1
|
Kokhan VS, Chaprov K, Abaimov DA, Nesterov MS, Pikalov VA. Combined irradiation by gamma-rays and carbon-12 nuclei caused hyperlocomotion and change in striatal metabolism of rats. LIFE SCIENCES IN SPACE RESEARCH 2025; 44:99-107. [PMID: 39864919 DOI: 10.1016/j.lssr.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 01/28/2025]
Abstract
Exposure to ionizing radiation during manned deep space missions to Mars could lead to functional impairments of the central nervous system, which may compromise the success of the mission and affect the quality of life for returning astronauts. Along with radiation-induced changes in cognitive abilities and emotional status, the effects of increased motor activity were observed. The mechanisms behind these phenomena still remain unresolved. We conducted a study on grip strength, locomotor activity and intrasession habituation to novelty in 5-month-old rats after exposure to radiation (combined 0.4 Gy gamma-rays and 0.14 Gy 12C nuclei). At the same time, we carried out neurochemical and molecular analysis of the nucleus accumbens (NAc) and the dorsal striatum (dST). The study revealed radiation-induced hyperlocomotion and enhanced habituation. It also showed an increase in choline concentration and a decreased in 5-hydroxyindoleacetic acid concentration in the NAc after irradiation. In addition to this, a down-regulation of syntaxin 1A in NAc and dST as well as up-regulation α-synuclein in NAc were observed. The obtained data indicate both the damaging effect of irradiation on striatum tissues and the initiation of neuronal/axonal regeneration processes. It is hypothesized that the increase in choline concentration in NAc and the decreased content of syntaxin 1A in dST may be the part of the mechanism responsible for the radiation-induced hyperlocomotion.
Collapse
Affiliation(s)
- Viktor S Kokhan
- V.P. Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow, Russia.
| | - Kirill Chaprov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka, Russia
| | | | - Maxim S Nesterov
- Scientific Center for Biomedical Technologies of the Federal Biomedical Agency of Russia, settlement Svetlye Gory, Russia
| | - Vladimir A Pikalov
- Institute for High Energy Physics named by A.A. Logunov of NRC "Kurchatov Institute", Protvino, Russia
| |
Collapse
|
2
|
Baliova M, Jursky F. Common structural features in some of the sequentially distant neurotransmitter transporters N-termini. J Struct Biol 2024; 216:108137. [PMID: 39426457 DOI: 10.1016/j.jsb.2024.108137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/28/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
The N-terminal regions of SLC6 transporters are sequentially unrelated, and the majority of such transporters contain only relatively short peptide N-terminal extensions. Currently, it is not clear if a diversity of N-terminal sequences represents diverse functions among the transporters or if there are common functions hidden behind similar, as yet unidentified, structures. Using alignment of amino acid sequences with the hydropathy plot, disorder prediction, and calpain recognition sites, we show that common structural features among the N-termini of some transporters might exist.We previously showed that polymeric neurotransmitter transporter N-termini exhibit very similar profiles of dynamic, time-dependent 465-595-350-750 nm absorbance metachromasia in the Bradford assay. Here we report that under certain mild denaturing conditions, filamentous aggregation of glutathione S-transferase (GST) protein results in similar near-infrared metachromasia. This effect was eliminated by further GST protein denaturation and solubilization. The results suggest that aggregation of partially denatured GST stabilizes Coomassie dye docking sites, producing a near-infrared absorbance shift similar to that observed in the polymeric unstructured N-termini of transporters.
Collapse
Affiliation(s)
- Martina Baliova
- Laboratory of Neurobiology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| | - Frantisek Jursky
- Laboratory of Neurobiology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| |
Collapse
|
3
|
Mayer FP, Stewart A, Varman DR, Moritz AE, Foster JD, Owens AW, Areal LB, Gowrishankar R, Velez M, Wickham K, Phelps H, Katamish R, Rabil M, Jayanthi LD, Vaughan RA, Daws LC, Blakely RD, Ramamoorthy S. Kappa Opioid Receptor Antagonism Restores Phosphorylation, Trafficking and Behavior induced by a Disease Associated Dopamine Transporter Variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.03.539310. [PMID: 37205452 PMCID: PMC10187322 DOI: 10.1101/2023.05.03.539310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Aberrant dopamine (DA) signaling is implicated in schizophrenia, bipolar disorder (BPD), autism spectrum disorder (ASD), substance use disorder, and attention-deficit/hyperactivity disorder (ADHD). Treatment of these disorders remains inadequate, as exemplified by the therapeutic use of d-amphetamine and methylphenidate for the treatment of ADHD, agents with high abuse liability. In search for an improved and non-addictive therapeutic approach for the treatment of DA-linked disorders, we utilized a preclinical mouse model expressing the human DA transporter (DAT) coding variant DAT Val559, previously identified in individuals with ADHD, ASD, or BPD. DAT Val559, like several other disease-associated variants of DAT, exhibits anomalous DA efflux (ADE) that can be blocked by d-amphetamine and methylphenidate. Kappa opioid receptors (KORs) are expressed by DA neurons and modulate DA release and clearance, suggesting that targeting KORs might also provide an alternative approach to normalizing DA-signaling disrupted by perturbed DAT function. Here we demonstrate that KOR stimulation leads to enhanced surface trafficking and phosphorylation of Thr53 in wildtype DAT, effects achieved constitutively by the Val559 mutant. Moreover, these effects can be rescued by KOR antagonism of DAT Val559 in ex vivo preparations. Importantly, KOR antagonism also corrected in vivo DA release as well as sex-dependent behavioral abnormalities observed in DAT Val559 mice. Given their low abuse liability, our studies with a construct valid model of human DA associated disorders reinforce considerations of KOR antagonism as a pharmacological strategy to treat DA associated brain disorders.
Collapse
Affiliation(s)
- Felix P. Mayer
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Adele Stewart
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Durairaj Ragu Varman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Amy E. Moritz
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - James D. Foster
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Anthony W. Owens
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, TX, USA
| | - Lorena B. Areal
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Raajaram Gowrishankar
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Michelle Velez
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Kyria Wickham
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Hannah Phelps
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Rania Katamish
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Maximilian Rabil
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Lankupalle D. Jayanthi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Roxanne A. Vaughan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Lynette C. Daws
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Randy D. Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Sammanda Ramamoorthy
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
4
|
Sun Y, Hao M, Wu H, Zhang C, Wei D, Li S, Song Z, Tao Y. Unveiling the role of CaMKII in retinal degeneration: from biological mechanism to therapeutic strategies. Cell Biosci 2024; 14:59. [PMID: 38725013 PMCID: PMC11084033 DOI: 10.1186/s13578-024-01236-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a family of broad substrate specificity serine (Ser)/threonine (Thr) protein kinases that play a crucial role in the Ca2+-dependent signaling pathways. Its significance as an intracellular Ca2+ sensor has garnered abundant research interest in the domain of neurodegeneration. Accumulating evidences suggest that CaMKII is implicated in the pathology of degenerative retinopathies such as diabetic retinopathy (DR), age-related macular degeneration (AMD), retinitis pigmentosa (RP) and glaucoma optic neuropathy. CaMKII can induce the aberrant proliferation of retinal blood vessels, influence the synaptic signaling, and exert dual effects on the survival of retinal ganglion cells and pigment epithelial cells. Researchers have put forth multiple therapeutic agents, encompassing small molecules, peptides, and nucleotides that possess the capability to modulate CaMKII activity. Due to its broad range isoforms and splice variants therapeutic strategies seek to inhibit specifically the CaMKII are confronted with considerable challenges. Therefore, it becomes crucial to discern the detrimental and advantageous aspects of CaMKII, thereby facilitating the development of efficacious treatment. In this review, we summarize recent research findings on the cellular and molecular biology of CaMKII, with special emphasis on its metabolic and regulatory mechanisms. We delve into the involvement of CaMKII in the retinal signal transduction pathways and discuss the correlation between CaMKII and calcium overload. Furthermore, we elaborate the therapeutic trials targeting CaMKII, and introduce recent developments in the zone of CaMKII inhibitors. These findings would enrich our knowledge of CaMKII, and shed light on the development of a therapeutic target for degenerative retinopathy.
Collapse
Affiliation(s)
- Yuxin Sun
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Mengyu Hao
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Hao Wu
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Chengzhi Zhang
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Dong Wei
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Siyu Li
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongming Song
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
5
|
Vaughan RA, Henry LK, Foster JD, Brown CR. Post-translational mechanisms in psychostimulant-induced neurotransmitter efflux. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 99:1-33. [PMID: 38467478 DOI: 10.1016/bs.apha.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The availability of monoamine neurotransmitters in the brain is under the control of dopamine, norepinephrine, and serotonin transporters expressed on the plasma membrane of monoaminergic neurons. By regulating transmitter levels these proteins mediate crucial functions including cognition, attention, and reward, and dysregulation of their activity is linked to mood and psychiatric disorders of these systems. Amphetamine-based transporter substrates stimulate non-exocytotic transmitter efflux that induces psychomotor stimulation, addiction, altered mood, hallucinations, and psychosis, thus constituting a major component of drug neurochemical and behavioral outcomes. Efflux is under the control of transporter post-translational modifications that synergize with other regulatory events, and this review will summarize our knowledge of these processes and their role in drug mechanisms.
Collapse
Affiliation(s)
- Roxanne A Vaughan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States.
| | - L Keith Henry
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - James D Foster
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Christopher R Brown
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
6
|
Støier JF, Konomi-Pilkati A, Apuschkin M, Herborg F, Gether U. Amphetamine-induced reverse transport of dopamine does not require cytosolic Ca 2. J Biol Chem 2023; 299:105063. [PMID: 37468107 PMCID: PMC10448275 DOI: 10.1016/j.jbc.2023.105063] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023] Open
Abstract
Amphetamines (AMPHs) are substrates of the dopamine transporter (DAT) and reverse the direction of dopamine (DA) transport. This has been suggested to depend on activation of Ca2+-dependent pathways, but the mechanism underlying reverse transport via endogenously expressed DAT is still unclear. Here, to enable concurrent visualization by live imaging of extracellular DA dynamics and cytosolic Ca2+ levels, we employ the fluorescent Ca2+ sensor jRGECO1a expressed in cultured dopaminergic neurons together with the fluorescent DA sensor GRABDA1H expressed in cocultured "sniffer" cells. In the presence of the Na+-channel blocker tetrodotoxin to prevent exocytotic DA release, AMPH induced in the cultured neurons a profound dose-dependent efflux of DA that was blocked both by inhibition of DAT with cocaine and by inhibition of the vesicular monoamine transporter-2 with Ro-4-1284 or reserpine. However, the AMPH-induced DA efflux was not accompanied by an increase in cytosolic Ca2+ and was unaffected by blockade of voltage-gated calcium channels or chelation of cytosolic Ca2+. The independence of cytosolic Ca2+ was further supported by activation of N-methyl-D-aspartate-type ionotropic glutamate receptors leading to a marked increase in cytosolic Ca2+ without affecting AMPH-induced DA efflux. Curiously, AMPH elicited spontaneous Ca2+ spikes upon blockade of the D2 receptor, suggesting that AMPH can regulate intracellular Ca2+ in an autoreceptor-dependent manner regardless of the apparent independence of Ca2+ for AMPH-induced efflux. We conclude that AMPH-induced DA efflux in dopaminergic neurons does not require cytosolic Ca2+ but is strictly dependent on the concerted action of AMPH on both vesicular monoamine transporter-2 and DAT.
Collapse
Affiliation(s)
- Jonatan Fullerton Støier
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, Panum Institute - Maersk Tower 7.5, University of Copenhagen, Copenhagen, Denmark
| | - Ainoa Konomi-Pilkati
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, Panum Institute - Maersk Tower 7.5, University of Copenhagen, Copenhagen, Denmark
| | - Mia Apuschkin
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, Panum Institute - Maersk Tower 7.5, University of Copenhagen, Copenhagen, Denmark
| | - Freja Herborg
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, Panum Institute - Maersk Tower 7.5, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, Panum Institute - Maersk Tower 7.5, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Shekar A, Mabry SJ, Cheng MH, Aguilar JI, Patel S, Zanella D, Saleeby DP, Zhu Y, Romanazzi T, Ulery-Reynolds P, Bahar I, Carter AM, Matthies HJG, Galli A. Syntaxin 1 Ser 14 phosphorylation is required for nonvesicular dopamine release. SCIENCE ADVANCES 2023; 9:eadd8417. [PMID: 36630507 PMCID: PMC9833662 DOI: 10.1126/sciadv.add8417] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/14/2022] [Indexed: 05/30/2023]
Abstract
Amphetamine (AMPH) is a psychostimulant that is commonly abused. The stimulant properties of AMPH are associated with its ability to increase dopamine (DA) neurotransmission. This increase is promoted by nonvesicular DA release mediated by reversal of DA transporter (DAT) function. Syntaxin 1 (Stx1) is a SNARE protein that is phosphorylated at Ser14 by casein kinase II. We show that Stx1 phosphorylation is critical for AMPH-induced nonvesicular DA release and, in Drosophila melanogaster, regulates the expression of AMPH-induced preference and sexual motivation. Our molecular dynamics simulations of the DAT/Stx1 complex demonstrate that phosphorylation of these proteins is pivotal for DAT to dwell in a DA releasing state. This state is characterized by the breakdown of two key salt bridges within the DAT intracellular gate, causing the opening and hydration of the DAT intracellular vestibule, allowing DA to bind from the cytosol, a mechanism that we hypothesize underlies nonvesicular DA release.
Collapse
Affiliation(s)
- Aparna Shekar
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Samuel J. Mabry
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mary H. Cheng
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jenny I. Aguilar
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shalin Patel
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniele Zanella
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David P. Saleeby
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yanqi Zhu
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tiziana Romanazzi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Angela M. Carter
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Aurelio Galli
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
8
|
Nepal B, Das S, Reith ME, Kortagere S. Overview of the structure and function of the dopamine transporter and its protein interactions. Front Physiol 2023; 14:1150355. [PMID: 36935752 PMCID: PMC10020207 DOI: 10.3389/fphys.2023.1150355] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The dopamine transporter (DAT) plays an integral role in dopamine neurotransmission through the clearance of dopamine from the extracellular space. Dysregulation of DAT is central to the pathophysiology of numerous neuropsychiatric disorders and as such is an attractive therapeutic target. DAT belongs to the solute carrier family 6 (SLC6) class of Na+/Cl- dependent transporters that move various cargo into neurons against their concentration gradient. This review focuses on DAT (SCL6A3 protein) while extending the narrative to the closely related transporters for serotonin and norepinephrine where needed for comparison or functional relevance. Cloning and site-directed mutagenesis experiments provided early structural knowledge of DAT but our contemporary understanding was achieved through a combination of crystallization of the related bacterial transporter LeuT, homology modeling, and subsequently the crystallization of drosophila DAT. These seminal findings enabled a better understanding of the conformational states involved in the transport of substrate, subsequently aiding state-specific drug design. Post-translational modifications to DAT such as phosphorylation, palmitoylation, ubiquitination also influence the plasma membrane localization and kinetics. Substrates and drugs can interact with multiple sites within DAT including the primary S1 and S2 sites involved in dopamine binding and novel allosteric sites. Major research has centered around the question what determines the substrate and inhibitor selectivity of DAT in comparison to serotonin and norepinephrine transporters. DAT has been implicated in many neurological disorders and may play a role in the pathology of HIV and Parkinson's disease via direct physical interaction with HIV-1 Tat and α-synuclein proteins respectively.
Collapse
Affiliation(s)
- Binod Nepal
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Sanjay Das
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Maarten E. Reith
- Department of Psychiatry, New York University School of Medicine, New York City, NY, United States
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- *Correspondence: Sandhya Kortagere,
| |
Collapse
|
9
|
Lycas MD, Ejdrup AL, Sørensen AT, Haahr NO, Jørgensen SH, Guthrie DA, Støier JF, Werner C, Newman AH, Sauer M, Herborg F, Gether U. Nanoscopic dopamine transporter distribution and conformation are inversely regulated by excitatory drive and D2 autoreceptor activity. Cell Rep 2022; 40:111431. [PMID: 36170827 PMCID: PMC9617621 DOI: 10.1016/j.celrep.2022.111431] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/22/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
The nanoscopic organization and regulation of individual molecular components in presynaptic varicosities of neurons releasing modulatory volume neurotransmitters like dopamine (DA) remain largely elusive. Here we show, by application of several super-resolution microscopy techniques to cultured neurons and mouse striatal slices, that the DA transporter (DAT), a key protein in varicosities of dopaminergic neurons, exists in the membrane in dynamic equilibrium between an inward-facing nanodomain-localized and outward-facing unclustered configuration. The balance between these configurations is inversely regulated by excitatory drive and DA D2 autoreceptor activation in a manner dependent on Ca2+ influx via N-type voltage-gated Ca2+ channels. The DAT nanodomains contain tens of transporters molecules and overlap with nanodomains of PIP2 (phosphatidylinositol-4,5-bisphosphate) but show little overlap with D2 autoreceptor, syntaxin-1, and clathrin nanodomains. The data reveal a mechanism for rapid alterations of nanoscopic DAT distribution and show a striking link of this to the conformational state of the transporter.
Collapse
Affiliation(s)
- Matthew D Lycas
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7.5, 2200 Copenhagen, Denmark
| | - Aske L Ejdrup
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7.5, 2200 Copenhagen, Denmark
| | - Andreas T Sørensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7.5, 2200 Copenhagen, Denmark
| | - Nicolai O Haahr
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7.5, 2200 Copenhagen, Denmark
| | - Søren H Jørgensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7.5, 2200 Copenhagen, Denmark
| | - Daryl A Guthrie
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jonatan F Støier
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7.5, 2200 Copenhagen, Denmark
| | - Christian Werner
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Freja Herborg
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7.5, 2200 Copenhagen, Denmark
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7.5, 2200 Copenhagen, Denmark.
| |
Collapse
|
10
|
Striatal Syntaxin 1A Is Associated with Development of Tourette Syndrome in an Iminodipropionitrile-Induced Animal Model. DISEASE MARKERS 2022; 2022:1148191. [PMID: 36157213 PMCID: PMC9492347 DOI: 10.1155/2022/1148191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022]
Abstract
Tourette syndrome (TS) is a neurodevelopmental movement disorder characterized by multiple motor and vocal tics. In this study, we used a TS rat model induced by 3,3′-iminodipropionitrile (IDPN) and aimed to investigate the expression change of Syntaxin 1A (STX1A). Rats in the control group received intraperitoneal injection of normal saline, and TS rats were injected with IDPN (150 mg/kg/day). After 7 days of treatment, the stereotypic behaviors were assessed. Next, rats were sacrificed; brains were removed for RNA extraction and Western blotting analysis and fixed in 4% paraformaldehyde for immunofluorescence analysis. After 7 days of IDPN administration, stereotypic behaviors were successfully induced. The IDPN group exhibited more counts in biting, putting forepaws around mouth, licking, head twitching, shaking claws, body raising, and episodic utterance. The striatal STX1A mRNA, protein, and STX1A expression in striatal dopaminergic neurons were investigated. As expected, the total STX1A mRNA and protein levels were decreased in the TS model rats. In the striatal dopaminergic neurons, the IDPN group showed a slightly decreased STX1A/TH double positive area, but no statistical significance was found. Additionally, we assessed the expression of some genes closely related to STX1A, such as SNAP25, SY, and gephyrin, and no differences were found between the two groups. Together, reduced STX1A expression is associated with IDPN-induced TS development. Our findings suggested that decreased striatal STX1A expression is associated with the development of TS in the IDPN-induced rat model.
Collapse
|
11
|
Davis S, Zhu J. Substance abuse and neurotransmission. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 93:403-441. [PMID: 35341573 PMCID: PMC9759822 DOI: 10.1016/bs.apha.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The number of people who suffer from a substance abuse disorder has continued to rise over the last decade; particularly, the number of drug-related overdose deaths has sharply increased during the COVID-19 pandemic. Converging lines of clinical observations, supported by imaging and neuropsychological performance testing, have demonstrated that substance abuse-induced dysregulation of neurotransmissions in the brain is critical for development and expression of the addictive properties of abused substances. Recent scientific advances have allowed for better understanding of the neurobiological processes that mediates drugs of abuse and addiction. This chapter presents the past classic concepts and the recent advances in our knowledge about how cocaine, amphetamines, opioids, alcohol, and nicotine alter multiple neurotransmitter systems, which contribute to the behaviors associated with each drug. Additionally, we discuss the interactive effects of HIV-1 or COVID-19 and substance abuse on neurotransmission and neurobiological pathways. Finally, we introduce therapeutic strategies for development of pharmacotherapies for substance abuse disorders.
Collapse
Affiliation(s)
- Sarah Davis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States.
| |
Collapse
|
12
|
Mackie PM, Gopinath A, Montas DM, Nielsen A, Smith A, Nolan RA, Runner K, Matt SM, McNamee J, Riklan JE, Adachi K, Doty A, Ramirez-Zamora A, Yan L, Gaskill PJ, Streit WJ, Okun MS, Khoshbouei H. Functional characterization of the biogenic amine transporters on human macrophages. JCI Insight 2022; 7:151892. [PMID: 35015729 PMCID: PMC8876465 DOI: 10.1172/jci.insight.151892] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
Monocyte-derived macrophages are key players in tissue homeostasis and diseases regulated by a variety of signaling molecules. Recent literature has highlighted the ability for biogenic amines to regulate macrophage functions, but the mechanisms governing biogenic amine signaling in and around immune cells remains nebulous. In the central nervous system (CNS), biogenic amine transporters are regarded as the master regulators of neurotransmitter signaling. While we and others have shown that macrophages express these transporters, relatively little is known of their function in these cells. To address these knowledge gaps, we investigated the function of norepinephrine (NET) and dopamine (DAT) transporters on human monocyte-derived macrophages. We found that both NET and DAT are present and can uptake substrate from the extracellular space at baseline. Not only was DAT expressed in cultured monocyte-derived macrophages (MDMs), but it was also detected in a subset of intestinal macrophages in situ. Surprisingly, we discovered a NET-independent, DAT-mediated immuno-modulatory mechanism in response to lipopolysaccharide (LPS). LPS induced reverse transport of dopamine through DAT, engaging an autocrine/paracrine signaling loop that regulated the macrophage response. Removing this signaling loop enhanced the pro-inflammatory response to LPS. Collectively, our data introduce a potential role for DAT in the regulation of innate immunity.
Collapse
Affiliation(s)
- Phillip M Mackie
- Department of Neuroscience, University of Florida, Gainesville, United States of America
| | - Adithya Gopinath
- Department of Neuroscience, McKnight Brain Insitute, University of Florida College of Medicine, Gainesville, United States of America
| | - Dominic M Montas
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, United States of America
| | - Alyssa Nielsen
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, United States of America
| | - Aidan Smith
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, United States of America
| | - Rachel A Nolan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, United States of America
| | - Kaitlyn Runner
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, United States of America
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, United States of America
| | - John McNamee
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, United States of America
| | - Joshua E Riklan
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, United States of America
| | - Kengo Adachi
- Neuronal Signal Transduction Group, Max Plank Florida Institute for Neuroscience, Jupiter, United States of America
| | - Andria Doty
- Flow Cytometry Core Facility, University of Florida College of Medicine, Gainesville, United States of America
| | - Adolfo Ramirez-Zamora
- Department of Neurology, University of Florida College of Medicine, Gainesville, United States of America
| | - Long Yan
- Neuronal Signal Transduction Group, Max Plank Florida Institute for Neuroscience, Jupiter, United States of America
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, United States of America
| | - Wolfgang J Streit
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, United States of America
| | - Michael S Okun
- University of Florida College of Medicine, Gainesville, United States of America
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, United States of America
| |
Collapse
|
13
|
Philyaw TJ, Rothenfluh A, Titos I. The Use of Drosophila to Understand Psychostimulant Responses. Biomedicines 2022; 10:119. [PMID: 35052798 PMCID: PMC8773124 DOI: 10.3390/biomedicines10010119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 01/27/2023] Open
Abstract
The addictive properties of psychostimulants such as cocaine, amphetamine, methamphetamine, and methylphenidate are based on their ability to increase dopaminergic neurotransmission in the reward system. While cocaine and methamphetamine are predominately used recreationally, amphetamine and methylphenidate also work as effective therapeutics to treat symptoms of disorders including attention deficit and hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Although both the addictive properties of psychostimulant drugs and their therapeutic efficacy are influenced by genetic variation, very few genes that regulate these processes in humans have been identified. This is largely due to population heterogeneity which entails a requirement for large samples. Drosophila melanogaster exhibits similar psychostimulant responses to humans, a high degree of gene conservation, and allow performance of behavioral assays in a large population. Additionally, amphetamine and methylphenidate reduce impairments in fly models of ADHD-like behavior. Therefore, Drosophila represents an ideal translational model organism to tackle the genetic components underlying the effects of psychostimulants. Here, we break down the many assays that reliably quantify the effects of cocaine, amphetamine, methamphetamine, and methylphenidate in Drosophila. We also discuss how Drosophila is an efficient and cost-effective model organism for identifying novel candidate genes and molecular mechanisms involved in the behavioral responses to psychostimulant drugs.
Collapse
Affiliation(s)
- Travis James Philyaw
- Molecular Biology Graduate Program, University of Utah, Salt Lake City, UT 84112, USA;
| | - Adrian Rothenfluh
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT 84108, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84132, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Iris Titos
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
14
|
Barak-Broner N, Singer-Lahat D, Chikvashvili D, Lotan I. CK2 Phosphorylation Is Required for Regulation of Syntaxin 1A Activity in Ca 2+-Triggered Release in Neuroendocrine Cells. Int J Mol Sci 2021; 22:ijms222413556. [PMID: 34948351 PMCID: PMC8708312 DOI: 10.3390/ijms222413556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 12/29/2022] Open
Abstract
The polybasic juxtamembrane region (5RK) of the plasma membrane neuronal SNARE, syntaxin1A (Syx), was previously shown by us to act as a fusion clamp in PC12 cells, as charge neutralization of 5RK promotes spontaneous and inhibits Ca2+-triggered release. Using a Syx-based FRET probe (CSYS), we demonstrated that 5RK is required for a depolarization-induced Ca+2-dependent opening (close-to-open transition; CDO) of Syx, which involves the vesicular SNARE synaptobrevin2 and occurs concomitantly with Ca2+-triggered release. Here, we investigated the mechanism underlying the CDO requirement for 5RK and identified phosphorylation of Syx at Ser-14 (S14) by casein kinase 2 (CK2) as a crucial molecular determinant. Thus, following biochemical verification that both endogenous Syx and CSYS are constitutively S14 phosphorylated in PC12 cells, dynamic FRET analysis of phospho-null and phospho-mimetic mutants of CSYS and the use of a CK2 inhibitor revealed that the S14 phosphorylation confers the CDO requirement for 5RK. In accord, amperometric analysis of catecholamine release revealed that the phospho-null mutant does not support Ca2+-triggered release. These results identify a functionally important CK2 phosphorylation of Syx that is required for the 5RK-regulation of CDO and for concomitant Ca2+-triggered release. Further, also spontaneous release, conferred by charge neutralization of 5RK, was abolished in the phospho-null mutant.
Collapse
Affiliation(s)
- Noa Barak-Broner
- Department of Neurobiology Biochemistry & Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv-Yafo 69978, Israel;
| | - Dafna Singer-Lahat
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv-Yafo 69978, Israel; (D.S.-L.); (D.C.)
| | - Dodo Chikvashvili
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv-Yafo 69978, Israel; (D.S.-L.); (D.C.)
| | - Ilana Lotan
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv-Yafo 69978, Israel; (D.S.-L.); (D.C.)
- Sagol School of Neuroscience, Tel Aviv University, Ramat Aviv, Tel Aviv-Yafo 69978, Israel
- Correspondence:
| |
Collapse
|
15
|
Mannangatti P, Ragu Varman D, Ramamoorthy S, Jayanthi LD. Neurokinin-1 Antagonism Distinguishes the Role of Norepinephrine Transporter from Dopamine Transporter in Mediating Amphetamine Behaviors. Pharmacology 2021; 106:597-605. [PMID: 34515205 DOI: 10.1159/000518033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/21/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Amphetamine (AMPH) and other psychostimulants act on the norepinephrine (NE) transporter (NET) and the dopamine (DA) transporter (DAT) and enhance NE and DA signaling. Both NET and DAT share anatomical and functional characteristics and are regulated similarly by psychostimulants and receptor-linked signaling pathways. We and others have demonstrated that NET and DAT are downregulated by AMPH and substance P/neurokinin-1 receptor (NK1R)-mediated protein kinase C pathway. OBJECTIVES Since both NET and DAT are downregulated by AMPH and NK1R activation and share high sequence homology, the objective of the study was to determine the catecholamine transporter specificity in NK1R modulation of AMPH-induced behaviors. METHODS The effect of NK1R antagonism on AMPH-induced conditioned place preference (CPP) as well as AMPH-induced NET and DAT downregulation was examined using NET and DAT knockout mice (NET-KO and DAT-KO) along with their wild-type littermates. RESULTS Aprepitant (5 mg/kg i.p.) significantly attenuated AMPH (2 mg/kg i.p.)-induced CPP in the wild-type and DAT-KO but not in the NET-KO. Locomotor activity measured during the post-conditioning test (in the absence of AMPH) showed higher locomotor activity in DAT-KO compared to wild-type or NET-KO. However, the locomotor activity of all 3 genotypes remained unchanged following aprepitant. Additionally, in the ventral striatum of wild-type, the AMPH-induced downregulation of NET function and surface expression but not that of DAT was attenuated by aprepitant. CONCLUSIONS The results from the current study demonstrate that aprepitant attenuates the expression of AMPH-induced CPP in DAT-KO mice but not in NET-KO mice suggesting a role for NK1R-mediated NET regulation in AMPH-induced behaviors.
Collapse
Affiliation(s)
- Padmanabhan Mannangatti
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Durairaj Ragu Varman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sammanda Ramamoorthy
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Lankupalle D Jayanthi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
16
|
A network of phosphatidylinositol (4,5)-bisphosphate (PIP 2) binding sites on the dopamine transporter regulates amphetamine behavior in Drosophila Melanogaster. Mol Psychiatry 2021; 26:4417-4430. [PMID: 31796894 PMCID: PMC7266731 DOI: 10.1038/s41380-019-0620-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 12/19/2022]
Abstract
Reward modulates the saliency of a specific drug exposure and is essential for the transition to addiction. Numerous human PET-fMRI studies establish a link between midbrain dopamine (DA) release, DA transporter (DAT) availability, and reward responses. However, how and whether DAT function and regulation directly participate in reward processes remains elusive. Here, we developed a novel experimental paradigm in Drosophila melanogaster to study the mechanisms underlying the psychomotor and rewarding properties of amphetamine (AMPH). AMPH principally mediates its pharmacological and behavioral effects by increasing DA availability through the reversal of DAT function (DA efflux). We have previously shown that the phospholipid, phosphatidylinositol (4, 5)-bisphosphate (PIP2), directly interacts with the DAT N-terminus to support DA efflux in response to AMPH. In this study, we demonstrate that the interaction of PIP2 with the DAT N-terminus is critical for AMPH-induced DAT phosphorylation, a process required for DA efflux. We showed that PIP2 also interacts with intracellular loop 4 at R443. Further, we identified that R443 electrostatically regulates DA efflux as part of a coordinated interaction with the phosphorylated N-terminus. In Drosophila, we determined that a neutralizing substitution at R443 inhibited the psychomotor actions of AMPH. We associated this inhibition with a decrease in AMPH-induced DA efflux in isolated fly brains. Notably, we showed that the electrostatic interactions of R443 specifically regulate the rewarding properties of AMPH without affecting AMPH aversion. We present the first evidence linking PIP2, DAT, DA efflux, and phosphorylation processes with AMPH reward.
Collapse
|
17
|
Busceti CL, Ginerete RP, Di Menna L, D'Errico G, Cisani F, Di Pietro P, Imbriglio T, Bruno V, Battaglia G, Fornai F, Monn JA, Pittaluga A, Nicoletti F. Behavioural and biochemical responses to methamphetamine are differentially regulated by mGlu2 and mGlu3 metabotropic glutamate receptors in male mice. Neuropharmacology 2021; 196:108692. [PMID: 34217776 DOI: 10.1016/j.neuropharm.2021.108692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/04/2021] [Accepted: 06/27/2021] [Indexed: 01/09/2023]
Abstract
Group II metabotropic glutamate receptors (mGlu2 and mGlu3 receptors) shape mechanisms of methamphetamine addiction, but the individual role played by the two subtypes is unclear. We measured methamphetamine-induced conditioned place preference (CPP) and motor responses to single or repeated injections of methamphetamine in wild-type, mGlu2-/-, and mGlu3-/-mice. Only mGlu3-/-mice showed methamphetamine preference in the CPP test. Motor response to the first methamphetamine injection was dramatically reduced in mGlu2-/-mice, unless these mice were treated with the mGlu5 receptor antagonist, MTEP. In contrast, methamphetamine-induced sensitization was increased in mGlu3-/-mice compared to wild-type mice. Only mGlu3-/-mice sensitized to methamphetamine showed increases in phospho-ERK1/2 levels in the nucleus accumbens (NAc) and free radical formation in the NAc and medial prefrontal cortex. These changes were not detected in mGlu2-/-mice. We also measured a series of biochemical parameters related to the mechanism of action of methamphetamine in naïve mice to disclose the nature of the differential behavioural responses of the three genotypes. We found a reduced expression and activity of dopamine transporter (DAT) and vesicular monoamine transporter-2 in the NAc and striatum of mGlu2-/-and mGlu3-/-mice, whereas expression of the DAT adaptor, syntaxin 1A, was selectively increased in the striatum of mGlu3-/-mice. Methamphetamine-stimulated dopamine release in striatal slices was largely reduced in mGlu2-/-, but not in mGlu3-/-, mice. These findings suggest that drugs that selectively enhance mGlu3 receptor activity or negatively modulate mGlu2 receptors might be beneficial in the treatment of methamphetamine addiction and associated brain damage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Valeria Bruno
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Pharmacology, University Sapienza, Roma, Italy
| | - Giuseppe Battaglia
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Pharmacology, University Sapienza, Roma, Italy
| | - Francesco Fornai
- IRCCS Neuromed, Pozzilli, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Anna Pittaluga
- Department of Pharmacy, University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Pharmacology, University Sapienza, Roma, Italy.
| |
Collapse
|
18
|
Ryan RM, Ingram SL, Scimemi A. Regulation of Glutamate, GABA and Dopamine Transporter Uptake, Surface Mobility and Expression. Front Cell Neurosci 2021; 15:670346. [PMID: 33927596 PMCID: PMC8076567 DOI: 10.3389/fncel.2021.670346] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 01/31/2023] Open
Abstract
Neurotransmitter transporters limit spillover between synapses and maintain the extracellular neurotransmitter concentration at low yet physiologically meaningful levels. They also exert a key role in providing precursors for neurotransmitter biosynthesis. In many cases, neurons and astrocytes contain a large intracellular pool of transporters that can be redistributed and stabilized in the plasma membrane following activation of different signaling pathways. This means that the uptake capacity of the brain neuropil for different neurotransmitters can be dynamically regulated over the course of minutes, as an indirect consequence of changes in neuronal activity, blood flow, cell-to-cell interactions, etc. Here we discuss recent advances in the mechanisms that control the cell membrane trafficking and biophysical properties of transporters for the excitatory, inhibitory and modulatory neurotransmitters glutamate, GABA, and dopamine.
Collapse
Affiliation(s)
- Renae M. Ryan
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Susan L. Ingram
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States
| | | |
Collapse
|
19
|
Pino JA, Nuñez-Vivanco G, Hidalgo G, Reyes Parada M, Khoshbouei H, Torres GE. Identification of Critical Residues in the Carboxy Terminus of the Dopamine Transporter Involved in the G Protein βγ-Induced Dopamine Efflux. Front Pharmacol 2021; 12:642881. [PMID: 33841159 PMCID: PMC8025876 DOI: 10.3389/fphar.2021.642881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/11/2021] [Indexed: 11/13/2022] Open
Abstract
The dopamine transporter (DAT) plays a crucial role in the regulation of brain dopamine (DA) homeostasis through the re-uptake of DA back into the presynaptic terminal. In addition to re-uptake, DAT is also able to release DA through a process referred to as DAT-mediated DA efflux. This is the mechanism by which potent and highly addictive psychostimulants, such as amphetamine (AMPH) and its analogues, increase extracellular DA levels in motivational and reward areas of the brain. Recently, we discovered that G protein βγ subunits (Gβγ) binds to the DAT, and that activation of Gβγ results in DAT-mediated efflux - a similar mechanism as AMPH. Previously, we have shown that Gβγ binds directly to a stretch of 15 residues within the intracellular carboxy terminus of DAT (residues 582-596). Additionally, a TAT peptide containing residues 582 to 596 of DAT was able to block the Gβγ-induced DA efflux through DAT. Here, we use a combination of computational biology, mutagenesis, biochemical, and functional assays to identify the amino acid residues within the 582-596 sequence of the DAT carboxy terminus involved in the DAT-Gβγ interaction and Gβγ-induced DA efflux. Our in-silico protein-protein docking analysis predicted the importance of F587 and R588 residues in a network of interactions with residues in Gβγ. In addition, we observed that mutating R588 to alanine residue resulted in a mutant DAT which exhibited attenuated DA efflux induced by Gβγ activation. We demonstrate that R588, and to a lesser extent F5837, located within the carboxy terminus of DAT play a critical role in the DAT-Gβγ physical interaction and promotion of DA efflux. These results identify a potential new pharmacological target for the treatment of neuropsychiatric conditions in which DAT functionality is implicated including ADHD and substance use disorder.
Collapse
Affiliation(s)
- José A Pino
- Departamento de Medicina, Facultad de Medicina, Universidad de Atacama, Copiapó, Chile
| | - Gabriel Nuñez-Vivanco
- Centro de Bioinformática, Simulación y Modelado, Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - Gabriela Hidalgo
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Miguel Reyes Parada
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States
| | - Gonzalo E Torres
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, New York, NY, United States
| |
Collapse
|
20
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
21
|
Amphetamine Stimulates Endocytosis of the Norepinephrine and Neuronal Glutamate Transporters in Cultured Locus Coeruleus Neurons. Neurochem Res 2020; 45:1410-1419. [PMID: 31912366 PMCID: PMC7260265 DOI: 10.1007/s11064-019-02939-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022]
Abstract
Amphetamines and amphetamine-derivatives elevate neurotransmitter concentrations by competing with endogenous biogenic amines for reuptake. In addition, AMPHs have been shown to activate endocytosis of the dopamine transporter (DAT) which further elevates extracellular dopamine (DA). We previously found that the biochemical cascade leading to this cellular process involves entry of AMPH into the cell through the DAT, stimulation of an intracellular trace amine-associated receptor, TAAR1, and activation of the small GTPase, RhoA. We also showed that the neuronal glutamate transporter, EAAT3, undergoes endocytosis via the same cascade in DA neurons, leading to potentiation of glutamatergic inputs. Since AMPH is a transported inhibitor of both DAT and the norepinephrine transporter (NET), and EAAT3 is also expressed in norepinephrine (NE) neurons, we explored the possibility that this signaling cascade occurs in NE neurons. We found that AMPH can cause endocytosis of NET as well as EAAT3 in NE neurons. NET endocytosis is dependent on TAAR1, RhoA, intracellular calcium and CaMKII activation, similar to DAT. However, EAAT3 endocytosis is similar in all regards except its dependence upon CaMKII activation. RhoA activation is dependent on calcium, but not CaMKII, explaining a divergence in AMPH-mediated endocytosis of DAT and NET from that of EAAT3. These data indicate that AMPHs and other TAAR1 agonists can affect glutamate signaling through internalization of EAAT3 in NE as well as DA neurons.
Collapse
|
22
|
Joseph D, Pidathala S, Mallela AK, Penmatsa A. Structure and Gating Dynamics of Na +/Cl - Coupled Neurotransmitter Transporters. Front Mol Biosci 2019; 6:80. [PMID: 31555663 PMCID: PMC6742698 DOI: 10.3389/fmolb.2019.00080] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/21/2019] [Indexed: 12/24/2022] Open
Abstract
Neurotransmitters released at the neural synapse through vesicle exocytosis are spatiotemporally controlled by the action of neurotransmitter transporters. Integral membrane proteins of the solute carrier 6 (SLC6) family are involved in the sodium and chloride coupled uptake of biogenic amine neurotransmitters including dopamine, serotonin, noradrenaline and inhibitory neurotransmitters including glycine and γ-amino butyric acid. This ion-coupled symport works through a well-orchestrated gating of substrate through alternating-access, which is mediated through movements of helices that resemble a rocking-bundle. A large array of commercially prescribed drugs and psychostimulants selectively target neurotransmitter transporters thereby modulating their levels in the synaptic space. Drug-induced changes in the synaptic neurotransmitter levels can be used to treat depression or neuropathic pain whereas in some instances prolonged usage can lead to habituation. Earlier structural studies of bacterial neurotransmitter transporter homolog LeuT and recent structure elucidation of the Drosophila dopamine transporter (dDAT) and human serotonin transporter (hSERT) have yielded a wealth of information in understanding the transport and inhibition mechanism of neurotransmitter transporters. Computational studies based on the structures of dDAT and hSERT have shed light on the dynamics of varied components of these molecular gates in affecting the uphill transport of neurotransmitters. This review seeks to address structural dynamics of neurotransmitter transporters at the extracellular and intracellular gates and the effect of inhibitors on the ligand-binding pocket. We also delve into the effect of additional factors including lipids and cytosolic domains that influence the translocation of neurotransmitters across the membrane.
Collapse
Affiliation(s)
- Deepthi Joseph
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | | | - Aravind Penmatsa
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
23
|
Quinlan MA, Krout D, Katamish RM, Robson MJ, Nettesheim C, Gresch PJ, Mash DC, Keith Henry L, Blakely RD. Human Serotonin Transporter Coding Variation Establishes Conformational Bias with Functional Consequences. ACS Chem Neurosci 2019; 10:3249-3260. [PMID: 30668912 PMCID: PMC6640095 DOI: 10.1021/acschemneuro.8b00689] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The antidepressant-sensitive serotonin (5-HT) transporter (SERT) dictates rapid, high-affinity clearance of the neurotransmitter in both the brain and periphery. In a study of families with multiple individuals diagnosed with autism spectrum disorder (ASD), we previously identified several, rare, missense coding variants that impart elevated 5-HT transport activity, relative to wild-type SERT, upon heterologous expression as well as in ASD subject lymphoblasts. The most common of these variants, SERT Ala56, located in the transporter's cytosolic N-terminus, has been found to confer in transgenic mice hyperserotonemia, an ASD-associated biochemical trait, an elevated brain 5-HT clearance rate, and ASD-aligned behavioral changes. Hyperfunction of SERT Ala56 has been ascribed to a change in 5-HT KM, though the physical basis of this change has yet to be elucidated. Through assessments of fluorescence resonance energy transfer (FRET) between cytosolic N- and C-termini, sensitivity to methanethiosulfonates, and capacity for N-terminal tryptic digestion, we obtain evidence for mutation-induced conformational changes that support an open-outward 5-HT binding conformation in vitro and in vivo. Aspects of these findings were also evident with another naturally occurring C-terminal SERT coding variant identified in our ASD study, Asn605. We conclude that biased conformations of surface resident transporters that can impact transporter function and regulation are an unappreciated consequence of heritable and disease-associated SERT coding variation.
Collapse
Affiliation(s)
- Meagan A. Quinlan
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN
- Department of Biomedical Science, Charles E. Schmidt College of Medicine
| | - Danielle Krout
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND
| | - Rania M. Katamish
- Department of Biomedical Science, Charles E. Schmidt College of Medicine
| | - Matthew J. Robson
- Division of Pharmaceutical Sciences, University of Cincinnati, Cincinnati, OH
| | | | - Paul J. Gresch
- Department of Biomedical Science, Charles E. Schmidt College of Medicine
- Brain Institute, Florida Atlantic University, Jupiter, FL
| | - Deborah C. Mash
- Dr. Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL
| | - L. Keith Henry
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND
| | - Randy D. Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine
- Brain Institute, Florida Atlantic University, Jupiter, FL
| |
Collapse
|
24
|
The effects of proteasome on baseline and methamphetamine-dependent dopamine transmission. Neurosci Biobehav Rev 2019; 102:308-317. [DOI: 10.1016/j.neubiorev.2019.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 12/16/2022]
|
25
|
Kim Y, Jeon S, Jeong HJ, Lee SM, Peña ID, Kim HJ, Han DH, Kim BN, Cheong JH. Restoration of Cdk5, TrkB and Soluble N-ethylmaleimide-Sensitive Factor Attachment Protein Receptor Proteins after Chronic Methylphenidate Treatment in Spontaneous Hypertensive Rats, a Model for Attention-Deficit Hyperactivity Disorder. Psychiatry Investig 2019; 16:558-564. [PMID: 31352739 PMCID: PMC6664221 DOI: 10.30773/pi.2019.04.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/22/2019] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Synaptic vesicle mobilization and neurite outgrowth regulation molecules were examined in modulation of effects of methylphenidate (MPH) in Spontaneous Hypertensive Rats (SHRs), a model for attention-deficit hyperactivity disorder (ADHD). METHODS We compared the changes in the protein expression level of Cyclin dependent kinase 5 (Cdk5) and molecular substrates of Cdk5; tropomyosin receptor kinase B (TrkB), syntaxin 1A (STX1A) and synaptosomal-associated protein 25 (SNAP25). Comparisons were made in prefrontal cortex of vehicle (distilled water i.p. for 7 days)-treated SHRs, vehicle-treated Wistar Kyoto Rats (WKYs) and MPH (2 mg/kg i.p. for 7 days) treated SHRs. RESULTS The Cdk5 level of vehicle-treated SHRs was significantly decreased compared to the Cdk5 level of vehicle-treated WKY rats, but was restored to the expression level of vehicle-treated WKYs in MPH-treated SHR. The ratio of p25/p35 was significantly decreased in MPH-treated SHR compared to vehicle-treated SHR. Moreover, TrkB, STX1A and SNAP25 of vehicle-treated SHRs were significantly decreased compared to vehicle-treated WKY rats, but were restored to the expression level of vehicle-treated WKYs in MPH-treated SHR. CONCLUSION The results show that Cdk5, TrkB, STX1A, and SNAP25 were involved in the modulation of MPH effects in prefrontal cortex of SHRs and play important role in treatment of ADHD.
Collapse
Affiliation(s)
- Yeni Kim
- Department of Child and Adolescent Psychiatry, National Center for Mental Health, Seoul, Republic of Korea
| | - Songhee Jeon
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Gwangju, Republic of Korea
| | - Ha Jin Jeong
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Gwangju, Republic of Korea
| | - Seong Mi Lee
- Department of Child and Adolescent Psychiatry, National Center for Mental Health, Seoul, Republic of Korea
| | - Ike Dela Peña
- Department of Pharmacy, Sahmyook University, Uimyung Research Institute for Neuroscience, Seoul, Republic of Korea.,Department of Pharmaceutical and Administrative Sciences, Loma Linda University Health, Loma Linda, CA, USA
| | - Hee Jin Kim
- Department of Pharmacy, Sahmyook University, Uimyung Research Institute for Neuroscience, Seoul, Republic of Korea
| | - Doug Hyun Han
- Department of Psychiatry, Chung Ang University Hospital, Seoul, Republic of Korea
| | - Bung-Nyun Kim
- Division of Child & Adolescent Psychiatry, Department of Psychiatry and Institute of Human Behavioral Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Hoon Cheong
- Department of Pharmacy, Sahmyook University, Uimyung Research Institute for Neuroscience, Seoul, Republic of Korea
| |
Collapse
|
26
|
Bolland DE, Moritz AE, Stanislowski DJ, Vaughan RA, Foster JD. Palmitoylation by Multiple DHHC Enzymes Enhances Dopamine Transporter Function and Stability. ACS Chem Neurosci 2019; 10:2707-2717. [PMID: 30965003 PMCID: PMC6746250 DOI: 10.1021/acschemneuro.8b00558] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The dopamine transporter (DAT) is a plasma membrane protein that mediates the reuptake of extracellular dopamine (DA) and controls the spatiotemporal dynamics of dopaminergic neurotransmission. The transporter is subject to fine control that tailors clearance of transmitter to physiological demands, and dysregulation of reuptake induced by psychostimulant drugs, transporter polymorphisms, and signaling defects may impact transmitter tone in disease states. We previously demonstrated that DAT undergoes complex regulation by palmitoylation, with acute inhibition of the modification leading to rapid reduction of transport activity and sustained inhibition of the modification leading to transporter degradation and reduced expression. Here, to examine mechanisms and outcomes related to increased modification, we coexpressed DAT with palmitoyl acyltransferases (PATs), also known as DHHC enzymes, which catalyze palmitate addition to proteins. Of 12 PATs tested, DAT palmitoylation was stimulated by DHHC2, DHHC3, DHHC8, DHHC15, and DHHC17, with others having no effect. Increased modification was localized to previously identified palmitoylation site Cys580 and resulted in upregulation of transport kinetics and elevated transporter expression mediated by reduced degradation. These findings confirm palmitoylation as a regulator of multiple DAT properties crucial for appropriate DA homeostasis and identify several potential PAT pathways linked to these effects. Defects in palmitoylation processes thus represent possible mechanisms of transport imbalances in DA disorders.
Collapse
Affiliation(s)
| | | | - Daniel J. Stanislowski
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202
| | - Roxanne A. Vaughan
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202
| | - James D. Foster
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202
| |
Collapse
|
27
|
G protein-coupled receptor signaling in VTA dopaminergic neurons bidirectionally regulates the acute locomotor response to amphetamine but does not affect behavioral sensitization. Neuropharmacology 2019; 161:107663. [PMID: 31173760 DOI: 10.1016/j.neuropharm.2019.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 11/20/2022]
Abstract
Amphetamine (AMPH) acts as a substrate of the dopamine transporter (DAT) and causes a dramatic increase in extracellular dopamine (DA). Upon entering DA neurons, AMPH promotes DA efflux via DAT through a mechanism implicating depletion of DA from vesicular stores, activation of kinase pathways and transporter phosphorylation. Despite the role of intracellular signaling for AMPH action, it remains elusive how the response to AMPH is affected in vivo by metabotropic regulation via G protein coupled receptor signaling pathways. Here, we show by employment of Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) that the acute hyperlocomotor response to AMPH is bidirectionally regulated by metabotropic input to VTA DA neurons with a markedly enhanced response upon activation of a Gs-coupled pathway and a markedly decreased locomotor response upon activation of a Gi-coupled pathway. The unique mechanism of action for AMPH was underlined by the absence of an effect of Gs activation on the locomotor response to the DAT inhibitor cocaine. Regardless of the profound effect on the acute AMPH response, repeated Gs activation or Gi activation did not affect development of AMPH sensitization. Furthermore, activation of a Gs-pathway or activation of a Gi-pathway in DA neurons did not have any effect on the AMPH-induced locomotor response in the AMPH sensitized mice. This suggests induction of alterations in DA neuronal functions that overrule the stimulatory or inhibitory effect of metabotropic input seen in drug-naïve mice. The data thereby underline the remarkable strength of maladaptive changes that occur upon intake of strong psychostimulants. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
|
28
|
Lebowitz JJ, Pino JA, Mackie PM, Lin M, Hurst C, Divita K, Collins AT, Koutzoumis DN, Torres GE, Khoshbouei H. Clustered Kv2.1 decreases dopamine transporter activity and internalization. J Biol Chem 2019; 294:6957-6971. [PMID: 30824538 DOI: 10.1074/jbc.ra119.007441] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/26/2019] [Indexed: 01/16/2023] Open
Abstract
The dopamine transporter (DAT) regulates dopamine neurotransmission via reuptake of dopamine released into the extracellular space. Interactions with partner proteins alter DAT function and thereby dynamically shape dopaminergic tone important for normal brain function. However, the extent and nature of these interactions are incompletely understood. Here, we describe a novel physical and functional interaction between DAT and the voltage-gated K+ channel Kv2.1 (potassium voltage-gated channel subfamily B member 1 or KCNB1). To examine the functional consequences of this interaction, we employed a combination of immunohistochemistry, immunofluorescence live-cell microscopy, co-immunoprecipitation, and electrophysiological approaches. Consistent with previous reports, we found Kv2.1 is trafficked to membrane-bound clusters observed both in vivo and in vitro in rodent dopamine neurons. Our data provide evidence that clustered Kv2.1 channels decrease DAT's lateral mobility and inhibit its internalization, while also decreasing canonical transporter activity by altering DAT's conformational equilibrium. These results suggest that Kv2.1 clusters exert a spatially discrete homeostatic braking mechanism on DAT by inducing a relative increase in inward-facing transporters. Given recent reports of Kv2.1 dysregulation in neurological disorders, it is possible that alterations in the functional interaction between DAT and Kv2.1 affect dopamine neuron activity.
Collapse
Affiliation(s)
- Joseph J Lebowitz
- From the Departments of Neuroscience and.,T32 in Movement Disorders and Neurorestoration, Fixel Center for Neurological Diseases, UF Health, Gainesville, Florida 32610
| | - Jose A Pino
- Pharmacology and Experimental Therapeutics, College of Medicine, University of Florida, Gainesville, Florida 32610 and
| | | | - Min Lin
- From the Departments of Neuroscience and
| | | | | | | | - Dimitri N Koutzoumis
- Pharmacology and Experimental Therapeutics, College of Medicine, University of Florida, Gainesville, Florida 32610 and
| | - Gonzalo E Torres
- Pharmacology and Experimental Therapeutics, College of Medicine, University of Florida, Gainesville, Florida 32610 and
| | - Habibeh Khoshbouei
- From the Departments of Neuroscience and .,T32 in Movement Disorders and Neurorestoration, Fixel Center for Neurological Diseases, UF Health, Gainesville, Florida 32610
| |
Collapse
|
29
|
Mauna JC, Harris SS, Pino JA, Edwards CM, DeChellis-Marks MR, Bassi CD, Garcia-Olivares J, Amara SG, Guajardo FG, Sotomayor-Zarate R, Terminel M, Castañeda E, Vergara M, Baust T, Thiels E, Torres GE. G protein βγ subunits play a critical role in the actions of amphetamine. Transl Psychiatry 2019; 9:81. [PMID: 30745563 PMCID: PMC6370791 DOI: 10.1038/s41398-019-0387-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/30/2018] [Accepted: 01/01/2019] [Indexed: 11/18/2022] Open
Abstract
Abnormal levels of dopamine (DA) are thought to contribute to several neurological and psychiatric disorders including drug addiction. Extracellular DA levels are regulated primarily via reuptake by the DA transporter (DAT). Amphetamine, a potent psychostimulant, increases extracellular DA by inducing efflux through DAT. Recently, we discovered that G protein βγ subunits (Gβγ) interact with DAT, and that in vitro activation of Gβγ promotes DAT-mediated efflux. Here, we investigated the role of Gβγ in the actions of amphetamine in DA neurons in culture, ex vivo nucleus accumbens (NAc), and freely moving rats. Activation of Gβγ with the peptide myr-Ser-Ile-Arg-Lys-Ala-Leu-Asn-Ile-Leu-Gly-Tyr-Pro-Asp-Tyr-Asp (mSIRK) in the NAc potentiated amphetamine-induced hyperlocomotion, but not cocaine-induced hyperlocomotion, and systemic or intra-accumbal administration of the Gβγ inhibitor gallein attenuated amphetamine-induced, but not cocaine-induced hyperlocomotion. Infusion into the NAc of a TAT-fused peptide that targets the Gβγ-binding site on DAT (TAT-DATct1) also attenuated amphetamine-induced but not cocaine-induced hyperlocomotion. In DA neurons in culture, inhibition of Gβγ with gallein or blockade of the Gβγ-DAT interaction with the TAT-DATct1 peptide decreased amphetamine-induced DA efflux. Furthermore, activation of Gβγ with mSIRK potentiated and inhibition of Gβγ with gallein reduced amphetamine-induced increases of extracellular DA in the NAc in vitro and in freely moving rats. Finally, systemic or intra-accumbal inhibition of Gβγ with gallein blocked the development of amphetamine-induced, but not cocaine-induced place preference. Collectively, these results suggest that interaction between Gβγ and DAT plays a critical role in the actions of amphetamine and presents a novel target for modulating the actions of amphetamine in vivo.
Collapse
Affiliation(s)
- J C Mauna
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - S S Harris
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA
| | - J A Pino
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA
| | - C M Edwards
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M R DeChellis-Marks
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - C D Bassi
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Garcia-Olivares
- Laboratory of Cellular and Molecular Neurobiology, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - S G Amara
- Laboratory of Cellular and Molecular Neurobiology, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - F G Guajardo
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA
- Laboratory of Neurochemistry and Neuropharmacology, Center for Neurobiology and Brain Plasticity, Universidad de Valparaíso, Valparaíso, Chile
| | - R Sotomayor-Zarate
- Laboratory of Neurochemistry and Neuropharmacology, Center for Neurobiology and Brain Plasticity, Universidad de Valparaíso, Valparaíso, Chile
| | - M Terminel
- Department of Psychology, University of Texas at El Paso, El Paso, TX, USA
| | - E Castañeda
- Department of Psychology, University of Texas at El Paso, El Paso, TX, USA
| | - M Vergara
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA
| | - T Baust
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - E Thiels
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - G E Torres
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA.
- Center for Addiction Research and Education, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
30
|
Thal LB, Tomlinson ID, Quinlan MA, Kovtun O, Blakely RD, Rosenthal SJ. Single Quantum Dot Imaging Reveals PKCβ-Dependent Alterations in Membrane Diffusion and Clustering of an Attention-Deficit Hyperactivity Disorder/Autism/Bipolar Disorder-Associated Dopamine Transporter Variant. ACS Chem Neurosci 2019; 10:460-471. [PMID: 30153408 PMCID: PMC6411462 DOI: 10.1021/acschemneuro.8b00350] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The dopamine transporter (DAT) is a transmembrane protein that terminates dopamine signaling in the brain by driving rapid dopamine reuptake into presynaptic nerve terminals. Several lines of evidence indicate that DAT dysfunction is linked to neuropsychiatric disorders such as attention-deficit/hyperactivity disorder (ADHD), bipolar disorder (BPD), and autism spectrum disorder (ASD). Indeed, individuals with these disorders have been found to express the rare, functional DAT coding variant Val559, which confers anomalous dopamine efflux (ADE) in vitro and in vivo. To elucidate the impact of the DAT Val559 variant on membrane diffusion dynamics, we implemented our antagonist-conjugated quantum dot (QD) labeling approach to monitor the lateral mobility of single particle-labeled transporters in transfected HEK-293 and SK-N-MC cells. Our results demonstrate significantly higher diffusion coefficients of DAT Val559 compared to those of DAT Ala559, effects likely determined by elevated N-terminal transporter phosphorylation. We also provide pharmacological evidence that PKCβ-mediated signaling supports enhanced DAT Val559 membrane diffusion rates. Additionally, our results are complimented with diffusion rates of phosphomimicked and phosphorylation-occluded DAT variants. Furthermore, we show DAT Val559 has a lower propensity for membrane clustering, which may be caused by a mutation-derived shift out of membrane microdomains leading to faster lateral membrane diffusion rates. These findings further demonstrate a functional impact of DAT Val559 and suggest that changes in transporter localization and lateral mobility may sustain ADE and contribute to alterations in dopamine signaling underlying multiple neuropsychiatric disorders.
Collapse
|
31
|
Benleulmi-Chaachoua A, Hegron A, Le Boulch M, Karamitri A, Wierzbicka M, Wong V, Stagljar I, Delagrange P, Ahmad R, Jockers R. Melatonin receptors limit dopamine reuptake by regulating dopamine transporter cell-surface exposure. Cell Mol Life Sci 2018; 75:4357-4370. [PMID: 30043140 PMCID: PMC11105639 DOI: 10.1007/s00018-018-2876-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 06/26/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022]
Abstract
Melatonin, a neuro-hormone released by the pineal gland, has multiple effects in the central nervous system including the regulation of dopamine (DA) levels, but how melatonin accomplishes this task is not clear. Here, we show that melatonin MT1 and MT2 receptors co-immunoprecipitate with the DA transporter (DAT) in mouse striatal synaptosomes. Increased DA re-uptake and decreased amphetamine-induced locomotor activity were observed in the striatum of mice with targeted deletion of MT1 or MT2 receptors. In vitro experiments confirmed the interactions and recapitulated the inhibitory effect of melatonin receptors on DA re-uptake. Melatonin receptors retained DAT in the endoplasmic reticulum in its immature non-glycosylated form. In conclusion, we reveal one of the first molecular complexes between G protein-coupled receptors (MT1 and MT2) and transporters (DAT) in which melatonin receptors regulate the availability of DAT at the plasma membrane, thus limiting the striatal DA re-uptake capacity in mice.
Collapse
MESH Headings
- Animals
- Cell Membrane/metabolism
- Corpus Striatum/metabolism
- Dopamine/metabolism
- Dopamine Plasma Membrane Transport Proteins/genetics
- Dopamine Plasma Membrane Transport Proteins/metabolism
- HEK293 Cells
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Motor Activity/genetics
- Protein Binding
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Synaptosomes/metabolism
Collapse
Affiliation(s)
- Abla Benleulmi-Chaachoua
- Inserm, U1016, Institut Cochin, 22 Rue Mechain, 75014, Paris, France
- CNRS, UMR 8104, 22 Rue Mechain, 75014, Paris, France
- University of Paris Descartes, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006, Paris, France
| | - Alan Hegron
- Inserm, U1016, Institut Cochin, 22 Rue Mechain, 75014, Paris, France
- CNRS, UMR 8104, 22 Rue Mechain, 75014, Paris, France
- University of Paris Descartes, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006, Paris, France
| | - Marine Le Boulch
- Inserm, U1016, Institut Cochin, 22 Rue Mechain, 75014, Paris, France
- CNRS, UMR 8104, 22 Rue Mechain, 75014, Paris, France
- University of Paris Descartes, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006, Paris, France
| | - Angeliki Karamitri
- Inserm, U1016, Institut Cochin, 22 Rue Mechain, 75014, Paris, France
- CNRS, UMR 8104, 22 Rue Mechain, 75014, Paris, France
- University of Paris Descartes, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006, Paris, France
| | - Marta Wierzbicka
- Donnelly Centre, Department of Biochemistry, Faculty of Medicine, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Victoria Wong
- Donnelly Centre, Department of Biochemistry, Faculty of Medicine, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Igor Stagljar
- Donnelly Centre, Department of Biochemistry, Faculty of Medicine, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Philippe Delagrange
- Pôle d'Innovation Thérapeutique Neuropsychiatrie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy, France
| | - Raise Ahmad
- Inserm, U1016, Institut Cochin, 22 Rue Mechain, 75014, Paris, France
- CNRS, UMR 8104, 22 Rue Mechain, 75014, Paris, France
- University of Paris Descartes, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006, Paris, France
| | - Ralf Jockers
- Inserm, U1016, Institut Cochin, 22 Rue Mechain, 75014, Paris, France.
- CNRS, UMR 8104, 22 Rue Mechain, 75014, Paris, France.
- University of Paris Descartes, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006, Paris, France.
| |
Collapse
|
32
|
Mulvihill KG. Presynaptic regulation of dopamine release: Role of the DAT and VMAT2 transporters. Neurochem Int 2018; 122:94-105. [PMID: 30465801 DOI: 10.1016/j.neuint.2018.11.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/28/2018] [Accepted: 11/08/2018] [Indexed: 01/23/2023]
Abstract
The signaling dynamics of the neurotransmitter dopamine has been established to have an important role in a variety of behavioural processes including motor control, cognition, and emotional processing. Key regulators of transmitter release and the signaling dynamics of dopamine are the plasma membrane reuptake transporter (DAT) and the vesicular monoamine transporter (VMAT2). These proteins serve to remove dopamine molecules from the extracellular and cytosolic space, respectively and both determine the amount of transmitter released from synaptic vesicles. This review provides an overview of how these transporter proteins are involved in molecular regulation and function together to govern the dynamics of vesicular release with opposing effects on the quantal size and extracellular concentration of dopamine. These transporter proteins are both focal points of convergence for a variety of regulatory molecular cascades as well as targets for many pharmacological agents. The ratio between these transporters is argued to be useful as a molecular marker for delineating dopamine functional subsystems that may differ in transmitter release patterns.
Collapse
Affiliation(s)
- Kevin G Mulvihill
- Department of Psychology, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
33
|
Lanzo A, Safratowich BD, Kudumala SR, Gallotta I, Zampi G, Di Schiavi E, Carvelli L. Silencing of Syntaxin 1A in the Dopaminergic Neurons Decreases the Activity of the Dopamine Transporter and Prevents Amphetamine-Induced Behaviors in C. elegans. Front Physiol 2018; 9:576. [PMID: 29872404 PMCID: PMC5972276 DOI: 10.3389/fphys.2018.00576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/01/2018] [Indexed: 11/15/2022] Open
Abstract
The dopamine transporter (DAT) is a cell membrane protein whose main function is to reuptake the dopamine (DA) released in the synaptic cleft back into the dopaminergic neurons. Previous studies suggested that the activity of DAT is regulated by allosteric proteins such as Syntaxin-1A and is altered by drugs of abuse such as amphetamine (Amph). Because Caenorhabditis elegans expresses both DAT (DAT-1) and Syntaxin-1A (UNC-64), we used this model system to investigate the functional and behavioral effects caused by lack of expression of unc-64 in cultured dopaminergic neurons and in living animals. Using an inheritable RNA silencing technique, we were able to knockdown unc-64 specifically in the dopaminergic neurons. This cell-specific knockdown approach avoids the pleiotropic phenotypes caused by knockout mutations of unc-64 and ensures the transmission of dopaminergic specific unc-64 silencing to the progeny. We found that, similarly to dat-1 knockouts and dat-1 silenced lines, animals with reduced unc-64 expression in the dopaminergic neurons did not respond to Amph treatment when tested for locomotor behaviors. Our in vitro data demonstrated that in neuronal cultures derived from animals silenced for unc-64, the DA uptake was reduced by 30% when compared to controls, and this reduction was similar to that measured in neurons isolated from animals silenced for dat-1 (40%). Moreover, reduced expression of unc-64 in the dopaminergic neurons significantly reduced the DA release elicited by Amph. Because in C. elegans DAT-1 is the only protein capable to reuptake DA, these data show that reduced expression of unc-64 in the dopaminergic neurons decreases the capability of DAT in re-accumulating synaptic DA. Moreover, these results demonstrate that decreased expression of unc-64 in the dopaminergic neurons abrogates the locomotor behavior induced by Amph. Taken together these data suggest that Syntaxin-1A plays an important role in both functional and behavioral effects caused by Amph.
Collapse
Affiliation(s)
- Ambra Lanzo
- Institute of Biosciences and Bioresources, National Research Council (CNR), Naples, Italy
| | - Bryan D Safratowich
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Sirisha R Kudumala
- Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| | - Ivan Gallotta
- Institute of Genetics and Biophysics, National Research Council (CNR), Naples, Italy
| | - Giuseppina Zampi
- Institute of Biosciences and Bioresources, National Research Council (CNR), Naples, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and Bioresources, National Research Council (CNR), Naples, Italy.,Institute of Genetics and Biophysics, National Research Council (CNR), Naples, Italy
| | - Lucia Carvelli
- Brain Institute, Florida Atlantic University, Jupiter, FL, United States.,Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States
| |
Collapse
|
34
|
Structural and Functional Characterization of the Interaction of Snapin with the Dopamine Transporter: Differential Modulation of Psychostimulant Actions. Neuropsychopharmacology 2018; 43:1041-1051. [PMID: 28905875 PMCID: PMC5854797 DOI: 10.1038/npp.2017.217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 12/12/2022]
Abstract
The importance of dopamine (DA) neurotransmission is emphasized by its direct implication in several neurological and psychiatric disorders. The DA transporter (DAT), target of psychostimulant drugs, is the key protein that regulates spatial and temporal activity of DA in the synaptic cleft via the rapid reuptake of DA into the presynaptic terminal. There is strong evidence suggesting that DAT-interacting proteins may have a role in its function and regulation. Performing a two-hybrid screening, we identified snapin, a SNARE-associated protein implicated in synaptic transmission, as a new binding partner of the carboxyl terminal of DAT. Our data show that snapin is a direct partner and regulator of DAT. First, we determined the domains required for this interaction in both proteins and characterized the DAT-snapin interface by generating a 3D model. Using different approaches, we demonstrated that (i) snapin is expressed in vivo in dopaminergic neurons along with DAT; (ii) both proteins colocalize in cultured cells and brain and, (iii) DAT and snapin are present in the same protein complex. Moreover, by functional studies we showed that snapin produces a significant decrease in DAT uptake activity. Finally, snapin downregulation in mice produces an increase in DAT levels and transport activity, hence increasing DA concentration and locomotor response to amphetamine. In conclusion, snapin/DAT interaction represents a direct link between exocytotic and reuptake mechanisms and is a potential target for DA transmission modulation.
Collapse
|
35
|
Abstract
Background Much of the structure-based mechanistic understandings of the function of SLC6A neurotransmitter transporters emerged from the study of their bacterial LeuT-fold homologs. It has become evident, however, that structural differences such as the long N- and C-termini of the eukaryotic neurotransmitter transporters are involved in an expanded set of functional properties to the eukaryotic transporters. These functional properties are not shared by the bacterial homologs, which lack the structural elements that appeared later in evolution. However, mechanistic insights into some of the measured functional properties of the eukaryotic transporters that have been suggested to involve these structural elements are sparse or merely descriptive. Results To learn how the structural elements added in evolution enable mechanisms of the eukaryotic transporters in ways not shared with their bacterial LeuT-like homologs, we focused on the human dopamine transporter (hDAT) as a prototype. We present the results of a study employing large-scale molecular dynamics simulations and comparative Markov state model analysis of experimentally determined properties of the wild-type and mutant hDAT constructs. These offer a quantitative outline of mechanisms in which a rich spectrum of interactions of the hDAT N-terminus and C-terminus contribute to the regulation of transporter function (e.g., by phosphorylation) and/or to entirely new phenotypes (e.g., reverse uptake (efflux)) that were added in evolution. Conclusions The findings are consistent with the proposal that the size of eukaryotic neurotransmitter transporter termini increased during evolution to enable more functions (e.g., efflux) not shared with the bacterial homologs. The mechanistic explanations for the experimental findings about the modulation of function in DAT, the serotonin transporter, and other eukaryotic transporters reveal separate roles for the distal and proximal segments of the much larger N-terminus in eukaryotic transporters compared to the bacterial ones. The involvement of the proximal and distal segments — such as the role of the proximal segment in sustaining transport in phosphatidylinositol 4,5-bisphosphate-depleted membranes and of the distal segment in modulating efflux — may represent an evolutionary adaptation required for the function of eukaryotic transporters expressed in various cell types of the same organism that differ in the lipid composition and protein complement of their membrane environment. Electronic supplementary material The online version of this article (10.1186/s12915-018-0495-6) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
Sambo DO, Lin M, Owens A, Lebowitz JJ, Richardson B, Jagnarine DA, Shetty M, Rodriquez M, Alonge T, Ali M, Katz J, Yan L, Febo M, Henry LK, Bruijnzeel AW, Daws L, Khoshbouei H. The sigma-1 receptor modulates methamphetamine dysregulation of dopamine neurotransmission. Nat Commun 2017; 8:2228. [PMID: 29263318 PMCID: PMC5738444 DOI: 10.1038/s41467-017-02087-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 11/05/2017] [Indexed: 12/16/2022] Open
Abstract
Dopamine neurotransmission is highly dysregulated by the psychostimulant methamphetamine, a substrate for the dopamine transporter (DAT). Through interactions with DAT, methamphetamine increases extracellular dopamine levels in the brain, leading to its rewarding and addictive properties. Methamphetamine also interacts with the sigma-1 receptor (σ1R), an inter-organelle signaling modulator. Using complementary strategies, we identified a novel mechanism for σ1R regulation of dopamine neurotransmission in response to methamphetamine. We found that σ1R activation prevents methamphetamine-induced, DAT-mediated increases in firing activity of dopamine neurons. In vitro and in vivo amperometric measurements revealed that σ1R activation decreases methamphetamine-stimulated dopamine efflux without affecting basal dopamine neurotransmission. Consistent with these findings, σ1R activation decreases methamphetamine-induced locomotion, motivated behavior, and enhancement of brain reward function. Notably, we revealed that the σ1R interacts with DAT at or near the plasma membrane and decreases methamphetamine-induced Ca2+ signaling, providing potential mechanisms. Broadly, these data provide evidence for σ1R regulation of dopamine neurotransmission and support the σ1R as a putative target for the treatment of methamphetamine addiction.
Collapse
Affiliation(s)
- Danielle O Sambo
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Min Lin
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Anthony Owens
- Department of Cellular & Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Joseph J Lebowitz
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Ben Richardson
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Darin A Jagnarine
- Department of Psychiatry, University of Florida, Gainesville, FL, 32611, USA
| | - Madhur Shetty
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Meghan Rodriquez
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Taiwo Alonge
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Mishaal Ali
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Jonathan Katz
- Psychobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Long Yan
- Max Plank Institute for Neuroscience Jupiter, Jupiter, FL, 33458, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL, 32611, USA
| | - L Keith Henry
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | | | - Lynette Daws
- Department of Cellular & Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
37
|
Karam CS, Javitch JA. Phosphorylation of the Amino Terminus of the Dopamine Transporter: Regulatory Mechanisms and Implications for Amphetamine Action. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 82:205-234. [PMID: 29413521 DOI: 10.1016/bs.apha.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Amphetamines (AMPHs) are potent psychostimulants that are widely used and abused, with profound medical and societal impact. Their actions at dopaminergic neurons are thought to mediate their therapeutic efficacy as well as their liability for abuse and dependence. AMPHs target the dopamine transporter (DAT), the plasmalemmal membrane protein that mediates the inactivation of released dopamine (DA) through its reuptake. AMPHs act as substrates for DAT and are known to cause mobilization of dopamine (DA) to the cell exterior via DAT-mediated reverse transport (efflux). It has become increasingly evident that the mechanisms that regulate AMPH-induced DA efflux are distinct from those that regulate DA uptake. Central to these mechanisms is the phosphorylation of the DAT amino (N)-terminus, which has been repeatedly demonstrated to facilitate DAT-mediated DA efflux, without impacting other aspects of DAT physiology. This review aims to summarize the current status of knowledge regarding DAT N-terminal phosphorylation and its regulation by protein modulators and the membrane microenvironment. A better understanding of these mechanisms may lead to the identification of novel therapeutic approaches that interfere selectively with the pharmacological effects of AMPHs without altering the physiological function of DAT.
Collapse
Affiliation(s)
- Caline S Karam
- College of Physicians & Surgeons, Columbia University, New York, NY, United States; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Jonathan A Javitch
- College of Physicians & Surgeons, Columbia University, New York, NY, United States; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States.
| |
Collapse
|
38
|
Mannangatti P, Ramamoorthy S, Jayanthi LD. Interference of norepinephrine transporter trafficking motif attenuates amphetamine-induced locomotor hyperactivity and conditioned place preference. Neuropharmacology 2017; 128:132-141. [PMID: 28986281 DOI: 10.1016/j.neuropharm.2017.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/15/2017] [Accepted: 10/03/2017] [Indexed: 11/28/2022]
Abstract
Amphetamine (AMPH)-mediated norepinephrine transporter (NET) downregulation requires NET-T258/S259 trafficking motif. The present study utilizes cell permeable NET-T258/S259 motif interfering peptide, which blocks AMPH-induced NET downregulation, to explore the role of this form of NET regulation in AMPH-mediated behaviors. In rats receiving intra-accumbal microinjections of TAT-conjugated peptides encompassing NET-T258/S259 motif, acute systemic AMPH failed to inhibit NE transport in the TAT-NET-T258/S259 wild-type (WT) peptide injected hemisphere but not in the vehicle or scrambled peptide injected hemisphere. Acute AMPH-induced hyperactivity was significantly reduced in rats receiving intra-accumbal TAT-NET-T258/S259 WT peptide compared to those receiving intra-accumbal vehicle or TAT-NET-T258A/S259A mutant peptide or corresponding TAT-conjugated scrambled peptide. Basal locomotor activity was not altered by peptide infusions alone. Similarly AMPH-induced locomotor sensitization was significantly reduced in rats receiving intra-accumbal TAT-NET-T258/S259 WT peptide prior to AMPH challenge and not in rats receiving the mutant or scrambled peptide. In conditioned place preference (CPP) paradigm, a single bilateral intra-accumbal microinjection of TAT-NET-T258/S259 WT peptide prior to CPP testing significantly reduced AMPH-induced CPP expression. Likewise, a single bilateral intra-accumbal microinjection of TAT-NET-T258/S259 WT peptide prior to drug-challenge significantly attenuated AMPH-primed CPP reinstatement. On the other hand, bilateral intra-accumbal microinjection of scrambled peptide did not affect AMPH-induced CPP expression or reinstatement. These data demonstrate a role for T258/S259-dependent NET regulation in AMPH-induced hyperactivity and sensitization as well as AMPH-induced CPP expression and reinstatement.
Collapse
Affiliation(s)
- Padmanabhan Mannangatti
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Sammanda Ramamoorthy
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | |
Collapse
|
39
|
Foster JD, Vaughan RA. Phosphorylation mechanisms in dopamine transporter regulation. J Chem Neuroanat 2017; 83-84:10-18. [PMID: 27836487 PMCID: PMC6705611 DOI: 10.1016/j.jchemneu.2016.10.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/26/2016] [Accepted: 10/29/2016] [Indexed: 12/17/2022]
Abstract
The dopamine transporter (DAT) is a plasma membrane phosphoprotein that actively translocates extracellular dopamine (DA) into presynaptic neurons. The transporter is the primary mechanism for control of DA levels and subsequent neurotransmission, and is the target for abused and therapeutic drugs that exert their effects by suppressing reuptake. The transport capacity of DAT is acutely regulated by signaling systems and drug exposure, providing neurons the ability to fine-tune DA clearance in response to specific conditions. Kinase pathways play major roles in these mechanisms, and this review summarizes the current status of DAT phosphorylation characteristics and the evidence linking transporter phosphorylation to control of reuptake and other functions. Greater understanding of these processes may aid in elucidation of their possible contributions to DA disease states and suggest specific phosphorylation sites as targets for therapeutic manipulation of reuptake.
Collapse
Affiliation(s)
- James D Foster
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks ND 58202 United States
| | - Roxanne A Vaughan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks ND 58202 United States.
| |
Collapse
|
40
|
Kern C, Erdem FA, El-Kasaby A, Sandtner W, Freissmuth M, Sucic S. The N Terminus Specifies the Switch between Transport Modes of the Human Serotonin Transporter. J Biol Chem 2017; 292:3603-3613. [PMID: 28104804 PMCID: PMC5339746 DOI: 10.1074/jbc.m116.771360] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/18/2017] [Indexed: 10/25/2022] Open
Abstract
The serotonin transporter (SERT) and other monoamine transporters operate in either a forward transport mode where the transporter undergoes a full transport cycle or an exchange mode where the transporter seesaws through half-cycles. Amphetamines trigger the exchange mode, leading to substrate efflux. This efflux was proposed to rely on the N terminus, which was suggested to adopt different conformations in the inward facing, outward facing and amphetamine-bound states. This prediction was verified by tryptic digestion of SERT-expressing membranes: in the absence of Na+, the N terminus was rapidly digested. Amphetamine conferred protection against cleavage, suggesting a relay between the conformational states of the hydrophobic core and the N terminus. We searched for a candidate segment that supported the conformational switch by serial truncation removing 22 (ΔN22), 32 (ΔN32), or 42 (ΔN42) N-terminal residues. This did not affect surface expression, inhibitor binding, and substrate influx. However, amphetamine-induced efflux by SERT-ΔN32 or SERT-ΔN42 (but not by SERT-ΔN22) was markedly diminished. We examined the individual steps in the transport cycle by recording transporter-associated currents: the recovery rate of capacitive peak, but not of steady state, currents was significantly lower for SERT-ΔN32 than that of wild type SERT and SERT-ΔN22. Thus, the exchange mode of SERT-ΔN32 was selectively impaired. Our observations show that the N terminus affords the switch between transport modes. The findings are consistent with a model where the N terminus acts as a lever to support amphetamine-induced efflux by SERT.
Collapse
Affiliation(s)
- Carina Kern
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Fatma Asli Erdem
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ali El-Kasaby
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Walter Sandtner
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael Freissmuth
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sonja Sucic
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
41
|
Ossato A, Uccelli L, Bilel S, Canazza I, Di Domenico G, Pasquali M, Pupillo G, De Luca MA, Boschi A, Vincenzi F, Rimondo C, Beggiato S, Ferraro L, Varani K, Borea PA, Serpelloni G, De-Giorgio F, Marti M. Psychostimulant Effect of the Synthetic Cannabinoid JWH-018 and AKB48: Behavioral, Neurochemical, and Dopamine Transporter Scan Imaging Studies in Mice. Front Psychiatry 2017; 8:130. [PMID: 28824464 PMCID: PMC5543288 DOI: 10.3389/fpsyt.2017.00130] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/06/2017] [Indexed: 12/16/2022] Open
Abstract
JWH-018 and AKB48 are two synthetic cannabinoids (SCBs) belonging to different structural classes and illegally marketed as incense, herbal preparations, or chemical supply for theirs psychoactive cannabis-like effects. Clinical reports from emergency room reported psychomotor agitation as one of the most frequent effects in people assuming SCBs. This study aimed to investigate the psychostimulant properties of JWH-018 and AKB48 in male CD-1 mice and to compare their behavioral and biochemical effects with those caused by cocaine and amphetamine. In vivo studies showed that JWH-018 and AKB48, as cocaine and amphetamine, facilitated spontaneous locomotion in mice. These effects were prevented by CB1 receptor blockade and dopamine (DA) D1/5 and D2/3 receptors inhibition. SPECT-CT studies on dopamine transporter (DAT) revealed that, as cocaine and amphetamine, JWH-018 and AKB48 decreased the [123I]-FP-CIT binding in the mouse striatum. Conversely, in vitro competition binding studies revealed that, unlike cocaine and amphetamine, JWH-018 and AKB48 did not bind to mouse or human DAT. Moreover, microdialysis studies showed that the systemic administration of JWH-018, AKB48, cocaine, and amphetamine stimulated DA release in the nucleus accumbens (NAc) shell of freely moving mice. Finally, unlike amphetamine and cocaine, JWH-018 and AKB48 did not induce any changes on spontaneous [3H]-DA efflux from murine striatal synaptosomes. The present results suggest that SCBs facilitate striatal DA release possibly with different mechanisms than cocaine and amphetamine. Furthermore, they demonstrate, for the first time, that JWH-018 and AKB48 induce a psychostimulant effect in mice possibly by increasing NAc DA release. These data, according to clinical reports, outline the potential psychostimulant action of SCBs highlighting their possible danger to human health.
Collapse
Affiliation(s)
- Andrea Ossato
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy.,Section of Legal Medicine, Institute of Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Licia Uccelli
- Morphology, Surgery and Experimental Medicine Department, University of Ferrara, Ferrara, Italy
| | - Sabrine Bilel
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy
| | - Isabella Canazza
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy.,Section of Legal Medicine, Institute of Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | | | - Micol Pasquali
- Physics and Hearth Science Department, University of Ferrara, Ferrara, Italy
| | - Gaia Pupillo
- Legnaro National Laboratories, Italian National Institute for Nuclear Physics (LNL-INFN), Legnaro, Italy
| | | | - Alessandra Boschi
- Morphology, Surgery and Experimental Medicine Department, University of Ferrara, Ferrara, Italy
| | - Fabrizio Vincenzi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Claudia Rimondo
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Sarah Beggiato
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy
| | - Katia Varani
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Pier Andrea Borea
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Serpelloni
- Department of Psychiatry in the College of Medicine, Drug Policy Institute, University of Florida, Gainesville, FL, United States
| | - Fabio De-Giorgio
- Section of Legal Medicine, Institute of Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Matteo Marti
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy.,Center for Neuroscience, Istituto Nazionale di Neuroscienze, Ferrara, Italy
| |
Collapse
|
42
|
Bermingham DP, Blakely RD. Kinase-dependent Regulation of Monoamine Neurotransmitter Transporters. Pharmacol Rev 2016; 68:888-953. [PMID: 27591044 PMCID: PMC5050440 DOI: 10.1124/pr.115.012260] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Modulation of neurotransmission by the monoamines dopamine (DA), norepinephrine (NE), and serotonin (5-HT) is critical for normal nervous system function. Precise temporal and spatial control of this signaling in mediated in large part by the actions of monoamine transporters (DAT, NET, and SERT, respectively). These transporters act to recapture their respective neurotransmitters after release, and disruption of clearance and reuptake has significant effects on physiology and behavior and has been linked to a number of neuropsychiatric disorders. To ensure adequate and dynamic control of these transporters, multiple modes of control have evolved to regulate their activity and trafficking. Central to many of these modes of control are the actions of protein kinases, whose actions can be direct or indirectly mediated by kinase-modulated protein interactions. Here, we summarize the current state of our understanding of how protein kinases regulate monoamine transporters through changes in activity, trafficking, phosphorylation state, and interacting partners. We highlight genetic, biochemical, and pharmacological evidence for kinase-linked control of DAT, NET, and SERT and, where applicable, provide evidence for endogenous activators of these pathways. We hope our discussion can lead to a more nuanced and integrated understanding of how neurotransmitter transporters are controlled and may contribute to disorders that feature perturbed monoamine signaling, with an ultimate goal of developing better therapeutic strategies.
Collapse
Affiliation(s)
- Daniel P Bermingham
- Department of Pharmacology (D.P.B., R.D.B.) and Psychiatry (R.D.B.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Biomedical Sciences, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida (R.D.B.)
| | - Randy D Blakely
- Department of Pharmacology (D.P.B., R.D.B.) and Psychiatry (R.D.B.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Biomedical Sciences, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida (R.D.B.)
| |
Collapse
|
43
|
LeVine MV, Cuendet MA, Khelashvili G, Weinstein H. Allosteric Mechanisms of Molecular Machines at the Membrane: Transport by Sodium-Coupled Symporters. Chem Rev 2016; 116:6552-87. [PMID: 26892914 DOI: 10.1021/acs.chemrev.5b00627] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Solute transport across cell membranes is ubiquitous in biology as an essential physiological process. Secondary active transporters couple the unfavorable process of solute transport against its concentration gradient to the energetically favorable transport of one or several ions. The study of such transporters over several decades indicates that their function involves complex allosteric mechanisms that are progressively being revealed in atomistic detail. We focus on two well-characterized sodium-coupled symporters: the bacterial amino acid transporter LeuT, which is the prototype for the "gated pore" mechanism in the mammalian synaptic monoamine transporters, and the archaeal GltPh, which is the prototype for the "elevator" mechanism in the mammalian excitatory amino acid transporters. We present the evidence for the role of allostery in the context of a quantitative formalism that can reconcile biochemical and biophysical data and thereby connects directly to recent insights into the molecular structure and dynamics of these proteins. We demonstrate that, while the structures and mechanisms of these transporters are very different, the available data suggest a common role of specific models of allostery in their functions. We argue that such allosteric mechanisms appear essential not only for sodium-coupled symport in general but also for the function of other types of molecular machines in the membrane.
Collapse
Affiliation(s)
- Michael V LeVine
- Department of Physiology and Biophysics, ‡HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University , New York, New York 10065, United States
| | - Michel A Cuendet
- Department of Physiology and Biophysics, ‡HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University , New York, New York 10065, United States
| | - George Khelashvili
- Department of Physiology and Biophysics, ‡HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University , New York, New York 10065, United States
| | - Harel Weinstein
- Department of Physiology and Biophysics, ‡HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University , New York, New York 10065, United States
| |
Collapse
|
44
|
Fricks-Gleason AN, German CL, Hoonakker AJ, Friend DM, Ganesh KK, Carver AS, Hanson GR, Fleckenstein AE, Keefe KA. An acute, epitope-specific modification in the dopamine transporter associated with methamphetamine-induced neurotoxicity. Synapse 2016; 70:139-46. [PMID: 26799527 DOI: 10.1002/syn.21891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/08/2015] [Accepted: 01/18/2016] [Indexed: 11/12/2022]
Abstract
Preclinical studies demonstrate that repeated, high-dose methamphetamine administrations rapidly decrease plasmalemmal dopamine uptake, which may contribute to aberrant dopamine accumulation, reactive species generation, and long-term dopaminergic deficits. The present study extends these findings by demonstrating a heretofore unreported, epitope-specific modification in the dopamine transporter caused by a methamphetamine regimen that induces these deficits. Specifically, repeated, high-dose methamphetamine injections (4 × 10 mg/kg/injection, 2-h intervals) rapidly decreased immunohistochemical detection of striatal dopamine transporter as assessed 1 h after the final methamphetamine exposure. In contrast, neither a single high dose (1 × 10 mg/kg) nor repeated injections of a lower dose (4 × 2 mg/kg/injection) induced this change. The high-dose regimen-induced alteration was only detected using antibodies directed against the N-terminus. Immunohistochemical staining using antibodies directed against the C-terminus did not reveal any changes. The high-dose regimen also did not alter dopamine transporter expression as assessed using [(125) I]RTI-55 autoradiography. These data suggest that the repeated, high-dose methamphetamine regimen alters the N-terminus of the dopamine transporter. Further, these data may be predictive of persistent dopamine deficits caused by the stimulant. Future studies of the signaling cascades involved should provide novel insight into potential mechanisms underlying the physiological and pathophysiological regulation of the dopamine transporter.
Collapse
Affiliation(s)
| | | | | | - Danielle M Friend
- Eating and Addiction Section, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, 20892.,Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah, 84112
| | - Kamala K Ganesh
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, 84112
| | - Aaron S Carver
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, 84112
| | - Glen R Hanson
- School of Dentistry, University of Utah, Salt Lake City, Utah, 84108.,Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah, 84112
| | - Annette E Fleckenstein
- School of Dentistry, University of Utah, Salt Lake City, Utah, 84108.,Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah, 84112
| | - Kristen A Keefe
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah, 84112.,Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, 84112
| |
Collapse
|
45
|
Kalueff AV, Stewart AM, Nguyen M, Song C, Gottesman II. Targeting drug sensitivity predictors: New potential strategies to improve pharmacotherapy of human brain disorders. Prog Neuropsychopharmacol Biol Psychiatry 2015; 63:76-82. [PMID: 25976211 DOI: 10.1016/j.pnpbp.2015.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 02/07/2023]
Abstract
One of the main challenges in medicine is the lack of efficient drug therapies for common human disorders. For example, although depressed patients receive powerful antidepressants, many often remain resistant to psychopharmacotherapy. The growing recognition of complex interplay between the drug targets and the predictors of drug sensitivity requires an improved understanding of these two key aspects of drug action and their potentially shared molecular networks. Here, we apply the concept of endophenotypes and their interplay to drug action and sensitivity. Based on these analyses, we postulate that novel drugs may be developed by targeting specific molecular pathways that integrate drug targets with drug sensitivity predictors.
Collapse
Affiliation(s)
- Allan V Kalueff
- Research Institute for Marine Drugs and Nutrition, College for Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia.
| | | | - Michael Nguyen
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College for Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Irving I Gottesman
- Department of Psychology, University of Minnesota, Elliot Hall, Minneapolis, MN 55455, USA
| |
Collapse
|
46
|
Khelashvili G, Stanley N, Sahai MA, Medina J, LeVine MV, Shi L, De Fabritiis G, Weinstein H. Spontaneous inward opening of the dopamine transporter is triggered by PIP2-regulated dynamics of the N-terminus. ACS Chem Neurosci 2015; 6:1825-37. [PMID: 26255829 PMCID: PMC4653762 DOI: 10.1021/acschemneuro.5b00179] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
![]()
We
present the dynamic mechanism of concerted motions in a full-length
molecular model of the human dopamine transporter (hDAT), a member
of the neurotransmitter/sodium symporter (NSS) family, involved in
state-to-state transitions underlying function. The findings result
from an analysis of unbiased atomistic molecular dynamics simulation
trajectories (totaling >14 μs) of the hDAT molecule immersed
in lipid membrane environments with or without phosphatidylinositol
4,5-biphosphate (PIP2) lipids. The N-terminal region of
hDAT (N-term) is shown to have an essential mechanistic role in correlated
rearrangements of specific structural motifs relevant to state-to-state
transitions in the hDAT. The mechanism involves PIP2-mediated
electrostatic interactions between the N-term and the intracellular
loops of the transporter molecule. Quantitative analyses of collective
motions in the trajectories reveal that these interactions correlate
with the inward-opening dynamics of hDAT and are allosterically coupled
to the known functional sites of the transporter. The observed large-scale
motions are enabled by specific reconfiguration of the network of
ionic interactions at the intracellular end of the protein. The isomerization
to the inward-facing state in hDAT is accompanied by concomitant movements
in the extracellular vestibule and results in the release of an Na+ ion from the Na2 site and destabilization of the substrate
dopamine in the primary substrate binding S1 site. The dynamic mechanism
emerging from the findings highlights the involvement of the PIP2-regulated interactions between the N-term and the intracellular
loop 4 in the functionally relevant conformational transitions that
are also similar to those found to underlie state-to-state transitions
in the leucine transporter (LeuT), a prototypical bacterial homologue
of the NSS.
Collapse
Affiliation(s)
- George Khelashvili
- Department
of Physiology and Biophysics, Weill Cornell Medical College of Cornell University (WCMC), New York, New York 10065, United States
| | - Nathaniel Stanley
- Computational
Biophysics Laboratory (GRIB-IMIM), Universitat Pompeu Fabra, Barcelona
Biomedical Research Park (PRBB), C/Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Michelle A. Sahai
- Department
of Physiology and Biophysics, Weill Cornell Medical College of Cornell University (WCMC), New York, New York 10065, United States
| | - Jaime Medina
- Department
of Physiology and Biophysics, Weill Cornell Medical College of Cornell University (WCMC), New York, New York 10065, United States
| | - Michael V. LeVine
- Department
of Physiology and Biophysics, Weill Cornell Medical College of Cornell University (WCMC), New York, New York 10065, United States
| | - Lei Shi
- Department
of Physiology and Biophysics, Weill Cornell Medical College of Cornell University (WCMC), New York, New York 10065, United States
- HRH
Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute of Computational
Biomedicine, Weill Cornell Medical College of Cornell University, New York, New York 10065, United States
| | - Gianni De Fabritiis
- Computational
Biophysics Laboratory (GRIB-IMIM), Universitat Pompeu Fabra, Barcelona
Biomedical Research Park (PRBB), C/Doctor Aiguader 88, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Passeig Lluis Companys 23, 08010 Barcelona, Spain
| | - Harel Weinstein
- Department
of Physiology and Biophysics, Weill Cornell Medical College of Cornell University (WCMC), New York, New York 10065, United States
- HRH
Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute of Computational
Biomedicine, Weill Cornell Medical College of Cornell University, New York, New York 10065, United States
| |
Collapse
|
47
|
Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015; 67:872-1004. [PMID: 26403687 DOI: 10.1124/pr.115.010967] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Adaptation of the nervous system to different chemical and physiologic conditions is important for the homeostasis of brain processes and for learning and remembering appropriate responses to challenges. Although processes such as tolerance and dependence to various drugs of abuse have been known for a long time, it was recently discovered that even a single pharmacologically relevant dose of various drugs of abuse induces neuroplasticity in selected neuronal populations, such as the dopamine neurons of the ventral tegmental area, which persist long after the drug has been excreted. Prolonged (self-) administration of drugs induces gene expression, neurochemical, neurophysiological, and structural changes in many brain cell populations. These region-specific changes correlate with addiction, drug intake, and conditioned drugs effects, such as cue- or stress-induced reinstatement of drug seeking. In rodents, adolescent drug exposure often causes significantly more behavioral changes later in adulthood than a corresponding exposure in adults. Clinically the most impairing and devastating effects on the brain are produced by alcohol during fetal development. In adult recreational drug users or in medicated patients, it has been difficult to find persistent functional or behavioral changes, suggesting that heavy exposure to drugs of abuse is needed for neurotoxicity and for persistent emotional and cognitive alterations. This review describes recent advances in this important area of research, which harbors the aim of translating this knowledge to better treatments for addictions and related neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Bjørnar den Hollander
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Usman Farooq
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Elena Vashchinkina
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Ramamoorthy Rajkumar
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - David J Nutt
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Gavin S Dawe
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| |
Collapse
|
48
|
Moritz AE, Rastedt DE, Stanislowski DJ, Shetty M, Smith MA, Vaughan RA, Foster JD. Reciprocal Phosphorylation and Palmitoylation Control Dopamine Transporter Kinetics. J Biol Chem 2015; 290:29095-105. [PMID: 26424792 DOI: 10.1074/jbc.m115.667055] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Indexed: 11/06/2022] Open
Abstract
The dopamine transporter is a neuronal protein that drives the presynaptic reuptake of dopamine (DA) and is the major determinant of transmitter availability in the brain. Dopamine transporter function is regulated by protein kinase C (PKC) and other signaling pathways through mechanisms that are complex and poorly understood. Here we investigate the role of Ser-7 phosphorylation and Cys-580 palmitoylation in mediating steady-state transport kinetics and PKC-stimulated transport down-regulation. Using both mutational and pharmacological approaches, we demonstrate that these post-translational modifications are reciprocally regulated, leading to transporter populations that display high phosphorylation-low palmitoylation or low phosphorylation-high palmitoylation. The balance between the modifications dictates transport capacity, as conditions that promote high phosphorylation or low palmitoylation reduce transport Vmax and enhance PKC-stimulated down-regulation, whereas conditions that promote low phosphorylation or high palmitoylation increase transport Vmax and suppress PKC-stimulated down-regulation. Transitions between these functional states occur when endocytosis is blocked or undetectable, indicating that the modifications kinetically regulate the velocity of surface transporters. These findings reveal a novel mechanism for control of DA reuptake that may represent a point of dysregulation in DA imbalance disorders.
Collapse
Affiliation(s)
- Amy E Moritz
- From the Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9061
| | - Danielle E Rastedt
- From the Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9061
| | - Daniel J Stanislowski
- From the Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9061
| | - Madhur Shetty
- From the Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9061
| | - Margaret A Smith
- From the Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9061
| | - Roxanne A Vaughan
- From the Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9061
| | - James D Foster
- From the Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9061
| |
Collapse
|
49
|
Luk B, Mohammed M, Liu F, Lee FJS. A Physical Interaction between the Dopamine Transporter and DJ-1 Facilitates Increased Dopamine Reuptake. PLoS One 2015; 10:e0136641. [PMID: 26305376 PMCID: PMC4549284 DOI: 10.1371/journal.pone.0136641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 08/06/2015] [Indexed: 11/18/2022] Open
Abstract
The regulation of the dopamine transporter (DAT) impacts extracellular dopamine levels after release from dopaminergic neurons. Furthermore, a variety of protein partners have been identified that can interact with and modulate DAT function. In this study we show that DJ-1 can potentially modulate DAT function. Co-expression of DAT and DJ-1 in HEK-293T cells leads to an increase in [3H] dopamine uptake that does not appear to be mediated by increased total DAT expression but rather through an increase in DAT cell surface localization. In addition, through a series of GST affinity purifications and co-immunoprecipitations, we provide evidence that the DAT can be found in a complex with DJ-1, which involve distinct regions within both DAT and DJ-1. Using in vitro binding experiments we also show that this complex can be formed in part by a direct interaction between DAT and DJ-1. Co-expression of a mini-gene that can disrupt the DAT/DJ-1 complex appears to block the increase in [3H] dopamine uptake by DJ-1. Mutations in DJ-1 have been linked to familial forms of Parkinson’s disease, yet the normal physiological function of DJ-1 remains unclear. Our study suggests that DJ-1 may also play a role in regulating dopamine levels by modifying DAT activity.
Collapse
Affiliation(s)
- Beryl Luk
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Mohinuddin Mohammed
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Fang Liu
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Frank J. S. Lee
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| |
Collapse
|
50
|
Kovtun O, Sakrikar D, Tomlinson ID, Chang JC, Arzeta-Ferrer X, Blakely RD, Rosenthal SJ. Single-quantum-dot tracking reveals altered membrane dynamics of an attention-deficit/hyperactivity-disorder-derived dopamine transporter coding variant. ACS Chem Neurosci 2015; 6:526-34. [PMID: 25747272 PMCID: PMC5530757 DOI: 10.1021/cn500202c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The presynaptic, cocaine- and amphetamine-sensitive dopamine (DA) transporter (DAT, SLC6A3) controls the intensity and duration of synaptic dopamine signals by rapid clearance of DA back into presynaptic nerve terminals. Abnormalities in DAT-mediated DA clearance have been linked to a variety of neuropsychiatric disorders, including addiction, autism, and attention deficit/hyperactivity disorder (ADHD). Membrane trafficking of DAT appears to be an important, albeit incompletely understood, post-translational regulatory mechanism; its dysregulation has been recently proposed as a potential risk determinant of these disorders. In this study, we demonstrate a link between an ADHD-associated DAT mutation (Arg615Cys, R615C) and variation on DAT transporter cell surface dynamics, a combination only previously studied with ensemble biochemical and optical approaches that featured limited spatiotemporal resolution. Here, we utilize high-affinity, DAT-specific antagonist-conjugated quantum dot (QD) probes to establish the dynamic mobility of wild-type and mutant DATs at the plasma membrane of living cells. Single DAT-QD complex trajectory analysis revealed that the DAT 615C variant exhibited increased membrane mobility relative to DAT 615R, with diffusion rates comparable to those observed after lipid raft disruption. This phenomenon was accompanied by a loss of transporter mobilization triggered by amphetamine, a common component of ADHD medications. Together, our data provides the first dynamic imaging of single DAT proteins, providing new insights into the relationship between surface dynamics and trafficking of both wild-type and disease-associated transporters. Our approach should be generalizable to future studies that explore the possibilities of perturbed surface DAT dynamics that may arise as a consequence of genetic alterations, regulatory changes, and drug use that contribute to the etiology or treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Oleg Kovtun
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- McCoy & McCoy Laboratories, Inc, Madisonville, Kentucky 42431, United States
| | - Dhananjay Sakrikar
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ian D. Tomlinson
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jerry C. Chang
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Xochitl Arzeta-Ferrer
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Randy D. Blakely
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Psychiatry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Silvio O. Conte Center for Neuroscience Research, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Sandra J. Rosenthal
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|