissue microarray. Estradiol treatment markedly increased the expression of SDF-1 mRNA and protein in the estrogen receptor (ER)-positive cell lines, MCF-7 and T47D. Among the 52 resected breast cancers, those with a cytoplasmic-dominant pattern of SDF-1 expression showed higher SDF-1 mRNA levels (median 27.4) than those with a membrane-dominant or negative pattern (median 13.6, P = 0.0017). Accordingly, the cytoplasmic-dominant pattern was defined as "high SDF-1 expression," and other patterns were defined as "low SDF-1 expression." Among the cohort of 223 tumors, "high SDF-1 expression" was detected in 158 (70.9%) and was significantly correlated with ER positivity (P < 0.0001), HER2 negativity (P = 0.021), and lower grade (P < 0.0001). Univariate analysis demonstrated that "high SDF-1 expression" was a significant indicator of better clinical outcome in both the entire patient cohort (P = 0.017) and the 133 patients with ER-positive tumors (P = 0.036), but not in the 90 patients with ER-negative tumors. Multivariate analysis showed that SDF-1 status was an independent factor related to overall survival in patients with ER-positive tumors (P = 0.046). SDF-1 status is a significant prognostic factor and may be clinically useful for assigning adjuvant therapy to patients with ER-positive invasive breast cancers.
Collapse
Affiliation(s)
- Takayuki Kobayashi
- Department of Basic Pathology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Role of chemokine network in the development and progression of ovarian cancer: a potential novel pharmacological target. JOURNAL OF ONCOLOGY 2009; 2010:426956. [PMID: 20049170 PMCID: PMC2798669 DOI: 10.1155/2010/426956] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 09/28/2009] [Indexed: 12/26/2022]
Abstract
Ovarian cancer is the most common type of gynecologic malignancy. Despite advances in surgery and chemotherapy, the survival rate is still low since most ovarian cancers relapse and become drug-resistant. Chemokines are small chemoattractant peptides mainly involved in the immune responses. More recently, chemokines were also demonstrated to regulate extra-immunological functions. It was shown that the chemokine network plays crucial functions in the tumorigenesis in several tissues. In particular the imbalanced or aberrant expression of CXCL12 and its receptor CXCR4 strongly affects cancer cell proliferation, recruitment of immunosuppressive cells, neovascularization, and metastasization. In the last years, several molecules able to target CXCR4 or CXCL12 have been developed to interfere with tumor growth, including pharmacological inhibitors, antagonists, and specific antibodies. This chemokine ligand/receptor pair was also proposed to represent an innovative therapeutic target for the treatment of ovarian cancer. Thus, a thorough understanding of ovarian cancer biology, and how chemokines may control these different biological activities might lead to the development of more effective therapies. This paper will focus on the current biology of CXCL12/CXCR4 axis in the context of understanding their potential role in ovarian cancer development.
Collapse
|