1
|
Yu J, Wang J, Liu X, Wang C, Wu L, Zhang Y. Bioinformatics analysis of ferroptosis-related biomarkers and potential drug predictions in doxorubicin-induced cardiotoxicity. Front Cardiovasc Med 2025; 12:1566782. [PMID: 40342975 PMCID: PMC12058674 DOI: 10.3389/fcvm.2025.1566782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/09/2025] [Indexed: 05/11/2025] Open
Abstract
Background Doxorubicin-induced cardiotoxicity (DIC) significantly impacts the survival and prognosis of cancer patients. Ferroptosis is involved in the pathogenesis of DIC, but its specific mechanisms remain unclear. This study aims to explore key genes of ferroptosis in DIC and potential therapeutic drugs using various bioinformatics methods. Methods This study obtained the GSE106297 and GSE157282 datasets from the GEO database, conducted differential gene expression screening and GSEA enrichment analysis using R software. Subsequently obtained ferroptosis-related genes from FerrDb V2, Genecards, Geneontology, and GSEA databases, performed GO and KEGG enrichment analysis after intersecting them with the differentially expressed genes using a Venn diagram. Utilized LASSO regression, SVM-RFE, and RF algorithms to identify key genes, followed by validation using external datasets (GSE232331, GSE230638) and ROC curve plotting to determine the diagnostic value of key genes. Further validation of the expression levels of key genes were conducted through the establishment of a cell damage model. Constructed an mRNA-miRNA-lncRNA network diagram, and performed immune cell composition analysis using CIBERSORT. Finally, predicted potential drugs for key genes using the DSigDB database. Results We obtained 119 genes after intersecting 1380 Differentially Expressed Genes (DEGs) with Ferroptosis-Related Genes (FRGs). Three key genes (KLHDC3, NDRG1, SPHK1) were identified through further analysis using LASSO, SAM-RFE and RF. The ROC analysis demonstrated that KLHDC3 and NDRG1 have significant diagnostic value, and qRT-PCR verification results also showed statistical significance. We constructed miRNA-lncRNA networks by identifying target miRNAs for KLHDC3 (hsa-miR-24-3p, hsa-miR-486-3p, hsa-miR-214-3p) and NDRG1 (hsa-miR-4510, hsa-miR-182-5p, hsa-miR-96-5p). Immunoinfiltration analysis revealed the relationship between KLHDC3, NDRG1 and immune cells. Anisomycin emerges as a promising small molecule drug for treating DIC, exhibiting good relative binding with KLHDC3 and NDRG1. Conclusion KLHDC3 and NDRG1 serve as ferroptosis biomarkers implicated in DIC and demonstrate good diagnostic value. In addition, anisomycin may also be a potential drug for treating DIC.
Collapse
Affiliation(s)
- Jian Yu
- Department of Cardio-Oncology, Tumor Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Medical University, Urumqi, China
| | - Jiangtao Wang
- Department of Cardiothoracic Surgery, General Hospital of Xinjiang Military Command, Urumqi, China
| | - Xinya Liu
- Department of Cardio-Oncology, Tumor Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Medical University, Urumqi, China
| | - Cancan Wang
- Xinjiang Medical University, Urumqi, China
- Pathology Department, Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Li Wu
- Department of Cardio-Oncology, Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Yuanming Zhang
- Department of Cardio-Oncology, Tumor Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Medical University, Urumqi, China
| |
Collapse
|
2
|
Beneš K, Čurn V, Pudhuvai B, Motis J, Michalcová Z, Bohatá A, Lencová J, Bárta J, Rost M, Vilcinskas A, Maťha V. Autonomous Defense Based on Biogenic Nanoparticle Formation in Daunomycin-Producing Streptomyces. Microorganisms 2025; 13:107. [PMID: 39858875 PMCID: PMC11767837 DOI: 10.3390/microorganisms13010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Daunomycin is a chemotherapeutic agent widely used for the treatment of leukemia, but its toxicity toward healthy dividing cells limits its clinical use and its production by fermentation. Herein, we describe the development of a specialized cultivation medium for daunomycin production, including a shift to oil rather than sugar as the primary carbon source. This achieved an almost threefold increase in daunomycin yields, reaching 5.5-6.0 g/L. Daunomycin produced in the oil-based medium was predominantly found in the solid sediment, whereas that produced in the sugar-based medium was mostly soluble. The oil-based medium thus induces an autonomous daunomycin-resistance mechanism involving biogenic nanoparticle formation. The characterization of the nanoparticles confirmed the incorporation of iron and daunomycin, indicating that this approach has the potential to mitigate cytotoxicity while improving yields. The presence of proteins associated with iron homeostasis and oxidative stress responses revealed the ability of the production strain to adapt to high iron concentrations. Our findings provide insight into the mechanisms of biogenic nanoparticle formation and the optimization of cultivation processes. Further investigation will help to refine microbial production systems for daunomycin and also broaden the application of similar strategies for the synthesis of other therapeutically important compounds.
Collapse
Affiliation(s)
- Karel Beneš
- VUAB Pharma A.S, Nemanicka 2722, 370 01 České Budějovice, Czech Republic; (K.B.); (J.M.); (Z.M.); (V.M.)
| | - Vladislav Čurn
- Department of Genetics and Biotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic;
| | - Baveesh Pudhuvai
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (B.P.); (A.B.); (J.L.); (J.B.)
| | - Jaroslav Motis
- VUAB Pharma A.S, Nemanicka 2722, 370 01 České Budějovice, Czech Republic; (K.B.); (J.M.); (Z.M.); (V.M.)
| | - Zuzana Michalcová
- VUAB Pharma A.S, Nemanicka 2722, 370 01 České Budějovice, Czech Republic; (K.B.); (J.M.); (Z.M.); (V.M.)
| | - Andrea Bohatá
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (B.P.); (A.B.); (J.L.); (J.B.)
| | - Jana Lencová
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (B.P.); (A.B.); (J.L.); (J.B.)
| | - Jan Bárta
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (B.P.); (A.B.); (J.L.); (J.B.)
| | - Michael Rost
- Department of Genetics and Biotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic;
| | - Andreas Vilcinskas
- Branch Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany;
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Vladimír Maťha
- VUAB Pharma A.S, Nemanicka 2722, 370 01 České Budějovice, Czech Republic; (K.B.); (J.M.); (Z.M.); (V.M.)
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (B.P.); (A.B.); (J.L.); (J.B.)
| |
Collapse
|
3
|
Wang B, Wang J, Liu C, Li C, Meng T, Chen J, Liu Q, He W, Liu Z, Zhou Y. Ferroptosis: Latest evidence and perspectives on plant-derived natural active compounds mitigating doxorubicin-induced cardiotoxicity. J Appl Toxicol 2025; 45:135-158. [PMID: 39030835 DOI: 10.1002/jat.4670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/22/2024]
Abstract
Doxorubicin (DOX) is a chemotherapy drug widely used in clinical settings, acting as a first-line treatment for various malignant tumors. However, its use is greatly limited by the cardiotoxicity it induces, including doxorubicin-induced cardiomyopathy (DIC). The mechanisms behind DIC are not fully understood, but its potential biological mechanisms are thought to include oxidative stress, inflammation, energy metabolism disorders, mitochondrial damage, autophagy, apoptosis, and ferroptosis. Recent studies have shown that cardiac injury induced by DOX is closely related to ferroptosis. Due to their high efficacy, availability, and low side effects, natural medicine treatments hold strong clinical potential. Currently, natural medicines have been shown to mitigate DOX-induced ferroptosis and ease DIC through various functions such as antioxidation, iron ion homeostasis correction, lipid metabolism regulation, and mitochondrial function improvement. Therefore, this review summarizes the mechanisms of ferroptosis in DIC and the regulation by natural plant products, with the expectation of providing a reference for future research and development of inhibitors targeting ferroptosis in DIC. This review explores the mechanisms of ferroptosis in doxorubicin-induced cardiomyopathy (DIC) and summarizes how natural plant products can alleviate DIC by inhibiting ferroptosis through reducing oxidative stress, correcting iron ion homeostasis, regulating lipid metabolism, and improving mitochondrial function.
Collapse
Affiliation(s)
- Boyu Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiameng Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Changxing Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chengjia Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tianwei Meng
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qingnan Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wang He
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhiping Liu
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yabin Zhou
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Sriram S, Macedo T, Mavinkurve‐Groothuis A, van de Wetering M, Looijenga LHJ. Non-alkylating agents-induced gonadotoxicity in pre-pubertal males: Insights on the clinical and pre-clinical front. Clin Transl Sci 2024; 17:e70075. [PMID: 39582284 PMCID: PMC11586508 DOI: 10.1111/cts.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
Whilst chemotherapy regimens have proven to be more successful for pediatric cancer patients over the years, their influence on long-term side effects is relatively poorly understood. One of the possible targets is the gonads, with gonadotoxic agents representing those that threaten the patient's ability to have children post surviving the primary disease treatment. Many risk stratification guidelines have categorized these agents based on the severity of their effect on the pre-pubertal testis. While the consensus is that those agents factored with a cyclophosphamide equivalent dosage pose the highest threat to fertility (e.g. alkylating agents), other agents might still contribute to a reduced testis function; especially in the case of combination therapies. Besides, it is important to note that studies deciphering the effect of other non-alkylating agents on the pre-pubertal testis lack standardized conclusions for clinically relevant outcomes. This makes it imperative to ensure the knowledge gap is addressed between the clinic and pre-clinic to understand potential gonadotoxic effects, ultimately leading to improved patient care. Therefore, this review will summarize the key findings in understanding the gonadotoxic effects of the most commonly researched non-alkylating agents: vincristine, etoposide, doxorubicin, and imatinib on the pre-pubertal testis.
Collapse
Affiliation(s)
- Sruthi Sriram
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Tiago Macedo
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | | | | | - Leendert H. J. Looijenga
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- University Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
5
|
Ye H, Wu L, Liu Y. Iron metabolism in doxorubicin-induced cardiotoxicity: From mechanisms to therapies. Int J Biochem Cell Biol 2024; 174:106632. [PMID: 39053765 DOI: 10.1016/j.biocel.2024.106632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Doxorubicin (DOX) is an anti-tumor agent for chemotherapy, but its use is often hindered by the severe and life-threatening side effect of cardiovascular toxicity. In recent years, studies have focused on dysregulated iron metabolism and ferroptosis, a unique type of cell death induced by iron overload, as key players driving the development of DOX-induced cardiotoxicity (DIC). Recent advances have demonstrated that DOX disturbs normal cellular iron metabolism, resulting in excessive iron accumulation and ferroptosis in cardiomyocytes. This review will explore how dysregulated iron homeostasis and ferroptosis drive the progression of DIC. We will also discuss the current approaches to target iron metabolism and ferroptosis to mitigate DIC. Besides, we will discuss the limitations and challenges for clinical translation for these therapeutic regimens.
Collapse
Affiliation(s)
- Hua Ye
- Department of Burns & Plastic and Wound Repair, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China.
| | - Lin Wu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Yanmei Liu
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
6
|
Wu L, Zhang Y, Wang G, Ren J. Molecular Mechanisms and Therapeutic Targeting of Ferroptosis in Doxorubicin-Induced Cardiotoxicity. JACC Basic Transl Sci 2024; 9:811-826. [PMID: 39070280 PMCID: PMC11282888 DOI: 10.1016/j.jacbts.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 07/30/2024]
Abstract
Ferroptosis, an iron-dependent form of regulated cell death, has received increasing attention for its pathophysiologic contribution to the onset and development of doxorubicin-induced cardiotoxicity. Moreover, modulation of ferroptosis with specific inhibitors may provide new therapeutic opportunities for doxorubicin-induced cardiotoxicity. Here, we will review the molecular mechanisms and therapeutic promise of targeting ferroptosis in doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Lin Wu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Yingmei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Guizhen Wang
- Department of Emergency, Shanghai Tenth People’s Hospital, School of Medicine Tongji University, Shanghai, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| |
Collapse
|
7
|
The Role of Mitochondrial Quality Control in Anthracycline-Induced Cardiotoxicity: From Bench to Bedside. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3659278. [PMID: 36187332 PMCID: PMC9519345 DOI: 10.1155/2022/3659278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
Cardiotoxicity is the major side effect of anthracyclines (doxorubicin, daunorubicin, epirubicin, and idarubicin), though being the most commonly used chemotherapy drugs and the mainstay of therapy in solid and hematological neoplasms. Advances in the field of cardio-oncology have expanded our understanding of the molecular mechanisms underlying anthracycline-induced cardiotoxicity (AIC). AIC has a complex pathogenesis that includes a variety of aspects such as oxidative stress, autophagy, and inflammation. Emerging evidence has strongly suggested that the loss of mitochondrial quality control (MQC) plays an important role in the progression of AIC. Mitochondria are vital organelles in the cardiomyocytes that serve as the key regulators of reactive oxygen species (ROS) production, energy metabolism, cell death, and calcium buffering. However, as mitochondria are susceptible to damage, the MQC system, including mitochondrial dynamics (fusion/fission), mitophagy, mitochondrial biogenesis, and mitochondrial protein quality control, appears to be crucial in maintaining mitochondrial homeostasis. In this review, we summarize current evidence on the role of MQC in the pathogenesis of AIC and highlight the therapeutic potential of restoring the cardiomyocyte MQC system in the prevention and intervention of AIC.
Collapse
|
8
|
Cardio-Oncology Rehabilitation-Present and Future Perspectives. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071006. [PMID: 35888095 PMCID: PMC9320714 DOI: 10.3390/life12071006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
Recent advances in cancer therapy have led to increased survival rates for cancer patients, but also allowed cardiovascular complications to become increasingly evident, with more than 40% of cancer deaths now being attributed to cardiovascular diseases. Cardiotoxicity is the most concerning cardiovascular complication, one caused mainly due to anti-cancer drugs. Among the harmful mechanisms of these drugs are DNA damage, endothelial dysfunction, and oxidative stress. Cancer patients can suffer reduced cardiorespiratory fitness as a secondary effect of anti-cancer therapies, tumor burden, and deconditioning. In the general population, regular exercise can reduce the risk of cardiovascular morbidity, mortality, and cancer. Exercise-induced modifications of gene expression result in improvements of cardiovascular parameters and an increased general fitness, influencing telomere shortening, oxidative stress, vascular function, and DNA repair mechanisms. In cancer patients, exercise training is generally safe and well-tolerated; it is associated with a 10-15% improvement in cardiorespiratory fitness and can potentially counteract the adverse effects of anti-cancer therapy. It is well known that exercise programs can benefit patients with heart disease and cancer, but little research has been conducted with cardio-oncology patients. To date, there are a limited number of effective protective treatments for preventing or reversing cardiotoxicity caused by cancer therapy. Cardiac rehabilitation has the potential to mitigate cardiotoxicity based on the benefits already proven in populations suffering from either cancer or heart diseases. Additionally, the fact that cardiotoxic harm mechanisms coincide with similar mechanisms positively affected by cardiac rehabilitation makes cardiac rehabilitation an even more plausible option for cardio-oncology patients. Due to unstable functional capacity and fluctuating immunocompetence, these patients require specially tailored exercise programs designed collaboratively by cardiologists and oncologists. As the digital era is here, with the digital world and the medical world continuously intertwining, a remote, home-based cardio-oncology rehabilitation program may be a solution for this population.
Collapse
|
9
|
Zhang G, Yuan C, Su X, Zhang J, Gokulnath P, Vulugundam G, Li G, Yang X, An N, Liu C, Sun W, Chen H, Wu M, Sun S, Xing Y. Relevance of Ferroptosis to Cardiotoxicity Caused by Anthracyclines: Mechanisms to Target Treatments. Front Cardiovasc Med 2022; 9:896792. [PMID: 35770215 PMCID: PMC9234116 DOI: 10.3389/fcvm.2022.896792] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/24/2022] [Indexed: 12/06/2022] Open
Abstract
Anthracyclines (ANTs) are a class of anticancer drugs widely used in oncology. However, the clinical application of ANTs is limited by their cardiotoxicity. The mechanisms underlying ANTs-induced cardiotoxicity (AIC) are complicated and involve oxidative stress, inflammation, topoisomerase 2β inhibition, pyroptosis, immunometabolism, autophagy, apoptosis, ferroptosis, etc. Ferroptosis is a new form of regulated cell death (RCD) proposed in 2012, characterized by iron-dependent accumulation of reactive oxygen species (ROS) and lipid peroxidation. An increasing number of studies have found that ferroptosis plays a vital role in the development of AIC. Therefore, we aimed to elaborate on ferroptosis in AIC, especially by doxorubicin (DOX). We first summarize the mechanisms of ferroptosis in terms of oxidation and anti-oxidation systems. Then, we discuss the mechanisms related to ferroptosis caused by DOX, particularly from the perspective of iron metabolism of cardiomyocytes. We also present our research on the prevention and treatment of AIC based on ferroptosis. Finally, we enumerate our views on the development of drugs targeting ferroptosis in this emerging field.
Collapse
Affiliation(s)
- Guoxia Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chao Yuan
- Dezhou Second People’s Hospital, Dezhou, China
| | - Xin Su
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianzhen Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Priyanka Gokulnath
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Gururaja Vulugundam
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Naples, Italy
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Xinyu Yang
- Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Na An
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Can Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wanli Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hengwen Chen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shipeng Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Shipeng Sun,
| | - Yanwei Xing
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Yanwei Xing,
| |
Collapse
|
10
|
Selyutina OY, Kononova PA, Koshman VE, Shelepova EA, Azad MG, Afroz R, Dharmasivam M, Bernhardt PV, Polyakov NE, Richardson DR. Ascorbate-and iron-driven redox activity of Dp44mT and emodin facilitates peroxidation of micelles and bicelles. Biochim Biophys Acta Gen Subj 2021; 1866:130078. [PMID: 34974127 DOI: 10.1016/j.bbagen.2021.130078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Iron (Fe)-induced oxidative stress leads to reactive oxygen species that damage biomembranes, with this mechanism being involved in the activity of some anti-cancer chemotherapeutics. METHODS Herein, we compared the effect of Fe complexes of the ligand, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), or the potential ligand, Emodin, on lipid peroxidation in cell membrane models (micelles and bicelles). These studies were performed in the presence of hydrogen peroxide (H2O2) and the absence or presence of ascorbate. RESULTS In the absence of ascorbate, Fe(II)/Emodin mixtures incubated with H2O2 demonstrated slight pro-oxidant properties on micelles versus Fe(II) alone, while the Fe(III)-Dp44mT complex exhibited marked antioxidant properties. Examining more physiologically relevant phospholipid-containing bicelles, the Fe(II)- and Fe(III)-Dp44mT complexes demonstrated antioxidant activity without ascorbate. Upon adding ascorbate, there was a significant increase in the peroxidation of micelles and bicelles in the presence of unchelated Fe(II) and H2O2. The addition of ascorbate to Fe(III)-Dp44mT substantially increased the peroxidation of micelles and bicelles, with the Fe(III)-Dp44mT complex being reduced by ascorbate to the Fe(II) state, explaining the increased reactivity. Electron paramagnetic resonance spectroscopy demonstrated ascorbyl radical anion generation after mixing ascorbate and Emodin, with signal intensity being enhanced by H2O2. This finding suggested Emodin semiquinone radical formation that could play a role in its reactivity via ascorbate-driven redox cycling. Examining cultured melanoma cells in vitro, ascorbate at pharmacological levels enhanced the anti-proliferative activity of Dp44mT and Emodin. CONCLUSIONS AND GENERAL SIGNIFICANCE Ascorbate-driven redox cycling of Dp44mT and Emodin promotes their anti-proliferative activity.
Collapse
Affiliation(s)
- O Yu Selyutina
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia; Institute of Solid State Chemistry and Mechanochemistry, Kutateladze St., 18, 630128 Novosibirsk, Russia.
| | - P A Kononova
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia
| | - V E Koshman
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia
| | - E A Shelepova
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia
| | - M Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - R Afroz
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - M Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - P V Bernhardt
- Department of Chemistry, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - N E Polyakov
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia; Institute of Solid State Chemistry and Mechanochemistry, Kutateladze St., 18, 630128 Novosibirsk, Russia
| | - D R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
11
|
Fedotcheva TA, Fedotcheva NI. Protectors of the Mitochondrial Permeability Transition Pore Activated by Iron and Doxorubicin. Curr Cancer Drug Targets 2021; 21:514-525. [PMID: 33475063 DOI: 10.2174/1568009621999210120192558] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022]
Abstract
AIM The study is aimed at examining of action of iron, DOX, and their complex on the Mitochondrial Permeability Transition Pore (MPTP) opening and detecting of possible protectors of MPTP in the conditions close to mitochondria-dependent ferroptosis. BACKGROUND The Toxicity of Doxorubicin (DOX) is mainly associated with free iron accumulation and mitochondrial dysfunction. DOX can provoke ferroptosis, iron-dependent cell death driven by membrane damage. The Mitochondrial Permeability Transition Pore (MPTP) is considered as a common pathway leading to the development of apoptosis, necrosis, and, possibly, ferroptosis. The influence of DOX on the Ca2+ -induced MPTP opening in the presence of iron has not yet been studied. OBJECTIVE The study was conducted on isolated liver and heart mitochondria. MPTP and succinate- ubiquinone oxidoreductase were studied as targets of DOX in mitochondria-dependent ferroptosis. The iron chelator deferoxamine (DFO), the lipid radical scavenger butyl-hydroxytoluene (BHT), and rutenium red (Rr), as a possible inhibitor of ferrous ions uptake in mitochondria, were tested as MPTP protectors. The role of medium alkalization was also examined. METHODS Changes of threshold calcium concentrations required for MPTP opening were measured by a Ca2+ selective electrode, mitochondrial membrane potential was registered by tetraphenylphosphonium (TPP+)-selective electrode, and mitochondrial swelling was recorded as a decrease in absorbance at 540 nm. The activity of Succinate Dehydrogenase (SDH) was determined by the reduction of the electron acceptor DCPIP. CONCLUSION MPTP and the respiratory complex II are identified as the main targets of the iron-dependent action of DOX on the isolated mitochondria. All MPTP protectors tested abolished or weakened the effect of iron and a complex of iron with DOX on Ca2+ -induced MPTP opening, acting in different stages of MPTP activation. These data open new approaches to the modulation of the toxic influence of DOX on mitochondria with the aim to reduce their dysfunction.
Collapse
Affiliation(s)
- Tatiana A Fedotcheva
- Science Research Laboratory of Pharmacology, Faculty of Medical Biology, N. I. Pirogov Russian National Medical Research University, Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Nadezhda I Fedotcheva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, 142290, Russian Federation
| |
Collapse
|
12
|
Nonaka M, Hosoda H, Uezono Y. Cancer treatment-related cardiovascular disease: Current status and future research priorities. Biochem Pharmacol 2021; 190:114599. [PMID: 33989656 DOI: 10.1016/j.bcp.2021.114599] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
With the development of new drugs, such as molecular-targeted drugs, and multidisciplinary therapies, cancer treatment outcomes have improved, and the number of cancer survivors is increasing every year. However, some chemotherapeutic agents cause cardiovascular complications (cancer treatment-related cardiovascular disease, CTRCVD), which affect the life prognosis and quality of life (QOL) of cancer patients. Therefore, it is necessary to select treatment methods that take into account the prognosis and QOL of cancer patients, and to take measures against CTRCVD. The mechanism of cardiotoxicity of high-risk drugs, such as doxorubicin and HER2 inhibitors, are still unclear; genetic factors, and cardiovascular disease risk factors (e.g., hypertension, dyslipidemia, and diabetes) are associated with CTRCVD progression. The establishment of methods for prevention, early diagnosis, and treatment of CTRCVD and the generation of evidence for these methods are needed. It is also necessary to develop screening methods for chemotherapy cardiotoxicity. In this review, we discuss the current status of CTRCVD, its complications, and expected countermeasures.
Collapse
Affiliation(s)
- Miki Nonaka
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan(1)
| | - Hiroshi Hosoda
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, 6-1, Kishibe-Shimmachi, Suita-City, Osaka 564-8565, Japan(1)
| | - Yasuhito Uezono
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan(1); Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Supportive and Palliative Care Research Support Office, National Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa-City, Chiba 277-8577, Japan; Project for Supportive Care Research, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| |
Collapse
|
13
|
Russo M, Della Sala A, Tocchetti CG, Porporato PE, Ghigo A. Metabolic Aspects of Anthracycline Cardiotoxicity. Curr Treat Options Oncol 2021; 22:18. [PMID: 33547494 PMCID: PMC7864817 DOI: 10.1007/s11864-020-00812-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 12/13/2022]
Abstract
OPINION STATEMENT Heart failure (HF) is increasingly recognized as the major complication of chemotherapy regimens. Despite the development of modern targeted therapies such as monoclonal antibodies, doxorubicin (DOXO), one of the most cardiotoxic anticancer agents, still remains the treatment of choice for several solid and hematological tumors. The insurgence of cardiotoxicity represents the major limitation to the clinical use of this potent anticancer drug. At the molecular level, cardiac side effects of DOXO have been associated to mitochondrial dysfunction, DNA damage, impairment of iron metabolism, apoptosis, and autophagy dysregulation. On these bases, the antioxidant and iron chelator molecule, dexrazoxane, currently represents the unique FDA-approved cardioprotectant for patients treated with anthracyclines.A less explored area of research concerns the impact of DOXO on cardiac metabolism. Recent metabolomic studies highlight the possibility that cardiac metabolic alterations may critically contribute to the development of DOXO cardiotoxicity. Among these, the impairment of oxidative phosphorylation and the persistent activation of glycolysis, which are commonly observed in response to DOXO treatment, may undermine the ability of cardiomyocytes to meet the energy demand, eventually leading to energetic failure. Moreover, increasing evidence links DOXO cardiotoxicity to imbalanced insulin signaling and to cardiac insulin resistance. Although anti-diabetic drugs, such as empagliflozin and metformin, have shown interesting cardioprotective effects in vitro and in vivo in different models of heart failure, their mechanism of action is unclear, and their use for the treatment of DOXO cardiotoxicity is still unexplored.This review article aims at summarizing current evidence of the metabolic derangements induced by DOXO and at providing speculations on how key players of cardiac metabolism could be pharmacologically targeted to prevent or cure DOXO cardiomyopathy.
Collapse
Affiliation(s)
- Michele Russo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Via Nizza 52, 10126, Torino, Italy
| | - Angela Della Sala
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Via Nizza 52, 10126, Torino, Italy
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
- Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Federico II University, Naples, Italy
- Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Paolo Ettore Porporato
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Via Nizza 52, 10126, Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Via Nizza 52, 10126, Torino, Italy.
| |
Collapse
|
14
|
Park KC, Dharmasivam M, Richardson DR. The Role of Extracellular Proteases in Tumor Progression and the Development of Innovative Metal Ion Chelators that Inhibit their Activity. Int J Mol Sci 2020; 21:E6805. [PMID: 32948029 PMCID: PMC7555822 DOI: 10.3390/ijms21186805] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
The crucial role of extracellular proteases in cancer progression is well-known, especially in relation to the promotion of cell invasion through extracellular matrix remodeling. This also occurs by the ability of extracellular proteases to induce the shedding of transmembrane proteins at the plasma membrane surface or within extracellular vesicles. This process results in the regulation of key signaling pathways by the modulation of kinases, e.g., the epidermal growth factor receptor (EGFR). Considering their regulatory roles in cancer, therapeutics targeting various extracellular proteases have been discovered. These include the metal-binding agents di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), which increase c-MET degradation by multiple mechanisms. Both the direct and indirect inhibition of protease expression and activity can be achieved through metal ion depletion. Considering direct mechanisms, chelators can bind zinc(II) that plays a catalytic role in enzyme activity. In terms of indirect mechanisms, Dp44mT and DpC potently suppress the expression of the kallikrein-related peptidase-a prostate-specific antigen-in prostate cancer cells. The mechanism of this activity involves promotion of the degradation of the androgen receptor. Additional suppressive mechanisms of Dp44mT and DpC on matrix metalloproteases (MMPs) relate to their ability to up-regulate the metastasis suppressors N-myc downstream regulated gene-1 (NDRG1) and NDRG2, which down-regulate MMPs that are crucial for cancer cell invasion.
Collapse
Affiliation(s)
- Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building, University of Sydney, Sydney 2006, Australia; (K.C.P.); (M.D.)
| | - Mahendiran Dharmasivam
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building, University of Sydney, Sydney 2006, Australia; (K.C.P.); (M.D.)
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute of Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Des R. Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building, University of Sydney, Sydney 2006, Australia; (K.C.P.); (M.D.)
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute of Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
15
|
Abstract
Iron deficiency or overload poses an increasingly complex issue in cardiovascular disease, especially heart failure. The potential benefits and side effects of iron supplementation are still a matter of concern, even though current guidelines suggest therapeutic management of iron deficiency. In this review, we sought to examine the iron metabolism and to identify the rationale behind iron supplementation and iron chelation. Cardiovascular disease is increasingly linked with iron dysmetabolism, with an increased proportion of heart failure patients being affected by decreased plasma iron levels and in turn, by the decreased quality of life. Multiple studies have concluded on a benefit of iron administration, even if just for symptomatic relief. However, new studies field evidence for negative effects of dysregulated non-bound iron and its reactive oxygen species production, with concern to heart diseases. The molecular targets of iron usage, such as the mitochondria, are prone to deleterious effects of the polyvalent metal, added by the scarcely described processes of iron elimination. Iron supplementation and iron chelation show promise of therapeutic benefit in heart failure, with the extent and mechanisms of both prospects not being entirely understood. It may be that a state of decreased systemic and increased mitochondrial iron levels proves to be a useful frame for future advancements in understanding the interconnection of heart failure and iron metabolism.
Collapse
|
16
|
Ghio AJ, Soukup JM, Dailey LA, Madden MC. Air pollutants disrupt iron homeostasis to impact oxidant generation, biological effects, and tissue injury. Free Radic Biol Med 2020; 151:38-55. [PMID: 32092410 PMCID: PMC8274387 DOI: 10.1016/j.freeradbiomed.2020.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
Air pollutants cause changes in iron homeostasis through: 1) a capacity of the pollutant, or a metabolite(s), to complex/chelate iron from pivotal sites in the cell or 2) an ability of the pollutant to displace iron from pivotal sites in the cell. Through either pathway of disruption in iron homeostasis, metal previously employed in essential cell processes is sequestered after air pollutant exposure. An absolute or functional cell iron deficiency results. If enough iron is lost or is otherwise not available within the cell, cell death ensues. However, prior to death, exposed cells will attempt to reverse the loss of requisite metal. This response of the cell includes increased expression of metal importers (e.g. divalent metal transporter 1). Oxidant generation after exposure to air pollutants includes superoxide production which functions in ferrireduction necessary for cell iron import. Activation of kinases and phosphatases and transcription factors and increased release of pro-inflammatory mediators also result from a cell iron deficiency, absolute or functional, after exposure to air pollutants. Finally, air pollutant exposure culminates in the development of inflammation and fibrosis which is a tissue response to the iron deficiency challenging cell survival. Following the response of increased expression of importers and ferrireduction, activation of kinases and phosphatases and transcription factors, release of pro-inflammatory mediators, and inflammation and fibrosis, cell iron is altered, and a new metal homeostasis is established. This new metal homeostasis includes increased total iron concentrations in cells with metal now at levels sufficient to meet requirements for continued function.
Collapse
Affiliation(s)
- Andrew J Ghio
- From the National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Chapel Hill, NC, USA.
| | - Joleen M Soukup
- From the National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Chapel Hill, NC, USA
| | - Lisa A Dailey
- From the National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Chapel Hill, NC, USA
| | - Michael C Madden
- From the National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Chapel Hill, NC, USA
| |
Collapse
|
17
|
Mackay AD, Marchant ED, Munk DJ, Watt RK, Hansen JM, Thomson DM, Hancock CR. Multitissue analysis of exercise and metformin on doxorubicin-induced iron dysregulation. Am J Physiol Endocrinol Metab 2019; 316:E922-E930. [PMID: 30888858 DOI: 10.1152/ajpendo.00140.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Doxorubicin (DOX) is an effective chemotherapeutic treatment with lasting side effects in heart and skeletal muscle. DOX is known to bind with iron, contributing to oxidative damage resulting in cardiac and skeletal muscle toxicity. However, major cellular changes to iron regulation in response to DOX are poorly understood in liver, heart, and skeletal muscle. Additionally, two cotreatments, exercise (EX) and metformin (MET), were studied for their effectiveness in reducing DOX toxicity by ameliorating iron dysregulation and preventing oxidative stress. The purposes of this study were to 1) characterize the DOX-induced changes of the major iron regulation pathway in liver, heart, and skeletal muscle and 2) to determine whether EX and MET exert their benefits by minimizing DOX-induced iron dysregulation. Mice were assigned to receive saline or DOX (15 mg/kg) treatments, paired with either EX (5 days) or MET (500 mg/kg), and were euthanized 3 days after DOX treatment. Results suggest that the cellular response to DOX is protective against oxidative stress by reducing iron availability. DOX increased iron storage capacity through elevated ferritin levels in liver, heart, and skeletal muscle. DOX reduced iron transport capacity through reduced transferrin receptor levels in heart and skeletal muscle. EX and MET cotreatments had protective effects in the liver through reduced transferrin receptor levels. At 3 days after DOX, oxidative stress was mild, as shown by normal glutathione and lipid peroxidation levels. Together these results suggest that the cellular response to reduce iron availability in response to DOX treatment is sufficient to match oxidative stress.
Collapse
Affiliation(s)
- Amy D Mackay
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University , Provo, Utah
| | - Erik D Marchant
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University , Provo, Utah
| | - Devin J Munk
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University , Provo, Utah
| | - Richard K Watt
- Department of Chemistry and Biochemistry, Brigham Young University , Provo, Utah
| | - Jason M Hansen
- Department of Physiology and Developmental Biology, Brigham Young University , Provo, Utah
| | - David M Thomson
- Department of Physiology and Developmental Biology, Brigham Young University , Provo, Utah
| | - Chad R Hancock
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University , Provo, Utah
| |
Collapse
|
18
|
Abstract
Chemotherapy-associated myocardial toxicity is increasingly recognized with the expanding armamentarium of novel chemotherapeutic agents. The onset of cardiotoxicity during cancer therapy represents a major concern and often involves clinical uncertainties and complex therapeutic decisions, reflecting a compromise between potential benefits and harm. Furthermore, the improved cancer survival has led to cardiovascular complications becoming clinically relevant, potentially contributing to premature morbidity and mortality among cancer survivors. Specific higher-risk populations of cancer patients can benefit from prevention and screening measures during the course of cancer therapies. The pathobiology of chemotherapy-induced myocardial dysfunction is complex, and the individual patient risk for heart failure entails a multifactorial interaction between the selected chemotherapeutic regimen, traditional cardiovascular risk factors, and individual susceptibility. Treatment with several specific chemotherapeutic agents, including anthracyclines, proteasome inhibitors, epidermal growth factor receptor inhibitors, vascular endothelial growth factor inhibitors, and immune checkpoint inhibitors imparts increased risk for cardiotoxicity that results from specific therapy-related mechanisms. We review the pathophysiology, risk factors, and imaging considerations as well as patient surveillance, prevention, and treatment approaches to mitigate cardiotoxicity prior, during, and after chemotherapy. The complexity of decision-making in these patients requires viable discussion and partnership between cardiologists and oncologists aiming together to eradicate cancer while preventing cardiotoxic sequelae.
Collapse
Affiliation(s)
- Oren Caspi
- Department of Cardiology, Rambam Health Care Campus, Haifa, Israel
- The Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Doron Aronson
- Department of Cardiology, Rambam Health Care Campus, Haifa, Israel
- The Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
19
|
Framarino-dei-Malatesta M, Sammartino P, Napoli A. Does anthracycline-based chemotherapy in pregnant women with cancer offer safe cardiac and neurodevelopmental outcomes for the developing fetus? BMC Cancer 2017; 17:777. [PMID: 29162041 PMCID: PMC5696726 DOI: 10.1186/s12885-017-3772-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 11/13/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cancer treatment during pregnancy is a growing problem especially now that women delay childbearing. Systemic treatment of these malignancies during pregnancy centers mainly on the anticancer drugs anthracyclines, widely used in treating hematological and breast cancer during pregnancy and sometimes associated with early and late toxicity for the fetus. Owing to concern about their cardiac and neurodevelopmental toxicity more information is needed on which anthracycline to prefer and whether they can safely guarantee a cardiotoxicity-free outcome in the fetus. DISCUSSION The major research findings underline anthracycline-induced dose-dependent effects, including cardiotoxicity, many avoidable. Partly because the placenta acts mainly as a barrier, research findings indicate low transplacental anthracycline transfer. Anthracycline-induced teratogenicity depends closely on when patients receive chemotherapy. Anthracycline cardiac toxicity may depend on the association with drugs that inhibit or induce placental P-glycoprotein (P-gp). P-gp-induced drug interactions may alter placental P-gp barrier function and subsequently change fetal exposure. Though many anthracyclines have acceptable safety profiles clinical studies suggest giving idarubicin with special caution. Patients and doctors who care for pregnant women should whenever possible avoid prematurity and hence reduce prematurity-induced medical complications at birth and in the long-term. Information is lacking on long-term anthracycline-induced effects. CONCLUSION Pregnant women receiving anthracycline-based chemotherapy should undergo regular, state-of-the-art diagnostic imaging to detect fetal drug-induced cardiac damage early, and allow alternative therapeutic options. Recognizing drug-induced interactions and understanding the most vulnerable fetuses will help in choosing tailored therapy. Future research on placental transport, blood-brain barrier drug passage and pharmacokinetics will improve the way we manage these difficult-to-treat patients and their fetuses.
Collapse
Affiliation(s)
| | - Paolo Sammartino
- Department of Surgery “Pietro Valdoni”, University Sapienza Rome, Viale del Policlinico, 155 00161 Rome, Italy
| | - Angela Napoli
- Department of Clinical and Molecular Medicine, University Sapienza Rome, Via di Grottarossa 1035/1039, 00189 Rome, Italy
- Italian Diabetic and Pregnancy Study Group, Rome, Italy
| |
Collapse
|
20
|
Abstract
Iron homeostasis relies on the amount of its absorption by the intestine and its release from storage sites, the macrophages. Iron homeostasis is also dependent on the amount of iron used for the erythropoiesis. Hepcidin, which is synthesized predominantly by the liver, is the main regulator of iron metabolism. Hepcidin reduces serum iron by inhibiting the iron exporter, ferroportin expressed both tissues, the intestine and the macrophages. In addition, in the enterocytes, hepcidin inhibits the iron influx by acting on the apical transporter, DMT1. A defect of hepcidin expression leading to the appearance of a parenchymal iron overload may be genetic or secondary to dyserythropoiesis. The exploration of genetic hemochromatosis has revealed the involvement of several genes, including the recently described BMP6. Non-transfusional secondary hemochromatosis is due to hepcidin repression by cytokines, in particular the erythroferone factor that is produced directly by the erythroid precursors. Iron overload is correlated with the appearance of a free form of iron called NTBI. The influx of NTBI seems to be mediated by ZIP14 transporter in the liver and by calcium channels in the cardiomyocytes. Beside the liver, hepcidin is expressed at lesser extent in several extrahepatic tissues where it plays its ancestral role of antimicrobial peptide. In the kidney, hepcidin modulates defense barriers against urinary tract infections. In the heart, hepcidin maintains tissue iron homeostasis by an autocrine regulation of ferroprotine expression on the surface of cardiomyocytes. In conclusion, hepcidin remains a promising therapeutic tool in various iron pathologies.
Collapse
|
21
|
Becnel LB, Ochsner SA, Darlington YF, McOwiti A, Kankanamge WH, Dehart M, Naumov A, McKenna NJ. Discovering relationships between nuclear receptor signaling pathways, genes, and tissues in Transcriptomine. Sci Signal 2017; 10:10/476/eaah6275. [DOI: 10.1126/scisignal.aah6275] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Lok HC, Sahni S, Jansson PJ, Kovacevic Z, Hawkins CL, Richardson DR. A Nitric Oxide Storage and Transport System That Protects Activated Macrophages from Endogenous Nitric Oxide Cytotoxicity. J Biol Chem 2016; 291:27042-27061. [PMID: 27866158 DOI: 10.1074/jbc.m116.763714] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 11/16/2016] [Indexed: 12/20/2022] Open
Abstract
Nitric oxide (NO) is integral to macrophage cytotoxicity against tumors due to its ability to induce iron release from cancer cells. However, the mechanism for how activated macrophages protect themselves from endogenous NO remains unknown. We previously demonstrated by using tumor cells that glutathione S-transferase P1 (GSTP1) sequesters NO as dinitrosyl-dithiol iron complexes (DNICs) and inhibits NO-mediated iron release from cells via the transporter multidrug resistance protein 1 (MRP1/ABCC1). These prior studies also showed that MRP1 and GSTP1 protect tumor cells against NO cytotoxicity, which parallels their roles in defending cancer cells from cytotoxic drugs. Considering this, and because GSTP1 and MRP1 are up-regulated during macrophage activation, this investigation examined whether this NO storage/transport system protects macrophages against endogenous NO cytotoxicity in two well characterized macrophage cell types (J774 and RAW 264.7). MRP1 expression markedly increased upon macrophage activation, and the role of MRP1 in NO-induced 59Fe release was demonstrated by Mrp1 siRNA and the MRP1 inhibitor, MK571, which inhibited NO-mediated iron efflux. Furthermore, Mrp1 silencing increased DNIC accumulation in macrophages, indicating a role for MRP1 in transporting DNICs out of cells. In addition, macrophage 59Fe release was enhanced by silencing Gstp1, suggesting GSTP1 was responsible for DNIC binding/storage. Viability studies demonstrated that GSTP1 and MRP1 protect activated macrophages from NO cytotoxicity. This was confirmed by silencing nuclear factor-erythroid 2-related factor 2 (Nrf2), which decreased MRP1 and GSTP1 expression, concomitant with reduced 59Fe release and macrophage survival. Together, these results demonstrate a mechanism by which macrophages protect themselves against NO cytotoxicity.
Collapse
Affiliation(s)
- Hiu Chuen Lok
- From the Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006 and
| | - Sumit Sahni
- From the Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006 and
| | - Patric J Jansson
- From the Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006 and
| | - Zaklina Kovacevic
- From the Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006 and
| | - Clare L Hawkins
- the Heart Research Institute, Sydney, New South Wales 2042, Australia
| | - Des R Richardson
- From the Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006 and
| |
Collapse
|
23
|
Schreinemachers DM, Ghio AJ. Effects of Environmental Pollutants on Cellular Iron Homeostasis and Ultimate Links to Human Disease. ENVIRONMENTAL HEALTH INSIGHTS 2016; 10:35-43. [PMID: 26966372 PMCID: PMC4782969 DOI: 10.4137/ehi.s36225] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 05/04/2023]
Abstract
Chronic disease has increased in the past several decades, and environmental pollutants have been implicated. The magnitude and variety of diseases may indicate the malfunctioning of some basic mechanisms underlying human health. Environmental pollutants demonstrate a capability to complex iron through electronegative functional groups containing oxygen, nitrogen, or sulfur. Cellular exposure to the chemical or its metabolite may cause a loss of requisite functional iron from intracellular sites. The cell is compelled to acquire further iron critical to its survival by activation of iron-responsive proteins and increasing iron import. Iron homeostasis in the exposed cells is altered due to a new equilibrium being established between iron-requiring cells and the inappropriate chelator (the pollutant or its catabolite). Following exposure to environmental pollutants, the perturbation of functional iron homeostasis may be the mechanism leading to adverse biological effects. Understanding the mechanism may lead to intervention methods for this major public health concern.
Collapse
|
24
|
Guenancia C, Li N, Hachet O, Rigal E, Cottin Y, Dutartre P, Rochette L, Vergely C. Paradoxically, iron overload does not potentiate doxorubicin-induced cardiotoxicity in vitro in cardiomyocytes and in vivo in mice. Toxicol Appl Pharmacol 2015; 284:152-62. [DOI: 10.1016/j.taap.2015.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 01/27/2015] [Accepted: 02/15/2015] [Indexed: 02/06/2023]
|
25
|
Larkin J, Chen B, Shi XH, Mishima T, Kokame K, Barak Y, Sadovsky Y. NDRG1 deficiency attenuates fetal growth and the intrauterine response to hypoxic injury. Endocrinology 2014; 155:1099-106. [PMID: 24424031 PMCID: PMC3929742 DOI: 10.1210/en.2013-1425] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intrauterine mammalian development depends on the preservation of placental function. The expression of the protein N-myc downstream-regulated gene 1 (NDRG1) is increased in placentas of human pregnancies affected by fetal growth restriction and in hypoxic primary human trophoblasts, where NDRG1 attenuates cell injury. We sought to assess the function of placental NDRG1 in vivo and tested the hypothesis that NDRG1 deficiency in the mouse embryo impairs placental function and consequently intrauterine growth. We found that Ndrg1 knock-out embryos were growth restricted in comparison to wild-type or heterozygous counterparts. Furthermore, hypoxia reduced the survival of female, but not male, knock-out embryos. Ndrg1 deletion caused significant alterations in placental gene expression, with a marked reduction in transcription of several lipoproteins in the placental labyrinth. These transcriptional changes were associated with reduced fetal:maternal serum cholesterol ratio exclusively in hypoxic female embryos. Collectively, our findings indicate that NDRG1 promotes fetal growth and regulates the metabolic response to intrauterine hypoxic injury in a sexually dichotomous manner.
Collapse
Affiliation(s)
- Jacob Larkin
- Magee-Womens Research Institute (J.L., X.H.S., T.M., Y.B., Y.S.), Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Department of Obstetrics and Gynecology (B.C.), Washington University, St Louis, Missouri 63110; Department of Molecular Pathogenesis (K.K.), National Cerebral and Cardiovascular Center, Osaka, Japan 565-8565; and Department of Microbiology and Molecular Genetics (Y.B., Y.S.), University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | | | | | | | | | | | | |
Collapse
|
26
|
Ichikawa Y, Ghanefar M, Bayeva M, Wu R, Khechaduri A, Prasad SVN, Mutharasan RK, Naik TJ, Ardehali H. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Invest 2014; 124:617-630. [PMID: 24382354 PMCID: PMC3904631 DOI: 10.1172/jci72931] [Citation(s) in RCA: 668] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/17/2013] [Indexed: 01/19/2023] Open
Abstract
Doxorubicin is an effective anticancer drug with known cardiotoxic side effects. It has been hypothesized that doxorubicin-dependent cardiotoxicity occurs through ROS production and possibly cellular iron accumulation. Here, we found that cardiotoxicity develops through the preferential accumulation of iron inside the mitochondria following doxorubicin treatment. In isolated cardiomyocytes, doxorubicin became concentrated in the mitochondria and increased both mitochondrial iron and cellular ROS levels. Overexpression of ABCB8, a mitochondrial protein that facilitates iron export, in vitro and in the hearts of transgenic mice decreased mitochondrial iron and cellular ROS and protected against doxorubicin-induced cardiomyopathy. Dexrazoxane, a drug that attenuates doxorubicin-induced cardiotoxicity, decreased mitochondrial iron levels and reversed doxorubicin-induced cardiac damage. Finally, hearts from patients with doxorubicin-induced cardiomyopathy had markedly higher mitochondrial iron levels than hearts from patients with other types of cardiomyopathies or normal cardiac function. These results suggest that the cardiotoxic effects of doxorubicin develop from mitochondrial iron accumulation and that reducing mitochondrial iron levels protects against doxorubicin-induced cardiomyopathy.
Collapse
Affiliation(s)
- Yoshihiko Ichikawa
- Feinberg Cardiovascular Institute, Northwestern University School of Medicine, Chicago, Illinois, USA.
Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Mohsen Ghanefar
- Feinberg Cardiovascular Institute, Northwestern University School of Medicine, Chicago, Illinois, USA.
Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Marina Bayeva
- Feinberg Cardiovascular Institute, Northwestern University School of Medicine, Chicago, Illinois, USA.
Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Rongxue Wu
- Feinberg Cardiovascular Institute, Northwestern University School of Medicine, Chicago, Illinois, USA.
Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Arineh Khechaduri
- Feinberg Cardiovascular Institute, Northwestern University School of Medicine, Chicago, Illinois, USA.
Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Sathyamangla V. Naga Prasad
- Feinberg Cardiovascular Institute, Northwestern University School of Medicine, Chicago, Illinois, USA.
Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - R. Kannan Mutharasan
- Feinberg Cardiovascular Institute, Northwestern University School of Medicine, Chicago, Illinois, USA.
Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Tejaswitha Jairaj Naik
- Feinberg Cardiovascular Institute, Northwestern University School of Medicine, Chicago, Illinois, USA.
Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Hossein Ardehali
- Feinberg Cardiovascular Institute, Northwestern University School of Medicine, Chicago, Illinois, USA.
Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
27
|
Shi XH, Larkin JC, Chen B, Sadovsky Y. The expression and localization of N-myc downstream-regulated gene 1 in human trophoblasts. PLoS One 2013; 8:e75473. [PMID: 24066183 PMCID: PMC3774633 DOI: 10.1371/journal.pone.0075473] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 08/15/2013] [Indexed: 12/11/2022] Open
Abstract
The protein N-Myc downstream-regulated gene 1 (NDRG1) is implicated in the regulation of cell proliferation, differentiation, and cellular stress response. NDRG1 is expressed in primary human trophoblasts, where it promotes cell viability and resistance to hypoxic injury. The mechanism of action of NDRG1 remains unknown. To gain further insight into the intracellular action of NDRG1, we analyzed the expression pattern and cellular localization of endogenous NDRG1 and transfected Myc-tagged NDRG1 in human trophoblasts exposed to diverse injuries. In standard conditions, NDRG1 was diffusely expressed in the cytoplasm at a low level. Hypoxia or the hypoxia mimetic cobalt chloride, but not serum deprivation, ultraviolet (UV) light, or ionizing radiation, induced the expression of NDRG1 in human trophoblasts and the redistribution of NDRG1 into the nucleus and cytoplasmic membranes associated with the endoplasmic reticulum (ER) and microtubules. Mutation of the phosphopantetheine attachment site (PPAS) within NDRG1 abrogated this pattern of redistribution. Our results shed new light on the impact of cell injury on NDRG1 expression patterns, and suggest that the PPAS domain plays a key role in NDRG1’s subcellular distribution.
Collapse
Affiliation(s)
- Xiao-Hua Shi
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jacob C. Larkin
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Baosheng Chen
- Department of Obstetrics and Gynecology, Washington University, St. Louis, Missouri, United States of America
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
28
|
Chekhun VF, Lukyanova NY, Burlaka CACP, Bezdenezhnykh NA, Shpyleva SI, Tryndyak VP, Beland FA, Pogribny IP. Iron metabolism disturbances in the MCF-7 human breast cancer cells with acquired resistance to doxorubicin and cisplatin. Int J Oncol 2013; 43:1481-6. [PMID: 23969999 DOI: 10.3892/ijo.2013.2063] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 06/24/2013] [Indexed: 01/11/2023] Open
Abstract
The development of resistance of cancer cells to therapeutic agents is the major obstacle in the successful treatment of breast cancer and the main cause of breast cancer recurrence. The results of several studies have demonstrated an important role of altered cellular iron metabolism in the progression of breast cancer and suggested that iron metabolism may be involved in the acquisition of a cancer cell drug-resistant phenotype. In the present study, we show that human MCF-7 breast cancer cells with an acquired resistance to the chemotherapeutic drugs doxorubicin (MCF-7/DOX) and cisplatin (MCF-7/CDDP) exhibited substantial alterations in the intracellular iron content and levels of iron-regulatory proteins involved in the cellular uptake, storage and export of iron, especially in profoundly increased levels of ferritin light chain (FTL) protein. The increased levels of FTL in breast cancer indicate that FTL may be used as a diagnostic and prognostic marker for breast cancer. Additionally, we demonstrate that targeted downregulation of FTL protein by the microRNA miR-133a increases sensitivity of MCF-7/DOX and MCF-7/CDDP cells to doxorubicin and cisplatin. These results suggest that correction of iron metabolism abnormalities may substantially improve the efficiency of breast cancer treatment.
Collapse
Affiliation(s)
- Vasyl F Chekhun
- Department of Mechanisms of Anticancer Therapy, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, Kiev, Ukraine
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Nawara K, McCracken JL, Krysiński P, Blanchard GJ. Structure-Dependent Complexation of Fe3+ by Anthracyclines. 1. The Importance of Pendent Hydroxyl Functionality. J Phys Chem B 2013; 117:6859-67. [DOI: 10.1021/jp402349e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Krzysztof Nawara
- Department of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - John L. McCracken
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Paweł Krysiński
- Department of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - G. J. Blanchard
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
30
|
Asensio-López MC, Sánchez-Más J, Pascual-Figal DA, Abenza S, Pérez-Martínez MT, Valdés M, Lax A. Involvement of ferritin heavy chain in the preventive effect of metformin against doxorubicin-induced cardiotoxicity. Free Radic Biol Med 2013; 57:188-200. [PMID: 23000260 DOI: 10.1016/j.freeradbiomed.2012.09.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 09/03/2012] [Accepted: 09/12/2012] [Indexed: 01/18/2023]
Abstract
Doxorubicin is a wide-spectrum chemotherapeutic agent, although a cumulative dose may cause cardiac damage and lead to heart failure. Doxorubicin cardiotoxicity is dependent on the intracellular iron pool and manifests itself by increasing oxidative stress. Our group has recently shown the ability of metformin, an oral antidiabetic with cardiovascular benefits, to protect cardiomyocytes from doxorubicin-induced damage. This work aimed to study whether metformin is able to modulate the expression of ferritin, the major intracellular iron storage protein, in cardiomyocytes and whether it is involved in their protection. The addition of metformin to adult mouse cardiomyocytes (HL-1 cell line) induced both gene and protein expression of the ferritin heavy chain (FHC) in a time-dependent manner. The silencing of FHC expression with siRNAs inhibited the ability of metformin to protect cardiomyocytes from doxorubicin-induced damage, in terms of the percentage of cell viability, the levels of reactive oxygen species, and the activity of antioxidant enzymes (catalase, glutathione peroxidase, and superoxide dismutase). In addition, metformin induced the activation of NF-κB in HL-1 cells, whereas preincubation with SN50, an inhibitor of NF-κB, blocked the upregulation of the FHC and the protective effect mediated by metformin. Taken together, these results provide new knowledge on the protective actions of metformin against doxorubicin-induced cardiotoxicity by identifying FHC and NF-κB as the major mediators of this beneficial effect.
Collapse
Affiliation(s)
- Mari C Asensio-López
- Cardiology Department, University Hospital Virgen de Arrixaca, and Department of Medicine, School of Medicine, University of Murcia, 30120 Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
31
|
Rao VA. Iron chelators with topoisomerase-inhibitory activity and their anticancer applications. Antioxid Redox Signal 2013; 18:930-55. [PMID: 22900902 PMCID: PMC3557438 DOI: 10.1089/ars.2012.4877] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Iron and topoisomerases are abundant and essential cellular components. Iron is required for several key processes such as DNA synthesis, mitochondrial electron transport, synthesis of heme, and as a co-factor for many redox enzymes. Topoisomerases serve as critical enzymes that resolve topological problems during DNA synthesis, transcription, and repair. Neoplastic cells have higher uptake and utilization of iron, as well as elevated levels of topoisomerase family members. Separately, the chelation of iron and the cytotoxic inhibition of topoisomerase have yielded potent anticancer agents. RECENT ADVANCES The chemotherapeutic drugs doxorubicin and dexrazoxane both chelate iron and target topoisomerase 2 alpha (top2α). Newer chelators such as di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone and thiosemicarbazone -24 have recently been identified as top2α inhibitors. The growing list of agents that appear to chelate iron and inhibit topoisomerases prompts the question of whether and how these two distinct mechanisms might interplay for a cytotoxic chemotherapeutic outcome. CRITICAL ISSUES While iron chelation and topoisomerase inhibition each represent mechanistically advantageous anticancer therapeutic strategies, dual targeting agents present an attractive multi-modal opportunity for enhanced anticancer tumor killing and overcoming drug resistance. The commonalities and caveats of dual inhibition are presented in this review. FUTURE DIRECTIONS Gaps in knowledge, relevant biomarkers, and strategies for future in vivo studies with dual inhibitors are discussed.
Collapse
Affiliation(s)
- V Ashutosh Rao
- Laboratory of Biochemistry, Division of Therapeutic Proteins, Office of Biotechnology Products, Office of Pharmaceutical Science, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA.
| |
Collapse
|
32
|
Brilhante O, Okada FK, Sasso-Cerri E, Stumpp T, Miraglia SM. Late morfofunctional alterations of the Sertoli cell caused by doxorubicin administered to prepubertal rats. Reprod Biol Endocrinol 2012; 10:79. [PMID: 22967030 PMCID: PMC3502149 DOI: 10.1186/1477-7827-10-79] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 08/27/2012] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Doxorubicin is a potent chemotherapeutic drug used against a variety of cancers. It acts through interaction with polymerases and topoisomerase II and free radical production. Doxorubicin activity is not specific to cancer cells and can also damage healthy cells, especially those undergoing rapid proliferation, such as spermatogonia. In previous studies our group showed that etoposide, another topoisomarese II poison, causes irreversible damage to Sertoli cells. Thus, the aim of this study was to address the effects of doxorubicin on Sertoli cell morphology and function and on the seminiferous epithelium cycle when administered to prepubertal rats. METHODS Prepubertal rats received the dose of 5 mg/Kg of doxorubicin, which was fractioned in two doses: 3 mg/Kg at 15dpp and 2 mg/Kg at 22 dpp. The testes were collected at 40, 64 and 127 dpp, fixed in Bouin's liquid and submitted to transferrin immunolabeling for Sertoli cell function analysis. Sertoli cell morphology and the frequency of the stages of the seminiferous epithelium cycle were analyzed in PAS + H-stained sections. RESULTS The rats treated with doxorubicin showed reduction of transferrin labeling in the seminiferous epithelium at 40 and 64 dpp, suggesting that Sertoli cell function is altered in these rats. All doxorubicin-treated rats showed sloughing and morphological alterations of Sertoli cells. The frequency of the stages of the seminiferous epithelium cycle was also affected in all doxorubicin-treated rats. CONCLUSIONS AND DISCUSSION These data show that doxorubicin administration during prepuberty causes functional and morphological late damage to Sertoli cells; such damage is secondary to the germ cell primary injury and contributed to enhance the spermatogenic harm caused by this drug. However, additional studies are required to clarify if there is also a direct effect of doxorubicin on Sertoli cells producing a primary damage on these cells.
Collapse
Affiliation(s)
- Otávio Brilhante
- Centre for Health and Rural Technology, Academic Unit of Veterinary Medicine, Federal University of Campina Grande, Patos, Paraíba, Brazil
| | - Fatima K Okada
- Department of Morphology and Genetics, Developmental Biology Laboratory, Federal University of São Paulo. Vila Clementino, São Paulo, SP, Brazil
| | - Estela Sasso-Cerri
- Department of Morphology, Laboratory of Histology and Embryology, Dental School of São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Taiza Stumpp
- Department of Morphology and Genetics, Developmental Biology Laboratory, Federal University of São Paulo. Vila Clementino, São Paulo, SP, Brazil
| | - Sandra M Miraglia
- Department of Morphology and Genetics, Developmental Biology Laboratory, Federal University of São Paulo. Vila Clementino, São Paulo, SP, Brazil
| |
Collapse
|
33
|
Chung LC, Tsui KH, Feng TH, Lee SL, Chang PL, Juang HH. L-Mimosine blocks cell proliferation via upregulation of B-cell translocation gene 2 and N-myc downstream regulated gene 1 in prostate carcinoma cells. Am J Physiol Cell Physiol 2011; 302:C676-85. [PMID: 22116304 DOI: 10.1152/ajpcell.00180.2011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
L-Mimosine, an iron chelator and a prolyl 4-hydroxylase inhibitor, blocks many cancer cells at the late G1 phase. B-cell translocation gene 2 (Btg2) regulates the G1/S transition phases of the cell cycle. N-myc downstream regulated gene 1 (Ndrg1) is a differentiation-inducing gene upregulated by hypoxia. We evaluated the molecular mechanisms of L-mimosine on cell cycle modulation in PC-3 and LNCaP prostate carcinoma cells. The effect of L-mimosine on cell proliferation of prostate carcinoma cells was determined by the [3H]thymidine incorporation and flow cytometry assays. L-Mimosine arrested the cell cycle at the G1 phase in PC-3 cells and at the S phase in LNCaP cells, thus attenuating cell proliferation. Immunoblot assays indicated that hypoxia and L-mimosine stabilized hypoxia-inducible factor-1α (HIF-1α) and induced Btg2 and Ndrg1 protein expression, but downregulated protein levels of cyclin A in both PC-3 and LNCaP cells. L-Mimosine treatment decreased cyclin D1 protein in PC-3 cells, but not in LNCaP cells. Dimethyloxalylglycine, a pan-prolyl hydroxylase inhibitor, also induced Btg2 and Ndrg1 protein expression in LNCaP cells. The transient gene expression assay revealed that L-mimosine treatment or cotransfection with HIF-1α expression vector enhanced the promoter activities of Btg2 and Ndrg1 genes. Knockdown of HIF-1α attenuated the increasing protein levels of both Btg2 and Ndrg1 by hypoxia or L-mimosine in LNCaP cells. Our results indicated that hypoxia and L-mimosine modulated Btg2 and Ndrg1 at the transcriptional level, which is dependent on HIF-1α. L-Mimosine enhanced expression of Btg2 and Ndrg1, which attenuated cell proliferation of the PC-3 and LNCaP prostate carcinoma cells.
Collapse
Affiliation(s)
- Li-Chuan Chung
- Department of Bioengineering, Tatung University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
34
|
Lok HC, Rahmanto YS, Hawkins CL, Kalinowski DS, Morrow CS, Townsend AJ, Ponka P, Richardson DR. Nitric oxide storage and transport in cells are mediated by glutathione S-transferase P1-1 and multidrug resistance protein 1 via dinitrosyl iron complexes. J Biol Chem 2011; 287:607-618. [PMID: 22084240 DOI: 10.1074/jbc.m111.310987] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nitrogen monoxide (NO) plays a role in the cytotoxic mechanisms of activated macrophages against tumor cells by inducing iron release. We showed that NO-mediated iron efflux from cells required glutathione (GSH) (Watts, R. N., and Richardson, D. R. (2001) J. Biol. Chem. 276, 4724-4732) and that the GSH-conjugate transporter, multidrug resistance-associated protein 1 (MRP1), mediates this release potentially as a dinitrosyl-dithiol iron complex (DNIC; Watts, R. N., Hawkins, C., Ponka, P., and Richardson, D. R. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 7670-7675). Recently, glutathione S-transferase P1-1 (GST P1-1) was shown to bind DNICs as dinitrosyl-diglutathionyl iron complexes. Considering this and that GSTs and MRP1 form an integrated detoxification unit with chemotherapeutics, we assessed whether these proteins coordinately regulate storage and transport of DNICs as long lived NO intermediates. Cells transfected with GSTP1 (but not GSTA1 or GSTM1) significantly decreased NO-mediated 59Fe release from cells. This NO-mediated 59Fe efflux and the effect of GST P1-1 on preventing this were observed with NO-generating agents and also in cells transfected with inducible nitric oxide synthase. Notably, 59Fe accumulated in cells within GST P1-1-containing fractions, indicating an alteration in intracellular 59Fe distribution. Furthermore, electron paramagnetic resonance studies showed that MCF7-VP cells transfected with GSTP1 contain significantly greater levels of a unique DNIC signal. These investigations indicate that GST P1-1 acts to sequester NO as DNICs, reducing their transport out of the cell by MRP1. Cell proliferation studies demonstrated the importance of the combined effect of GST P1-1 and MRP1 in protecting cells from the cytotoxic effects of NO. Thus, the DNIC storage function of GST P1-1 and ability of MRP1 to efflux DNICs are vital in protection against NO cytotoxicity.
Collapse
Affiliation(s)
- Hiu Chuen Lok
- Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Yohan Suryo Rahmanto
- Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Clare L Hawkins
- Heart Research Institute, Sydney, New South Wales 2042, Australia
| | - Danuta S Kalinowski
- Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Charles S Morrow
- Department of Biochemistry, Wake Forest University, Winston-Salem, North Carolina 27157
| | - Alan J Townsend
- Department of Biochemistry, Wake Forest University, Winston-Salem, North Carolina 27157
| | - Prem Ponka
- Lady Davis Institute, Montreal, Quebec H3T 1E2, Canada
| | - Des R Richardson
- Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
35
|
Spagnuolo RD, Recalcati S, Tacchini L, Cairo G. Role of hypoxia-inducible factors in the dexrazoxane-mediated protection of cardiomyocytes from doxorubicin-induced toxicity. Br J Pharmacol 2011; 163:299-312. [PMID: 21232037 DOI: 10.1111/j.1476-5381.2011.01208.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Iron aggravates the cardiotoxicity of doxorubicin, a widely used anticancer anthracycline, and the iron chelator dexrazoxane is the only agent protecting against doxorubicin cardiotoxicity; however, the mechanisms underlying the role of iron in doxorubicin-mediated cardiotoxicity and the protective role of dexrazoxane remain to be established. As iron is required for the degradation of hypoxia-inducible factors (HIF), which control the expression of antiapoptotic and protective genes, we tested the hypothesis that dexrazoxane-dependent HIF activation may mediate the cardioprotective effect of dexrazoxane. EXPERIMENTAL APPROACH Cell death, protein levels (by immunoblotting) and HIF-mediated transcription (using reporter constructs) were evaluated in the rat H9c2 cardiomyocyte cell line exposed to low doses of doxorubicin with or without dexrazoxane pretreatment. HIF levels were genetically manipulated by transfecting dominant-negative mutants or short hairpin RNA. KEY RESULTS Treatment with dexrazoxane induced HIF-1α and HIF-2α protein levels and transactivation capacity in H9c2 cells. It also prevented the induction of cell death and apoptosis by exposure of H9c2 cells to clinically relevant concentrations of doxorubicin. Suppression of HIF activity strongly reduced the protective effect of dexrazoxane. Conversely, HIF-1α overexpression protected against doxorubicin-mediated cell death and apoptosis also in cells not exposed to the chelator. Exposure to dexrazoxane increased the expression of the HIF-regulated, antiapoptotic proteins survivin, Mcl1 and haem oxygenase. CONCLUSIONS AND IMPLICATIONS Our results showing HIF-dependent prevention of doxorubicin toxicity in dexrazoxane-treated H9c2 cardiomyocytes suggest that HIF activation may be a mechanism contributing to the protective effect of dexrazoxane against anthracycline cardiotoxicity.
Collapse
Affiliation(s)
- R D Spagnuolo
- Department of Human Morphology and Biomedical Sciences 'Città Studi', University of Milan, Milano, Italy
| | | | | | | |
Collapse
|
36
|
Hickok JR, Sahni S, Mikhed Y, Bonini MG, Thomas DD. Nitric oxide suppresses tumor cell migration through N-Myc downstream-regulated gene-1 (NDRG1) expression: role of chelatable iron. J Biol Chem 2011; 286:41413-41424. [PMID: 21976667 DOI: 10.1074/jbc.m111.287052] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
N-Myc downstream-regulated gene 1 (NDRG1) is a ubiquitous cellular protein that is up-regulated under a multitude of stress and growth-regulatory conditions. Although the exact cellular functions of this protein have not been elucidated, mutations in this gene or aberrant expression of this protein have been linked to both tumor suppressive and oncogenic phenotypes. Previous reports have demonstrated that NDRG1 is strongly up-regulated by chemical iron chelators and hypoxia, yet its regulation by the free radical nitric oxide ((•)NO) has never been demonstrated. Herein, we examine the chemical biology that confers NDRG1 responsiveness at the mRNA and protein levels to (•)NO. We demonstrate that the interaction of (•)NO with the chelatable iron pool (CIP) and the appearance of dinitrosyliron complexes (DNIC) are key determinants. Using HCC 1806 triple negative breast cancer cells, we find that NDRG1 is up-regulated by physiological (•)NO concentrations in a dose- and time-dependant manner. Tumor cell migration was suppressed by NDRG1 expression and we excluded the involvement of HIF-1α, sGC, N-Myc, and c-Myc as upstream regulatory targets of (•)NO. Augmenting the chelatable iron pool abolished (•)NO-mediated NDRG1 expression and the associated phenotypic effects. These data, in summary, reveal a link between (•)NO, chelatable iron, and regulation of NDRG1 expression and signaling in tumor cells.
Collapse
Affiliation(s)
- Jason R Hickok
- Departments of Medicinal Chemistry and Pharmacognosy, University of Illinois, Chicago, Illinois 60612
| | - Sumit Sahni
- Departments of Medicinal Chemistry and Pharmacognosy, University of Illinois, Chicago, Illinois 60612
| | - Yuliya Mikhed
- Departments of Medicinal Chemistry and Pharmacognosy, University of Illinois, Chicago, Illinois 60612
| | - Marcelo G Bonini
- Departments of Medicine and Pharmacology, University of Illinois, Chicago, Illinois 60612
| | - Douglas D Thomas
- Departments of Medicinal Chemistry and Pharmacognosy, University of Illinois, Chicago, Illinois 60612.
| |
Collapse
|
37
|
Polgári Z, Ajtony Z, Kregsamer P, Streli C, Mihucz VG, Réti A, Budai B, Kralovánszky J, Szoboszlai N, Záray G. Microanalytical method development for Fe, Cu and Zn determination in colorectal cancer cells. Talanta 2011; 85:1959-65. [DOI: 10.1016/j.talanta.2011.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 06/23/2011] [Accepted: 07/07/2011] [Indexed: 10/18/2022]
|
38
|
Liu W, Iiizumi-Gairani M, Okuda H, Kobayashi A, Watabe M, Pai SK, Pandey PR, Xing F, Fukuda K, Modur V, Hirota S, Suzuki K, Chiba T, Endo M, Sugai T, Watabe K. KAI1 gene is engaged in NDRG1 gene-mediated metastasis suppression through the ATF3-NFkappaB complex in human prostate cancer. J Biol Chem 2011; 286:18949-18959. [PMID: 21454613 PMCID: PMC3099710 DOI: 10.1074/jbc.m111.232637] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 03/18/2011] [Indexed: 02/06/2023] Open
Abstract
NDRG1 and KAI1 belong to metastasis suppressor genes, which impede the dissemination of tumor cells from primary tumors to distant organs. Previously, we identified the metastasis promoting transcription factor, ATF3, as a downstream target of NDRG1. Further analysis revealed that the KAI1 promoter contained a consensus binding motif of ATF3, suggesting a possibility that NDRG1 suppresses metastasis through inhibition of ATF3 expression followed by activation of the KAI1 gene. In this report, we found that ectopic expression of NDRG1 was able to augment endogenous KAI1 gene expression in prostate cancer cell lines, whereas silencing NDRG1 was accompanied with significant decrease in KAI1 expression in vitro and in vivo. In addition, our results of ChIP analysis indicate that ATF3 indeed bound to the promoter of the KAI1 gene. Importantly, our promoter-based analysis revealed that ATF3 modulated KAI1 transcription through cooperation with other endogenous transcription factor as co-activator (ATF3-JunB) or co-repressor (ATF3-NFκB). Moreover, loss of KAI1 expression significantly abrogated NDRG1-mediated metastatic suppression in vitro as well as in a spontaneous metastasis animal model, indicating that KA11 is a functional downstream target of the NDRG1 pathway. Our result of immunohistochemical analysis showed that loss of NDRG1 and KAI1 occurs in parallel as prostate cancer progresses. We also found that a combined expression status of these two genes serves as a strong independent prognostic marker to predict metastasis-free survival of prostate cancer patients. Taken together, our result revealed a novel regulatory network of two metastasis suppressor genes, NDRG1 and KAI1, which together concerted metastasis-suppressive activities through an intrinsic transcriptional cascade.
Collapse
Affiliation(s)
- Wen Liu
- From the Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9626 and
| | - Megumi Iiizumi-Gairani
- From the Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9626 and
| | - Hiroshi Okuda
- From the Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9626 and
| | - Aya Kobayashi
- From the Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9626 and
| | - Misako Watabe
- From the Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9626 and
| | - Sudha K. Pai
- From the Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9626 and
| | - Puspa R. Pandey
- From the Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9626 and
| | - Fei Xing
- From the Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9626 and
| | - Koji Fukuda
- From the Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9626 and
| | - Vishnu Modur
- From the Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9626 and
| | | | | | | | | | - Tamotsu Sugai
- Diagnostic Pathology, Iwate Medical School, Morioka, Iwate 0208505, Japan
| | - Kounosuke Watabe
- From the Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9626 and
| |
Collapse
|
39
|
Kell DB. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson's, Huntington's, Alzheimer's, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol 2010; 84:825-89. [PMID: 20967426 PMCID: PMC2988997 DOI: 10.1007/s00204-010-0577-x] [Citation(s) in RCA: 266] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/14/2010] [Indexed: 12/11/2022]
Abstract
Exposure to a variety of toxins and/or infectious agents leads to disease, degeneration and death, often characterised by circumstances in which cells or tissues do not merely die and cease to function but may be more or less entirely obliterated. It is then legitimate to ask the question as to whether, despite the many kinds of agent involved, there may be at least some unifying mechanisms of such cell death and destruction. I summarise the evidence that in a great many cases, one underlying mechanism, providing major stresses of this type, entails continuing and autocatalytic production (based on positive feedback mechanisms) of hydroxyl radicals via Fenton chemistry involving poorly liganded iron, leading to cell death via apoptosis (probably including via pathways induced by changes in the NF-κB system). While every pathway is in some sense connected to every other one, I highlight the literature evidence suggesting that the degenerative effects of many diseases and toxicological insults converge on iron dysregulation. This highlights specifically the role of iron metabolism, and the detailed speciation of iron, in chemical and other toxicology, and has significant implications for the use of iron chelating substances (probably in partnership with appropriate anti-oxidants) as nutritional or therapeutic agents in inhibiting both the progression of these mainly degenerative diseases and the sequelae of both chronic and acute toxin exposure. The complexity of biochemical networks, especially those involving autocatalytic behaviour and positive feedbacks, means that multiple interventions (e.g. of iron chelators plus antioxidants) are likely to prove most effective. A variety of systems biology approaches, that I summarise, can predict both the mechanisms involved in these cell death pathways and the optimal sites of action for nutritional or pharmacological interventions.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and the Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
40
|
Abstract
Arthropathy is a frequent and serious complication of repeated joint bleeding in patients with hemophilia, resulting in pain, deformity, and disability. Although the pathogenesis of hemophilic arthropathy has not been fully elucidated, it appears to have similarities with the degenerative joint damage that occurs in osteoarthritis and the inflammatory processes associated with rheumatoid arthritis. This article reviews the potential actions of various blood constituents on joint components that culminate in the development of hemophilic arthropathy.
Collapse
Affiliation(s)
- L A Valentino
- Rush Hemophilia and Thrombophilia Center, Department of Pediatrics, Rush Children's Hospital and Rush University Medical Center, Chicago, IL USA.
| |
Collapse
|
41
|
Cai S, Thati S, Bagby TR, Diab HM, Davies NM, Cohen MS, Forrest ML. Localized doxorubicin chemotherapy with a biopolymeric nanocarrier improves survival and reduces toxicity in xenografts of human breast cancer. J Control Release 2010; 146:212-8. [PMID: 20403395 DOI: 10.1016/j.jconrel.2010.04.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 04/01/2010] [Accepted: 04/05/2010] [Indexed: 10/19/2022]
Abstract
Patients with metastatic breast cancer have a five-year survival rate of 27% compared to 98% for localized cancer, and the presence of even a few cancer cells in lymph nodes, known as isolated tumor cells or nanometastases, significantly increases the risk of relapse in the absence of aggressive treatment. Therefore, diagnosis and treatment of lymphatic metastases in early breast cancer plays an important role in patient survival. Here, we demonstrate the first description of a delivery system for localized doxorubicin chemotherapy to the breast tissue. The hyaluronan-doxorubicin nanoconjugate exhibits a sustained release characteristic in vitro and in vivo in the breast tissues of rodents bearing human breast cancer xenografts. In addition, the conjugate reduces dose-limiting cardiac toxicity with minimal toxicity observed in normal tissues. Finally, the conjugate dramatically inhibits breast cancer progression in vivo, leading to an increased survival rate. Thus, localized chemotherapy to the breast lymphatics with a nanocarrier may represent an improved strategy for treatment of early stage breast cancers.
Collapse
Affiliation(s)
- Shuang Cai
- Department of Pharmaceutical Chemistry, University of Kansas, United States
| | | | | | | | | | | | | |
Collapse
|
42
|
Yu Y, Kalinowski DS, Kovacevic Z, Siafakas AR, Jansson PJ, Stefani C, Lovejoy DB, Sharpe PC, Bernhardt PV, Richardson DR. Thiosemicarbazones from the old to new: iron chelators that are more than just ribonucleotide reductase inhibitors. J Med Chem 2009; 52:5271-94. [PMID: 19601577 DOI: 10.1021/jm900552r] [Citation(s) in RCA: 306] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yu Yu
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Selective inhibition of hypoxia-inducible factor (HIF) prolyl-hydroxylase 1 mediates neuroprotection against normoxic oxidative death via HIF- and CREB-independent pathways. J Neurosci 2009; 29:8828-38. [PMID: 19587290 DOI: 10.1523/jneurosci.1779-09.2009] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress contributes to tissue injury in conditions ranging from cardiovascular disease to stroke, spinal cord injury, neurodegeneration, and perhaps even aging. Yet the efficacy of antioxidants in human disease has been mixed at best. We need a better understanding of the mechanisms by which established antioxidants combat oxidative stress. Iron chelators are well established inhibitors of oxidative death in both neural and non-neural tissues, but their precise mechanism of action remains elusive. The prevailing but not completely substantiated view is that iron chelators prevent oxidative injury by suppressing Fenton chemistry and the formation of highly reactive hydroxyl radicals. Here, we show that iron chelation protects, rather unexpectedly, by inhibiting the hypoxia-inducible factor prolyl 4-hydroxylase isoform 1 (PHD1), an iron and 2-oxoglutarate-dependent dioxygenase. PHD1 and its isoforms 2 and 3 are best known for stabilizing transcriptional regulators involved in hypoxic adaptation, such as HIF-1alpha and cAMP response element-binding protein (CREB). Yet we find that global hypoxia-inducible factor (HIF)-PHD inhibition protects neurons even when HIF-1alpha and CREB are directly suppressed. Moreover, two global HIF-PHD inhibitors continued to be neuroprotective even in the presence of diminished HIF-2alpha levels, which itself increases neuronal susceptibility to oxidative stress. Finally, RNA interference to PHD1 but not isoforms PHD2 or PHD3 prevents oxidative death, independent of HIF activation. Together, these studies suggest that iron chelators can prevent normoxic oxidative neuronal death through selective inhibition of PHD1 but independent of HIF-1alpha and CREB; and that HIF-2alpha, not HIF-1alpha, regulates susceptibility to normoxic oxidative neuronal death.
Collapse
|
44
|
Zhuang M, Jiang H, Suzuki Y, Li X, Xiao P, Tanaka T, Ling H, Yang B, Saitoh H, Zhang L, Qin C, Sugamura K, Hattori T. Procyanidins and butanol extract of Cinnamomi Cortex inhibit SARS-CoV infection. Antiviral Res 2009; 82:73-81. [PMID: 19428598 PMCID: PMC7114128 DOI: 10.1016/j.antiviral.2009.02.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2008] [Revised: 01/03/2009] [Accepted: 02/05/2009] [Indexed: 11/29/2022]
Abstract
We found that the butanol fraction of Cinnamomi Cortex (CC/Fr.2) showed moderate inhibitory activity in wild-type severe acute respiratory syndrome coronavirus (wtSARS-CoV) and HIV/SARS-CoV S pseudovirus infections. The inhibition on pseudovirus was also seen in cells pretreated with the CC and CC/Fr.2 (IC50S, 283.4 ± 16.3 and 149.5 ± 13.5 μg/ml, respectively), however the highest activities on wtSARS-CoV were observed when the viruses were treated by the extracts before challenging (IC50S, 43.1 ± 2.8 and 7.8 ± 0.3 μg/ml; SIs, 8.4 and 23.1, respectively). Among the compounds fractionated from CC, procyanidin A2 and procyanidin B1 showed moderate anti-wtSARS-CoV activity (IC50S, 29.9 ± 3.3 and 41.3 ± 3.4 μM; SIs, 37.35 and 15.69, respectively). We also sought to determine whether they could interfere with the clathrin-dependent endocytosis pathway using transferrin receptor (TfR) as an indicator. CC/Fr.2 inhibited the internalization of TfR but the procyanidins did not. Taken together, CC/Fr.2 contains unknown substances, that could inhibit the infection, probably by interfering with endocytosis, and it also contains procyanidins that did not inhibit the internalization but inhibited the infection. Therefore, CC extracts contain anti-virus activities that act through distinct mechanisms according to differences in the compounds or mixtures.
Collapse
Affiliation(s)
- Min Zhuang
- Division of Emerging Infectious Diseases, Department of Internal Medicine, Tohoku University, 980-8574, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Popelová O, Sterba M, Simůnek T, Mazurová Y, Guncová I, Hroch M, Adamcová M, Gersl V. Deferiprone does not protect against chronic anthracycline cardiotoxicity in vivo. J Pharmacol Exp Ther 2008; 326:259-69. [PMID: 18434588 DOI: 10.1124/jpet.108.137604] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Anthracycline cardiotoxicity ranks among the most severe complications of cancer chemotherapy. Although its pathogenesis is only incompletely understood, "reactive oxygen species (ROS) and iron" hypothesis has gained the widest acceptance. Besides dexrazoxane, novel oral iron chelator deferiprone has been recently reported to afford significant cardioprotection in both in vitro and ex vivo conditions. Therefore, the aim of this study was to assess whether deferiprone 1) has any effect on the anticancer action of daunorubicin and 2) whether it can overcome or significantly reduce the chronic anthracycline cardiotoxicity in the in vivo rabbit model (daunorubicin, 3 mg/kg i.v., weekly for 10 weeks). First, using the leukemic cell line, deferiprone (1-300 microM) was shown not to blunt the antiproliferative effect of daunorubicin. Instead, in clinically relevant concentrations (>10 microM), deferiprone augmented the antiproliferative action of daunorubicin. However, deferiprone (10 or 50 mg/kg administered p.o. before each daunorubicin dose) failed to afford significant protection against daunorubicin-induced mortality, left ventricular lipoperoxidation, cardiac dysfunction, and morphological cardiac deteriorations, as well as an increase in plasma cardiac troponin T. Hence, this first in vivo study changes the current view on deferiprone as a potential cardioprotectant against anthracycline cardiotoxicity. In addition, these results, together with our previous findings, further suggest that the role of iron and its chelation in anthracycline cardiotoxicity is not as trivial as originally believed and/or other mechanisms unrelated to iron-catalyzed ROS production are involved.
Collapse
Affiliation(s)
- Olga Popelová
- Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Králové, Simkova 870, 500 38 Hradec Králové, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|