1
|
Brunialti E, Rizzi N, Pinto-Costa R, Villa A, Panzeri A, Meda C, Rebecchi M, Di Monte DA, Ciana P. Design and validation of a reporter mouse to study the dynamic regulation of TFEB and TFE3 activity through in vivo imaging techniques. Autophagy 2024; 20:1879-1894. [PMID: 38522425 PMCID: PMC11262230 DOI: 10.1080/15548627.2024.2334111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/18/2024] [Indexed: 03/26/2024] Open
Abstract
TFEB and TFE3 belong to the MiT/TFE family of transcription factors that bind identical DNA responsive elements in the regulatory regions of target genes. They are involved in regulating lysosomal biogenesis, function, exocytosis, autophagy, and lipid catabolism. Precise control of TFEB and TFE3 activity is crucial for processes such as senescence, stress response, energy metabolism, and cellular catabolism. Dysregulation of these factors is implicated in various diseases, thus researchers have explored pharmacological approaches to modulate MiT/TFE activity, considering these transcription factors as potential therapeutic targets. However, the physiological complexity of their functions and the lack of suitable in vivo tools have limited the development of selective MiT/TFE modulating agents. Here, we have created a reporter-based biosensor, named CLEARoptimized, facilitating the pharmacological profiling of TFEB- and TFE3-mediated transcription. This innovative tool enables the measurement of TFEB and TFE3 activity in living cells and mice through imaging and biochemical techniques. CLEARoptimized consists of a promoter with six coordinated lysosomal expression and regulation motifs identified through an in-depth bioinformatic analysis of the promoters of 128 TFEB-target genes. The biosensor drives the expression of luciferase and tdTomato reporter genes, allowing the quantification of TFEB and TFE3 activity in cells and in animals through optical imaging and biochemical assays. The biosensor's validity was confirmed by modulating MiT/TFE activity in both cell culture and reporter mice using physiological and pharmacological stimuli. Overall, this study introduces an innovative tool for studying autophagy and lysosomal pathway modulation at various biological levels, from individual cells to the entire organism.Abbreviations: CLEAR: coordinated lysosomal expression and regulation; MAR: matrix attachment regions; MiT: microphthalmia-associated transcription factor; ROI: region of interest; TBS: tris-buffered saline; TF: transcription factor; TFE3: transcription factor binding to IGHM enhancer 3; TFEB: transcription factor EB; TH: tyrosine hydroxylase; TK: thymidine kinase; TSS: transcription start site.
Collapse
Affiliation(s)
| | | | - Rita Pinto-Costa
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Alessandro Villa
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Alessia Panzeri
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Clara Meda
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Monica Rebecchi
- Department of Health Sciences, University of Milan, Milan, Italy
| | | | - Paolo Ciana
- Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
2
|
St Germain M, Iraji R, Bakovic M. Phosphatidylethanolamine homeostasis under conditions of impaired CDP-ethanolamine pathway or phosphatidylserine decarboxylation. Front Nutr 2023; 9:1094273. [PMID: 36687696 PMCID: PMC9849821 DOI: 10.3389/fnut.2022.1094273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
Phosphatidylethanolamine is the major inner-membrane lipid in the plasma and mitochondrial membranes. It is synthesized in the endoplasmic reticulum from ethanolamine and diacylglycerol (DAG) by the CDP-ethanolamine pathway and from phosphatidylserine by decarboxylation in the mitochondria. Recently, multiple genetic disorders that impact these pathways have been identified, including hereditary spastic paraplegia 81 and 82, Liberfarb syndrome, and a new type of childhood-onset neurodegeneration-CONATOC. Individuals with these diseases suffer from multisystem disorders mainly affecting neuronal function. This indicates the importance of maintaining proper phospholipid homeostasis when major biosynthetic pathways are impaired. This study summarizes the current knowledge of phosphatidylethanolamine metabolism in order to identify areas of future research that might lead to the development of treatment options.
Collapse
|
3
|
Della Torre S, Vegeto E, Ciana P. The Use of ERE-Luc Reporter Mice to Monitor Estrogen Receptor Transcriptional Activity in a Spatio-Temporal Dimension. Methods Mol Biol 2022; 2418:153-172. [PMID: 35119665 DOI: 10.1007/978-1-0716-1920-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In spite of the fact that women spend 1/3 of their lives in postmenopause, the search for appropriate therapies able to counteract the derangements associated with the menopause still represents a sort of sought after the "Holy Grail."Nowadays, the combination of estrogens and selective estrogen receptor modulators (SERMs), a class of compounds with a mixed agonist/antagonistic activity on the estrogen receptor (ER) in various tissues, represents the most promising approach to improve postmenopausal women's health, by preserving the benefits while avoiding the side effects of estrogen-based therapy.Given their complex mechanisms of action, the evaluation of SERM activity in combination with conjugated estrogens (CE) requires a multifactorial analysis that takes into account the multifaceted and dynamic effects of these compounds in target tissues, even in relation to the physiological/pathological status.To accomplish such a goal, we took advantage of the ERE-Luc model, a reporter mouse that allows the monitoring of ER transcriptional activity in a spatio-temporal dimension. Cluster analyses performed on in vivo/ex vivo bioluminescence (BLI) data and ex vivo luciferase activity enabled to sustain the combination of CE plus bazedoxifene (TSEC, tissue-selective estrogen complex) as a valuable option for the pharmacological treatment of the postmenopause.
Collapse
Affiliation(s)
- Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy.
| | - Elisabetta Vegeto
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Paolo Ciana
- Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Enright JM, Zhang S, Thebeau C, Siebert E, Jin A, Gadiraju V, Zhang X, Chen S, Semenkovich CF, Rajagopal R. Fenofibrate Reduces the Severity of Neuroretinopathy in a Type 2 Model of Diabetes without Inducing Peroxisome Proliferator-Activated Receptor Alpha-Dependent Retinal Gene Expression. J Clin Med 2020; 10:jcm10010126. [PMID: 33396512 PMCID: PMC7794763 DOI: 10.3390/jcm10010126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/27/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Fenofibrate slows the progression of clinical diabetic retinopathy (DR), but its mechanism of action in the retina remains unclear. Fenofibrate is a known agonist of peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor critical for regulating metabolism, inflammation and oxidative stress. Using a DR mouse model, db/db, we tested the hypothesis that fenofibrate slows early DR progression by activating PPARα in the retina. Relative to healthy littermates, six-month-old db/db mice exhibited elevated serum triglycerides and cholesterol, retinal gliosis, and electroretinography (ERG) changes including reduced b-wave amplitudes and delayed oscillatory potentials. These pathologic changes in the retina were improved by oral fenofibrate. However, fenofibrate did not induce PPARα target gene expression in whole retina or isolated Müller glia. The capacity of the retina to respond to PPARα was further tested by delivering the PPARα agonist GW590735 to the intraperitoneal or intravitreous space in mice carrying the peroxisome proliferator response element (PPRE)-luciferase reporter. We observed strong induction of the reporter in the liver, but no induction in the retina. In summary, fenofibrate treatment of db/db mice prevents the development of early DR but is not associated with induction of PPARα in the retina.
Collapse
Affiliation(s)
- Jennifer M. Enright
- John F. Hardesty Department of Ophthalmology, Washington University in St. Louis, St. Louis, MO 63110, USA; (J.M.E.); (S.Z.); (C.T.); (X.Z.); (S.C.)
| | - Sheng Zhang
- John F. Hardesty Department of Ophthalmology, Washington University in St. Louis, St. Louis, MO 63110, USA; (J.M.E.); (S.Z.); (C.T.); (X.Z.); (S.C.)
| | - Christina Thebeau
- John F. Hardesty Department of Ophthalmology, Washington University in St. Louis, St. Louis, MO 63110, USA; (J.M.E.); (S.Z.); (C.T.); (X.Z.); (S.C.)
| | - Emily Siebert
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Alexander Jin
- St. Louis University School of Medicine, St. Louis, MO 63104, USA;
| | - Veda Gadiraju
- University of Washington Medical School, Seattle, WA 98195, USA;
| | - Xiaodong Zhang
- John F. Hardesty Department of Ophthalmology, Washington University in St. Louis, St. Louis, MO 63110, USA; (J.M.E.); (S.Z.); (C.T.); (X.Z.); (S.C.)
| | - Shiming Chen
- John F. Hardesty Department of Ophthalmology, Washington University in St. Louis, St. Louis, MO 63110, USA; (J.M.E.); (S.Z.); (C.T.); (X.Z.); (S.C.)
| | - Clay F. Semenkovich
- Division of Endocrinology, Metabolism and Lipid Research, Washington University in St. Louis, St. Louis, MO 63110, USA;
| | - Rithwick Rajagopal
- John F. Hardesty Department of Ophthalmology, Washington University in St. Louis, St. Louis, MO 63110, USA; (J.M.E.); (S.Z.); (C.T.); (X.Z.); (S.C.)
- Correspondence:
| |
Collapse
|
5
|
Lee WJ, Ham SA, Lee GH, Choi MJ, Yoo H, Paek KS, Lim DS, Hong K, Hwang JS, Seo HG. Activation of peroxisome proliferator-activated receptor delta suppresses BACE1 expression by up-regulating SOCS1 in a JAK2/STAT1-dependent manner. J Neurochem 2019; 151:370-385. [PMID: 31063584 DOI: 10.1111/jnc.14715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/10/2019] [Accepted: 04/25/2019] [Indexed: 01/07/2023]
Abstract
Neuronal expression of beta-secretase 1 (BACE1) has been implicated in the progression of Alzheimer's disease. However, the mechanisms that regulate BACE1 expression are unclear. Here, we show that peroxisome proliferator-activated receptor delta (PPARδ) decreases BACE1 expression by up-regulating suppressor of cytokine signaling 1 (SOCS1) in SH-SY5Y neuroblastoma cells. The activation of PPARδ by GW501516, a specific PPARδ agonist, inhibited expression of BACE1. This effect was abrogated by shRNA-mediated knockdown of PPARδ and by treatment with the PPARδ antagonist GSK0660, indicating that PPARδ is involved in GW501516-mediated suppression of BACE1 expression. On the other hand, GW501516-activated PPARδ induced expression of SOCS1, which is a negative regulator of cytokine signal transduction, at the transcriptional level by binding to a PPAR response element in its promoter. This GW501516-mediated induction of SOCS1 expression led to down-regulation of BACE1 expression via inactivation of signal transducer and activator of transcription 1. GW501516-activated PPARδ suppressed the generation of neurotoxic amyloid beta (Aβ) in accordance with the decrease in BACE1 expression. Taken together, these results indicate that PPARδ attenuates BACE1 expression via SOCS1-mediated inhibition of signal transducer and activator of transcription 1 signaling, thereby suppressing BACE1-associated generation of neurotoxic Aβ.
Collapse
Affiliation(s)
- Won Jin Lee
- College of Sang-Huh Life Sciences, Konkuk University, Seoul, Korea
| | - Sun Ah Ham
- College of Sang-Huh Life Sciences, Konkuk University, Seoul, Korea
| | - Gyeong Hee Lee
- College of Sang-Huh Life Sciences, Konkuk University, Seoul, Korea
| | - Mi-Jung Choi
- College of Sang-Huh Life Sciences, Konkuk University, Seoul, Korea
| | - Hyunjin Yoo
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul, Korea
| | | | - Dae-Seog Lim
- Department of Biotechnology, CHA University, Seongnam, Korea
| | - Kwonho Hong
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul, Korea
| | - Jung Seok Hwang
- College of Sang-Huh Life Sciences, Konkuk University, Seoul, Korea
| | - Han Geuk Seo
- College of Sang-Huh Life Sciences, Konkuk University, Seoul, Korea
| |
Collapse
|
6
|
Rizzi N, Rebecchi M, Levandis G, Ciana P, Maggi A. Identification of novel loci for the generation of reporter mice. Nucleic Acids Res 2017; 45:e37. [PMID: 27899606 PMCID: PMC5389565 DOI: 10.1093/nar/gkw1142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/08/2016] [Indexed: 12/25/2022] Open
Abstract
Deciphering the etiology of complex pathologies at molecular level requires longitudinal studies encompassing multiple biochemical pathways (apoptosis, proliferation, inflammation, oxidative stress). In vivo imaging of current reporter animals enabled the spatio-temporal analysis of specific molecular events, however, the lack of a multiplicity of loci for the generalized and regulated expression of the integrated transgenes hampers the creation of systems for the simultaneous analysis of more than a biochemical pathways at the time. We here developed and tested an in vivo-based methodology for the identification of multiple insertional loci suitable for the generation of reliable reporter mice. The validity of the methodology was tested with the generation of novel mice useful to report on inflammation and oxidative stress.
Collapse
Affiliation(s)
- Nicoletta Rizzi
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9 20133 Milan, Italy
| | - Monica Rebecchi
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9 20133 Milan, Italy
| | - Giovanna Levandis
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9 20133 Milan, Italy
| | - Paolo Ciana
- Center of Excellence on Neurodegenerative Diseases and Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Via Balzaretti 9 20133 Milan, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9 20133 Milan, Italy
| |
Collapse
|
7
|
Endothelial LRP1 regulates metabolic responses by acting as a co-activator of PPARγ. Nat Commun 2017; 8:14960. [PMID: 28393867 PMCID: PMC5394236 DOI: 10.1038/ncomms14960] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 02/16/2017] [Indexed: 01/04/2023] Open
Abstract
Low-density lipoprotein receptor-related protein 1 (LRP1) regulates lipid and glucose metabolism in liver and adipose tissue. It is also involved in central nervous system regulation of food intake and leptin signalling. Here we demonstrate that endothelial Lrp1 regulates systemic energy homeostasis. Mice with endothelial-specific Lrp1 deletion display improved glucose sensitivity and lipid profiles combined with increased oxygen consumption during high-fat-diet-induced obesity. We show that the intracellular domain of Lrp1 interacts with the nuclear receptor Pparγ, a central regulator of lipid and glucose metabolism, acting as its transcriptional co-activator in endothelial cells. Therefore, Lrp1 not only acts as an endocytic receptor but also directly participates in gene transcription. Our findings indicate an underappreciated functional role of endothelium in maintaining systemic energy homeostasis.
Collapse
|
8
|
AML1/ETO accelerates cell migration and impairs cell-to-cell adhesion and homing of hematopoietic stem/progenitor cells. Sci Rep 2016; 6:34957. [PMID: 27713544 PMCID: PMC5054523 DOI: 10.1038/srep34957] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022] Open
Abstract
The AML1/ETO fusion protein found in acute myeloid leukemias functions as a transcriptional regulator by recruiting co-repressor complexes to its DNA binding site. In order to extend the understanding of its role in preleukemia, we expressed AML1/ETO in a murine immortalized pluripotent hematopoietic stem/progenitor cell line, EML C1, and found that genes involved in functions such as cell-to-cell adhesion and cell motility were among the most significantly regulated as determined by RNA sequencing. In functional assays, AML1/ETO-expressing cells showed a decrease in adhesion to stromal cells, an increase of cell migration rate in vitro, and displayed an impairment in homing and engraftment in vivo upon transplantation into recipient mice. Our results suggest that AML1/ETO expression determines a more mobile and less adherent phenotype in preleukemic cells, therefore altering the interaction with the hematopoietic niche, potentially leading to the migration across the bone marrow barrier and to disease progression.
Collapse
|
9
|
Della Torre S, Ciana P. Selective Estrogen Receptor Modulators and the Tissue-Selective Estrogen Complex: Analysis of Cell Type-Specific Effects Using In Vivo Imaging of a Reporter Mouse Model. Methods Mol Biol 2016; 1366:297-313. [PMID: 26585144 DOI: 10.1007/978-1-4939-3127-9_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Selective estrogen receptor modulators (SERMs) are a class of compounds that act differentially on the estrogen receptor (ER) in various tissues with a mixed agonist/antagonistic activity (agonistic in some tissues while antagonist in others). This peculiarity represents a challenge for developing new hormone replacement therapies (HRTs) and highlights the need of new tools to evaluate the specific effects of a given SERM in different organs/tissues of an entire organism and with time. Reporter mice represent invaluable tools in pharmacology to analyze specific signaling in physiological conditions and monitor the effects of drugs acting on these signals in a spatio-temporal dimension. Here, we describe an in vivo protocol to examine the effects of different SERMs on estrogen receptor activity by using the ERE-Luc reporter model, a mouse that reports ER transcriptional activity.
Collapse
Affiliation(s)
- Sara Della Torre
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133, Milan, Italy.
| | - Paolo Ciana
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133, Milan, Italy
| |
Collapse
|
10
|
Abstract
Noninvasive, imaging-based methodologies provide for the first time the possibility to spatio-temporally investigate physiopathological events and long-term effects of drug administration of exposure to environmental and alimentary toxic compounds. Hence, this novel methodology could enable us to measure the dynamics of specific molecular pathways in live animals. In the last few years, animals, particularly mice, were genetically modified to respond to a specific stimulus with the production of proteins, named "reporters," that are easily detected and quantitated by in vivo and ex vivo imaging. These "reporter mice" are gradually being applied to the pharmaco-toxicological research. In the generation of a reporter mouse useful for pharmaco-toxicological studies several elements need to be considered in the selection of the reporter system: the half-life of proteins should be compatible with the necessities of the study to assess the onset and the termination of the stimulus of interest, in all tissues the response should be proportional to the given stimulus, and the imaging modalities requested for reporter measurements should be applicable to high-throughput screening. Bioluminescence-based imaging (BLI) in small animals has the advantage over other modalities that does not require too sophisticated equipment or specifically and highly trained personnel, and furthermore may be carried out at a relative rapidity and low cost; for these reasons several luciferases have been developed for in vivo imaging applications and used in the generation of reporter mice. We here describe a BLI-based reporter mouse created to respond to estrogenic stimuli, which has been applied to the study of female physiopathology as well as for the identification of the effects of selective drugs or toxic compounds present in the environment and in the alimentary chain.
Collapse
|
11
|
Rizzi N, Manni I, Vantaggiato C, Delledonne GA, Gentileschi MP, Maggi A, Piaggio G, Ciana P. In VivoImaging of Cell Proliferation for a Dynamic, Whole Body, Analysis of Undesired Drug Effects. Toxicol Sci 2015; 145:296-306. [DOI: 10.1093/toxsci/kfv056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Gilardi F, Giudici M, Mitro N, Maschi O, Guerrini U, Rando G, Maggi A, Cermenati G, Laghezza A, Loiodice F, Pochetti G, Lavecchia A, Caruso D, De Fabiani E, Bamberg K, Crestani M. LT175 is a novel PPARα/γ ligand with potent insulin-sensitizing effects and reduced adipogenic properties. J Biol Chem 2014; 289:6908-6920. [PMID: 24451380 DOI: 10.1074/jbc.m113.506394] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors regulating lipid and glucose metabolism. Ongoing drug discovery programs aim to develop dual PPARα/γ agonists devoid of the side effects of the marketed antidiabetic agents thiazolidinediones and the dual agonists glitazars. Recently, we described a new dual PPARα/γ ligand, LT175, with a partial agonist profile against PPARγ and interacting with a newly identified region of the PPARγ-ligand binding domain (1). Here we show that LT175 differentially activated PPARγ target genes involved in fatty acid esterification and storage in 3T3-L1-derived adipocytes. This resulted in a less severe lipid accumulation compared with that triggered by rosiglitazone, suggesting that LT175 may have a lower adipogenic activity. Consistent with this hypothesis, in vivo administration of LT175 to mice fed a high-fat diet decreased body weight, adipocyte size, and white adipose tissue mass, as assessed by magnetic resonance imaging. Furthermore, LT175 significantly reduced plasma glucose, insulin, non-esterified fatty acids, triglycerides, and cholesterol and increased circulating adiponectin and fibroblast growth factor 21 levels. Oral glucose and insulin tolerance tests showed that the compound improves glucose homeostasis and insulin sensitivity. Moreover, we demonstrate that the peculiar interaction of LT175 with PPARγ affected the recruitment of the coregulators cyclic-AMP response element-binding protein-binding protein and nuclear corepressor 1 (NCoR1), fundamentals for the PPARγ-mediated adipogenic program. In conclusion, our results describe a new PPAR ligand, modulating lipid and glucose metabolism with reduced adipogenic activity, that may be used as a model for a series of novel molecules with an improved pharmacological profile for the treatment of dyslipidemia and type 2 diabetes.
Collapse
Affiliation(s)
- Federica Gilardi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Marco Giudici
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Nico Mitro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Omar Maschi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Gianpaolo Rando
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Adriana Maggi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Gaia Cermenati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Antonio Laghezza
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Fulvio Loiodice
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Giorgio Pochetti
- Consiglio Nazionale delle Ricerche (CNR), 00016 Montelibretti, Rome, Italy
| | - Antonio Lavecchia
- Dipartimento di Farmacia, "Drug Discovery" Laboratory, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Emma De Fabiani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | | | - Maurizio Crestani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
13
|
Age-dependent relevance of endogenous 5-lipoxygenase derivatives in anxiety-like behavior in mice. PLoS One 2014; 9:e85009. [PMID: 24416334 PMCID: PMC3885659 DOI: 10.1371/journal.pone.0085009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 11/25/2013] [Indexed: 11/22/2022] Open
Abstract
When 5-lipoxygenase (5-LO) is inhibited, roughly half of the CNS effect of the prototypic endocannabinoid anandamide (AEA) is lost. Therefore, we decided to investigate whether inhibiting this enzyme would influence physiological functions classically described as being under control of the endocannabinoid system. Although 5-LO inhibition by MK-886 reduced lipoxin A4 levels in the brain, no effect was found in the elevated plus maze (EPM), even at the highest possible doses, via i.p. (10 mg/kg,) or i.c.v. (500 pmol/2 µl) routes. Accordingly, no alterations in anxiety-like behavior in the EPM test were observed in 5-LO KO mice. Interestingly, aged mice, which show reduced circulating lipoxin A4 levels, were sensitive to MK-886, displaying an anxiogenic-like state in response to treatment. Moreover, exogenous lipoxin A4 induced an anxiolytic-like profile in the EPM test. Our findings are in line with other reports showing no difference between FLAP KO or 5-LO KO and their control strains in adult mice, but increased anxiety-like behavior in aged mice. We also show for the first time that lipoxin A4 affects mouse behavior. In conclusion, we propose an age-dependent relevancy of endogenous 5-LO derivatives in the modulation of anxiety-like behavior, in addition to a potential for exogenous lipoxin A4 in producing an anxiolytic-like state.
Collapse
|
14
|
Peroxisome proliferator-activated receptors and Alzheimer's disease: hitting the blood-brain barrier. Mol Neurobiol 2013; 48:438-51. [PMID: 23494748 DOI: 10.1007/s12035-013-8435-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/26/2013] [Indexed: 01/20/2023]
Abstract
The blood-brain barrier (BBB) is often affected in several neurodegenerative disorders, such as Alzheimer's disease (AD). Integrity and proper functionality of the neurovascular unit are recognized to be critical for maintenance of the BBB. Research has traditionally focused on structural integrity more than functionality, and BBB alteration has usually been explained more as a consequence than a cause. However, ongoing evidence suggests that at the early stages, the BBB of a diseased brain often shows distinct expression patterns of specific carriers such as members of the ATP-binding cassette (ABC) transport protein family, which alter BBB traffic. In AD, amyloid-β (Aβ) deposits are a pathological hallmark and, as recently highlighted by Cramer et al. (2012), Aβ clearance is quite fundamental and is a less studied approach. Current knowledge suggests that BBB traffic plays a more important role than previously believed and that pharmacological modulation of the BBB may offer new therapeutic alternatives for AD. Recent investigations carried out in our laboratory indicate that peroxisome proliferator-activated receptor (PPAR) agonists are able to prevent Aβ-induced neurotoxicity in hippocampal neurons and cognitive impairment in a double transgenic mouse model of AD. However, even when enough literature about PPAR agonists and neurodegenerative disorders is available, the problem of how they exert their functions and help to prevent and rescue Aβ-induced neurotoxicity is poorly understood. In this review, along with highlighting the main features of the BBB and its role in AD, we will discuss information regarding the modulation of BBB components, including the possible role of PPAR agonists as BBB traffic modulators.
Collapse
|
15
|
El-Jamal N, Dubuquoy L, Auwerx J, Bertin B, Desreumaux P. In vivoimaging reveals selective PPAR activity in the skin of peroxisome proliferator-activated receptor responsive element-luciferase reporter mice. Exp Dermatol 2013; 22:137-40. [DOI: 10.1111/exd.12082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2012] [Indexed: 12/29/2022]
Affiliation(s)
| | | | - Johan Auwerx
- Institut Clinique de la Souris; Illkirch; France
| | | | | |
Collapse
|
16
|
Solingapuram Sai KK, Kil KE, Tu Z, Chu W, Finck BN, Rothfuss JM, Shoghi KI, Welch MJ, Gropler RJ, Mach RH. Synthesis, radiolabeling and initial in vivo evaluation of [(11)C]KSM-01 for imaging PPAR-α receptors. Bioorg Med Chem Lett 2012; 22:6233-6. [PMID: 22939697 DOI: 10.1016/j.bmcl.2012.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/20/2012] [Accepted: 08/01/2012] [Indexed: 02/03/2023]
Abstract
Peroxisome proliferator-activated receptor alpha (PPAR-α) is a ligand-activated nuclear receptor transcription factor that regulates the fatty acid β-oxidation. An in vitro assay identified the p-methoxy phenyl ureido thiobutyric acid derivative KSM-01 (IC(50)=0.28±0.09nM) having a higher affinity to activate PPAR-α than the PPAR-α agonist GW7647 (IC(50)=0.46±0.19nM). In this study, we report the synthesis and initial in vivo evaluation of [(11)C]KSM-01. The radiosynthesis was carried out by first alkylating the corresponding p-phenol precursor with [(11)C]MeI in DMF using NaOH, followed by deprotection of the t-butyl ester group by TFA, yielding [(11)C]KSM-01. SUV analysis of dynamic micro PET/CT imaging data showed that [(11)C]KSM-01 accumulation was ∼2.0-fold greater in cardiac-specific PPAR-α overexpressing transgenic mice compared to wild-type littermates. The post-PET biodistribution studies were consistent with these results and demonstrated 2.5-fold greater radiotracer uptake in the heart of transgenic mice compared to the wild-type littermates. These results demonstrate the potential utility of PPAR-α agonists as PET radiopharmaceuticals.
Collapse
Affiliation(s)
- Kiran Kumar Solingapuram Sai
- Division of Radiological Sciences, Washington University School of Medicine, 510 S Kingshighway Blvd, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Oliva P, Roncoroni C, Radaelli E, Brunialti E, Rizzi N, De Maglie M, Scanziani E, Piaggio G, Ciana P, Komm B, Maggi A. Global Profiling of TSEC Proliferative Potential by the Use of a Reporter Mouse for Proliferation. Reprod Sci 2012; 20:119-28. [DOI: 10.1177/1933719111431002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Paolo Oliva
- TOP srl, Transgenic Operative Products, Lodi, Italy
| | | | - Enrico Radaelli
- DIPAV, Faculty of Veterinary Medicine, University of Milan, Milan, Italy
| | | | | | - Marcella De Maglie
- TOP srl, Transgenic Operative Products, Lodi, Italy
- DIPAV, Faculty of Veterinary Medicine, University of Milan, Milan, Italy
| | | | - Giulia Piaggio
- Experimental Oncology Department, Istituto Regina Elena, IRCCS, Rome, Italy
| | - Paolo Ciana
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | - Barry Komm
- Pfizer Inc. (B.K.), Collegeville, Pennsylvania 19426, USA
| | - Adriana Maggi
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| |
Collapse
|
18
|
Roncoroni C, Rizzi N, Brunialti E, Cali JJ, Klaubert DH, Maggi A, Ciana P. Molecular imaging of cytochrome P450 activity in mice. Pharmacol Res 2012; 65:531-6. [PMID: 22391453 DOI: 10.1016/j.phrs.2012.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 02/17/2012] [Accepted: 02/17/2012] [Indexed: 12/12/2022]
Abstract
Detailed knowledge of drug metabolism is relevant information provided by preclinical drug development research. Oxidative enzymes such as those belonging to P450 family of cytochromes (CYP) play a prominent role in drug metabolism. Here, we propose an innovative method based on bioluminescence in vivo imaging which has the potential to simplify the in vivo measurement of CYP activity also providing a dynamic measure of the effects of a drug on a specific P450 enzyme complex in a living mouse. The method is based on a pro-luciferin which can be converted into the active luciferase substrate by a specific P450 activity. The pro-luciferin is administered to a luciferase reporter mouse which produces luminescent signals in relation to the cytochrome activity present in each tissue. The photon emission generated can be easily localized and quantified by optical imaging. To demonstrate the validity of the system, we pharmacologically induced hepatic Cyp3a in the reporter mouse and proved that pro-luciferin administration generates a Cyp3a selective signal in the chest area that can be efficiently detected by optical imaging. The kind of tool generated has the potential to be exploited for the study of additional CYPs.
Collapse
Affiliation(s)
- Chiara Roncoroni
- Top (Transgenic Operative Products) Srl, via Einstein, 26900 Lodi, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
The environmental chemical tributyltin chloride (TBT) shows both estrogenic and adipogenic activities in mice which might depend on the exposure dose. Toxicol Appl Pharmacol 2011; 255:65-75. [PMID: 21683088 DOI: 10.1016/j.taap.2011.05.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 05/24/2011] [Accepted: 05/26/2011] [Indexed: 12/19/2022]
Abstract
Exposure during early development to chemicals with hormonal action may be associated with weight gain during adulthood because of altered body homeostasis. It is known that organotins affect adipose mass when exposure occurs during fetal development, although no knowledge of effects are available for exposures after birth. Here we show that the environmental organotin tributyltin chloride (TBT) exerts adipogenic action when peripubertal and sexually mature mice are exposed to the chemical. The duration and extent of these effects depend on the sex and on the dose of the compound, and the effects are relevant at doses close to the estimated human intake (0.5μg/kg). At higher doses (50-500μg/kg), TBT also activated estrogen receptors (ERs) in adipose cells in vitro and in vivo, based on results from acute and longitudinal studies in ERE/luciferase reporter mice. In 3T3-L1 cells (which have no ERs), transiently transfected with the ERE-dependent reporter plus or minus ERα or ERβ, TBT (in a dose range of 1-100nM) directly targets each ER subtype in a receptor-specific manner through a direct mechanism mediated by ERα in undifferentiated preadipocytic cells and by ERβ in differentiating adipocytes. The ER antagonist ICI-182,780 inhibits this effect. In summary, the results of this work suggest that TBT is adipogenic at all ages and in both sexes and that it might be an ER activator in fat cells. These findings might help to resolve the apparent paradox of an adipogenic chemical being also an estrogen receptor activator by showing that the two apparently opposite actions are separated by the different doses to which the organism is exposed.
Collapse
|
20
|
Della Torre S, Biserni A, Rando G, Monteleone G, Ciana P, Komm B, Maggi A. The conundrum of estrogen receptor oscillatory activity in the search for an appropriate hormone replacement therapy. Endocrinology 2011; 152:2256-65. [PMID: 21505049 PMCID: PMC3100626 DOI: 10.1210/en.2011-0173] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
By the use of in vivo imaging, we investigated the dynamics of estrogen receptor (ER) activity in intact, ovariectomized, and hormone-replaced estrogen response element-luciferase reporter mice. The study revealed the existence of a long-paced, noncircadian oscillation of ER transcriptional activity. Among the ER-expressing organs, this oscillation was asynchronous and its amplitude and period were tissue dependent. Ovariectomy affected the amplitude but did not suppress ER oscillations, suggesting the presence of tissue endogenous oscillators. Long-term administration of raloxifene, bazedoxifene, combined estrogens alone or with basedoxifene to ovariectomized estrogen response element-luciferase mice showed that each treatment induced a distinct spatiotemporal profile of ER activity, demonstrating that the phasing of ER activity among tissues may be regulated by the chemical nature and the concentration of circulating estrogen. This points to the possibility of a hierarchical organization of the tissue-specific pacemakers. Conceivably, the rhythm of ER transcriptional activity translates locally into the activation of specific gene networks enabling ER to significantly change its physiological activity according to circulating estrogens. In reproductive and nonreproductive organs this hierarchical regulation may provide ER with the signaling plasticity necessary to drive the complex metabolic changes occurring at each female reproductive status. We propose that the tissue-specific oscillatory activity here described is an important component of ER signaling necessary for the full hormone action including the beneficial effects reported for nonreproductive organs. Thus, this mechanism needs to be taken in due consideration to develop novel, more efficacious, and safer hormone replacement therapies.
Collapse
Affiliation(s)
- Sara Della Torre
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
Doshi LS, Brahma MK, Bahirat UA, Dixit AV, Nemmani KVS. Discovery and development of selective PPAR gamma modulators as safe and effective antidiabetic agents. Expert Opin Investig Drugs 2010; 19:489-512. [PMID: 20367191 DOI: 10.1517/13543781003640169] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
IMPORTANCE OF THE FIELD PPARgamma full agonists (pioglitazone and rosiglitazone) are the mainstay drugs for the treatment of type 2 diabetes; however, mechanism-based side effects have limited their full therapeutic potential. In recent years, much progress has been achieved in the discovery and development of selective PPARgamma modulators (SPPARgammaMs) as safer alternatives to PPARgamma full agonists. AREAS COVERED IN THIS REVIEW This review focuses on the preclinical and clinical data of all the SPPARgammaMs discovered so far, retrieved by searching PubMed, Prous Integrity database and company news updates from 1999 to date. WHAT THE READER WILL GAIN Here we thoroughly discuss SPPARgammaMs' mode of action, briefly examine new ways to identify superior SPPARgammaMs, and finally, compare and contrast the pharmacological and safety profile of various agents. TAKE HOME MESSAGE The preclinical and clinical findings clearly suggest that selective PPARgamma modulators have the potential to become the next generation of PPARgamma agonists: effective insulin sensitizers with a superior safety profile to that of PPARgamma full agonists.
Collapse
Affiliation(s)
- Lalit S Doshi
- Department of Pharmacology, Piramal Life Sciences Limited, 1 Nirlon Complex, Goregaon (E), Mumbai - 400 063, India
| | | | | | | | | |
Collapse
|
22
|
Rando G, Biserni A, Ciana P, Maggi A. Profiling of drug action using reporter mice and molecular imaging. Methods Mol Biol 2010; 602:79-92. [PMID: 20012393 DOI: 10.1007/978-1-60761-058-8_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Reporter mice associated to molecular imaging represent a major asset for the study of the spatio-temporal effects of drugs in living animals. The field is still relatively young and so far the number of animals genetically modified to express a given reporter gene ubiquitously and under the control of specific drugs is still limited. For a reporter animal the indispensable elements for the application to drug research and development are (i) the short life of the reporter enabling to have a clear view of the onset as well as the termination of drug effects, (ii) the generalized, drug-dependent activation of the reporter, and (iii) imaging modality suitable for high-throughput analysis. Because of its relative cheapness and ease to perform, in addition to all the above considerations, bioluminescence-based imaging is now regarded as the best imaging technology to be applied to the field of drug research. We show here the application of reporter mouse systems for drug screening in living animals in order to compare drug potency on target and specificity of action.
Collapse
Affiliation(s)
- Gianpaolo Rando
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | | | | | | |
Collapse
|
23
|
Rando G, Ramachandran B, Rebecchi M, Ciana P, Maggi A. Differential effect of pure isoflavones and soymilk on estrogen receptor activity in mice. Toxicol Appl Pharmacol 2009; 237:288-97. [DOI: 10.1016/j.taap.2009.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 03/17/2009] [Accepted: 03/26/2009] [Indexed: 01/06/2023]
|
24
|
Penza M, Jeremic M, Montani C, Unkila M, Caimi L, Mazzoleni G, Di Lorenzo D. Alternatives to animal experimentation for hormonal compounds research. GENES AND NUTRITION 2009; 4:165-72. [PMID: 19468777 DOI: 10.1007/s12263-009-0124-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 05/07/2009] [Indexed: 11/28/2022]
Abstract
Alternatives to animal testing and the identification of reliable methods that may decrease the need for animals are currently the subject of intense investigation worldwide. Alternative testing procedures are particularly important for synthetic and natural chemicals that exert their biological actions through binding nuclear receptors, called nuclear receptors-interacting compounds (NR-ICs), for which research is increasingly emphasizing the limits of several models in the accurate estimation of the physiological consequences of exposure to these compounds. In particular, estrogen receptor interacting compounds (ER-ICs) have a great impact on human health from the therapeutic, nutritional, and toxicological point of view due to the highly permissive nature of the estrogen receptors towards a large number of natural and synthetic compounds. Similar to in vitro systems, recently generated animal models (e.g., animal models generated for the study of estrogen receptor ligands) may fulfill the 3R principles: refine, reduce, and replace. If used correctly, NR-regulated models, such as reporter mice, xenopus, or zebrafish, and models obtained by somatic gene transfer in reporter systems, combined with imaging technologies, may contribute to strongly decreasing the overall number of animals required for NR-IC testing and research. With these models, flexible and highly standardized parameters and reporter marker quantification can be obtained. Here, we highlight the need for the substitution of currently used testing models with more appropriate ones that can reproduce the features and reactivity of specific mammalian target tissue/organs. We consider the promotion of this advancement a research priority bearing scientific, economic, social, and ethical relevance.
Collapse
Affiliation(s)
- M Penza
- Laboratory of Biotechnology, Department of Laboratory Medicine, Civic Hospital of Brescia, Piazzale Spedali Civili 1, A.O. Spedali Civili di Brescia, 25123, Brescia, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Brufani M, Ceccacci F, Filocamo L, Garofalo B, Joudioux R, La Bella A, Leonelli F, Migneco LM, Marini Bettolo R, Farina PM, Ashcroft GS, Routley C, Hardman M, Meda C, Rando G, Maggi A. Novel Locally Active Estrogens Accelerate Cutaneous Wound Healing. A Preliminary Study. Mol Pharm 2009; 6:543-56. [DOI: 10.1021/mp800206b] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mario Brufani
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Università degli Studi di Roma “La Sapienza”, via degli Apuli 9, I-00185 Roma, Italy, Dipartimento di Chimica and Istituto di Chimica Biomolecolare del CNR, Sezione di Roma, Università degli Studi di Roma “La Sapienza”, P.le Aldo Moro 5, I-00185 Roma, Italy, Euticals Ambrosia S.p.A., Via Monte Rosa, 114/116, 20089 Rozzano (MI), Italy, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, U.K.,
| | - Francesca Ceccacci
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Università degli Studi di Roma “La Sapienza”, via degli Apuli 9, I-00185 Roma, Italy, Dipartimento di Chimica and Istituto di Chimica Biomolecolare del CNR, Sezione di Roma, Università degli Studi di Roma “La Sapienza”, P.le Aldo Moro 5, I-00185 Roma, Italy, Euticals Ambrosia S.p.A., Via Monte Rosa, 114/116, 20089 Rozzano (MI), Italy, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, U.K.,
| | - Luigi Filocamo
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Università degli Studi di Roma “La Sapienza”, via degli Apuli 9, I-00185 Roma, Italy, Dipartimento di Chimica and Istituto di Chimica Biomolecolare del CNR, Sezione di Roma, Università degli Studi di Roma “La Sapienza”, P.le Aldo Moro 5, I-00185 Roma, Italy, Euticals Ambrosia S.p.A., Via Monte Rosa, 114/116, 20089 Rozzano (MI), Italy, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, U.K.,
| | - Barbara Garofalo
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Università degli Studi di Roma “La Sapienza”, via degli Apuli 9, I-00185 Roma, Italy, Dipartimento di Chimica and Istituto di Chimica Biomolecolare del CNR, Sezione di Roma, Università degli Studi di Roma “La Sapienza”, P.le Aldo Moro 5, I-00185 Roma, Italy, Euticals Ambrosia S.p.A., Via Monte Rosa, 114/116, 20089 Rozzano (MI), Italy, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, U.K.,
| | - Roberta Joudioux
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Università degli Studi di Roma “La Sapienza”, via degli Apuli 9, I-00185 Roma, Italy, Dipartimento di Chimica and Istituto di Chimica Biomolecolare del CNR, Sezione di Roma, Università degli Studi di Roma “La Sapienza”, P.le Aldo Moro 5, I-00185 Roma, Italy, Euticals Ambrosia S.p.A., Via Monte Rosa, 114/116, 20089 Rozzano (MI), Italy, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, U.K.,
| | - Angela La Bella
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Università degli Studi di Roma “La Sapienza”, via degli Apuli 9, I-00185 Roma, Italy, Dipartimento di Chimica and Istituto di Chimica Biomolecolare del CNR, Sezione di Roma, Università degli Studi di Roma “La Sapienza”, P.le Aldo Moro 5, I-00185 Roma, Italy, Euticals Ambrosia S.p.A., Via Monte Rosa, 114/116, 20089 Rozzano (MI), Italy, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, U.K.,
| | - Francesca Leonelli
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Università degli Studi di Roma “La Sapienza”, via degli Apuli 9, I-00185 Roma, Italy, Dipartimento di Chimica and Istituto di Chimica Biomolecolare del CNR, Sezione di Roma, Università degli Studi di Roma “La Sapienza”, P.le Aldo Moro 5, I-00185 Roma, Italy, Euticals Ambrosia S.p.A., Via Monte Rosa, 114/116, 20089 Rozzano (MI), Italy, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, U.K.,
| | - Luisa M. Migneco
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Università degli Studi di Roma “La Sapienza”, via degli Apuli 9, I-00185 Roma, Italy, Dipartimento di Chimica and Istituto di Chimica Biomolecolare del CNR, Sezione di Roma, Università degli Studi di Roma “La Sapienza”, P.le Aldo Moro 5, I-00185 Roma, Italy, Euticals Ambrosia S.p.A., Via Monte Rosa, 114/116, 20089 Rozzano (MI), Italy, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, U.K.,
| | - Rinaldo Marini Bettolo
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Università degli Studi di Roma “La Sapienza”, via degli Apuli 9, I-00185 Roma, Italy, Dipartimento di Chimica and Istituto di Chimica Biomolecolare del CNR, Sezione di Roma, Università degli Studi di Roma “La Sapienza”, P.le Aldo Moro 5, I-00185 Roma, Italy, Euticals Ambrosia S.p.A., Via Monte Rosa, 114/116, 20089 Rozzano (MI), Italy, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, U.K.,
| | - Paolo M. Farina
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Università degli Studi di Roma “La Sapienza”, via degli Apuli 9, I-00185 Roma, Italy, Dipartimento di Chimica and Istituto di Chimica Biomolecolare del CNR, Sezione di Roma, Università degli Studi di Roma “La Sapienza”, P.le Aldo Moro 5, I-00185 Roma, Italy, Euticals Ambrosia S.p.A., Via Monte Rosa, 114/116, 20089 Rozzano (MI), Italy, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, U.K.,
| | - Gillian S. Ashcroft
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Università degli Studi di Roma “La Sapienza”, via degli Apuli 9, I-00185 Roma, Italy, Dipartimento di Chimica and Istituto di Chimica Biomolecolare del CNR, Sezione di Roma, Università degli Studi di Roma “La Sapienza”, P.le Aldo Moro 5, I-00185 Roma, Italy, Euticals Ambrosia S.p.A., Via Monte Rosa, 114/116, 20089 Rozzano (MI), Italy, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, U.K.,
| | - Claire Routley
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Università degli Studi di Roma “La Sapienza”, via degli Apuli 9, I-00185 Roma, Italy, Dipartimento di Chimica and Istituto di Chimica Biomolecolare del CNR, Sezione di Roma, Università degli Studi di Roma “La Sapienza”, P.le Aldo Moro 5, I-00185 Roma, Italy, Euticals Ambrosia S.p.A., Via Monte Rosa, 114/116, 20089 Rozzano (MI), Italy, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, U.K.,
| | - Matthew Hardman
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Università degli Studi di Roma “La Sapienza”, via degli Apuli 9, I-00185 Roma, Italy, Dipartimento di Chimica and Istituto di Chimica Biomolecolare del CNR, Sezione di Roma, Università degli Studi di Roma “La Sapienza”, P.le Aldo Moro 5, I-00185 Roma, Italy, Euticals Ambrosia S.p.A., Via Monte Rosa, 114/116, 20089 Rozzano (MI), Italy, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, U.K.,
| | - Clara Meda
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Università degli Studi di Roma “La Sapienza”, via degli Apuli 9, I-00185 Roma, Italy, Dipartimento di Chimica and Istituto di Chimica Biomolecolare del CNR, Sezione di Roma, Università degli Studi di Roma “La Sapienza”, P.le Aldo Moro 5, I-00185 Roma, Italy, Euticals Ambrosia S.p.A., Via Monte Rosa, 114/116, 20089 Rozzano (MI), Italy, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, U.K.,
| | - Gianpaolo Rando
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Università degli Studi di Roma “La Sapienza”, via degli Apuli 9, I-00185 Roma, Italy, Dipartimento di Chimica and Istituto di Chimica Biomolecolare del CNR, Sezione di Roma, Università degli Studi di Roma “La Sapienza”, P.le Aldo Moro 5, I-00185 Roma, Italy, Euticals Ambrosia S.p.A., Via Monte Rosa, 114/116, 20089 Rozzano (MI), Italy, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, U.K.,
| | - Adriana Maggi
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Università degli Studi di Roma “La Sapienza”, via degli Apuli 9, I-00185 Roma, Italy, Dipartimento di Chimica and Istituto di Chimica Biomolecolare del CNR, Sezione di Roma, Università degli Studi di Roma “La Sapienza”, P.le Aldo Moro 5, I-00185 Roma, Italy, Euticals Ambrosia S.p.A., Via Monte Rosa, 114/116, 20089 Rozzano (MI), Italy, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, U.K.,
| |
Collapse
|
26
|
Targeted delivery with peptidomimetic conjugated self-assembled nanoparticles. Pharm Res 2008; 26:612-30. [PMID: 19085091 DOI: 10.1007/s11095-008-9802-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 12/01/2008] [Indexed: 12/28/2022]
Abstract
Peptides produce specific nanostructures, making them useful for targeting in biological systems but they have low bioavailability, potential immunogenicity and poor metabolic stability. Peptidomimetic self-assembled NPs can possess biological recognition motifs as well as providing desired engineering properties. Inorganic NPs, coated with self-assembled macromers for stability and anti-fouling, and conjugated with target-specific ligands, are advancing imaging from the anatomy-based level to the molecular level. Ligand conjugated NPs are attractive for cell-selective tumor drug delivery, since this process has high transport capacity as well as ligand dependent cell specificity. Peptidomimetic NPs can provide stronger interaction with surface receptors on tumor cells, resulting in higher uptake and reduced drug resistance. Self-assembled NPs conjugated with peptidomimetic antigens are ideal for sustained presentation of vaccine antigens to dendritic cells and subsequent activation of T cell mediated adaptive immune response. Self-assembled NPs are a viable alternative to encapsulation for sustained delivery of proteins in tissue engineering. Cell penetrating peptides conjugated to NPs are used as intracellular delivery vectors for gene expression and as transfection agents for plasmid delivery. In this work, synthesis, characterization, properties, immunogenicity, and medical applications of peptidomimetic NPs in imaging, tumor delivery, vaccination, tissue engineering, and intracellular delivery are reviewed.
Collapse
|
27
|
Di Lorenzo D, Rando G, Ciana P, Maggi A. Molecular imaging, an innovative methodology for whole-body profiling of endocrine disrupter action. Toxicol Sci 2008; 106:304-11. [PMID: 18794234 DOI: 10.1093/toxsci/kfn191] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Endocrine disrupters (EDs) are environment and food contaminants known to alter metabolic functions of mammals by interfering with specific endocrine pathways. Many EDs act on steroid hormone target cells by interacting with intracellular receptors (IRs) like estrogen receptors, androgen receptors, and thyroid hormone receptors; other receptors may be engaged. IRs are ligand-operated transcription factors acting in concert with general or cell-specific coregulators. The newly acquired awareness on the panoply of IR functions has increased the concern on potential, unsought, harmful effects of EDs on human health and has questioned the capability of currently available methodologies to identify and study EDs in the environment and in the food chain. Indeed, current in vivo and in vitro methodologies restrict the analysis to very specific organs or cell systems, with obvious limitations in predicting the systemic metabolic consequences of ED exposure. The emphasis recently laid by Regulatory Authorities, including European Center for the Validation of Alternative Methods, on the generation of in vitro model systems for toxicological analyses discouraged the development of models suitable to envision the whole spectrum of ED body actions required when studying compounds acting through IRs. Molecular imaging now provides the opportunity to quantify ED effects in living organisms enabling, for the first time, to acquire a full comprehension of the systemic effects of acute and prolonged exposure to EDs, solving the issue of the potential harm due to repeated low-dose exposure. The systems here reviewed are of unquestionable toxicological relevance and need to be taken into consideration to improve the methodology currently available and in use.
Collapse
Affiliation(s)
- Diego Di Lorenzo
- Laboratory of Biotechnology, Civic Hospital of Brescia, 25123 Brescia, Italy
| | | | | | | |
Collapse
|