1
|
Nam YW, Im D, Garcia ASC, Tringides ML, Nguyen HM, Liu Y, Orfali R, Ramanishka A, Pintilie G, Su CC, Cui M, Logothetis DE, Yu EW, Wulff H, Chandy KG, Zhang M. Cryo-EM structures of the small-conductance Ca 2+-activated K Ca2.2 channel. Nat Commun 2025; 16:3690. [PMID: 40246884 PMCID: PMC12006403 DOI: 10.1038/s41467-025-59061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 04/09/2025] [Indexed: 04/19/2025] Open
Abstract
Small-conductance Ca2+-activated K+ (KCa2.1-KCa2.3) channels modulate neuronal and cardiac excitability. We report cryo-electron microscopy structures of the KCa2.2 channel in complex with calmodulin and Ca2+, alone or bound to two small molecule inhibitors, at 3.18, 3.50, 2.99 and 2.97 angstrom resolution, respectively. Extracellular S3-S4 loops in β-hairpin configuration form an outer canopy over the pore with an aromatic box at the canopy's center. Each S3-S4 β-hairpin is tethered to the selectivity filter in the neighboring subunit by inter-subunit hydrogen bonds. This hydrogen bond network flips the aromatic residue (Tyr362) in the filter's GYG signature by 180°, causing the outer selectivity filter to widen and water to enter the filter. Disruption of the tether by a mutation narrows the outer selectivity filter, realigns Tyr362 to the position seen in other K+ channels, and significantly increases unitary conductance. UCL1684, a mimetic of the bee venom peptide apamin, sits atop the canopy and occludes the opening in the aromatic box. AP14145, an analogue of a therapeutic for atrial fibrillation, binds in the central cavity below the selectivity filter and induces closure of the inner gate. These structures provide a basis for understanding the small unitary conductance and pharmacology of KCa2.x channels.
Collapse
Affiliation(s)
- Young-Woo Nam
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, USA
| | - Dohyun Im
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ana Santa Cruz Garcia
- Department of Pharmaceutical Sciences, Northeastern University School of Pharmacy and Pharmaceutical Sciences, Boston, MA, USA
| | - Marios L Tringides
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Hai Minh Nguyen
- Department of Pharmacology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Yan Liu
- Division of CryoEM and Bioimaging, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA
| | - Razan Orfali
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, USA
| | - Alena Ramanishka
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, USA
| | - Grigore Pintilie
- Department of Bioengineering and Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Chih-Chia Su
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University School of Pharmacy and Pharmaceutical Sciences, Boston, MA, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, Northeastern University School of Pharmacy and Pharmaceutical Sciences, Boston, MA, USA
| | - Edward W Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California Davis, Davis, CA, USA
| | - K George Chandy
- LKCMedicine-ICE Collaborative Platform, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Miao Zhang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, USA.
| |
Collapse
|
2
|
Vandal M, Institoris A, Reveret L, Korin B, Gunn C, Hirai S, Jiang Y, Lee S, Lee J, Bourassa P, Mishra RC, Peringod G, Arellano F, Belzil C, Tremblay C, Hashem M, Gorzo K, Elias E, Yao J, Meilandt B, Foreman O, Roose-Girma M, Shin S, Muruve D, Nicola W, Körbelin J, Dunn JF, Chen W, Park SK, Braun AP, Bennett DA, Gordon GRJ, Calon F, Shaw AS, Nguyen MD. Loss of endothelial CD2AP causes sex-dependent cerebrovascular dysfunction. Neuron 2025; 113:876-895.e11. [PMID: 39892386 DOI: 10.1016/j.neuron.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 08/27/2024] [Accepted: 01/09/2025] [Indexed: 02/03/2025]
Abstract
Polymorphisms in CD2-associated protein (CD2AP) predispose to Alzheimer's disease (AD), but the underlying mechanisms remain unknown. Here, we show that loss of CD2AP in cerebral blood vessels is associated with cognitive decline in AD subjects and that genetic downregulation of CD2AP in brain vascular endothelial cells impairs memory function in male mice. Animals with reduced brain endothelial CD2AP display altered blood flow regulation at rest and during neurovascular coupling, defects in mural cell activity, and an abnormal vascular sex-dependent response to Aβ. Antagonizing endothelin-1 receptor A signaling partly rescues the vascular impairments, but only in male mice. Treatment of CD2AP mutant mice with reelin glycoprotein that mitigates the effects of CD2AP loss function via ApoER2 increases resting cerebral blood flow and even protects male mice against the noxious effect of Aβ. Thus, endothelial CD2AP plays critical roles in cerebrovascular functions and represents a novel target for sex-specific treatment in AD.
Collapse
Affiliation(s)
- Milène Vandal
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Adam Institoris
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Louise Reveret
- Faculté de pharmacie, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Hospitalier Universitaire de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
| | - Ben Korin
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA
| | - Colin Gunn
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Sotaro Hirai
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Yulan Jiang
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Sukyoung Lee
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Jiyeon Lee
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA
| | - Philippe Bourassa
- Faculté de pharmacie, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Hospitalier Universitaire de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
| | - Ramesh C Mishra
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Govind Peringod
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Faye Arellano
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Camille Belzil
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Cyntia Tremblay
- Centre de Hospitalier Universitaire de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
| | - Mada Hashem
- Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Kelsea Gorzo
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Esteban Elias
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Jinjing Yao
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Bill Meilandt
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA
| | - Oded Foreman
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA
| | - Meron Roose-Girma
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA
| | - Steven Shin
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Daniel Muruve
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Wilten Nicola
- Departments of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Jeff F Dunn
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada; Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada; Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Wayne Chen
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Sang-Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Andrew P Braun
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - David A Bennett
- Rush Alzheimer's disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Grant R J Gordon
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Hospitalier Universitaire de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada.
| | - Andrey S Shaw
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA.
| | - Minh Dang Nguyen
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada.
| |
Collapse
|
3
|
Vera OD, Mishra RC, Khaddaj-Mallat R, Hamm L, Almarzouq B, Chen YX, Belke DD, Singh L, Wulff H, Braun AP. Administration of the K Ca channel activator SKA-31 improves endothelial function in the aorta of atherosclerosis-prone mice. Front Pharmacol 2025; 16:1545050. [PMID: 40093319 PMCID: PMC11906683 DOI: 10.3389/fphar.2025.1545050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Atherosclerosis remains a major risk factor for vascular dysfunction and cardiovascular (CV) disease. Pharmacological enhancement of endothelial Ca2+-activated K+ channel activity (i.e., KCa2.3 and KCa3.1) opposes vascular dysfunction associated with ageing and type 2 diabetes (T2D) in ex vivo and in vivo preparations. In the current study, we have investigated the efficacy of this strategy to mitigate endothelial dysfunction in the setting of atherogenesis. Methods Male apolipoprotein E knockout (Apoe-/-) mice fed a high fat diet (HFD) were treated daily with the KCa channel activator SKA-31 (10 mg/kg), the KCa3.1 channel blocker senicapoc (40 mg/kg), or drug vehicle for 12-weeks. Endothelium-dependent and -independent relaxation and vasocontractility were measured in abdominal aorta by wire myography. The development of atherosclerosis in the thoracic aorta was characterized by Oil Red O staining and immunohistochemistry. Key vasorelaxant signaling proteins were quantified by q-PCR. Results Endothelium-dependent relaxation of phenylephrine-constricted aortic rings was impaired in Apoe-/- HFD mice (53%) vs. wild-type (WT) controls (80%, P < 0.0001), consistent with endothelial dysfunction. Treatment of Apoe-/- HFD mice with SKA-31, but not senicapoc, restored maximal relaxation to the WT level. Phenylephrine-evoked contraction was similar in WT and vehicle/drug treated Apoe-/- mice, as was the maximal relaxation induced by the endothelium-independent vasodilator sodium nitroprusside. mRNA expression for eNOS, KCa3.1, KCa2.3 and TRPV4 channels in the abdominal aorta was unaffected by either SKA-31 or senicapoc treatment. Fatty plaque formation, tissue collagen, α-smooth muscle actin and resident macrophages in the aortic sinus were also unaltered by either treatment vs. vehicle treated Apoe-/- HFD mice. Conclusion Our data show that prolonged administration of the KCa channel activator SKA-31 improved endothelial function without modifying fatty plaque formation in the aorta of Apoe-/- mice.
Collapse
Affiliation(s)
- O. Daniel Vera
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ramesh C. Mishra
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Rayan Khaddaj-Mallat
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Liam Hamm
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Barak Almarzouq
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yong-Xiang Chen
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Darrell D. Belke
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Latika Singh
- Department of Pharmacology, School of Medicine, University of California Davis, Davis, CA, United States
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California Davis, Davis, CA, United States
| | - Andrew P. Braun
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
4
|
Burboa PC, Gaete PS, Shu P, Araujo PA, Beuve AV, Durán WN, Contreras JE, Lillo MA. Endothelial TRPV4-Cx43 signalling complex regulates vasomotor tone in resistance arteries. J Physiol 2025. [PMID: 39982706 DOI: 10.1113/jp285194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/27/2025] [Indexed: 02/22/2025] Open
Abstract
S-nitrosylation of Cx43 gap junction channels critically regulates communication between smooth muscle cells and endothelial cells. This post-translational modification also induces the opening of undocked Cx43 hemichannels. However, its specific impact on vasomotor regulation remains unclear. Considering the role of endothelial TRPV4 channel activation in promoting vasodilatation through nitric oxide (NO) production, we investigated the direct modulation of endothelial Cx43 hemichannels by TRPV4 channel activation. Using the proximity ligation assay, we identified that Cx43 and TRPV4 are found in close proximity in the endothelium of resistance arteries. In primary endothelial cell (EC) cultures from resistance arteries, GSK 1016790A-induced TRPV4 activation enhances eNOS activity, increases NO production, and opens Cx43 hemichannels via direct S-nitrosylation. Notably, the elevated intracellular Ca2+ levels caused by TRPV4 activation were reduced by blocking Cx43 hemichannels. In ex vivo mesenteric arteries, inhibiting Cx43 hemichannels reduced endothelial hyperpolarization without affecting NO production in ECs, underscoring a critical role of TRPV4-Cx43 signalling in endothelial electrical behaviour. We perturbed the proximity of Cx43/TRPV4 by disrupting lipid rafts in ECs using β-cyclodextrin. Under these conditions, hemichannel activity, Ca2+ influx and endothelial hyperpolarization were blunted upon GSK stimulation. Intravital microscopy of mesenteric arterioles in vivo further demonstrated that inhibiting Cx43 hemichannel activity, NO production and disrupting endothelial integrity reduce TRPV4-induced relaxation. These findings underscore a new pivotal role of the Cx43 hemichannel associated with the TRPV4 signalling pathway in modulating endothelial electrical behaviour and vasomotor tone regulation. KEY POINTS: TRPV4-Cx43 interaction in endothelial cells: the study reveals a close proximity between Cx43 proteins and TRPV4 channels in endothelial cells of resistance arteries, establishing a functional interaction that is critical for vascular regulation. S-nitrosylation of Cx43 hemichannels: TRPV4 activation via GSK treatment induces S-nitrosylation of Cx43, facilitating the opening of Cx43 hemichannels. TRPV4-mediated calcium signalling: activation of TRPV4 leads to increased intracellular Ca2+ levels in endothelial cells, an effect that is mitigated by the inhibition of Cx43 hemichannels, indicating a regulatory feedback mechanism between these two channels. Endothelial hyperpolarization and vasomotor regulation: Blocking Cx43 hemichannels impairs endothelial hyperpolarization in mesenteric arteries, without affecting NO production, suggesting a role for Cx43 in modulating endothelial electrical behaviour and contributing to vasodilatation. In vivo role of Cx43 hemichannels in vasodilatation: intravital microscopy of mouse mesenteric arterioles demonstrated that inhibiting Cx43 hemichannel activity and disrupting endothelial integrity significantly impair TRPV4-induced vasodilatation, highlighting the crucial role of Cx43 in regulating endothelial function and vascular relaxation.
Collapse
Affiliation(s)
- Pía C Burboa
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Pablo S Gaete
- Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Ping Shu
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Priscila A Araujo
- Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Annie V Beuve
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Walter N Durán
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Jorge E Contreras
- Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Mauricio A Lillo
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
5
|
Kuriyama M, Hirose H, Kawaguchi Y, Michibata J, Maekawa M, Futaki S. KCNN4 as a genomic determinant of cytosolic delivery by the attenuated cationic lytic peptide L17E. Mol Ther 2025; 33:595-614. [PMID: 39748507 PMCID: PMC11852704 DOI: 10.1016/j.ymthe.2024.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/19/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025] Open
Abstract
The development of a cytosolic delivery strategy for biopharmaceuticals is one of the central issues in drug development. Knowledge of the mechanisms underlying these processes may also pave the way for the discovery of novel delivery systems. L17E is an attenuated cationic amphiphilic lytic (ACAL) peptide developed by our research group that shows promise for cytosolic antibody delivery. In this study, given the high efficacy of L17E in cytosolic delivery, we investigated the mechanism of action of L17E in detail. L17E was found to achieve cytosolic delivery predominantly by transient disruption of the plasma membrane without the need for endocytosis. Importantly, the cell-line selectivity studies of L17E revealed a strong correlation between the efficiency of L17E-mediated delivery and the expression level of KCNN4, the gene encoding the calcium-activated potassium channel KCa3.1. Genetic and pharmacological regulation of KCNN4 expression and KCa3.1 activity, respectively, correlate closely with the efficiency of L17E-mediated cytosolic delivery, suggesting the importance of membrane-potential regulation by extracellular Ca2+ influx. Therefore, the activity of the L17E is relevant to the calcium-activated potassium channel.
Collapse
Affiliation(s)
- Masashi Kuriyama
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Yoshimasa Kawaguchi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Junya Michibata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masashi Maekawa
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo 105-8512, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
6
|
de Jong EAM, Namba HF, Boerhout CKM, Feenstra RGT, Woudstra J, Vink CEM, Appelman Y, Beijk MAM, Piek JJ, van de Hoef TP. Assessment of coronary endothelial dysfunction using contemporary coronary function testing. Int J Cardiol 2025; 418:132640. [PMID: 39395717 DOI: 10.1016/j.ijcard.2024.132640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND The established diagnosis of coronary endothelial dysfunction (CED) is through the response to low-dose acetylcholine during invasive coronary function testing (CFT). Current diagnostic criteria encompass deficient epicardial vasodilation and/or insufficient increase in coronary blood flow (CBF) calculated from additional Doppler flow velocity measurements. The aim is to evaluate the diagnostic yield of using angiographic epicardial vasomotion and CBF as single criteria for diagnosing CED during CFT. METHODS A total of 110 patients with angina and non-obstructive coronary arteries who underwent clinically indicated CFT were included. CED was defined as any reduction in epicardial diameter through quantitative coronary angiography and/or < 50 % increase in CBF compared to baseline after low-dose acetylcholine. RESULTS Based on current diagnostic criteria, 78 % of patients (N = 86/110) was diagnosed with CED. When only considering epicardial diameter, 24 % CED (N = 21/86) and 50 % severe CED diagnoses (N = 19/38) were missed. When only considering CBF, 27 % CED (N = 23/86) and 18 % severe CED diagnoses (N = 7/38) were missed. A similar diagnostic yield for CED detection was found for both parameters (OR: 0.913, 95 %CI 0.481-1.726, p = 0.763). The incidence of CFT diagnoses was comparable among all groups. CONCLUSIONS As single parameters, both epicardial diameter and CBF were ineffective in accurately diagnosing CED compared to the current diagnostic criteria. Combining both parameters is necessary to diagnose the complete spectrum of CED, as missed diagnoses of deficient CBF responses (e.g., microvascular CED) and epicardial vasomotion (e.g., epicardial CED) might occur when relying on these parameters as single diagnostic criteria for CED.
Collapse
Affiliation(s)
- Elize A M de Jong
- Amsterdam UMC, Heart Centre, Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; UMC Utrecht, Department of Cardiology, Utrecht, the Netherlands
| | - Hanae F Namba
- Amsterdam UMC, Heart Centre, Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Coen K M Boerhout
- Amsterdam UMC, Heart Centre, Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Rutger G T Feenstra
- Amsterdam UMC, Heart Centre, Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Janneke Woudstra
- Amsterdam UMC, Heart Centre, Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Caitlin E M Vink
- Amsterdam UMC, Heart Centre, Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Yolande Appelman
- Amsterdam UMC, Heart Centre, Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Marcel A M Beijk
- Amsterdam UMC, Heart Centre, Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Jan J Piek
- Amsterdam UMC, Heart Centre, Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | | |
Collapse
|
7
|
Wong BHS, Shim H, Goay SSM, Ong ST, Muhammad Taib NAB, Chai KXY, Lim K, Huang D, Ong CK, Vaiyapuri TS, Cheah YC, Wang Y, Wulff H, Webster RD, Shelat VG, Verma NK. The novel quinoline derivative SKA-346 as a K Ca3.1 channel selective activator. RSC Adv 2024; 14:38364-38377. [PMID: 39635364 PMCID: PMC11615718 DOI: 10.1039/d4ra07330d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024] Open
Abstract
The calcium-activated KCa3.1 channel plays a crucial role in T-cell immune response. Genetic manipulation of T-cells to upregulate the expression of K+ channels has been shown to boost T-cell cytotoxicity in cancer. Here, we aimed to identify and characterize an activator that would augment KCa3.1 currents without affecting other channels. We synthesized five quinoline derivatives and used electrophysiology to screen them on KCa3.1 and a panel of 14 other ion channels. One quinoline derivative, SKA-346, activated KCa3.1 with an EC50 of 1.9 μM and showed selectivity against the other channels. In silico analysis using RosettaLigand and GLIDE demonstrated a well-converged pose of SKA-346 in a binding pocket at the interface between the calmodulin N-lobe and the S45A helix in the S4-S5 linker of the KCa3.1 channel. SKA-346 (30 mg kg-1), tolerated by mice after intra-peritoneal administration, exhibited a peak plasma concentration of 6.29 μg mL-1 (29.2 μM) at 15 min and a circulating half-life (t 1/2) of 2.8 h. SKA-346 could serve as a template for the development of more potent KCa3.1 activators to enhance T-cell cytotoxicity in cancer.
Collapse
Affiliation(s)
- Brandon Han Siang Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Singapore
- Interdisciplinary Graduate Programme, NTU Institute for Health Technologies (HealthTech NTU), Nanyang Technological University Singapore Singapore
| | - Heesung Shim
- Physical and Life Sciences, Lawrence Livermore National Laboratory Livermore CA USA
| | - Stephanie Shee Min Goay
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Singapore
- LKCMedicine-ICE Collaborative Platform, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Singapore
| | - Seow Theng Ong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Singapore
- LKCMedicine-ICE Collaborative Platform, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Singapore
| | - Nur Ayuni Binte Muhammad Taib
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore
| | - Kelila Xin Ye Chai
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore
| | - Kerry Lim
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore
| | - Dachuan Huang
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore
- Duke-NUS Medical School Singapore
| | - Choon Kiat Ong
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore
- Duke-NUS Medical School Singapore
| | | | - Yeong Cheng Cheah
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Singapore
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Singapore
| | - Heike Wulff
- Department of Pharmacology, University of California Davis CA USA
| | - Richard D Webster
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore Singapore
| | - Vishalkumar G Shelat
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Singapore
- Department of General Surgery, Tan Tock Seng Hospital Singapore
| | - Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Singapore
| |
Collapse
|
8
|
Thi Hong Van N, Hyun Nam J. Intermediate conductance calcium-activated potassium channel (KCa3.1) in cancer: Emerging roles and therapeutic potentials. Biochem Pharmacol 2024; 230:116573. [PMID: 39396649 DOI: 10.1016/j.bcp.2024.116573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
The KCa3.1 channel (also known as the KCNN4, IK1, or SK4 channel) is an intermediate-conductance calcium-activated potassium channel that regulates the membrane potential and maintains calcium homeostasis. Recently, KCa3.1 channels have attracted increasing attention because of their diverse roles in various types of cancers. In cancer cells, KCa3.1 channels regulate key processes, including cell proliferation, cell cycle, migration, invasion, tumor microenvironments, and therapy resistance. In addition, abnormal KCa3.1 expression in cancers is utilized to distinguish between tumor and normal tissues, classify cancer stages, and predict patient survival outcomes. This review comprehensively examines the current understanding of the contribution of KCa3.1 channels to tumor formation, metastasis, and its mechanisms. We evaluated the potential of KCa3.1 as a biomarker for cancer diagnosis and prognosis. Finally, we discuss the advances and challenges of applying KCa3.1 modulators in cancer treatment and propose approaches to overcome these obstacles. In summary, this review highlights the importance of this ion channel as a potent therapeutic target and prognostic biomarker of cancer.
Collapse
Affiliation(s)
- Nhung Thi Hong Van
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea.
| |
Collapse
|
9
|
Mishra RC, Belke DD, Singh L, Wulff H, Braun AP. Targeting endothelial K Ca channels in vivo restores arterial and endothelial function in type 2 diabetic rats. Metabolism 2024; 160:156001. [PMID: 39163925 DOI: 10.1016/j.metabol.2024.156001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
OBJECTIVE This study tested the hypothesis that administration of the KCa channel activator SKA-31 restores endothelium-dependent vasodilation in vivo in Type 2 Diabetic (T2D) rats. BACKGROUND Acute treatment of isolated resistance arteries from T2D rats and humans with SKA-31 significantly improved endothelium-dependent vasodilation. However, it is unknown whether these in situ actions translate to intact vascular beds in vivo. METHODS Male Sprague Dawley (SD) and T2D Goto-Kakizaki (GK) rats (26-32 weeks of age) were injected intraperitoneally with either drug vehicle or 10 mg/kg SKA-31. Doppler ultrasound imaging was used to record reactive hyperemia/flow-mediated dilation (FMD) in the femoral artery following release of an occlusion cuff on the distal hind limb, along with diameter changes in the left main coronary artery in response to inhaled isoflurane (2 % → 5 %). RESULTS Vehicle treated SD rats exhibited a robust and reversible FMD response, the magnitude and time course of which did not differ in SD rats treated with SKA-31. In contrast, only a weak FMD response was observed in vehicle-treated T2D GK rats, whereas prior SKA-31 administration restored FMD to the level observed in control SD rats. Exposure of SD rats to 5 % isoflurane caused robust coronary artery dilation, which was not altered by prior treatment with SKA-31. In T2D GK rats, 5 % isoflurane inhalation alone did not increase coronary artery diameter, however, a strong vasodilatory response was observed following SKA-31 treatment. SKA-31 administration did not modify intrinsic heart rate responses in either protocol. CONCLUSIONS Enhancement of KCa channel activity in vivo restores endothelium-dependent vasodilation in T2D rats that exhibit peripheral endothelial dysfunction.
Collapse
Affiliation(s)
- Ramesh C Mishra
- Dept. of Physiology and Pharmacology, Cumming School of Medicine and Libin Cardiovascular Institute, University of Calgary, Canada
| | - Darrell D Belke
- Dept. of Cardiac Sciences, Cumming School of Medicine and Libin Cardiovascular Institute, University of Calgary, Canada
| | - Latika Singh
- Dept. of Pharmacology, School of Medicine, University of California Davis, USA
| | - Heike Wulff
- Dept. of Pharmacology, School of Medicine, University of California Davis, USA
| | - Andrew P Braun
- Dept. of Physiology and Pharmacology, Cumming School of Medicine and Libin Cardiovascular Institute, University of Calgary, Canada.
| |
Collapse
|
10
|
Kyllo T, Allocco D, Hei LV, Wulff H, Erickson JD. Riluzole attenuates acute neural injury and reactive gliosis, hippocampal-dependent cognitive impairments and spontaneous recurrent generalized seizures in a rat model of temporal lobe epilepsy. Front Pharmacol 2024; 15:1466953. [PMID: 39539628 PMCID: PMC11558044 DOI: 10.3389/fphar.2024.1466953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
Background Riluzole exhibits neuroprotective and therapeutic effects in several neurological disease models associated with excessive synaptic glutamate (Glu) release. We recently showed riluzole prevents acute excitotoxic hippocampal neural injury at 3 days in the kainic acid (KA) model of temporal lobe epilepsy (TLE). Currently, it is unknown if preventing acute neural injury and the neuroinflammatory response is sufficient to suppress epileptogenesis. Methods The KA rat model of TLE was used to determine if riluzole attenuates acute hippocampal neural injury and reactive gliosis. KA was administered to adult male Sprague-Dawley (250 g) rats at 5 mg/kg/hr until status epilepticus (SE) was observed, and riluzole was administered at 10 mg/kg 1 h and 4 h after SE and once per day for the next 2 days. Immunostaining was used to assess neural injury (FJC and NeuN), microglial activation (Iba1 and ED-1/CD68) and astrogliosis (GFAP and vimentin) at day 7 and day 14 after KA-induced SE. Learning and memory tests (Y-maze, Novel object recognition test, Barnes maze), behavioral hyperexcitability tests, and spontaneous generalized recurrent seizure (SRS) activity (24-hour video monitoring) were assessed at 11-15 weeks. Results Here we show that KA-induced hippocampal neural injury precedes the neuroimmune response and that riluzole attenuates acute neural injury, microglial activation, and astrogliosis at 7 and 14 days. We find that reducing acute hippocampal injury and the associated neuroimmune response following KA-induced SE by riluzole attenuates hippocampal-dependent cognitive impairment, behavioral hyperexcitability, and tonic/clonic generalized SRS activity after 3 months. We also show that riluzole attenuates SE-associated body weight loss during the first week after KA-induced SE. Discussion Riluzole acts on multiple targets that are involved to prevent excessive synaptic Glu transmission and excitotoxic neuronal injury. Attenuating KA-induced neural injury and subsequent microglia/astrocyte activation in the hippocampus and extralimbic regions with riluzole reduces TLE-associated cognitive deficits and generalized SRS and suggests that riluzole could be a potential antiepileptogenic drug.
Collapse
Affiliation(s)
- Thomas Kyllo
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, United States
| | - Dominic Allocco
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, United States
| | - Laine Vande Hei
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, United States
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California-Davis, Davis, CA, United States
| | - Jeffrey D. Erickson
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, United States
| |
Collapse
|
11
|
Burboa PC, Gaete PS, Shu P, Araujo PA, Beuve AV, Durán WN, Contreras JE, Lillo MA. Endothelial TRPV4/Cx43 Signaling Complex Regulates Vasomotor Tone in Resistance Arteries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.604930. [PMID: 39091840 PMCID: PMC11291137 DOI: 10.1101/2024.07.25.604930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
S-nitrosylation of Cx43 gap junction channels critically regulates communication between smooth muscle cells and endothelial cells. This posttranslational modification also induces the opening of undocked Cx43 hemichannels. However, its specific impact on vasomotor regulation remains unclear. Considering the role of endothelial TRPV4 channel activation in promoting vasodilation through nitric oxide (NO) production, we investigated the direct modulation of endothelial Cx43 hemichannels by TRPV4 channel activation. Using the proximity ligation assay, we identify that Cx43 and TRPV4 are found in close proximity in the endothelium of resistance arteries. In primary endothelial cell cultures from resistance arteries (ECs), GSK-induced TRPV4 activation enhances eNOS activity, increases NO production, and opens Cx43 hemichannels via direct S-nitrosylation. Notably, the elevated intracellular Ca2+ levels caused by TRPV4 activation were reduced by blocking Cx43 hemichannels. In ex vivo mesenteric arteries, inhibiting Cx43 hemichannels reduced endothelial hyperpolarization without affecting NO production in ECs, underscoring a critical role of TRPV4/Cx43 signaling in endothelial electrical behavior. We perturbed the proximity of Cx43/TRPV4 by disrupting lipid rafts in ECs using β-cyclodextrin. Under these conditions, hemichannel activity, Ca2+ influx, and endothelial hyperpolarization were blunted upon GSK stimulation. Intravital microscopy of mesenteric arterioles in vivo further demonstrated that inhibiting Cx43 hemichannels activity, NO production and disrupting endothelial integrity reduce TRPV4-induced relaxation. These findings underscore a new pivotal role of Cx43 hemichannel associated with TRPV4 signaling pathway in modulating endothelial electrical behavior and vasomotor tone regulation.
Collapse
Affiliation(s)
- Pía C. Burboa
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ 07103, U.S.A
| | - Pablo S. Gaete
- Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Davis, CA, U.S.A
| | - Ping Shu
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ 07103, U.S.A
| | - Priscila A. Araujo
- Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Davis, CA, U.S.A
| | - Annie V. Beuve
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ 07103, U.S.A
| | - Walter N. Durán
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ 07103, U.S.A
| | - Jorge E. Contreras
- Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Davis, CA, U.S.A
| | - Mauricio A. Lillo
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ 07103, U.S.A
| |
Collapse
|
12
|
Ding H, Shi S, Hou Y, Cui W, Sun R, Lv Y, Yue H, Wei W, Yi D. Visible-Light-Promoted Cascade Coupling of 2-Isocyanonaphthalenes with Elemental Sulfur and Amines to Construct Naphtho[2,1-d]thiazol-2-Amines. Chemistry 2024; 30:e202400719. [PMID: 38462510 DOI: 10.1002/chem.202400719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
A visible-light-induced strategy has been explored for the synthesis of naphtho[2,1-d]thiazol-2-amines through ortho-C-H sulfuration of 2-isocyanonaphthalenes with elemental sulfur and amines under external photocatalyst-free conditions. This three-component reaction, which utilizes elemental sulfur as the odorless sulfur source, molecular oxygen as the clean oxidant, and visible light as the clean energy source, provides a mild and efficient approach to construct a series of naphtho[2,1-d]thiazol-2-amines. Preliminary mechanistic studies indicated that visible-light-promoted photoexcitation of reaction intermediates consisting of thioureas and DBU might be involved in this transformation.
Collapse
Affiliation(s)
- Hongyu Ding
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Siyu Shi
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Yanan Hou
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Wenxiu Cui
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Rong Sun
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Yufen Lv
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, 810008, P.R.China
| | - Wei Wei
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, 810008, P.R.China
| | - Dong Yi
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, P. R. China
| |
Collapse
|
13
|
Huang PF, Fu JL, Peng Y, Fan JH, Zhong LJ, Tang KW, Liu Y. Electro-oxidative three-component cascade coupling of isocyanides with elemental sulfur and amines for the synthesis of 2-aminobenzothiazoles. Org Biomol Chem 2024; 22:3752-3760. [PMID: 38652536 DOI: 10.1039/d4ob00432a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
2-Aminobenzothiazoles are commonly encountered in various functional compounds. Herein, we disclose an electro-oxidative three-component reaction for the effective synthesis of 2-aminobenzothiazoles under mild conditions, utilizing non-toxic and abundant elemental sulfur as the sulfur source. Both aliphatic amines and aryl amines demonstrate good compatibility at room temperature, highlighting the broad functional group tolerance of this approach. Additionally, elemental selenium demonstrated reactivities comparable to those of elemental sulfur.
Collapse
Affiliation(s)
- Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Jia-Le Fu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Ying Peng
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Jian-Hong Fan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
14
|
Cozzolino M, Panyi G. Intracellular acidity impedes KCa3.1 activation by Riluzole and SKA-31. Front Pharmacol 2024; 15:1380655. [PMID: 38638868 PMCID: PMC11024243 DOI: 10.3389/fphar.2024.1380655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 04/20/2024] Open
Abstract
Background The unique microenvironment in tumors inhibits the normal functioning of tumor-infiltrating lymphocytes, leading to immune evasion and cancer progression. Over-activation of KCa3.1 using positive modulators has been proposed to rescue the anti-tumor response. One of the key characteristics of the tumor microenvironment is extracellular acidity. Herein, we analyzed how intra- and extracellular pH affects K+ currents through KCa3.1 and if the potency of two of its positive modulators, Riluzole and SKA-31, is pH sensitive. Methods Whole-cell patch-clamp was used to measure KCa3.1 currents either in activated human peripheral lymphocytes or in CHO cells transiently transfected with either the H192A mutant or wild-type hKCa3.1 in combination with T79D-Calmodulin, or with KCa2.2. Results We found that changes in the intra- and extracellular pH minimally influenced the KCa3.1-mediated K+ current. Extracellular pH, in the range of 6.0-8.0, does not interfere with the capacity of Riluzole and SKA-31 to robustly activate the K+ currents through KCa3.1. Contrariwise, an acidic intracellular solution causes a slow, but irreversible loss of potency of both the activators. Using different protocols of perfusion and depolarization we demonstrated that the loss of potency is strictly time and pH-dependent and that this peculiar effect can be observed with a structurally similar channel KCa2.2. While two different point mutations of both KCa3.1 (H192A) and its associated protein Calmodulin (T79D) do not limit the effect of acidity, increasing the cytosolic Ca2+ concentration to saturating levels eliminated the loss-of-potency phenotype. Conclusion Based on our data we conclude that KCa3.1 currents are not sensitive the either the intracellular or the extracellular pH in the physiological and pathophysiological range. However, intracellular acidosis in T cells residing in the tumor microenvironment could hinder the potentiating effect of KCa3.1 positive modulators administered to boost their activity. Further research is warranted both to clarify the molecular interactions between the modulators and KCa3.1 at different intracellular pH conditions and to define whether this loss of potency can be observed in cancer models as well.
Collapse
Affiliation(s)
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
15
|
Zhang Y, Shaabani S, Vowinkel K, Trombetta-Lima M, Sabogal-Guáqueta AM, Chen T, Hoekstra J, Lembeck J, Schmidt M, Decher N, Dömling A, Dolga AM. Novel SK channel positive modulators prevent ferroptosis and excitotoxicity in neuronal cells. Biomed Pharmacother 2024; 171:116163. [PMID: 38242037 DOI: 10.1016/j.biopha.2024.116163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
Small conductance calcium-activated potassium (SK) channel activity has been proposed to play a role in the pathology of several neurological diseases. Besides regulating plasma membrane excitability, SK channel activation provides neuroprotection against ferroptotic cell death by reducing mitochondrial Ca2+ uptake and reactive oxygen species (ROS). In this study, we employed a multifaceted approach, integrating structure-based and computational techniques, to strategically design and synthesize an innovative class of potent small-molecule SK2 channel modifiers through highly efficient multicomponent reactions (MCRs). The compounds' neuroprotective activity was compared with the well-studied SK positive modulator, CyPPA. Pharmacological SK channel activation by selected compounds confers neuroprotection against ferroptosis at low nanomolar ranges compared to CyPPA, that mediates protection at micromolar concentrations, as shown by an MTT assay, real-time cell impedance measurements and propidium iodide staining (PI). These novel compounds suppress increased mitochondrial ROS and Ca2+ level induced by ferroptosis inducer RSL3. Moreover, axonal degeneration was rescued by these novel SK channel activators in primary mouse neurons and they attenuated glutamate-induced neuronal excitability, as shown via microelectrode array. Meanwhile, functional afterhyperpolarization of the novel SK2 channel modulators was validated by electrophysiological measurements showing more current change induced by the novel modulators than the reference compound, CyPPA. These data support the notion that SK2 channel activation can represent a therapeutic target for brain diseases in which ferroptosis and excitotoxicity contribute to the pathology.
Collapse
Affiliation(s)
- Yuequ Zhang
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Shabnam Shaabani
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Kirsty Vowinkel
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, 35037 Marburg, Germany
| | - Marina Trombetta-Lima
- Department of Pharmaceutical Technologies and Biopharmacy, Research Institute of Pharmacy, University of Groningen, the Netherlands
| | | | - Tingting Chen
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Jan Hoekstra
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Jan Lembeck
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Niels Decher
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, 35037 Marburg, Germany
| | - Alexander Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands.
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands.
| |
Collapse
|
16
|
Bhebhe CN, Higham JP, Gupta RA, Raine T, Bulmer DC. K V7 but not dual small and intermediate K Ca channel openers inhibit the activation of colonic afferents by noxious stimuli. Am J Physiol Gastrointest Liver Physiol 2023; 325:G436-G445. [PMID: 37667839 PMCID: PMC10894664 DOI: 10.1152/ajpgi.00141.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
In numerous subtypes of central and peripheral neurons, small and intermediate conductance Ca2+-activated K+ (SK and IK, respectively) channels are important regulators of neuronal excitability. Transcripts encoding SK channel subunits, as well as the closely related IK subunit, are coexpressed in the soma of colonic afferent neurons with receptors for the algogenic mediators ATP and bradykinin, P2X3 and B2, highlighting the potential utility of these channels as drug targets for the treatment of abdominal pain in gastrointestinal diseases such as irritable bowel syndrome. Despite this, pretreatment with the dual SK/IK channel opener SKA-31 had no effect on the colonic afferent response to ATP, bradykinin, or noxious ramp distention of the colon. Inhibition of SK or IK channels with apamin or TRAM-34, respectively, yielded no change in spontaneous baseline afferent activity, indicating these channels are not tonically active. In contrast to its lack of effect in electrophysiological experiments, comparable concentrations of SKA-31 abolished ongoing peristaltic activity in the colon ex vivo. Treatment with the KV7 channel opener retigabine blunted the colonic afferent response to all applied stimuli. Our data therefore highlight the potential utility of KV7, but not SK/IK, channel openers as analgesic agents for the treatment of abdominal pain.NEW & NOTEWORTHY Despite marked coexpression of small (Kcnn1, Kcnn2) and intermediate (Kcnn4) conductance calcium-activated potassium channel transcripts with P2X3 (P2rx3) or bradykinin B2 (Bdkrb2) receptors in colonic sensory neurons, pharmacological activation of these channels had no effect on the colonic afferent response to ATP, bradykinin or luminal distension of the colon. This is in contrast to the robust inhibitory effect of the KV7 channel opener, retigabine.
Collapse
Affiliation(s)
- Charity N Bhebhe
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - James P Higham
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Rohit A Gupta
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Tim Raine
- Department of Gastroenterology, Addenbrookes Hospital, Cambridge University Teaching Hospitals, Cambridge, United Kingdom
| | - David C Bulmer
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Sun C, Zhang L, Zhang M, Wang J, Rong S, Lu W, Dong H. Zinc pyrithione induces endothelium-dependent hyperpolarization-mediated mesenteric vasorelaxation in healthy and colitic mice. Biochem Pharmacol 2023; 217:115828. [PMID: 37774954 DOI: 10.1016/j.bcp.2023.115828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Although Zinc pyrithione (ZPT) could lower blood pressure by inducing vasorelaxation, it is unclear if it is able to induce vasorelaxation of mesenteric arterioles in health and ulcerative colitis (UC) to exert anti-colitic action. METHODS The vasorelaxation of the second-order branch of the mesenteric artery from wide type (WT) mice, TRPV1-/-(KO) mice, and TRPV4-/-(KO) mice was determined using a Mulvany-style wire myograph. Calcium imaging and patch clamp were applied to analyze the actions of ZPT in human vascular endothelial cells. Mouse model of UC was used to evaluate the anti-colitic action of ZPT. RESULTS ZPT dose-dependently induced mesenteric vasorelaxation predominately through endothelium-dependent hyperpolarization (EDH), which could be attenuated by intracellular Zn2+ and Ca2+ chelators TPEN and BAPTA-AM. The ZPT/EDH-mediated vasorelaxation via TRPV1, TRPV4 and TRPA1 channels was verified by a combination of selective pharmacological inhibitors and TRPV1-KO and TRPV4-KO mice. Moreover. ZPT induced Ca2+ entry via vascular endothelial TRPV1/4 and TRPA1 channels and enhanced membrane non-selective currents through these channels. Notably, ZPT exerted anti-colitic effects by rescuing the impaired acetylcholine (ACh)-induced mesenteric vasorelaxation in colitic mice. CONCLUSIONS ZPT/Zn2+ induces EDH-mediated mesenteric vasorelaxation through activating endothelial multiple TRPV1/4 and TPPA1 channels in health, and rescues the impaired ACh-induced vasorelaxation to exert anti-colitic action. Our study may open a new avenue of potential vessel-specific targeted therapy for UC.
Collapse
Affiliation(s)
- Chensijin Sun
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Luyun Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China; Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Mengting Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Jianxin Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Shaoya Rong
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Wei Lu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China.
| | - Hui Dong
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China.
| |
Collapse
|
18
|
Erickson JD, Kyllo T, Wulff H. Ca 2+-regulated expression of high affinity methylaminoisobutryic acid transport in hippocampal neurons inhibited by riluzole and novel neuroprotective aminothiazoles. Curr Res Physiol 2023; 6:100109. [PMID: 38107787 PMCID: PMC10724208 DOI: 10.1016/j.crphys.2023.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 12/19/2023] Open
Abstract
High affinity methylaminoisobutyric acid(MeAIB)/glutamine(Gln) transport activity regulated by neuronal firing occurs at the plasma membrane in mature rat hippocampal neuron-enriched cultures. Spontaneous Ca2+-regulated transport activity was similarly inhibited by riluzole, a benzothiazole anticonvulsant agent, and by novel naphthalenyl substituted aminothiazole derivatives such as SKA-378. Here, we report that spontaneous transport activity is stimulated by 4-aminopyridine (4-AP) and that phorbol-myristate acetate (PMA) increases high K+ stimulated transport activity that is inhibited by staurosporine. 4-AP-stimulated spontaneous and PMA-stimulated high K+-induced transport is not present at 7 days in vitro (DIV) and is maximal by DIV∼21. The relative affinity for MeAIB is similar for spontaneous and high K+-stimulated transport (Km ∼ 50 μM) suggesting that a single transporter is involved. While riluzole and SKA-378 inhibit spontaneous transport with equal potency (IC50 ∼ 1 μM), they exhibit decreased (∼3-5 X) potency for 4-AP-stimulated spontaneous transport. Interestingly, high K+-stimulated MeAIB transport displays lower and differential sensitivity to the two compounds. SKA-378-related halogenated derivatives of SKA-75 (SKA-219, SKA-377 and SKA-375) preferentially inhibit high K+-induced expression of MeAIB transport activity at the plasma membrane (IC50 < 25 μM), compared to SKA-75 and riluzole (IC50 > 100 μM). Ca2+-dependent spontaneous and high K+-stimulated MeAIB transport activity is blocked by ω-conotoxin MVIIC, ω-agatoxin IVA, ω-agatoxin TK (IC50 ∼ 500 nM) or cadmium ion (IC50 ∼ 20 μM) demonstrating that P/Q-type CaV channels that are required for activity-regulated presynaptic vesicular glutamate (Glu) release are also required for high-affinity MeAIB transport expression at the plasma membrane. We suggest that neural activity driven and Ca2+ dependent trafficking of the high affinity MeAIB transporter to the plasma membrane is a unique target to understand mechanisms of Glu/Gln recycling in synapses and acute neuroprotection against excitotoxic presynaptic Glu induced neural injury.
Collapse
Affiliation(s)
- Jeffrey D. Erickson
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, USA
| | - Thomas Kyllo
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, USA
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California-Davis, Davis, CA, USA
| |
Collapse
|
19
|
Becchetti A. Interplay of Ca 2+ and K + signals in cell physiology and cancer. CURRENT TOPICS IN MEMBRANES 2023; 92:15-46. [PMID: 38007266 DOI: 10.1016/bs.ctm.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
The cytoplasmic Ca2+ concentration and the activity of K+ channels on the plasma membrane regulate cellular processes ranging from mitosis to oriented migration. The interplay between Ca2+ and K+ signals is intricate, and different cell types rely on peculiar cellular mechanisms. Derangement of these mechanisms accompanies the neoplastic progression. The calcium signals modulated by voltage-gated (KV) and calcium-dependent (KCa) K+ channel activity regulate progression of the cell division cycle, the release of growth factors, apoptosis, cell motility and migration. Moreover, KV channels regulate the cell response to the local microenvironment by assembling with cell adhesion and growth factor receptors. This chapter summarizes the pathophysiological roles of Ca2+ and K+ fluxes in normal and cancer cells, by concentrating on several biological systems in which these functions have been studied in depth, such as early embryos, mammalian cell lines, T lymphocytes, gliomas and colorectal cancer cells. A full understanding of the underlying mechanisms will offer a comprehensive view of the ion channel implication in cancer biology and suggest potential pharmacological targets for novel therapeutic approaches in oncology.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy.
| |
Collapse
|
20
|
Vera OD, Wulff H, Braun AP. Endothelial KCa channels: Novel targets to reduce atherosclerosis-driven vascular dysfunction. Front Pharmacol 2023; 14:1151244. [PMID: 37063294 PMCID: PMC10102451 DOI: 10.3389/fphar.2023.1151244] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Elevated levels of cholesterol in the blood can induce endothelial dysfunction, a condition characterized by impaired nitric oxide production and decreased vasodilatory capacity. Endothelial dysfunction can promote vascular disease, such as atherosclerosis, where macrophages accumulate in the vascular intima and fatty plaques form that impair normal blood flow in conduit arteries. Current pharmacological strategies to treat atherosclerosis mostly focus on lipid lowering to prevent high levels of plasma cholesterol that induce endothelial dysfunction and atherosclerosis. While this approach is effective for most patients with atherosclerosis, for some, lipid lowering is not enough to reduce their cardiovascular risk factors associated with atherosclerosis (e.g., hypertension, cardiac dysfunction, stroke, etc.). For such patients, additional strategies targeted at reducing endothelial dysfunction may be beneficial. One novel strategy to restore endothelial function and mitigate atherosclerosis risk is to enhance the activity of Ca2+-activated K+ (KCa) channels in the endothelium with positive gating modulator drugs. Here, we review the mechanism of action of these small molecules and discuss their ability to improve endothelial function. We then explore how this strategy could mitigate endothelial dysfunction in the context of atherosclerosis by examining how KCa modulators can improve cardiovascular function in other settings, such as aging and type 2 diabetes. Finally, we consider questions that will need to be addressed to determine whether KCa channel activation could be used as a long-term add-on to lipid lowering to augment atherosclerosis treatment, particularly in patients where lipid-lowering is not adequate to improve their cardiovascular health.
Collapse
Affiliation(s)
- O. Daniel Vera
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, United States
| | - Andrew P. Braun
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- *Correspondence: Andrew P. Braun,
| |
Collapse
|
21
|
Li Z, Qiao X, Liu XM, Shi SH, Qiao X, Xu JY. Blocking xCT and PI3K/Akt pathway synergized with DNA damage of Riluzole-Pt(IV) prodrugs for cancer treatment. Eur J Med Chem 2023; 250:115233. [PMID: 36863224 DOI: 10.1016/j.ejmech.2023.115233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
Cancer treatment requires the participation of multiple targets/pathways, and single approach is hard to effectively curb the proliferation and metastasis of carcinoma cells. In this work, we conjugated FDA-approved riluzole and platinum(II) drugs into a series of unreported riluzole-Pt(IV) compounds, which were designed to simultaneously target DNA, the solute carrier family 7 member 11 (SLC7A11, xCT), and the human ether a go-go related gene 1 (hERG1), to exert synergistic anticancer effect. Among them, c,c,t-[PtCl2(NH3)2(OH)(glutarylriluzole)] (compound 2) displayed excellent antiproliferative activity with IC50 value of 300-times lower than that of cisplatin in HCT-116, and optimal selectivity index between carcinoma and human normal liver cells (LO2). Mechanism studies indicated that compound 2 released riluzole and active Pt(II) species after entering cells to exhibit a prodrug behavior against cancer, which obviously increased DNA-damage and cell apoptosis, as well as suppressed metastasis in HCT-116. Compound 2 persisted in the xCT-target of riluzole and blocked the biosynthesis of glutathione (GSH) to trigger oxidative stress, which could boost the killing to cancer cells and reduce Pt-drug resistance. Meanwhile, compound 2 significantly inhibited invasion and metastasis of HCT-116 cells by targeting hERG1 to interrupt the phosphorylation of phosphatidylinositide 3-kinases/proteinserine-threonine kinase (PI3K/Akt), and reverse epithelial-mesenchymal transformation (EMT). Based on our results, the riluzole-Pt(IV) prodrugs studied in this work could be regarded as a new class of very promising candidates for cancer treatment compared to traditional platinum drugs.
Collapse
Affiliation(s)
- Zhe Li
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xin Qiao
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xiao-Meng Liu
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Shu-Hao Shi
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xin Qiao
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Jing-Yuan Xu
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China; Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
22
|
Riluzole and novel naphthalenyl substituted aminothiazole derivatives prevent acute neural excitotoxic injury in a rat model of temporal lobe epilepsy. Neuropharmacology 2023; 224:109349. [PMID: 36436594 PMCID: PMC9843824 DOI: 10.1016/j.neuropharm.2022.109349] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
Epileptogenic seizures, or status epilepticus (SE), leads to excitotoxic injury in hippocampal and limbic neurons in the kainic acid (KA) animal model of temporal lobe epilepsy (TLE). Here, we have further characterized neural activity regulated methylaminoisobutryic acid (MeAIB)/glutamine transport activity in mature rat hippocampal neurons in vitro that is inhibited by riluzole (IC50 = 1 μM), an anti-convulsant benzothiazole agent. We screened a library of riluzole derivatives and identified SKA-41 followed by a second screen and synthesized several novel chlorinated aminothiazoles (SKA-377, SKA-378, SKA-379) that are also potent MeAIB transport inhibitors in vitro, and brain penetrant following systemic administration. When administered before KA, SKA-378 did not prevent seizures but still protected the hippocampus and several other limbic areas against SE-induced neurodegeneration at 3d. When SKA-377 - 379, (30 mg/kg) were administered after KA-induced SE, acute neural injury in the CA3, CA1 and CA4/hilus was also largely attenuated. Riluzole (10 mg/kg) blocks acute neural injury. Kinetic analysis of SKA-378 and riluzoles' blockade of Ca2+-regulated MeAIB transport in neurons in vitro indicates that inhibition occurs via a non-competitive, indirect mechanism. Sodium channel NaV1.6 antagonism blocks neural activity regulated MeAIB/Gln transport in vitro (IC50 = 60 nM) and SKA-378 is the most potent inhibitor of NaV1.6 (IC50 = 28 μM) compared to NaV1.2 (IC50 = 118 μM) in heterologous cells. However, pharmacokinetic analysis suggests that sodium channel blockade may not be the predominant mechanism of neuroprotection here. Riluzole and our novel aminothiazoles are agents that attenuate acute neural hippocampal injury following KA-induced SE and may help to understand mechanisms involved in the progression of epileptic disease.
Collapse
|
23
|
Nam YW, Downey M, Rahman MA, Cui M, Zhang M. Channelopathy of small- and intermediate-conductance Ca 2+-activated K + channels. Acta Pharmacol Sin 2023; 44:259-267. [PMID: 35715699 PMCID: PMC9889811 DOI: 10.1038/s41401-022-00935-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023]
Abstract
Small- and intermediate-conductance Ca2+-activated K+ (KCa2.x/KCa3.1 also called SK/IK) channels are gated exclusively by intracellular Ca2+. The Ca2+ binding protein calmodulin confers sub-micromolar Ca2+ sensitivity to the channel-calmodulin complex. The calmodulin C-lobe is constitutively associated with the proximal C-terminus of the channel. Interactions between calmodulin N-lobe and the channel S4-S5 linker are Ca2+-dependent, which subsequently trigger conformational changes in the channel pore and open the gate. KCNN genes encode four subtypes, including KCNN1 for KCa2.1 (SK1), KCNN2 for KCa2.2 (SK2), KCNN3 for KCa2.3 (SK3), and KCNN4 for KCa3.1 (IK). The three KCa2.x channel subtypes are expressed in the central nervous system and the heart. The KCa3.1 subtype is expressed in the erythrocytes and the lymphocytes, among other peripheral tissues. The impact of dysfunctional KCa2.x/KCa3.1 channels on human health has not been well documented. Human loss-of-function KCa2.2 mutations have been linked with neurodevelopmental disorders. Human gain-of-function mutations that increase the apparent Ca2+ sensitivity of KCa2.3 and KCa3.1 channels have been associated with Zimmermann-Laband syndrome and hereditary xerocytosis, respectively. This review article discusses the physiological significance of KCa2.x/KCa3.1 channels, the pathophysiology of the diseases linked with KCa2.x/KCa3.1 mutations, the structure-function relationship of the mutant KCa2.x/KCa3.1 channels, and potential pharmacological therapeutics for the KCa2.x/KCa3.1 channelopathy.
Collapse
Affiliation(s)
- Young-Woo Nam
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Myles Downey
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Mohammad Asikur Rahman
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University School of Pharmacy, Boston, MA, 02115, USA
| | - Miao Zhang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA.
| |
Collapse
|
24
|
Mack ML, Huang W, Chang SL. Involvement of TRPM7 in Alcohol-Induced Damage of the Blood-Brain Barrier in the Presence of HIV Viral Proteins. Int J Mol Sci 2023; 24:1910. [PMID: 36768230 PMCID: PMC9916124 DOI: 10.3390/ijms24031910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/22/2022] [Accepted: 01/14/2023] [Indexed: 01/21/2023] Open
Abstract
Ethanol (EtOH) exerts its effects through various protein targets, including transient receptor potential melastatin 7 (TRPM7) channels, which play an essential role in cellular homeostasis. We demonstrated that TRPM7 is expressed in rat brain microvascular endothelial cells (rBMVECs), the major cellular component of the blood-brain barrier (BBB). Heavy alcohol drinking is often associated with HIV infection, however mechanisms underlying alcohol-induced BBB damage and HIV proteins, are not fully understood. We utilized the HIV-1 transgenic (HIV-1Tg) rat to mimic HIV-1 patients on combination anti-retroviral therapy (cART) and demonstrated TRPM7 expression in rBMVECs wass lower in adolescent HIV-1Tg rats compared to control animals, however control and HIV-1Tg rats expressed similar levels at 9 weeks, indicating persistent presence of HIV-1 proteins delayed TRPM7 expression. Binge exposure to EtOH (binge EtOH) decreased TRPM7 expression in control rBMVECs in a concentration-dependent manner, and abolished TRPM7 expression in HIV-1Tg rats. In human BMVECs (hBMVECs), TRPM7 expression was downregulated after treatment with EtOH, HIV-1 proteins, and in combination. Next, we constructed in vitro BBB models using BMVECs and found TRPM7 antagonists enhanced EtOH-mediated BBB integrity changes. Our study demonstrated alcohol decreased TRPM7 expression, whereby TRPM7 could be involved in the mechanisms underlying BBB alcohol-induced damage in HIV-1 patients on cART.
Collapse
Affiliation(s)
- Michelle L. Mack
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| | - Wenfei Huang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| | - Sulie L. Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| |
Collapse
|
25
|
Ca 2+-Sensitive Potassium Channels. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020885. [PMID: 36677942 PMCID: PMC9861210 DOI: 10.3390/molecules28020885] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
The Ca2+ ion is used ubiquitously as an intracellular signaling molecule due to its high external and low internal concentration. Many Ca2+-sensing ion channel proteins have evolved to receive and propagate Ca2+ signals. Among them are the Ca2+-activated potassium channels, a large family of potassium channels activated by rises in cytosolic calcium in response to Ca2+ influx via Ca2+-permeable channels that open during the action potential or Ca2+ release from the endoplasmic reticulum. The Ca2+ sensitivity of these channels allows internal Ca2+ to regulate the electrical activity of the cell membrane. Activating these potassium channels controls many physiological processes, from the firing properties of neurons to the control of transmitter release. This review will discuss what is understood about the Ca2+ sensitivity of the two best-studied groups of Ca2+-sensitive potassium channels: large-conductance Ca2+-activated K+ channels, KCa1.1, and small/intermediate-conductance Ca2+-activated K+ channels, KCa2.x/KCa3.1.
Collapse
|
26
|
Daneva Z, Chen Y, Ta HQ, Manchikalapudi V, Bazaz A, Laubach VE, Sonkusare SK. Endothelial IK and SK channel activation decreases pulmonary arterial pressure and vascular remodeling in pulmonary hypertension. Pulm Circ 2023; 13:e12186. [PMID: 36686408 PMCID: PMC9841469 DOI: 10.1002/pul2.12186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Endothelial cells (ECs) from small pulmonary arteries (PAs) release nitric oxide (NO) and prostacyclin, which lower pulmonary arterial pressure (PAP). In pulmonary hypertension (PH), the levels of endothelium-derived NO and prostacyclin are reduced, contributing to elevated PAP. Small-and intermediate-conductance Ca2+-activated K+ channels (IK and SK)-additional crucial endothelial mediators of vasodilation-are also present in small PAs, but their function has not been investigated in PH. We hypothesized that endothelial IK and SK channels can be targeted to lower PAP in PH. Whole-cell patch-clamp experiments showed functional IK and SK channels in ECs, but not smooth muscle cells, from small PAs. Using a SU5416 plus chronic hypoxia (Su + CH) mouse model of PH, we found that currents through EC IK and SK channels were unchanged compared with those from normal mice. Moreover, IK/SK channel-mediated dilation of small PAs was preserved in Su + CH mice. Consistent with previous reports, endothelial NO levels and NO-mediated dilation were reduced in small PAs from Su + CH mice. Notably, acute treatment with IK/SK channel activators decreased PAP in Su + CH mice but not in normal mice. Further, chronic activation of IK/SK channels decreased PA remodeling and right ventricular hypertrophy, which are pathological hallmarks of PH, in Su + CH mice. Collectively, our data provide the first evidence that, unlike endothelial NO release, IK/SK channel activity is not altered in PH. Our results also demonstrate proof of principle that IK/SK channel activation can be used as a strategy for lowering PAP in PH.
Collapse
Affiliation(s)
- Zdravka Daneva
- Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Yen‐Lin Chen
- Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Huy Q. Ta
- Department of SurgeryUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Vamsi Manchikalapudi
- Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Abhishek Bazaz
- Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Victor E. Laubach
- Department of SurgeryUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Swapnil K. Sonkusare
- Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA,Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
27
|
Ca 2+-Activated K + Channels and the Regulation of the Uteroplacental Circulation. Int J Mol Sci 2023; 24:ijms24021349. [PMID: 36674858 PMCID: PMC9867535 DOI: 10.3390/ijms24021349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Adequate uteroplacental blood supply is essential for the development and growth of the placenta and fetus during pregnancy. Aberrant uteroplacental perfusion is associated with pregnancy complications such as preeclampsia, fetal growth restriction (FGR), and gestational diabetes. The regulation of uteroplacental blood flow is thus vital to the well-being of the mother and fetus. Ca2+-activated K+ (KCa) channels of small, intermediate, and large conductance participate in setting and regulating the resting membrane potential of vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) and play a critical role in controlling vascular tone and blood pressure. KCa channels are important mediators of estrogen/pregnancy-induced adaptive changes in the uteroplacental circulation. Activation of the channels hyperpolarizes uteroplacental VSMCs/ECs, leading to attenuated vascular tone, blunted vasopressor responses, and increased uteroplacental blood flow. However, the regulation of uteroplacental vascular function by KCa channels is compromised in pregnancy complications. This review intends to provide a comprehensive overview of roles of KCa channels in the regulation of the uteroplacental circulation under physiological and pathophysiological conditions.
Collapse
|
28
|
Zahra A, Liu R, Han W, Meng H, Wang Q, Wang Y, Campbell SL, Wu J. K Ca-Related Neurological Disorders: Phenotypic Spectrum and Therapeutic Indications. Curr Neuropharmacol 2023; 21:1504-1518. [PMID: 36503451 PMCID: PMC10472807 DOI: 10.2174/1570159x21666221208091805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 12/14/2022] Open
Abstract
Although potassium channelopathies have been linked to a wide range of neurological conditions, the underlying pathogenic mechanism is not always clear, and a systematic summary of clinical manifestation is absent. Several neurological disorders have been associated with alterations of calcium-activated potassium channels (KCa channels), such as loss- or gain-of-function mutations, post-transcriptional modification, etc. Here, we outlined the current understanding of the molecular and cellular properties of three subtypes of KCa channels, including big conductance KCa channels (BK), small conductance KCa channels (SK), and the intermediate conductance KCa channels (IK). Next, we comprehensively reviewed the loss- or gain-of-function mutations of each KCa channel and described the corresponding mutation sites in specific diseases to broaden the phenotypic-genotypic spectrum of KCa-related neurological disorders. Moreover, we reviewed the current pharmaceutical strategies targeting KCa channels in KCa-related neurological disorders to provide new directions for drug discovery in anti-seizure medication.
Collapse
Affiliation(s)
- Aqeela Zahra
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
- Department of Zoology, University of Sialkot, Sialkot 51310, Pakistan
| | - Ru Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Wenzhe Han
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Hui Meng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - YunFu Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Susan L. Campbell
- Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jianping Wu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| |
Collapse
|
29
|
Wulff H, Braun AP, Alper SL. Can KCa3.1 channel activators serve as novel inhibitors of platelet aggregation? J Thromb Haemost 2022; 20:2488-2490. [PMID: 36271464 DOI: 10.1111/jth.15863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, California, USA
| | - Andrew P Braun
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Seth L Alper
- Division of Nephrology and Vascular Biology Research Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Back V, Asgari A, Franczak A, Saito M, Castaneda Zaragoza D, Sandow SL, Plane F, Jurasz P. Inhibition of platelet aggregation by activation of platelet intermediate conductance Ca 2+ -activated potassium channels. J Thromb Haemost 2022; 20:2587-2600. [PMID: 35867883 DOI: 10.1111/jth.15827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Within the vasculature platelets and endothelial cells play crucial roles in hemostasis and thrombosis. Platelets, like endothelial cells, possess intermediate conductance Ca2+ -activated K+ (IKCa ) channels and generate nitric oxide (NO). Although NO limits platelet aggregation, the role of IKCa channels in platelet function and NO generation has not yet been explored. OBJECTIVES We investigated whether IKCa channel activation inhibits platelet aggregation, and per endothelial cells, enhances platelet NO production. METHODS Platelets were isolated from human volunteers. Aggregometry, confocal microscopy, and a novel flow chamber model, the Quartz Crystal Microbalance (QCM) were used to assess platelet function. Flow cytometry was used to measure platelet NO production, calcium signaling, membrane potential, integrin αIIb /β3 activation, granule release, and procoagulant platelet formation. RESULTS Platelet IKCa channel activation with SKA-31 inhibited aggregation in a concentration-dependent manner, an effect reversed by the selective IKCa channel blocker TRAM-34. The QCM model along with confocal microscopy demonstrated that SKA-31 inhibited platelet aggregation under flow conditions. Surprisingly, IKCa activation by SKA-31 inhibited platelet NO generation, but this could be explained by a concomitant reduction in platelet calcium signaling. IKCa activation by SKA-31 also inhibited dense and alpha-granule secretion and integrin αIIb /β3 activation, but maintained platelet phosphatidylserine surface exposure as a measure of procoagulant response. CONCLUSIONS Platelet IKCa channel activation inhibits aggregation by reducing calcium-signaling and granule secretion, but not by enhancing platelet NO generation. IKCa channels may be novel targets for the development of antiplatelet drugs that limit atherothrombosis, but not coagulation.
Collapse
Affiliation(s)
- Valentina Back
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Amir Asgari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Aleksandra Franczak
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Max Saito
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Diego Castaneda Zaragoza
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shaun L Sandow
- Biomedical Sciences, University of the Sunshine Coast, Sydney, Queensland, Australia
- Department of Physiology, University of New South Wales, Sydney, Queensland, Australia
| | - Frances Plane
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Paul Jurasz
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
- Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| |
Collapse
|
31
|
Kuzmenkov AI, Peigneur S, Nasburg JA, Mineev KS, Nikolaev MV, Pinheiro-Junior EL, Arseniev AS, Wulff H, Tytgat J, Vassilevski AA. Apamin structure and pharmacology revisited. Front Pharmacol 2022; 13:977440. [PMID: 36188602 PMCID: PMC9523135 DOI: 10.3389/fphar.2022.977440] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
Apamin is often cited as one of the few substances selectively acting on small-conductance Ca2+-activated potassium channels (KCa2). However, published pharmacological and structural data remain controversial. Here, we investigated the molecular pharmacology of apamin by two-electrode voltage-clamp in Xenopus laevis oocytes and patch-clamp in HEK293, COS7, and CHO cells expressing the studied ion channels, as well as in isolated rat brain neurons. The microtitre broth dilution method was used for antimicrobial activity screening. The spatial structure of apamin in aqueous solution was determined by NMR spectroscopy. We tested apamin against 42 ion channels (KCa, KV, NaV, nAChR, ASIC, and others) and confirmed its unique selectivity to KCa2 channels. No antimicrobial activity was detected for apamin against Gram-positive or Gram-negative bacteria. The NMR solution structure of apamin was deposited in the Protein Data Bank. The results presented here demonstrate that apamin is a selective nanomolar or even subnanomolar-affinity KCa2 inhibitor with no significant effects on other molecular targets. The spatial structure as well as ample functional data provided here support the use of apamin as a KCa2-selective pharmacological tool and as a template for drug design.
Collapse
Affiliation(s)
- Alexey I. Kuzmenkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Joshua A. Nasburg
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Konstantin S. Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow Region, Dolgoprudny, Russia
| | - Maxim V. Nikolaev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia
| | | | - Alexander S. Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow Region, Dolgoprudny, Russia
| | - Heike Wulff
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Leuven, Belgium
| | - Alexander A. Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow Region, Dolgoprudny, Russia
- *Correspondence: Alexander A. Vassilevski,
| |
Collapse
|
32
|
SKA-31-induced activation of small-conductance calcium-activated potassium channels decreased modulation of detrusor smooth muscle function in a rat model of obesity. J Bioenerg Biomembr 2022; 54:135-144. [PMID: 35478071 DOI: 10.1007/s10863-022-09939-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/15/2022] [Indexed: 10/18/2022]
Abstract
Increased excitability and contractility of detrusor smooth muscle (DSM) cells are associated with overactive bladder (OAB), which is often induced by obesity. Small-conductance Ca2+-activated K+ (SK) channels regulate the excitability and contractility of DSM cells. Selective pharmacological activation of SK channels attenuates hyperpolarization and the decreased relaxation effect in DSM cells in obesity-induced OAB. However, additional data are needed to confirm the regulatory effect of SK channels on the function of DSM cells in obesity-related OAB. The tested hypothesis was that activation of SK channels decreases modulation of DSM function in a rat model of obesity-related OAB. Female Sprague Dawley rats were fed a normal diet (ND) or a high-fat diet (HFD), weighed after 12 weeks, and subjected to urodynamic study, patch-clamp electrophysiology, and isometric tension recording. The average body weight and incidence of OAB were increased in the HFD group. Patch-clamp studies revealed that pharmacological activation of SK channels with SKA-31 had attenuated hyperpolarization of DSM cells. In addition, isometric tension recordings indicated that SKA-31 decreased relaxation of spontaneous phasic contractions of DSM strips in the HFD group. Attenuated function of SK channels increased the excitability and contractility of DSM cells, which contributed to the occurrence of OAB, suggesting that SK channels are potential therapeutic targets for control of OAB.
Collapse
|
33
|
Piezo1 activation using Yoda1 inhibits macropinocytosis in A431 human epidermoid carcinoma cells. Sci Rep 2022; 12:6322. [PMID: 35428847 PMCID: PMC9012786 DOI: 10.1038/s41598-022-10153-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/09/2022] [Indexed: 11/08/2022] Open
Abstract
Macropinocytosis is a type of endocytosis accompanied by actin rearrangement-driven membrane deformation, such as lamellipodia formation and membrane ruffling, followed by the formation of large vesicles, macropinosomes. Ras-transformed cancer cells efficiently acquire exogenous amino acids for their survival through macropinocytosis. Thus, inhibition of macropinocytosis is a promising strategy for cancer therapy. To date, few specific agents that inhibit macropinocytosis have been developed. Here, focusing on the mechanosensitive ion channel Piezo1, we found that Yoda1, a Piezo1 agonist, potently inhibits macropinocytosis induced by epidermal growth factor (EGF). The inhibition of ruffle formation by Yoda1 was dependent on the extracellular Ca2+ influx through Piezo1 and on the activation of the calcium-activated potassium channel KCa3.1. This suggests that Ca2+ ions can regulate EGF-stimulated macropinocytosis. We propose the potential for macropinocytosis inhibition through the regulation of a mechanosensitive channel activity using chemical tools.
Collapse
|
34
|
Kendrick DJ, Mishra RC, John CM, Zhu HL, Braun AP. Effects of Pharmacological Inhibitors of NADPH Oxidase on Myogenic Contractility and Evoked Vasoactive Responses in Rat Resistance Arteries. Front Physiol 2022; 12:752366. [PMID: 35140625 PMCID: PMC8818784 DOI: 10.3389/fphys.2021.752366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
Reactive oxygen species (ROS), such as superoxide anions and hydrogen peroxide, are reported to contribute to the dynamic regulation of contractility in various arterial preparations, however, the situation in pressurized, myogenically active resistance arteries is much less clear. In the present study, we have utilized established pharmacological inhibitors of NADPH oxidase activity to examine the potential contribution of ROS to intrinsic myogenic contractility in adult Sprague–Dawley rat resistance arteries and responses to vasoactive agents acting via the endothelium (i.e., acetylcholine, SKA-31) or smooth muscle (i.e., sodium nitroprusside, phenylephrine). In cannulated and pressurized cremaster skeletal muscle and middle cerebral arteries, the NOX inhibitors 2-acetylphenothiazine (2-APT) and VAS2870, selective for NOX1 and NOX2, respectively, evoked concentration-dependent inhibition of basal myogenic tone in a reversible and irreversible manner, respectively, whereas the non-selective inhibitor apocynin augmented myogenic contractility. The vasodilatory actions of 2-APT and VAS2870 occurred primarily via the vascular endothelium and smooth muscle, respectively. Functional responses to established endothelium-dependent and –independent vasoactive agents were largely unaltered in the presence of either 2-APT or apocynin. In cremaster arteries from Type 2 Diabetic (T2D) Goto-Kakizaki rats with endothelial dysfunction, treatment with either 2-APT or apocynin did not modify stimulus-evoked vasoactive responses, but did affect basal myogenic tone. These same NOX inhibitors produced robust inhibition of total NADPH oxidase activity in aortic tissue homogenates from control and T2D rats, and NOX isozymes 1, 2 and 4, along with superoxide dismutase 1, were detected by qPCR in cremaster arteries and aorta from both species. Based on the diverse effects that we observed for established, chemically distinct NOX inhibitors, the functional contribution of vascular NADPH oxidase activity to stimulus-evoked vasoactive signaling in myogenically active, small resistance arteries remains unclear.
Collapse
|
35
|
Zhang L, Lu W, Lu C, Guo Y, Chen X, Chen J, Xu F, Wan H, Dong H. Beneficial effect of capsaicin via TRPV4/EDH signals on mesenteric arterioles of normal and colitis mice. J Adv Res 2021; 39:291-303. [PMID: 35777913 PMCID: PMC9263647 DOI: 10.1016/j.jare.2021.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 01/01/2023] Open
Abstract
Capsaicin induced vasorelaxation of human colonic submucosal arterioles in vitro and in vitro. Capsaicin induced an endothelium-dependent vasorelaxation of human submucosal arterioles. Capsaicin induced an endothelium-dependent vasorelaxation of mouse mesenteric arterioles. Capsaicin induced vasorelaxation minily by TRPV1-mediated endothelial nitric oxide release. Capsaicin induced vasorelaxation mainly by TRPV4/endothelium-dependent hyperpolarization. Capsaicin exerted anti-colitis action in wide-type mice, but not in TRPV4 knock-out mice. Capsaicin rescued the impaired endothelium-dependent vasorelaxation via TRPV4/EDH pathway.
Introduction Although capsaicin has long been used as food additive and medication worldwide, its actions on gastrointestinal tract as its most delivery pathway have not been well addressed. Objectives In the present study, we aimed to study GI actions of capsaicin on mesenteric arterioles in normal and colitis mice and to elucidate the underlying mechanisms. Methods Vasorelaxation of human submucosal arterioles and the mesenteric arterioles from wide-type (WT) mice, TRPV1−/− and TRPV4−/− (KO) mice were measured. The expression and function of TRPV channels in endothelial cells were examined by q-PCR, immunostaining, Ca2+ imaging and membrane potential measurements. Results Capsaicin dose-dependently induced vasorelaxation of human submucosal arterioles and mouse mesenteric arterioles in vitro and in vivo through endothelium-dependent hyperpolarization (EDH), nitric oxide (NO), and prostacyclin (PGI2). Using TRPV1 and TRPV4 KO mice, we found that capsaicin-induced vasorelaxation was predominately through TRPV4/EDH, but marginally through TRPV1/NO/PGI2. Capsaicin induced hyperpolarization through activation of endothelial TRPV4 channels and intermediate-conductance of Ca2+-activated K+ channels to finally stimulate vasorelaxation. Importantly, capsaicin exerted anti-colitis action by rescuing the impaired ACh-induced vasorelaxation in WT colitis mice but not in TRPV4 KO colitis mice. Conclusions Capsaicin increases intestinal mucosal blood perfusion to potentially prevent/treat colitis through a novel TRPV4/EDH-dependent vasorelaxation of submucosal arterioles in health and colitis. This study further supports our previous notion that TRPV4/EDH in mesenteric circulation plays a critical role in the pathogenesis of colitis.
Collapse
|
36
|
Abstract
K+ channels enable potassium to flow across the membrane with great selectivity. There are four K+ channel families: voltage-gated K (Kv), calcium-activated (KCa), inwardly rectifying K (Kir), and two-pore domain potassium (K2P) channels. All four K+ channels are formed by subunits assembling into a classic tetrameric (4x1P = 4P for the Kv, KCa, and Kir channels) or tetramer-like (2x2P = 4P for the K2P channels) architecture. These subunits can either be the same (homomers) or different (heteromers), conferring great diversity to these channels. They share a highly conserved selectivity filter within the pore but show different gating mechanisms adapted for their function. K+ channels play essential roles in controlling neuronal excitability by shaping action potentials, influencing the resting membrane potential, and responding to diverse physicochemical stimuli, such as a voltage change (Kv), intracellular calcium oscillations (KCa), cellular mediators (Kir), or temperature (K2P).
Collapse
|
37
|
Shi J, Shi S, Shi S, Jia Q, Yuan G, Chu Y, Wang H, Hu Y, Cui H. Bibliometric analysis of potassium channel research. Channels (Austin) 2021; 14:18-27. [PMID: 31842669 PMCID: PMC7039634 DOI: 10.1080/19336950.2019.1705055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
ABSTRACT Objective: To explore the research status, hotspots, and trends in research on potassium channel. Methods: The Web of Science core collection database was used as the data source and the visual analysis software Citespace5.4 R3 was used to visualize the studies of potassium channel in the past 10 years. The national/institutional distribution, journal distribution, authors, and related research were discussed. Results 17,392 articles were obtained. The USA, Peoples R China, Germany, England, and Japan were the main countries in the field and University of California was the most important institution for the study of potassium channel. PLoS One was the most productive journal and proceedings of the national academy of sciences of the united states of america was the most frequently cited journal in potassium channel research. The author with the highest number was Colin G Nichols and the author with the highest co- cited frequency was Sanguinetti MC. The three hot spots of potassium channel research were gene expression, Ca2+ activated k+ channel and nitric oxide. The top four research frontiers of potassium channel research were bk channel,blood pressure,oxidative stress and electrophysiology. Conclusion The study provides a perspective for understanding the potassium channel research and provides valuable information for potassium channel researchers to identify potential collaborators, partner institutions, hot topics and research frontiers.
Collapse
Affiliation(s)
- Jingjing Shi
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuqing Shi
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Shuai Shi
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiulei Jia
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Guozhen Yuan
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuguang Chu
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huan Wang
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hanming Cui
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
38
|
Hansen FB, Secher N, Mattson T, Løfgren B, Simonsen U, Granfeldt A. Effect of the KCa3.1 blocker, senicapoc, on cerebral edema and cardiovascular function after cardiac arrest - A randomized experimental rat study. Resusc Plus 2021; 6:100111. [PMID: 34223371 PMCID: PMC8244250 DOI: 10.1016/j.resplu.2021.100111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 11/30/2022] Open
Abstract
Senicapoc was successfully administered intravenously. Senicapoc did not reduce cerebral edema 4 h after cardiac arrest. Senicapoc did not increase mean arterial pressure within 4 h from resuscitation.
Aim Formation of cerebral edema and cardiovascular dysfunction may worsen brain injury following cardiac arrest. We hypothesized that administration of the intermediate calcium-activated potassium (KCa3.1) channel blocker, senicapoc, would reduce cerebral edema and augment mean arterial pressure in the early post-resuscitation period. Method Male Sprague-Dawley rats, aged 11–15 weeks, were utilized in the study. Rats were exposed to 8 min of asphyxial cardiac arrest. Shortly after resuscitation, rats were randomized to receive either vehicle or senicapoc (10 mg/kg) intravenously. The primary outcome was cerebral wet to dry weight ratio 4 h after resuscitation. Secondary outcomes included mean arterial pressure, cardiac output, norepinephrine dose, inflammatory cytokines and neuron specific enolase levels. Additionally, a sub-study was conducted to validate intravenous administration of senicapoc. Results The sub-study revealed that senicapoc-treated rats maintained a significantly higher mean arterial pressure during administration of SKA-31 (a KCa3.1 channel opener). The plasma concentration of senicapoc was 1060 ± 303 ng/ml 4 h after administration. Senicapoc did not reduce cerebral edema or augment mean arterial pressure 4 h after resuscitation. Likewise, cardiac function and norepinephrine dose did not vary between groups. Inflammatory cytokines and neuron specific enolase levels increased in both groups after resuscitation with no difference between groups. Senicapoc enhanced the PaO2/FiO2 ratio significantly 4 h after resuscitation. Conclusion Senicapoc was successfully administered intravenously after resuscitation, but did not reduce cerebral edema or increase mean arterial pressure in the early post-resuscitation period.
Collapse
Affiliation(s)
- Frederik Boe Hansen
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Blvd. 82, 8200 Aarhus N, Denmark
| | - Niels Secher
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark
| | - Thomas Mattson
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark
| | - Bo Løfgren
- Department of Internal Medicine, Randers Regional Hospital, Skovlyvej 15, 8930 Randers NE, Denmark.,Research Center for Emergency Medicine, Aarhus University Hospital, Palle Juul-Jensens Blvd. 161, 8200 Aarhus N, Denmark
| | - Ulf Simonsen
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark
| | - Asger Granfeldt
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Blvd. 82, 8200 Aarhus N, Denmark.,Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark
| |
Collapse
|
39
|
Pinilla E, Sánchez A, Martínez MP, Muñoz M, García‐Sacristán A, Köhler R, Prieto D, Rivera L. Endothelial K Ca 1.1 and K Ca 3.1 channels mediate rat intrarenal artery endothelium-derived hyperpolarization response. Acta Physiol (Oxf) 2021; 231:e13598. [PMID: 33314681 DOI: 10.1111/apha.13598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/30/2022]
Abstract
AIM Endothelium-derived hyperpolarization (EDH)-mediated response plays an essential role in the control of kidney preglomerular circulation, but the identity of the K+ channels involved in this response is still controversial. We hypothesized that large- (KCa 1.1), intermediate- (KCa 3.1) and small (KCa 2.3) -conductance Ca2+ -activated K+ (KCa ) channels are expressed in the endothelium of the preglomerular circulation and participate in the EDH-mediated response. METHODS We study the functional expression of different K+ channels in non-cultured, freshly isolated native endothelial cells (ECs) of rat intrarenal arteries using immunofluorescence and the patch-clamp technique. We correlate this with vasorelaxant responses ex vivo using wire myography. RESULTS Immunofluorescence revealed the expression of KCa 1.1, KCa 3.1 and KCa 2.3 channels in ECs. Under voltage-clamp conditions, acetylcholine induced a marked increase in the outward currents in these cells, sensitive to the blockade of KCa 1.1, KCa 3.1 and KCa 2.3 channels respectively. Isometric myography experiments, under conditions of endothelial nitric oxide synthase and cyclooxygenase inhibition, showed that blockade either of KCa 1.1 or KCa 3.1 channels was able to reduce the endothelium-derived vasorelaxation of isolated interlobar arteries, while their combined blockade completely abolished it. In contrast, blockade of KCa 2.3 channels did not reduce this vasorelaxant response, despite being functionally expressed in the endothelial cells. CONCLUSION This study shows that KCa 1.1 and KCa 3.1 channels are functionally expressed at the renal vascular endothelium and play a central role in the EDH-mediated relaxation of kidney preglomerular arteries, which is important in the control of renal blood flow and glomerular filtration rate.
Collapse
Affiliation(s)
- Estéfano Pinilla
- Departament of Physiology, Faculty of Pharmacy Complutense University of Madrid Madrid Spain
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology Aarhus University Aarhus Denmark
| | - Ana Sánchez
- Departament of Physiology, Faculty of Pharmacy Complutense University of Madrid Madrid Spain
| | - María P. Martínez
- Department of Compared Anatomy and Pathological Anatomy, Faculty of Veterinary Complutense University of Madrid Madrid Spain
| | - Mercedes Muñoz
- Departament of Physiology, Faculty of Pharmacy Complutense University of Madrid Madrid Spain
| | - Albino García‐Sacristán
- Departament of Physiology, Faculty of Pharmacy Complutense University of Madrid Madrid Spain
| | - Ralf Köhler
- Aragonese Agency for Investigation and Development & IACS/IIS Translational ResearchMiguel Servet Hospital Zaragoza Spain
| | - Dolores Prieto
- Departament of Physiology, Faculty of Pharmacy Complutense University of Madrid Madrid Spain
| | - Luis Rivera
- Departament of Physiology, Faculty of Pharmacy Complutense University of Madrid Madrid Spain
| |
Collapse
|
40
|
Pacheco-Rojas DO, Delgado-Ramírez M, Villatoro-Gómez K, Moreno-Galindo EG, Rodríguez-Menchaca AA, Sánchez-Chapula JA, Ferrer T. Riluzole inhibits Kv4.2 channels acting on the closed and closed inactivated states. Eur J Pharmacol 2021; 899:174026. [PMID: 33722592 DOI: 10.1016/j.ejphar.2021.174026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 11/18/2022]
Abstract
Riluzole is an anticonvulsant drug also used to treat the amyotrophic lateral sclerosis and major depressive disorder. This compound has antiglutamatergic activity and is an important multichannel blocker. However, little is known about its actions on the Kv4.2 channels, the molecular correlate of the A-type K+ current (IA) and the fast transient outward current (Itof). Here, we investigated the effects of riluzole on Kv4.2 channels transiently expressed in HEK-293 cells. Riluzole inhibited Kv4.2 channels with an IC50 of 190 ± 14 μM and the effect was voltage- and frequency-independent. The activation rate of the current (at +50 mV) was not affected by the drug, nor the voltage dependence of channel activation, but the inactivation rate was accelerated by 100 and 300 μM riluzole. When Kv4.2 channels were maintained at the closed state, riluzole incubation induced a tonic current inhibition. In addition, riluzole significantly shifted the voltage dependence of inactivation to hyperpolarized potentials without affecting the recovery from inactivation. In the presence of the drug, the closed-state inactivation was significantly accelerated, and the percentage of inactivated channels was increased. Altogether, our findings indicate that riluzole inhibits Kv4.2 channels mainly affecting the closed and closed-inactivated states.
Collapse
Affiliation(s)
- David O Pacheco-Rojas
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965 Col, Villas San Sebastián, Colima, COL, 28045, Mexico
| | - Mayra Delgado-Ramírez
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965 Col, Villas San Sebastián, Colima, COL, 28045, Mexico
| | - Kathya Villatoro-Gómez
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965 Col, Villas San Sebastián, Colima, COL, 28045, Mexico
| | - Eloy G Moreno-Galindo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965 Col, Villas San Sebastián, Colima, COL, 28045, Mexico
| | - Aldo A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Venustiano Carranza #2405, Col. Los Filtros, San Luis Potosí, SLP, 78210, Mexico
| | - José A Sánchez-Chapula
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965 Col, Villas San Sebastián, Colima, COL, 28045, Mexico.
| | - Tania Ferrer
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965 Col, Villas San Sebastián, Colima, COL, 28045, Mexico.
| |
Collapse
|
41
|
Zhang LY, Chen XY, Dong H, Xu F. Cyclopiazonic Acid-Induced Ca 2+ Store Depletion Initiates Endothelium-Dependent Hyperpolarization-Mediated Vasorelaxation of Mesenteric Arteries in Healthy and Colitis Mice. Front Physiol 2021; 12:639857. [PMID: 33767636 PMCID: PMC7985063 DOI: 10.3389/fphys.2021.639857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Purposes: Since the role of store-operated calcium entry (SOCE) in endothelium-dependent hyperpolarization (EDH)-mediated vasorelaxation of mesenteric arteries in health and colitis is not fully understood, cyclopiazonic acid (CPA), a specific inhibitor of the sarco(endo) plasmic reticulum calcium-ATPases (SERCA), was used as a SOCE activator to investigate its role in normal mice and its alteration in colitis mice. Methods: The changes in Ca2+ signaling in vascular endothelial cells (VEC) were examined by single cell Ca2+ imaging and tension of mesenteric arteries in response to CPA were examined using Danish DMT520A microvascular measuring system. Results: CPA activated the SOCE through depletion of the endoplasmic reticulum (ER) Ca2+ in endothelial cells. CPA had a concentration-dependent vasorelaxing effect in endothelium-intact mesenteric arteries, which was lost after endothelial removal. Both nitric oxide (NO) and prostacyclin (PGI2) inhibitors did not affect CPA-induced vasorelaxation; however, after both NO and PGI2 were inhibited, KCa channel blocker [10 mM tetraethylammonium chloride (TEA)] inhibited CPA-induced vasorelaxation while KCa channel activator (0.3 μM SKA-31) promoted it. Two SOCE blockers [30 μM SKF96365 and 100 μM flufenamic acid (FFA)], and an Orai channel blocker (30 μM GSK-7975A) inhibited this vasorelaxation. The inhibition of both Na+/K+-ATPase (NKA) and Na+/Ca2+-exchange (NCX) also inhibited CPA-induced vasorelaxation. Finally, the CPA involved in EDH-induced vasorelaxation by the depletion of ER Ca2+ of mesenteric arteries was impaired in colitis mice. Conclusion: Depletion of ER Ca2+ by CPA induces a vasorelaxation of mesenteric arteries that is mediated through EDH mechanism and invokes the activation of SOCE. The CPA-induced endothelium-dependent dilation is impaired in colitis which may limit blood perfusion to the intestinal mucosa.
Collapse
Affiliation(s)
- Lu Yun Zhang
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xiong Ying Chen
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Hui Dong
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China.,Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Feng Xu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
42
|
Nam YW, Kong D, Wang D, Orfali R, Sherpa RT, Totonchy J, Nauli SM, Zhang M. Differential modulation of SK channel subtypes by phosphorylation. Cell Calcium 2021; 94:102346. [PMID: 33422768 PMCID: PMC8415101 DOI: 10.1016/j.ceca.2020.102346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 01/01/2023]
Abstract
Small-conductance Ca2+-activated K+ (SK) channels are voltage-independent and are activated by Ca2+ binding to the calmodulin constitutively associated with the channels. Both the pore-forming subunits and the associated calmodulin are subject to phosphorylation. Here, we investigated the modulation of different SK channel subtypes by phosphorylation, using the cultured endothelial cells as a tool. We report that casein kinase 2 (CK2) negatively modulates the apparent Ca2+ sensitivity of SK1 and IK channel subtypes by more than 5-fold, whereas the apparent Ca2+ sensitivity of the SK3 and SK2 subtypes is only reduced by ∼2-fold, when heterologously expressed on the plasma membrane of cultured endothelial cells. The SK2 channel subtype exhibits limited cell surface expression in these cells, partly as a result of the phosphorylation of its C-terminus by cyclic AMP-dependent protein kinase (PKA). SK2 channels expressed on the ER and mitochondria membranes may protect against cell death. This work reveals the subtype-specific modulation of the apparent Ca2+ sensitivity and subcellular localization of SK channels by phosphorylation in cultured endothelial cells.
Collapse
Affiliation(s)
- Young-Woo Nam
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Dezhi Kong
- Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Dong Wang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Razan Orfali
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Rinzhin T Sherpa
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Jennifer Totonchy
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Surya M Nauli
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Miao Zhang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA.
| |
Collapse
|
43
|
Schmidt K, de Wit C. Endothelium-Derived Hyperpolarizing Factor and Myoendothelial Coupling: The in vivo Perspective. Front Physiol 2021; 11:602930. [PMID: 33424626 PMCID: PMC7786115 DOI: 10.3389/fphys.2020.602930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
The endothelium controls vascular tone adopting blood flow to tissue needs. It releases chemical mediators [e.g., nitric oxide (NO), prostaglandins (PG)] and exerts appreciable dilation through smooth muscle hyperpolarization, thus termed endothelium-dependent hyperpolarization (EDH). Initially, EDH was attributed to release of a factor, but later it was suggested that smooth muscle hyperpolarization might be derived from radial spread of an initial endothelial hyperpolarization through heterocellular channels coupling these vascular cells. The channels are indeed present and formed by connexins that enrich in gap junctions (GJ). In vitro data suggest that myoendothelial coupling underlies EDH-type dilations as evidenced by blocking experiments as well as simultaneous, merely identical membrane potential changes in endothelial and smooth muscle cells (SMCs), which is indicative of coupling through ohmic resistors. However, connexin-deficient animals do not display any attenuation of EDH-type dilations in vivo, and endothelial and SMCs exhibit distinct and barely superimposable membrane potential changes exerted by different means in vivo. Even if studied in the exact same artery EDH-type dilation exhibits distinct features in vitro and in vivo: in isometrically mounted vessels, it is rather weak and depends on myoendothelial coupling through connexin40 (Cx40), whereas in vivo as well as in vitro under isobaric conditions it is powerful and independent of myoendothelial coupling through Cx40. It is concluded that EDH-type dilations are distinct and a significant dependence on myoendothelial coupling in vitro does not reflect the situation under physiologic conditions in vivo. Myoendothelial coupling may act as a backup mechanism that is uncovered in the absence of the powerful EDH-type response and possibly reflects a situation in a pathophysiologic environment.
Collapse
Affiliation(s)
- Kjestine Schmidt
- Institut für Physiologie, Universität zu Lübeck, Lübeck, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Cor de Wit
- Institut für Physiologie, Universität zu Lübeck, Lübeck, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| |
Collapse
|
44
|
Montalbano A, Sala C, Abrardo C, Murciano N, Jahanfar F, D'Amico M, Bertoni F, Becchetti A, Arcangeli A. Data describing the effects of potassium channels modulators on outward currents measured in human lymphoma cell lines. Data Brief 2021; 34:106668. [PMID: 33385031 PMCID: PMC7772536 DOI: 10.1016/j.dib.2020.106668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/01/2022] Open
Abstract
In the present work, applying the whole-cell patch-clamp technique in voltage clamp mode, we have investigated the effects of different drugs, such as riluzole, Psora-4 and Tram-34, on the potassium currents in four human lymphoma cell lines. We focused on outward currents mediated by two potassium channels (Kv1.3 and KCa3.1), which are known to play a key physiological role in lymphoid cells. The currents were evoked by voltage ramps ranging from -120 mV to +40 mV and the conductance of the two potassium channels was measured between +20 mV and +40 mV, both in the absence and in the presence of the specific blockers Psora-4 (Kv1.3; 1 µM) and Tram-34 (KCa3.1; 1 µM). The effect of the latter was tested after KCa3.1 channels were activated by riluzole 10 µM. Taken together, these data could be useful as an indication of the functional characteristics of the potassium channels in human lymphomas and represent a starting point for the study of potassium conductance in cellular models of these tumors.
Collapse
Affiliation(s)
- Alberto Montalbano
- Department of Experimental and Clinical Medicine, University of Florence, I‑50134 Florence, Italy
| | - Cesare Sala
- Department of Experimental and Clinical Medicine, University of Florence, I‑50134 Florence, Italy
| | - Chiara Abrardo
- Department of Experimental and Clinical Medicine, University of Florence, I‑50134 Florence, Italy
| | - Nicoletta Murciano
- Department of Experimental and Clinical Medicine, University of Florence, I‑50134 Florence, Italy
| | - Farhad Jahanfar
- DIVAL Toscana Srl, Via Madonna del Piano 6, Sesto Fiorentino, I-50119 Firenze, Italy.,Department of Medical Biotechnologies, University of Siena, I-53100 Siena, Italy
| | - Massimo D'Amico
- DIVAL Toscana Srl, Via Madonna del Piano 6, Sesto Fiorentino, I-50119 Firenze, Italy
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, via Vela 6, CH-6500 Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland (IOSI), Ospedale San Giovanni, CH-6500 Bellinzona, Switzerland
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, I-20126 Milano, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, I‑50134 Florence, Italy
| |
Collapse
|
45
|
Bukhari M, Deng H, Sipes D, Ruane-Foster M, Purdy K, Woodworth CD, Sur S, Samways DSK. K Ca3.1-dependent uptake of the cytotoxic DNA-binding dye Hoechst 33258 into cancerous but not healthy cervical cells. J Biol Chem 2021; 296:100084. [PMID: 33199365 PMCID: PMC7948979 DOI: 10.1074/jbc.ra120.013997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
The poor and nonselective penetration of current chemotherapeutics across the plasma membranes of cancer cells, which is necessary for the targeted disruption of the intracellular machinery, remains a major pharmaceutical challenge. In several cell types, including mast cells and macrophages, exposure to extracellular ATP is known to stimulate passive entry of large and otherwise membrane impermeable cationic dyes, which is usually attributed to conduction through ionotropic P2X receptors. Here, we report that elevations in cytosolic Ca2+ stimulate the rapid uptake and nuclear accumulation of a DNA-binding fluorescent cation, Hoechst 33258 (H33258), in cervical cancer cells. The H33258 uptake was dependent on activation of intermediate conductance Ca2+-activated K+ channels (KCa3.1), and direct stimulation of the channel with the activators SKA 31 and DCEBIO was sufficient to induce cellular uptake of H33258 directly. In contrast to the results from cancerous cervical cells, KCa3.1-dependent H33258 uptake was rarely observed in epithelial cells derived from the ectocervix and transformation zone of healthy cervical tissue. Furthermore, whole-cell patch clamp experiments and assessment of membrane potential using the slow voltage-sensitive dye bis-(1,3-diethylthiobarbituric acid)trimethine oxonol revealed a significant difference in functional KCa3.1 activity between cancerous and healthy cervical epithelial cells, which correlated strongly with the incidence of KCa3.1-dependent H33258 uptake. Finally, we show that activation of KCa3.1 channels caused a modest but significant sensitization of cancer cells to the growth suppressant effects of H33258, lending plausibility to the idea of using KCa3.1 channel activators to enhance cell penetration of small cationic toxins into cancer cells expressing these channels.
Collapse
Affiliation(s)
- Maurish Bukhari
- Department of Biology, Clarkson University, Potsdam, New York, USA
| | - Han Deng
- Department of Biology, Clarkson University, Potsdam, New York, USA
| | - Darren Sipes
- Department of Biology, Clarkson University, Potsdam, New York, USA
| | | | - Kayla Purdy
- Department of Biology, Clarkson University, Potsdam, New York, USA
| | | | - Shantanu Sur
- Department of Biology, Clarkson University, Potsdam, New York, USA
| | | |
Collapse
|
46
|
Nam YW, Cui M, Orfali R, Viegas A, Nguyen M, Mohammed EHM, Zoghebi KA, Rahighi S, Parang K, Zhang M. Hydrophobic interactions between the HA helix and S4-S5 linker modulate apparent Ca 2+ sensitivity of SK2 channels. Acta Physiol (Oxf) 2021; 231:e13552. [PMID: 32865319 PMCID: PMC7736289 DOI: 10.1111/apha.13552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/09/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
Abstract
AIM Small-conductance Ca2+ -activated potassium (SK) channels are activated exclusively by increases in intracellular Ca2+ that binds to calmodulin constitutively associated with the channel. Wild-type SK2 channels are activated by Ca2+ with an EC50 value of ~0.3 μmol/L. Here, we investigate hydrophobic interactions between the HA helix and the S4-S5 linker as a major determinant of channel apparent Ca2+ sensitivity. METHODS Site-directed mutagenesis, electrophysiological recordings and molecular dynamic (MD) simulations were utilized. RESULTS Mutations that decrease hydrophobicity at the HA-S4-S5 interface lead to Ca2+ hyposensitivity of SK2 channels. Mutations that increase hydrophobicity result in hypersensitivity to Ca2+ . The Ca2+ hypersensitivity of the V407F mutant relies on the interaction of the cognate phenylalanine with the S4-S5 linker in the SK2 channel. Replacing the S4-S5 linker of the SK2 channel with the S4-S5 linker of the SK4 channel results in loss of the hypersensitivity caused by V407F. This difference between the S4-S5 linkers of SK2 and SK4 channels can be partially attributed to I295 equivalent to a valine in the SK4 channel. A N293A mutation in the S4-S5 linker also increases hydrophobicity at the HA-S4-S5 interface and elevates the channel apparent Ca2+ sensitivity. The double N293A/V407F mutations generate a highly Ca2+ sensitive channel, with an EC50 of 0.02 μmol/L. The MD simulations of this double-mutant channel revealed a larger channel cytoplasmic gate. CONCLUSION The electrophysiological data and MD simulations collectively suggest a crucial role of the interactions between the HA helix and S4-S5 linker in the apparent Ca2+ sensitivity of SK2 channels.
Collapse
Affiliation(s)
- Young-Woo Nam
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, USA
| | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University School of Pharmacy, Boston, MA, USA
| | - Razan Orfali
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, USA
| | - Adam Viegas
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, USA
| | - Misa Nguyen
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, USA
| | - Eman H M Mohammed
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, USA
| | - Khalid A Zoghebi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, USA
| | - Simin Rahighi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, USA
| | - Keykavous Parang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, USA
| | - Miao Zhang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, USA
| |
Collapse
|
47
|
Mishra RC, Kyle BD, Kendrick DJ, Svystonyuk D, Kieser TM, Fedak PWM, Wulff H, Braun AP. KCa channel activation normalizes endothelial function in Type 2 Diabetic resistance arteries by improving intracellular Ca 2+ mobilization. Metabolism 2021; 114:154390. [PMID: 33039407 PMCID: PMC7736096 DOI: 10.1016/j.metabol.2020.154390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Endothelial dysfunction is an early pathogenic event in the progression of cardiovascular disease in patients with Type 2 Diabetes (T2D). Endothelial KCa2.3 and KCa3.1 K+ channels are important regulators of arterial diameter, and we thus hypothesized that SKA-31, a small molecule activator of KCa2.3 and KCa3.1, would positively influence agonist-evoked dilation in myogenically active resistance arteries in T2D. METHODOLOGY Arterial pressure myography was utilized to investigate endothelium-dependent vasodilation in isolated cremaster skeletal muscle resistance arteries from 22 to 24 week old T2D Goto-Kakizaki rats, age-matched Wistar controls, and small human intra-thoracic resistance arteries from T2D subjects. Agonist stimulated changes in cytosolic free Ca2+ in acutely isolated, single endothelial cells from Wistar and T2D Goto-Kakizaki cremaster and cerebral arteries were examined using Fura-2 fluorescence imaging. MAIN FINDINGS Endothelium-dependent vasodilation in response to acetylcholine (ACh) or bradykinin (BK) was significantly impaired in isolated cremaster arteries from T2D Goto-Kakizaki rats compared with Wistar controls, and similar results were observed in human intra-thoracic arteries. In contrast, inhibition of myogenic tone by sodium nitroprusside, a direct smooth muscle relaxant, was unaltered in both rat and human T2D arteries. Treatment with a threshold concentration of SKA-31 (0.3 μM) significantly enhanced vasodilatory responses to ACh and BK in arteries from T2D Goto-Kakizaki rats and human subjects, whereas only modest effects were observed in non-diabetic arteries of both species. Mechanistically, SKA-31 enhancement of evoked dilation was independent of vascular NO synthase and COX activities. Remarkably, SKA-31 treatment improved agonist-stimulated Ca2+ elevation in acutely isolated endothelial cells from T2D Goto-Kakizaki cremaster and cerebral arteries, but not from Wistar control vessels. In contrast, SKA-31 treatment did not affect intracellular Ca2+ release by the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitor cyclopiazonic acid. CONCLUSIONS Collectively, our data demonstrate that KCa channel modulation can acutely restore endothelium-dependent vasodilatory responses in T2D resistance arteries from rats and humans, which appears to involve improved endothelial Ca2+ mobilization.
Collapse
Affiliation(s)
- Ramesh C Mishra
- Dept. of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Barry D Kyle
- Dept. of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Dylan J Kendrick
- Dept. of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Daniyil Svystonyuk
- Dept. of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Teresa M Kieser
- Dept. of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Paul W M Fedak
- Dept. of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Heike Wulff
- Dept of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Andrew P Braun
- Dept. of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
48
|
Bao W, Wang Z, Cao Z, Wang X, Ma X, Yu X, He W. Visible‐Light‐Initiated Cascade Reaction of 2‐Isothiocyanatonaphthalenes and Amines under Additive‐ and External Photocatalyst‐Free and Mild Conditions. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Wen‐Hu Bao
- Department of Chemistry Hunan University of Science and Engineering Yongzhou 425100 People's Republic of China
| | - Zheng Wang
- Department of Chemistry Hunan University of Science and Engineering Yongzhou 425100 People's Republic of China
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation Changsha University of Science and Technology Changsha 410114 People's Republic of China
| | - Xin‐Chang Wang
- Department of Chemistry Hunan University of Science and Engineering Yongzhou 425100 People's Republic of China
| | - Xin‐Ran Ma
- Department of Chemistry Hunan University of Science and Engineering Yongzhou 425100 People's Republic of China
| | - Xian‐Yong Yu
- School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan 411201 People's Republic of China
| | - Wei‐Min He
- Department of Chemistry Hunan University of Science and Engineering Yongzhou 425100 People's Republic of China
| |
Collapse
|
49
|
Pierce ML, French JA, Murray TF. Comparison of the pharmacological profiles of arginine vasopressin and oxytocin analogs at marmoset, macaque, and human vasopressin 1a receptor. Biomed Pharmacother 2020; 126:110060. [PMID: 32145592 DOI: 10.1016/j.biopha.2020.110060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 01/14/2023] Open
Abstract
Arginine vasopressin (AVP) and oxytocin (OT) are nonapeptides that bind to G-protein coupled receptors and influence social behaviors. Consensus mammalian AVP and OT (Leu8-OT) sequences are highly conserved. In marmosets, an amino acid change in the 8th position of the peptide (Pro8-OT) exhibits unique structural and functional properties. There is ∼85 % structural homology between the OT receptor (OTR) and vasopressin 1a receptor (V1aR) resulting in significant cross-reactivity between the ligands and receptors. Chinese hamster ovary (CHO) cells expressing marmoset (mV1aR), macaque (qV1aR), or human vasopressin receptor 1a (hV1aR) were used to assess AVP, Leu8-OT and Pro8-OT pharmacological profiles. To assess activation of Gq, functional assays were performed using Fluo-3 to measure ligand-induced Ca2+ mobilization. In all three V1aR-expressing cell lines, AVP was more potent than the OT ligands. To assess ligand-induced hyperpolarization, FLIPR Membrane Potential (FMP) assays were performed. In all three V1aR lines, AVP was more potent than the OT analogs. The distinctive U-shaped concentration-response curve displayed by AVP may reflect enhanced desensitization of the mV1aR and hV1aR, which is not observed with qV1aR. Evaluation of Ca2+-activated potassium (K+) channels using the inhibitors apamin, paxilline, and TRAM-34 demonstrated that both intermediate and large conductance Ca2+-activated K+ channels contributed to membrane hyperpolarization, with different pharmacological profiles identified for distinct ligand-receptor combinations. Taken together, these data suggest differences in ligand-receptor signaling that may underlie differences in social behavior. Integrative studies of behavior, genetics and ligand-receptor interaction will help elucidate the connection between receptor pharmacology and social behaviors.
Collapse
Affiliation(s)
- Marsha L Pierce
- Department of Pharmacology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | - Jeffrey A French
- Department of Psychology, University of Nebraska Omaha, 6001 Dodge St., Omaha, NE 68182, USA
| | - Thomas F Murray
- Department of Pharmacology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA.
| |
Collapse
|
50
|
Roach KM, Bradding P. Ca 2+ signalling in fibroblasts and the therapeutic potential of K Ca3.1 channel blockers in fibrotic diseases. Br J Pharmacol 2020; 177:1003-1024. [PMID: 31758702 DOI: 10.1111/bph.14939] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/23/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
The role of Ca2+ signalling in fibroblasts is of great interest in fibrosis-related diseases. Intracellular free Ca2+ ([Ca2+ ]i ) is a ubiquitous secondary messenger, regulating a number of cellular functions such as secretion, metabolism, differentiation, proliferation and contraction. The intermediate conductance Ca2+ -activated K+ channel KCa 3.1 is pivotal in Ca2+ signalling and plays a central role in fibroblast processes including cell activation, migration and proliferation through the regulation of cell membrane potential. Evidence from a number of approaches demonstrates that KCa 3.1 plays an important role in the development of many fibrotic diseases, including idiopathic pulmonary, renal tubulointerstitial fibrosis and cardiovascular disease. The KCa 3.1 selective blocker senicapoc was well tolerated in clinical trials for sickle cell disease, raising the possibility of rapid translation to the clinic for people suffering from pathological fibrosis. This review after analysing all the data, concludes that targeting KCa 3.1 should be a high priority for human fibrotic disease.
Collapse
Affiliation(s)
- Katy M Roach
- Institute for Lung Health, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Peter Bradding
- Institute for Lung Health, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| |
Collapse
|