1
|
Yildirim GE, Yilmaz E. Developing a novel neutralizing monoclonal antibody against TrkB. 3 Biotech 2024; 14:221. [PMID: 39247456 PMCID: PMC11377376 DOI: 10.1007/s13205-024-04063-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024] Open
Abstract
The TrkB receptor, which is highly expressed in various human cancers and considered a pro-oncogene, was targeted to develop neutralizing monoclonal antibodies against its immunoglobulin-like (Ig-like) domains. Recombinant TrkB-IgL peptide, including the Ig-like C2 type 1 (Ig-C2-type 1) and Ig-like C2 type 2 (Ig-C2-type 2) domains, was expressed and purified from E. coli. Mice were immunized with this peptide, and hybridoma clones producing anti-TrkB-IgL antibodies were generated. Among 23 ELISA-positive TrkB-IgL hybridoma clones, four (TrkB-IgL 5.11, 4.11, 4.6, 4.3) showed anti-proliferative effects compared to the control on human breast cancer (MCF-7) and human colon cancer (HCT116) cells, as assessed using the xCELLigence system. Western blot analysis revealed that TrkB-IgL 5.11 and 4.11 significantly suppressed TrkB-mediated signaling pathways compared to the control. Purified TrkB-IgL monoclonal antibodies (mAbs) exhibited anti-proliferative effects compared to both positive and negative controls using the xCELLigence system. The TrkB-IgL 5.11 mAb notably suppressed phosphorylation of TrkB, Akt, and ERK and induced Caspase-3 and Caspase-9 activities in a dose-dependent manner, as determined by Western blotting. Additionally, immunostaining confirmed the localization of these mAbs on the SH-SY5Y cell membrane, which is known for high TrkB expression. In conclusion, the TrkB-IgL 5.11 antibody effectively inhibits cancer cell proliferation and induces apoptosis by suppressing key signaling pathways. These findings demonstrate the potential of this antibody as a therapeutic agent for cancers that overexpress TrkB. Additionally, it is considered a promising candidate for humanization, which would facilitate its application in cancer treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04063-x.
Collapse
Affiliation(s)
| | - Erkan Yilmaz
- Biotechnology Institute, Ankara University, Ankara, Türkiye
| |
Collapse
|
2
|
Collins J, Piscopio RA, Reyland ME, Johansen CG, Benninger RKP, Farnsworth NL. Cleavage of protein kinase c δ by caspase-3 mediates proinflammatory cytokine-induced apoptosis in pancreatic islets. J Biol Chem 2024; 300:107611. [PMID: 39074637 PMCID: PMC11381875 DOI: 10.1016/j.jbc.2024.107611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
In type 1 diabetes (T1D), autoreactive immune cells infiltrate the pancreas and secrete proinflammatory cytokines that initiate cell death in insulin producing islet β-cells. Protein kinase C δ (PKCδ) plays a role in mediating cytokine-induced β-cell death; however, the exact mechanisms are not well understood. To address this, we used an inducible β-cell specific PKCδ KO mouse as well as a small peptide inhibitor of PKCδ. We identified a role for PKCδ in mediating cytokine-induced β-cell death and have shown that inhibiting PKCδ protects pancreatic β-cells from cytokine-induced apoptosis in both mouse and human islets. We determined that cytokines induced nuclear translocation and activity of PKCδ and that caspase-3 cleavage of PKCδ may be required for cytokine-mediated islet apoptosis. Further, cytokine activated PKCδ increases activity both of proapoptotic Bax with acute treatment and C-Jun N-terminal kinase with prolonged treatment. Overall, our results suggest that PKCδ mediates cytokine-induced apoptosis via nuclear translocation, cleavage by caspase-3, and upregulation of proapoptotic signaling in pancreatic β-cells. Combined with the protective effects of PKCδ inhibition with δV1-1, the results of this study will aid in the development of novel therapies to prevent or delay β-cell death and preserve β-cell function in T1D.
Collapse
Affiliation(s)
- Jillian Collins
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Robert A Piscopio
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Chelsea G Johansen
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Richard K P Benninger
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| | - Nikki L Farnsworth
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA; Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
3
|
Stefàno E, De Castro F, Ciccarese A, Muscella A, Marsigliante S, Benedetti M, Fanizzi FP. An Overview of Altered Pathways Associated with Sensitivity to Platinum-Based Chemotherapy in Neuroendocrine Tumors: Strengths and Prospects. Int J Mol Sci 2024; 25:8568. [PMID: 39201255 PMCID: PMC11354135 DOI: 10.3390/ijms25168568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Neuroendocrine neoplasms (NENs) are a diverse group of malignancies with a shared phenotype but varying prognosis and response to current treatments. Based on their morphological features and rate of proliferation, NENs can be classified into two main groups with a distinct clinical behavior and response to treatment: (i) well-differentiated neuroendocrine tumors (NETs) or carcinoids (with a low proliferation rate), and (ii) poorly differentiated small- or large-cell neuroendocrine carcinomas (NECs) (with a high proliferation rate). For certain NENs (such as pancreatic tumors, higher-grade tumors, and those with DNA damage repair defects), chemotherapy is the main therapeutic approach. Among the different chemotherapic agents, cisplatin and carboplatin, in combination with etoposide, have shown the greatest efficacy in treating NECs compared to NETs. The cytotoxic effects of cisplatin and carboplatin are primarily due to their binding to DNA, which interferes with normal DNA transcription and/or replication. Consistent with this, NECs, which often have mutations in pathways involved in DNA repair (such as Rb, MDM2, BRCA, and PTEN), have a high response to platinum-based chemotherapy. Identifying mutations that affect molecular pathways involved in the initiation and progression of NENs can be crucial in predicting the response to platinum chemotherapy. This review aims to highlight targetable mutations that could serve as predictors of therapeutic response to platinum-based chemotherapy in NENs.
Collapse
Affiliation(s)
| | | | | | | | | | - Michele Benedetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy; (E.S.); (F.D.C.); (A.C.); (A.M.); (S.M.); (F.P.F.)
| | | |
Collapse
|
4
|
Parent C, Raj Melayil K, Zhou Y, Aubert V, Surdez D, Delattre O, Wilhelm C, Viovy JL. Simple droplet microfluidics platform for drug screening on cancer spheroids. LAB ON A CHIP 2023; 23:5139-5150. [PMID: 37942508 DOI: 10.1039/d3lc00417a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
3D in vitro biological systems are progressively replacing 2D systems to increase the physiological relevance of cellular studies. Microfluidics-based approaches can be powerful tools towards such biomimetic systems, but often require high-end complicated and expensive processes and equipment for microfabrication. Herein, a drug screening platform is proposed, minimizing technicality and manufacturing steps. It provides an alternate way of spheroid generation in droplets in tubes. Droplet microfluidics then elicit multiple droplets merging events at programmable times, to submit sequentially the spheroids to chemotherapy and to reagents for cytotoxicity screening. After a comprehensive study of tumorogenesis within the droplets, the system is validated for drug screening (IC50) with chemotherapies in cancer cell lines as well as cells from a patient-derived-xenografts (PDX). As compared to microtiter plates methods, our system reduces the initial number of cells up to 10 times and opens new avenues towards primary tumors drug screening approaches.
Collapse
Affiliation(s)
- Caroline Parent
- Laboratoire Physico Chimie Curie, Institut Curie, CNRS, PSL Research University, 75005 Paris, France.
| | - Kiran Raj Melayil
- Laboratoire Physico Chimie Curie, Institut Curie, CNRS, PSL Research University, 75005 Paris, France.
| | - Ya Zhou
- Laboratoire Physico Chimie Curie, Institut Curie, CNRS, PSL Research University, 75005 Paris, France.
| | - Vivian Aubert
- Laboratoire Physico Chimie Curie, Institut Curie, CNRS, PSL Research University, 75005 Paris, France.
| | - Didier Surdez
- Balgrist University Hospital, Faculty of Medicine, University of Zurich (UZH), Zurich, Switzerland
| | - Olivier Delattre
- INSERM U830, Institut Curie, PSL Research University, 75005 Paris, France
| | - Claire Wilhelm
- Laboratoire Physico Chimie Curie, Institut Curie, CNRS, PSL Research University, 75005 Paris, France.
| | - Jean-Louis Viovy
- Laboratoire Physico Chimie Curie, Institut Curie, CNRS, PSL Research University, 75005 Paris, France.
| |
Collapse
|
5
|
Goutam J, Sharma G, Yadav V, Pathak G, Kharwar RN, Sharma D. A Focused Review of the Pharmacological Potentials of Terrein as an Anticancer Agent. Nat Prod Commun 2023; 18. [DOI: 10.1177/1934578x231174128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025] Open
Abstract
Terrein is one of the most important biomolecules of fungal origin being studied from a medicinal perspective. Secondary metabolites are the intermediate products produced during the metabolism of organisms for a large number of functions, for example, defense and communication signals. From the outset, terrein has largely been studied as an anticancer secondary biomolecule. Aspergillus terreus is the only fungal source of some valuable drugs and mycotoxins. From the beginning, a few species of Aspergillus were known to be viable chemical factories. Terrein is a potent biological molecule present in the fungus that is responsible for its medicinal and agricultural values. Numerous evaluations conducted on terrein showed it to have marked biological activities (antimicrobial, antiproliferative, anti-oxidative, and others). To date, terrein has emerged as a very attractive therapeutic regimen against cancer due to its dual targeting nature; tumor angiogenesis and cell proliferation. This focused review provides details of the therapeutic value of terrein and its modes of action as an anticancer agent. Besides this, terrein has other marked bioactivities and manifold uses in the field of medicine, which have also been discussed here.
Collapse
Affiliation(s)
- Jyoti Goutam
- Mycopathology and Microbial Technology Laboratory, Centre of Advance Study in Botany, Banaras Hindu University, Varanasi, India
| | - Gunjan Sharma
- Immunology and Cancer Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vandana Yadav
- Central Animal House Facility, ICMR-National Institute of Pathology, New Delhi, India
| | - Gauri Pathak
- Department of Microbiology, Maulana Azad Medical College, New Delhi, India
| | - Ravindra Nath Kharwar
- Mycopathology and Microbial Technology Laboratory, Centre of Advance Study in Botany, Banaras Hindu University, Varanasi, India
| | - Divakar Sharma
- Department of Microbiology, Lady Hardinge Medical College, New Delhi, India
| |
Collapse
|
6
|
Xu T, Jiang Y, Hu X, Yang G, Chen Y, Zhang S, Zhang Q, Zheng L, Xie HQ, Xu L, Zhao B. Effects of the emerging contaminant 1,3,6,8-tetrabromocarbazole on the NF-κB and correlated mechanism in human hepatocellular carcinoma cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114199. [PMID: 36274317 DOI: 10.1016/j.ecoenv.2022.114199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/05/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
1,3,6,8-Tetrabromocarbazole (1368-BCZ) is identified as an emerging contaminant that exerts angiogenic effects. Multiple studies indicated there was a positive correlation between angiogenesis and nuclear factor kappa B (NF-κB) activation. While the role of NF-κB in inflammation and apoptosis has been well known, the potential biological effects of 1368-BCZ on NF-κB signaling and related mechanism remain unclear. We, therefore, explored the possible effects of 1368-BCZ on the NF-κB pathway at the gene and protein levels and confirmed that NF-κB activation by 1368-BCZ exposure caused an augmented phosphorylated protein level, induction of NF-κB response element (κBRE)-driven luciferase activity and upregulation of transcriptional level of downstream responsive genes. Although 1368-BCZ did not produce detectable changes in hepatic fibrosis in vivo, it obviously altered the apoptosis in human hepatocellular carcinoma (HepG2) cells. Furthermore, the induction of apoptosis was confirmed by the increased cleaved caspase-3 level. These data revealed the activating effects of 1368-BCZ on NF-κB and its involvement in the underlying mechanisms, providing additional information for toxicology studies of emerging contaminants and introducing a mechanism-based toxicological evaluation of emerging pollutants.
Collapse
Affiliation(s)
- Tong Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Jiang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xiaoxu Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanglei Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songyan Zhang
- Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Qian Zhang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Liping Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
7
|
Huang D, Yang J, Li C, Hui Y, Chen W. Recent Advances in Isolation, Synthesis and Biological Evaluation of Terrein. Chem Biodivers 2021; 18:e2100594. [PMID: 34704347 DOI: 10.1002/cbdv.202100594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/25/2021] [Indexed: 11/11/2022]
Abstract
Terrein is a small-molecule polyketide compound with a simple structure mainly isolated from fungi. Since its discovery in 1935, many scholars have conducted a series of research on its structure identification, isolation source, production increase, synthesis and biological activity. Studies have shown that terrein has a variety of biological activities, not only can inhibit melanin production and epidermal hyperplasia, but also has anti-cancer, anti-inflammatory, anti-angiopoietic secretion, antibacterial, insecticidal activities, and so on. It has potential application prospects in beauty, medicine, agriculture and other fields. This article reviews the process of structural identification of terrein since 1935, and summarizes the latest advances in its isolation, source, production increase, synthesis, and biological activity evaluation, with a view to providing a reference and helping for the in-depth research of terrein.
Collapse
Affiliation(s)
- Dan Huang
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158 Hainan, P. R. China
| | - Jianni Yang
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158 Hainan, P. R. China
| | - Chen Li
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158 Hainan, P. R. China
| | - Yang Hui
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158 Hainan, P. R. China
| | - Wenhao Chen
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158 Hainan, P. R. China
| |
Collapse
|
8
|
Agwa MM, Abu-Serie MM, Abdelmonsif DA, Moussa N, Elsayed H, Khattab SN, Sabra S. Vitamin D3/phospholipid complex decorated caseinate nanomicelles for targeted delivery of synergistic combination therapy in breast cancer. Int J Pharm 2021; 607:120965. [PMID: 34339814 DOI: 10.1016/j.ijpharm.2021.120965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/13/2021] [Accepted: 07/28/2021] [Indexed: 11/18/2022]
Abstract
Targeted delivery of cytotoxic drugs has shown great potential in cancer therapy. In this light, vitamin D3 (vit.D3)-coated micelles were fabricated to encapsulate the cytotoxic drug; etoposide (ETP). Sodium caseinate micelles were first utilized to encapsulate vit.D3 and ETP within their hydrophobic core, then drug-loaded micelles were further decorated with an envelope of vit.D3/ phospholipid complex to enhance the active targeting potency of fabricated micelles via exploiting vit.D3 receptors (VDRs) overexpressed on the outer surface of breast cancer cells. In vitro cytotoxicity studies showed that fabricated micelles exhibited improved anticancer effect on MDA MB-231 and MCF-7 human breast cancer cell lines in comparison to free vit.D3 + ETP without any significant toxicity on normal human lung fibroblast (Wi-38) cells. In vivo biodistribution and efficacy studies in Ehrlich ascites tumor animal model revealed that fabricated micelles manifested improved accumulation in tumor tissue due to active targeting potential of vit.D3 without any remarkable toxicity. More importantly, fabricated micelles resulted in enhanced tumor apoptosis, reduced angiogenesis, invasion and autophagy, besides a decline in the tumor expression levels of both miR-21 and miR-192. Therefore, vit.D3/ETP micelles could serve as a favorable actively targeted anticancer delivery system having a superior effect over the free combination.
Collapse
Affiliation(s)
- Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nermine Moussa
- Department of Biotechnology, Institute of Graduate studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Hassan Elsayed
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Sherine N Khattab
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Sally Sabra
- Department of Biotechnology, Institute of Graduate studies and Research, Alexandria University, Alexandria 21526, Egypt.
| |
Collapse
|
9
|
Zhou H, Chen Z, Limpanont Y, Hu Y, Ma Y, Huang P, Dekumyoy P, Zhou M, Cheng Y, Lv Z. Necroptosis and Caspase-2-Mediated Apoptosis of Astrocytes and Neurons, but Not Microglia, of Rat Hippocampus and Parenchyma Caused by Angiostrongylus cantonensis Infection. Front Microbiol 2020; 10:3126. [PMID: 32038563 PMCID: PMC6989440 DOI: 10.3389/fmicb.2019.03126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/24/2019] [Indexed: 01/18/2023] Open
Abstract
Infection with the roundworm Angiostrongylus cantonensis is the main cause of eosinophilic meningitis worldwide. The underlying molecular basis of the various pathological outcomes in permissive and non-permissive hosts infected with A. cantonensis remains poorly defined. In the present study, the histology of neurological disorders in the central nervous system (CNS) of infected rats was assessed by using hematoxylin and eosin staining. Quantitative reverse transcription polymerase chain reaction (RT-qPCR), western blot and immunofluorescence (IF) were used in evolutions of the transcription and translation levels of the apoptosis-, necroptosis-, autophagy-, and pyroptosis-related genes. The distribution of apoptotic and necroptotic cells in the rat hippocampus and parenchyma was further detected using flow cytometry, and the features of the ultrastructure of the cells were examined by transmission electron microscopy (TEM). The inflammatory response upon CNS infection with A. cantonensis evolved, as characterized by the accumulation of a small number of inflammatory cells under the thickened meninges, which peaked at 21 days post-infection (dpi) and returned to normal by 35 dpi. The transcription levels and translation of caspase-2, caspase-8, RIP1 and RIP3 increased significantly at 21 and 28 dpi but decreased sharply at 35 dpi compared to those in the normal control group. However, the changes in the expression of caspase-1, caspase-3, caspase-11, Beclin-1 and LC3B were not obvious, suggesting that apoptosis and necroptosis but not autophagy or pyroptosis occurred in the brains of infected animals at 21 and 28 dpi. The results of RT-qPCR, western blot analysis, IF, flow cytometry and TEM further illustrated that necroptosis and caspase-2-mediated apoptosis occurred in astrocytes and neurons but not in microglia in the parenchyma and hippocampus of infected animals. This study provides the first evidence that neuronal and astrocytic necroptosis and caspase-2-mediated apoptosis are induced by A. cantonensis infection in the parenchymal and hippocampal regions of rats at 21 and 28 dpi but these processes are negligible at 35 dpi. These findings enhance our understanding of the pathogenesis of A. cantonensis infection and provide new insights into therapeutic approaches targeting the occurrence of cell death in astrocytes and neurons in infected patients.
Collapse
Affiliation(s)
- Hongli Zhou
- Joint Program of Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Zhe Chen
- Joint Program of Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Yanin Limpanont
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Yue Hu
- Joint Program of Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Yubin Ma
- Joint Program of Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Ping Huang
- Joint Program of Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Paron Dekumyoy
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Minyu Zhou
- Joint Program of Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Yixin Cheng
- Joint Program of Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Zhiyue Lv
- Joint Program of Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
10
|
TRIM8 regulated autophagy modulates the level of cleaved Caspase-3 subunit to inhibit genotoxic stress induced cell death. Cell Signal 2018; 48:1-12. [DOI: 10.1016/j.cellsig.2018.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/08/2018] [Accepted: 04/13/2018] [Indexed: 01/07/2023]
|
11
|
Ruan J, Gao S, Yang J, Li H, Huang H, Zheng X. WT1 protein is cleaved by caspase-3 in apoptotic leukemic cells. Leuk Lymphoma 2017; 59:162-170. [PMID: 28395566 DOI: 10.1080/10428194.2017.1312368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The aberrant overexpression of Wilms' tumor-1 gene (WT1) plays an important role in blast cell survival and resistance to chemotherapy in acute myeloid leukemia (AML). Here, we found in chemotherapeutic drug etoposide-induced apoptosis, WT1 protein was cleaved into smaller fragment by caspase-3 in leukemic cells. The cleavage was blocked by pan-caspase inhibitor and special caspase-3 inhibitor, suggesting that caspase-3 might cleave WT1 protein. Furthermore, recombinant active caspase-3 cleaved the Flag-WT1 and GST-WT1 proteins in vitro. However, site-directed mutagenesis analyses failed to identify caspase-3-targeted sites in WT1 protein, indicating that caspase-3 cleaved uncommon sites but not classical motifs (DXXD) and non-classical motifs (XXXD). Finally, Eto decreased c-Myc and Bcl-2 expression via reducing the binding of WT1 to the promoter and Eto-induced apoptosis was partially prevented by overexpression of WT1. Collectively, we identify a new substrate for caspase-3 and shed new light on understanding the complicated biology of WT1 in leukemia.
Collapse
Affiliation(s)
- Jichen Ruan
- a Department of Hematology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , Zhejiang Province , China
| | - Shenmeng Gao
- b Laboratory of Internal Medicine , the First Affiliated Hospital of Wenzhou Medical University , Wenzhou , Zhejiang Province , China
| | - Junjun Yang
- c Department of Laboratory Medicine , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , Zhejiang Province , China
| | - Haiying Li
- b Laboratory of Internal Medicine , the First Affiliated Hospital of Wenzhou Medical University , Wenzhou , Zhejiang Province , China
| | - He Huang
- a Department of Hematology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , Zhejiang Province , China
| | - Xiaoqun Zheng
- c Department of Laboratory Medicine , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , Zhejiang Province , China
| |
Collapse
|
12
|
Qian L, Bradford AM, Cooke PH, Lyons BA. Grb7 and Hax1 may colocalize partially to mitochondria in EGF-treated SKBR3 cells and their interaction can affect Caspase3 cleavage of Hax1. J Mol Recognit 2016; 29:318-33. [PMID: 26869103 DOI: 10.1002/jmr.2533] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 11/11/2022]
Abstract
Growth factor receptor bound protein 7 (Grb7) is a signal-transducing adaptor protein that mediates specific protein-protein interactions in multiple signaling pathways. Grb7, with Grb10 and Grb14, is members of the Grb7 protein family. The topology of the Grb7 family members contains several protein-binding domains that facilitate the formation of protein complexes, and high signal transduction efficiency. Grb7 has been found overexpressed in several types of cancers and cancer cell lines and is presumed involved in cancer progression through promotion of cell proliferation and migration via interactions with the erythroblastosis oncogene B 2 (human epidermal growth factor receptor 2) receptor, focal adhesion kinase, Ras-GTPases, and other signaling partners. We previously reported Grb7 binds to Hax1 (HS1 associated protein X1) isoform 1, an anti-apoptotic protein also involved in cell proliferation and calcium homeostasis. In this study, we confirm that the in vitro Grb7/Hax1 interaction is exclusive to these two proteins and their interaction does not depend on Grb7 dimerization state. In addition, we report Grb7 and Hax1 isoform 1 may colocalize partially to mitochondria in epidermal growth factor-treated SKBR3 cells and growth conditions can affect this colocalization. Moreover, Grb7 can affect Caspase3 cleavage of Hax1 isoform 1 in vitro, and Grb7 expression may slow Caspase3 cleavage of Hax1 isoform 1 in apoptotic HeLa cells. Finally, Grb7 is shown to increase cell viability in apoptotic HeLa cells in a time-dependent manner. Taken together, these discoveries provide clues for the role of a Grb7/Hax1 protein interaction in apoptosis pathways involving Hax1. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lei Qian
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Andrew M Bradford
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Peter H Cooke
- Core University Research Resources Laboratory, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Barbara A Lyons
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| |
Collapse
|
13
|
Roth SA, Knutsen E, Fiskaa T, Utnes P, Bhavsar S, Hald ØH, Løkke C, Mestdagh P, Johansen SD, Flægstad T, Einvik C. Next generation sequencing of microRNAs from isogenic neuroblastoma cell lines isolated before and after treatment. Cancer Lett 2015; 372:128-36. [PMID: 26708804 DOI: 10.1016/j.canlet.2015.11.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 10/22/2022]
Abstract
Neuroblastoma is a pediatric cancer of the developing sympathetic nervous system. High risk neuroblastoma patients typically undergo an initial remission in response to treatment, followed by recurrence of aggressive tumors that have become refractory to further treatment. Recent works have underlined the involvement of microRNAs (miRNAs) in neuroblastoma development and evolution of drug resistance. In this study we have used deep sequencing technology to identify miRNAs differentially expressed in neuroblastoma cell lines isolated from 6 patients at diagnosis and at relapse after intensive treatments. This approach revealed a panel of 42 differentially expressed miRNAs, 8 of which were upregulated and 34 were downregulated. Most strikingly, the 14q32 miRNA clusters encode 22 of the downregulated miRNAs. Reduced expression of 14q32 miRNAs in tumors associated with poor prognosis factors was confirmed in a cohort consisting of 226 primary neuroblastomas. In order to gain insight into the nature of the genes that may be affected by the differentially expressed miRNAs we utilized Ingenuity Pathway Analysis (IPA). This analysis revealed several biological functions and canonical pathways associated with cancer progression and drug resistance. The results of this study contribute to the identification of miRNAs involved in the complex processes of surviving therapeutic treatment and developing drug resistance in neuroblastoma.
Collapse
Affiliation(s)
- Sarah Andrea Roth
- Pediatric Research Group, Department of Clinical Medicine, Faculty of Health Science, The Arctic University of Norway - UiT, NO-9037 Tromsø, Norway
| | - Erik Knutsen
- RNA and Molecular Pathology (RAMP), Department of Medical Biology, Faculty of Health Sciences, The Arctic University of Norway - UiT, NO-9037 Tromsø, Norway
| | - Tonje Fiskaa
- RNA and Molecular Pathology (RAMP), Department of Medical Biology, Faculty of Health Sciences, The Arctic University of Norway - UiT, NO-9037 Tromsø, Norway
| | - Peter Utnes
- Department of Pediatrics, Division of Child and Adolescent Health, UNN - University Hospital of North-Norway, NO-9038 Tromsø, Norway
| | - Swapnil Bhavsar
- Pediatric Research Group, Department of Clinical Medicine, Faculty of Health Science, The Arctic University of Norway - UiT, NO-9037 Tromsø, Norway
| | - Øyvind H Hald
- Department of Pediatrics, Division of Child and Adolescent Health, UNN - University Hospital of North-Norway, NO-9038 Tromsø, Norway
| | - Cecilie Løkke
- Pediatric Research Group, Department of Clinical Medicine, Faculty of Health Science, The Arctic University of Norway - UiT, NO-9037 Tromsø, Norway
| | - Pieter Mestdagh
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Steinar D Johansen
- RNA and Molecular Pathology (RAMP), Department of Medical Biology, Faculty of Health Sciences, The Arctic University of Norway - UiT, NO-9037 Tromsø, Norway; Marine Genomics Group, Faculty of Biosciences and Aquaculture, University of Nordland, Bodø, Norway
| | - Trond Flægstad
- Pediatric Research Group, Department of Clinical Medicine, Faculty of Health Science, The Arctic University of Norway - UiT, NO-9037 Tromsø, Norway; Department of Pediatrics, Division of Child and Adolescent Health, UNN - University Hospital of North-Norway, NO-9038 Tromsø, Norway
| | - Christer Einvik
- Pediatric Research Group, Department of Clinical Medicine, Faculty of Health Science, The Arctic University of Norway - UiT, NO-9037 Tromsø, Norway; Department of Pediatrics, Division of Child and Adolescent Health, UNN - University Hospital of North-Norway, NO-9038 Tromsø, Norway.
| |
Collapse
|
14
|
Vorobjev I, Barteneva NS. Temporal Heterogeneity Metrics in Apoptosis Induced by Anticancer Drugs. J Histochem Cytochem 2015; 63:494-510. [PMID: 25838469 DOI: 10.1369/0022155415583534] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/20/2015] [Indexed: 01/16/2023] Open
Abstract
The apoptotic process is highly heterogeneous and asynchronous. A long-standing question is how many parameters define the time and reversibility of the apoptotic response at a single-cell level. We characterized at the single-cell and population levels the time sequence of apoptotic events in response to anti-cancer drugs using extrinsic and intrinsic apoptotic stimuli. We show that the temporal sequence of major apoptotic events is the same in response to all anti-cancer drugs studied: the apoptotic volume decrease and Na+ influx occur rapidly and are tightly coordinated with mitochondrial outer membrane depolarization (MOMP), mitochondrial inner membrane depolarization and a decrease in the production of reactive oxygen species (ROS). Phosphatidylserine externalization usually starts after MOMP and precedes caspase 3/7 activation. Activation of caspases 3/7 is a slow process that always starts after MOMP, with significant delay. Cell-to-cell variability of the MOMP onset is described by Gaussian distribution, whereas the γ-distribution model describes cellular variability in the duration of MOMP-to-caspase activation stages. Cells from the pre-MOMP stage to the after-caspase 3/7 activation stage coexist for many hours. We demonstrated by FACS that cells in the pre-MOMP stage can recover after apoptotic stimuli, rarely recover after MOMP but before caspase 3/7 activation, and are unable to recover after caspase 3/7 activation. We propose a double-stroke model for apoptosis execution.
Collapse
Affiliation(s)
- Ivan Vorobjev
- A.N. Belozersky Institute of Physico-Chemical Biology, Department of Cell Biology and Histology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia (IV)
| | - Natasha S Barteneva
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts (NSB)
| |
Collapse
|
15
|
Montenegro I, Tomasoni G, Bosio C, Quiñones N, Madrid A, Carrasco H, Olea A, Martinez R, Cuellar M, Villena J. Study on the cytotoxic activity of drimane sesquiterpenes and nordrimane compounds against cancer cell lines. Molecules 2014; 19:18993-9006. [PMID: 25412045 PMCID: PMC6270921 DOI: 10.3390/molecules191118993] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/27/2014] [Accepted: 11/03/2014] [Indexed: 01/27/2023] Open
Abstract
Twelve drimanes, including polygodial (1), isopolygodial (2), drimenol (3), confertifolin (4), and isodrimenin (5), were obtained from natural sources. Semi-synthetic derivatives 6-12 were obtained from 1 and 2, and cytotoxic activity was evaluated in vitro against cancer cell lines (HT-29, MDA-MB231, DHF, MCF-7, PC-3, DU-145, and CoN). IC50 values were determined at concentrations of 12.5-100 µM of each compound for 72 h. In addition, it was found that polygodial (1), 8, and 12 induced changes in mitochondrial membrane permeability in CoN, MCF-7, and PC-3 cells.
Collapse
Affiliation(s)
- Ivan Montenegro
- Facultad de Farmacia, Escuela de Química y Farmacia, Universidad de Valparaíso, Av. Gran Bretaña N° 1093, Valparaíso 234000, Chile.
| | - Giacomo Tomasoni
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Andrés Bello, Quillota 910, Viña del Mar 2520000, Chile.
| | - Claudia Bosio
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Andrés Bello, Quillota 910, Viña del Mar 2520000, Chile.
| | - Natalia Quiñones
- Facultad de Farmacia, Escuela de Química y Farmacia, Universidad de Valparaíso, Av. Gran Bretaña N° 1093, Valparaíso 234000, Chile.
| | - Alejandro Madrid
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España N° 1680, Valparaíso 2340000, Chile.
| | - Hector Carrasco
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Carlos Antúnez 1920, Providencia, Santiago 7500000, Chile.
| | - Andres Olea
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Carlos Antúnez 1920, Providencia, Santiago 7500000, Chile.
| | - Rolando Martinez
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Andrés Bello, Quillota 910, Viña del Mar 2520000, Chile.
| | - Mauricio Cuellar
- Facultad de Farmacia, Escuela de Química y Farmacia, Universidad de Valparaíso, Av. Gran Bretaña N° 1093, Valparaíso 234000, Chile.
| | - Joan Villena
- Centro de Investigaciones Biomédicas (CIB), Escuela de Medicina, Universidad de Valparaíso, Av. Hontaneda N° 2664, Valparaíso 234000, Chile.
| |
Collapse
|
16
|
Mazzio E, Badisa R, Mack N, Deiab S, Soliman KFA. High throughput screening of natural products for anti-mitotic effects in MDA-MB-231 human breast carcinoma cells. Phytother Res 2013; 28:856-67. [PMID: 24105850 DOI: 10.1002/ptr.5065] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/09/2013] [Accepted: 08/16/2013] [Indexed: 12/26/2022]
Abstract
Some of the most effective anti-mitotic microtubule-binding agents, such as paclitaxel (Taxus brevifolia) were originally discovered through robust National Cancer Institute botanical screenings. In this study, a high-through put microarray format was utilized to screen 897 aqueous extracts of commonly used natural products (0.00015-0.5 mg/mL) relative to paclitaxel for anti-mitotic effects (independent of toxicity) on proliferation of MDA-MB-231 cells. The data obtained showed that less than 1.34 % of the extracts tested showed inhibitory growth (IG50 ) properties <0.0183 mg/mL. The most potent anti-mitotics (independent of toxicity) were Mandrake root (Podophyllum peltatum), Truja twigs (Thuja occidentalis), Colorado desert mistletoe (Phoradendron flavescens), Tou Gu Cao [symbol: see text] Speranskia herb (Speranskia tuberculata), Bentonite clay, Bunge root (Pulsatilla chinensis), Brucea fruit (Brucea javanica), Madder root (Rubia tinctorum), Gallnut of Chinese Sumac (Melaphis chinensis), Elecampane root (Inula Helenium), Yuan Zhi [symbol: see text] root (Polygala tenuifolia), Pagoda Tree fruit (Melia Toosendan), Stone root (Collinsonia Canadensis), and others such as American Witchhazel, Arjun, and Bladderwrack. The strongest tumoricidal herbs identified from amongst the subset evaluated for anti-mitotic properties were wild yam (Dioscorea villosa), beth root (Trillium Pendulum), and alkanet root (Lithospermum canescens). Additional data was obtained on a lesser-recognized herb: (S. tuberculata), which showed growth inhibition on BT-474 (human ductal breast carcinoma) and Ishikawa (human endometrial adenocarcinoma) cells with ability to block replicative DNA synthesis, leading to G2 arrest in MDA-MB-231 cells. In conclusion, these findings present relative potency of anti-mitotic natural plants that are effective against human breast carcinoma MDA-MB-231 cell division.
Collapse
Affiliation(s)
- E Mazzio
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Room 104 Dyson Pharmacy Building, 1520 ML King Blvd, Tallahassee, FL, 32307, USA
| | | | | | | | | |
Collapse
|
17
|
Cawley K, Logue SE, Gorman AM, Zeng Q, Patterson J, Gupta S, Samali A. Disruption of microRNA biogenesis confers resistance to ER stress-induced cell death upstream of the mitochondrion. PLoS One 2013; 8:e73870. [PMID: 23977393 PMCID: PMC3747093 DOI: 10.1371/journal.pone.0073870] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 07/29/2013] [Indexed: 01/08/2023] Open
Abstract
Global downregulation of microRNAs (miRNAs) is a common feature of human tumors and has been shown to enhance cancer progression. Several components of the miRNA biogenesis machinery (XPO5, DICER and TRBP) have been shown to act as haploinsufficient tumor suppressors. How the deregulation of miRNA biogenesis promotes tumor development is not clearly understood. Here we show that loss of miRNA biogenesis increased resistance to endoplasmic reticulum (ER) stress-induced cell death. We observed that HCT116 cells with a DICER hypomorphic mutation (Exn5/Exn5) or where DICER or DROSHA were knocked down were resistant to ER stress-induced cell death. Extensive analysis revealed little difference in the unfolded protein response (UPR) of WT compared to Exn5/Exn5 HCT116 cells upon ER stress treatment. However, analysis of the intrinsic apoptotic pathway showed that resistance occurred upstream of the mitochondria. In particular, BAX activation and dissipation of mitochondrial membrane potential was attenuated, and there was altered expression of BCL-2 family proteins. These observations demonstrate a key role for miRNAs as critical modulators of the ER stress response. In our model, downregulation of miRNA biogenesis delays ER stress-induced apoptosis. This suggests that disrupted miRNA biogenesis may contribute to cancer progression by inhibiting ER stress-induced cell death.
Collapse
Affiliation(s)
- Karen Cawley
- Apoptosis Research Centre, National University of Ireland, Galway, Ireland
- School of Natural Sciences National University of Ireland, Galway, Ireland
| | - Susan E. Logue
- Apoptosis Research Centre, National University of Ireland, Galway, Ireland
- School of Natural Sciences National University of Ireland, Galway, Ireland
| | - Adrienne M. Gorman
- Apoptosis Research Centre, National University of Ireland, Galway, Ireland
- School of Natural Sciences National University of Ireland, Galway, Ireland
| | - Qingping Zeng
- MannKind Corporation, Valencia, California, United States of America
| | - John Patterson
- MannKind Corporation, Valencia, California, United States of America
| | - Sanjeev Gupta
- Apoptosis Research Centre, National University of Ireland, Galway, Ireland
- School of Medicine, Clinical Science Institute, National University of Ireland, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, National University of Ireland, Galway, Ireland
- School of Natural Sciences National University of Ireland, Galway, Ireland
- * E-mail:
| |
Collapse
|
18
|
Sobarzo NQ, Venegas IM, Sánchez CS, Catalán LE, Rojas CC, Valdivia VU, García JV, Fritis MC. Synthesis of a new ent-cyclozonarone angular analog, and comparison of its cytotoxicity and apoptotic effects with ent-cyclozonarone. Molecules 2013; 18:5517-30. [PMID: 23669634 PMCID: PMC6270499 DOI: 10.3390/molecules18055517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/04/2013] [Accepted: 05/06/2013] [Indexed: 12/03/2022] Open
Abstract
The synthesis of a newangular analog 11 of cyclozonarone was achieved via Diels-Alder reaction between a sesquiterpene-1,3-diene and 1,4-benzoquinone. The cytotoxic activity of ent-cyclozonarone [(+)-10] and the angular (-)-cyclozonarone analog 11 has been determined in three human cancer cell lines and in normal fibroblasts using the sulforhodamine B assay. The analyzed isomers induce cell death in different cancer cell lines by eliciting nuclear condensation and fragmentation, decreasing mitochondrial membrane permeability and increasing caspase-3 activity, all traits indicating apoptosis, with the effects of (+)-10 being stronger than those of 11 in all cases.
Collapse
Affiliation(s)
| | - Iván Montenegro Venegas
- Facultad de Farmacia, Universidad de Valparaíso, Av. Gran Bretaña N° 1093, Valparaíso, Chile
| | - Cristian Salas Sánchez
- Facultad de Química, Pontificia Universidad Católica de Chile, Vicuña Mackenna N° 4860, Santiago, Chile
| | - Luis Espinoza Catalán
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España N° 1680, Valparaíso, Chile
| | - Cristóbal Carrasco Rojas
- Centro de Investigaciones Biomédicas, Escuela de Medicina, Universidad de Valparaíso, Av. Hontaneda N° 2664, Valparaíso, Chile
| | - Valentina Ulloa Valdivia
- Centro de Investigaciones Biomédicas, Escuela de Medicina, Universidad de Valparaíso, Av. Hontaneda N° 2664, Valparaíso, Chile
| | - Joan Villena García
- Centro de Investigaciones Biomédicas, Escuela de Medicina, Universidad de Valparaíso, Av. Hontaneda N° 2664, Valparaíso, Chile
| | - Mauricio Cuellar Fritis
- Facultad de Farmacia, Universidad de Valparaíso, Av. Gran Bretaña N° 1093, Valparaíso, Chile
| |
Collapse
|
19
|
Artemisinin induces A549 cell apoptosis dominantly via a reactive oxygen species-mediated amplification activation loop among caspase-9, -8 and -3. Apoptosis 2013; 18:1201-13. [DOI: 10.1007/s10495-013-0857-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
Diterpenylhydroquinones from natural ent-labdanes induce apoptosis through decreased mitochondrial membrane potential. Molecules 2013; 18:5348-59. [PMID: 23666003 PMCID: PMC6269903 DOI: 10.3390/molecules18055348] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/07/2013] [Accepted: 05/07/2013] [Indexed: 11/17/2022] Open
Abstract
In this study, we examined the cytotoxic effects of seven ent-labdane derivatives 1–7 (0–100 μM) in different human cancer cell lines. Our results showed that compounds 1–3 exhibited significant dose-dependent inhibition on the growth of the three different human cell lines, according to the sulphorhodamine B assay and produced morphological changes consistent with apoptosis, as confirmed by Hoestch 3342 staining analysis. They induced apoptosis in various cancer cell lines, as shown by nuclear condensation and fragmentation and caspase 3 activation. Such induction was associated with the depletion of mitochondrial membrane potential. These activities led to the cleavage of caspases and the trigger of cell death process. Overall, the compounds showed potent proapoptotic effects on the two different cancer cell lines, suggesting that the compounds deserve more extensive investigation of their potential medicinal applications.
Collapse
|
21
|
Porameesanaporn Y, Uthaisang-Tanechpongtamb W, Jarintanan F, Jongrungruangchok S, Thanomsub Wongsatayanon B. Terrein induces apoptosis in HeLa human cervical carcinoma cells through p53 and ERK regulation. Oncol Rep 2013; 29:1600-8. [PMID: 23417151 DOI: 10.3892/or.2013.2288] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/09/2013] [Indexed: 11/05/2022] Open
Abstract
Terrein, a fungal metabolite derived from Aspergillus terreus, has been shown to have a variety of biological activities in human cells including inhibition of melanogenesis, as well as anti-inflammatory, antioxidant and anticancer properties. In the present study, terrein was shown to have marked anticancer activity on HeLa human cervical carcinoma cells. Terrein exhibited inhibition of proliferation within the same ranges for other cancer cell types with an IC50 at 0.29 mM. The growth inhibition that induced cell death was via apoptosis mechanisms. Chromatin condensation was observed using the Hoechst 33342 stain, a DNA-specific dye. The increase of DNA fragmentation or the sub-G0 peak was also detected by flow cytometry. The signaling used by terrein to induce apoptosis was via the death-receptor and mitochondrial pathways; the cleavage of specific fluorogenic substrates by caspase-3, -8 and -9 activities are clearly demonstrated. The mitochondria were damaged as demonstrated by the decrease of the red/green ratio of the JC-1 staining and the increase of the Bax/Bcl-2 expression ratio. Further analysis of the upstream signaling by the quantitative real-time polymerase chain reaction showed that p53, p21 and ERK were upregulated which indicates the importance of their roles on terrein signaling. This study is the first to show that terrein has an effect on the anticancer properties in cervical cancer cells by inducing apoptosis through p53 and ERK regulation. Our data may help expand the function of the terrein compound and may also aid in the discovery of new anticancer agents.
Collapse
Affiliation(s)
- Yuwarat Porameesanaporn
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | | | | | | | | |
Collapse
|
22
|
Amplification activation loop between caspase-8 and -9 dominates artemisinin-induced apoptosis of ASTC-a-1 cells. Apoptosis 2012; 17:600-11. [PMID: 22434375 DOI: 10.1007/s10495-012-0706-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although caspases have been demonstrated to be involved in artemisinin (ARTE)-induced apoptosis, their exact functions are not well understood. The aim of this report is to explore the roles of caspase-8, -9 and -3 during ARTE-induced apoptosis in human lung adenocarcinoma (ASTC-a-1) cells. ARTE treatment induces a rapid generation of reactive oxygen species (ROS), and ROS-dependent apoptosis as well as the activation of caspase-8, -9 and -3 via time- and dose-dependent fashion. Of upmost importance, inhibition of caspase-8 or -9, but not caspase-3, almost completely blocks the ARTE-induced not only activation of the caspase-8, -9 and -3 but also apoptosis. In addition, the apoptotic process triggered by ARTE does not involve the Bid cleavage, tBid translocation, significant loss of mitochondrial membrane potential and cytochrome c release from mitochondria. Moreover, silencing Bax/Bak does not prevent the ATRE-induced cell death as well as the activation of caspase-8, -9 and -3. Collectively, our data firstly demonstrate that ARTE triggers a ROS-mediated positive feedback amplification activation loop between caspase-8 and -9 independent of mitochondria, which dominantly mediated the ARTE-induced apoptosis via a caspase-3-independent apoptotic pathway in ASTC-a-1 cells. Our findings imply a potential to develop new derivatives from artemisinin to effectively initiate the amplification activation loop of caspases.
Collapse
|
23
|
Gusain A, Hatcher JF, Adibhatla RM, Wesley UV, Dempsey RJ. Anti-proliferative effects of tricyclodecan-9-yl-xanthogenate (D609) involve ceramide and cell cycle inhibition. Mol Neurobiol 2012; 45:455-64. [PMID: 22415444 DOI: 10.1007/s12035-012-8254-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/01/2012] [Indexed: 12/14/2022]
Abstract
Tricyclodecan-9-yl-xanthogenate (D609) inhibits phosphatidylcholine (PC)-phospholipase C (PLC) and/or sphingomyelin (SM) synthase (SMS). Inhibiting SMS can increase ceramide levels, which can inhibit cell proliferation. Here, we examined how individual inflammatory and glia cell proliferation is altered by D609. Treatment with 100-μM D609 significantly attenuated the proliferation of RAW 264.7 macrophages, N9 and BV-2 microglia, and DITNC(1) astrocytes, without affecting cell viability. D609 significantly inhibited BrdU incorporation in BV-2 microglia and caused accumulation of cells in G(1) phase with decreased number of cells in the S phase. D609 treatment for 2 h significantly increased ceramide levels in BV-2 microglia, which, following a media change, returned to control levels 22 h later. This suggests that the effect of D609 may be mediated, at least in part, through ceramide increase via SMS inhibition. Western blots demonstrated that 2-h treatment of BV-2 microglia with D609 increased expression of the cyclin-dependent kinase (Cdk) inhibitor p21 and down-regulated phospho-retinoblastoma (Rb), both of which returned to basal levels 22 h after removal of D609. Exogenous C8-ceramide also inhibited BV-2 microglia proliferation without loss of viability and decreased BrdU incorporation, supporting the involvement of ceramide in D609-mediated cell cycle arrest. Our current data suggest that D609 may offer benefit after stroke (Adibhatla and Hatcher, Mol Neurobiol 41:206-217, 2010) through ceramide-mediated cell cycle arrest, thus restricting glial cell proliferation.
Collapse
Affiliation(s)
- Anchal Gusain
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA
| | | | | | | | | |
Collapse
|
24
|
Su CC, Su JH, Lin JJ, Chen CC, Hwang WI, Huang HH, Wu YJ. An investigation into the cytotoxic effects of 13-acetoxysarcocrassolide from the soft coral Sarcophyton crassocaule on bladder cancer cells. Mar Drugs 2011; 9:2622-2642. [PMID: 22363243 PMCID: PMC3280580 DOI: 10.3390/md9122622] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 11/18/2011] [Accepted: 11/30/2011] [Indexed: 01/01/2023] Open
Abstract
Active compounds from natural products have been widely studied. The anti-tumor effects of 13-acetoxysarcocrassolide isolated from Formosan soft coral Sarcophyton crassocaule on bladder cancer cells were examined in this study. An MTT assay showed that 13-acetoxysarcocrassolide was cytotoxic to bladder female transitional cancer (BFTC) cells. We determined that the BFTC cells underwent cell death through apoptosis by flow cytometry. Due to the highly-migratory nature of the BFTC cells, the ability of 13-acetoxysarcocrassolide to stop their migration was assessed by a wound healing assay. To determine which proteins were affected in the BFTC cells upon treatment, a comparative proteomic analysis was performed. By LC-MS/MS analysis, we identified that 19 proteins were up-regulated and eight were down-regulated. Seven of the proteins were confirmed by western blotting analysis. This study reveals clues to the potential mechanism of the cytotoxic effects of 13-acetoxysarcocrassolide on BFTC cells. Moreover, it suggests that PPT1 and hnRNP F could be new biomarkers for bladder cancer. The results of this study are also helpful for the diagnosis, progression monitoring and therapeutic strategies of transitional cell tumors.
Collapse
Affiliation(s)
- Ching-Chyuan Su
- Antai Medical Care Cooperation Antai Tian-Sheng Memorial Hospital, Pingtung 92842, Taiwan;
| | - Jui-Hsin Su
- National Museum of Marine Biology and Aquarium, Pingtung 94446, Taiwan;
| | - Jen-Jie Lin
- Department of Beauty Science, Meiho University, Pingtung 91202, Taiwan; (J.-J.L.); (C.-C.C.)
| | - Cheng-Chi Chen
- Department of Beauty Science, Meiho University, Pingtung 91202, Taiwan; (J.-J.L.); (C.-C.C.)
| | - Wen-Ing Hwang
- Department of Food Science and Nutrition, Meiho University, Pingtung 91202, Taiwan;
| | - Han Hsiang Huang
- Department of Beauty Science, Meiho University, Pingtung 91202, Taiwan; (J.-J.L.); (C.-C.C.)
- Authors to whom correspondence should be addressed; or (Y.-J.W.); (H.H.H.); Tel.: +886-8-7799821 (ext. 8600) (Y.-J.W.); +886-8-7799821 (ext. 8647) (H.H.H.); Fax: +886-8-7793281 (H.H.H.)
| | - Yu-Jen Wu
- Department of Beauty Science, Meiho University, Pingtung 91202, Taiwan; (J.-J.L.); (C.-C.C.)
- Authors to whom correspondence should be addressed; or (Y.-J.W.); (H.H.H.); Tel.: +886-8-7799821 (ext. 8600) (Y.-J.W.); +886-8-7799821 (ext. 8647) (H.H.H.); Fax: +886-8-7793281 (H.H.H.)
| |
Collapse
|
25
|
Hossain MM, Richardson JR. Mechanism of pyrethroid pesticide-induced apoptosis: role of calpain and the ER stress pathway. Toxicol Sci 2011; 122:512-25. [PMID: 21555338 PMCID: PMC3155085 DOI: 10.1093/toxsci/kfr111] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 05/02/2011] [Indexed: 12/29/2022] Open
Abstract
Exposure to the pyrethroid pesticide deltamethrin has been demonstrated to cause apoptosis both in vitro and in vivo. However, the molecular pathways leading to deltamethrin-induced apoptosis have not been established. To identify these pathways, SK-N-AS neuroblastoma cells were exposed to deltamethrin (100 nM-5 μM) for 24-48 h. Deltamethrin produced a time- and dose-dependent increase (21-300%) in DNA fragmentation, an indicator of apoptosis. Data demonstrate that the initiation of DNA fragmentation resulted from interaction of deltamethrin with Na⁺ channels and consequent calcium influx, as tetrodotoxin and the intracellular Ca²⁺ chelator BAPTA-AM completely prevented apoptosis. DNA fragmentation was accompanied by increased caspase-9 and -3 activities and was abolished by specific caspase-9 and -3 inhibitors. However, deltamethrin did not increase cytosolic cytochrome c levels, indicating that the mitochondrial pathway was likely not involved. Additional studies demonstrated that deltamethrin exposure activated caspase-12 activity and that pharmacological inhibition and siRNA knockdown of calpain prevented deltamethrin-induced DNA fragmentation, thus indicating a role for the endoplasmic reticulum (ER) stress pathway. This was confirmed by the observation that inhibition of eIF2α abolished deltamethrin-induced DNA fragmentation. Together, these data demonstrate that deltamethrin causes apoptosis through its interaction with Na⁺ channels, leading to calcium overload and activation of the ER stress pathway. Because ER stress and the subsequent unfolded protein response have been observed in a number of neurodegenerative diseases, these data provide mechanistic information by which high-level exposure to pyrethroids may contribute to neurodegeneration.
Collapse
Affiliation(s)
| | - Jason R. Richardson
- To whom correspondence should be addressed at Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Road, Piscataway, NJ 08854. Fax: (732) 445-4161. E-mail:
| |
Collapse
|
26
|
Induction of apoptosis in human promyelocytic leukemia HL60 cells by panaxynol and panaxydol. Molecules 2011; 16:5561-73. [PMID: 21716177 PMCID: PMC6264185 DOI: 10.3390/molecules16075561] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/21/2011] [Accepted: 06/27/2011] [Indexed: 11/16/2022] Open
Abstract
Panaxynol and panaxydol are naturally occurring polyacetylenes, isolated from the lipophilic fractions of Panax notoginseng, that exert anti-proliferative effects against malignant cells. However, to the best of our knowledge, no study concerning the inhibitory effects of the two polyacetylenes on cell growth of human promyelocytic leukemia cells has been reported. In this paper, we examined the antiproliferation and proapoptotic effects of panaxynol and panaxydol on HL60 cells and investigated their mechanism of action. Cell growth inhibition of panaxynol and panaxydol were determined by trypan blue dye exclusion assays. Apoptosis of cells was revealed by morphological observation, analysis for nuclear DNA distribution and by annexin V-FITC/ PI staining using flow cytometry. It was found that panaxynol and panaxydol markedly inhibited proliferation of HL60 cells in a time- and dose-dependent manner via an apoptotic pathway. In concern with these findings, Western blot analysis showed proteolytic activation of PKCδ, caspase-3 activation and cleavage of poly (ADP [adenosine diphosphate]-ribose) polymerase in HL60 cells treated by panaxynol and panaxydol. In conclusion, panaxynol and panaxydol have profound effects on growth and apoptosis of HL60 cells, suggesting those substances are worthy of further exploration as potential anti-cancer agents.
Collapse
|
27
|
Li T, Cui ZB, Ke XX, Tan J, Li FF, Li T, Wang XW, Cui HJ. Essential role for p53 and caspase-9 in DNA damaging drug-induced apoptosis in neuroblastoma IMR32 cells. DNA Cell Biol 2011; 30:1045-50. [PMID: 21612408 DOI: 10.1089/dna.2011.1255] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Neuroblastoma is a solid tumor of the sympathetic nervous system accounting for up to 10% of pediatric cancers and 15% of cancer-related deaths. It is a useful system for investigation of stress signal-mediated apoptosis as a tumor suppression mechanism. In this study, we present evidence that p53 mediates DNA damaging drug-induced apoptosis in IMR32 cells through the caspase-9 pathway. In summary, we define a molecular pathway for mediating DNA damaging drug-induced apoptosis in human neuroblastoma IMR32 cells and suggest that inactivation of essential components of this apoptotic pathway may confer drug resistance on neuroblastoma cells.
Collapse
Affiliation(s)
- Tai Li
- The Institute of Sericulture and Systems Biology, College of Biotechnology, Southwest University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Marengo B, De Ciucis C, Ricciarelli R, Passalacqua M, Nitti M, Zingg JM, Marinari UM, Pronzato MA, Domenicotti C. PKCδ sensitizes neuroblastoma cells to L-buthionine-sulfoximine and etoposide inducing reactive oxygen species overproduction and DNA damage. PLoS One 2011; 6:e14661. [PMID: 21326872 PMCID: PMC3034714 DOI: 10.1371/journal.pone.0014661] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 01/17/2011] [Indexed: 11/18/2022] Open
Abstract
Neuroblastoma is a type of pediatric cancer. The sensitivity of neuroblastoma (NB) cancer cells to chemotherapy and radiation is inhibited by the presence of antioxidants, such as glutathione (GSH), which is crucial in counteracting the endogenous production of reactive oxygen species (ROS). We have previously demonstrated that cells depleted of GSH undergo apoptosis via oxidative stress and Protein kinase C (PKC) δ activation. In the present study, we transfected PKCδ in NB cells resistant to oxidative death induced by L-buthionine-S,R-sulfoximine (BSO), a GSH-depleting agent. Cell responses, in terms of ROS production, apoptosis and DNA damage were evaluated. Moreover, PKCδ activation was monitored by analyzing the phosphorylation status of threonine 505 residue, carrying out PKC activity assay and investigating the subcellular localization of the kinase. The cell responses obtained in BSO-resistant cells were also compared with those obtained in BSO-sensitive cells subjected to the same experimental protocol. Our results demonstrate, for the first time, that PKCδ induces DNA oxidation and ROS overproduction leading to apoptosis of BSO-resistant NB cells and potentiates the cytotoxic effects induced by BSO in sensitive cells. Moreover, PKCδ overexpression enhances the sensitivity of NB cells to etoposide, a well-characterised drug, commonly used in neuroblastoma therapy. Altogether our data provide evidence of a pro-oxidant role of PKCδ that might be exploited to design new therapeutic strategies aimed at selective killing of cancer cells and overcoming drug resistance. However, it becomes evident that a more detailed understanding of ROS-mediated signaling in cancer cells is necessary for the development of redox-modulated therapeutic approaches.
Collapse
Affiliation(s)
| | - Chiara De Ciucis
- General Pathology Section, Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Roberta Ricciarelli
- General Pathology Section, Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Mario Passalacqua
- Biochemistry Section, Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Mariapaola Nitti
- General Pathology Section, Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | | | - Umberto M. Marinari
- General Pathology Section, Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Maria A. Pronzato
- General Pathology Section, Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Cinzia Domenicotti
- General Pathology Section, Department of Experimental Medicine, University of Genoa, Genoa, Italy
- * E-mail:
| |
Collapse
|
29
|
Paul P, Gillory LA, Kang J, Qiao J, Chung DH. Targeting gastrin-releasing peptide as a new approach to treat aggressive refractory neuroblastomas. Surgery 2010; 149:425-32. [PMID: 21035156 DOI: 10.1016/j.surg.2010.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 08/10/2010] [Indexed: 11/28/2022]
Abstract
BACKGROUND The overall survival for neuroblastoma remains dismal, in part due to the emergence of resistance to chemotherapeutic drugs. We have demonstrated that gastrin-releasing peptide (GRP), a gut peptide secreted by neuroblastoma, acts as an autocrine growth factor. We hypothesized that knockdown of GRP will induce apoptosis in neuroblastoma cells and potentiate the cytotoxic effects of chemotherapeutic agents. METHODS The human neuroblastoma cell lines (JF, SK-N-SH) were transfected with small interfering (si) RNA targeted at GRP. Apoptosis was assessed by DNA fragmentation assay. Immunoblotting was used to confirm molecular markers of apoptosis, and flow cytometry was performed to determine cell cycle arrest after GRP knockdown. RESULTS siGRP resulted in an increase in apoptosis in the absence of chemotherapeutic interventions. A combination of GRP silencing and chemotherapeutic drugs resulted in enhanced apoptosis when compared to either of the treatments alone. GRP silencing led to increased expression of proapoptotic proteins, p53 and p21. CONCLUSION Silencing of GRP induces apoptosis in neuroblastoma cells; it acts synergistically with chemotherapeutic effects of etoposide and vincristine. GRP knockdown-mediated apoptosis appears to be associated with upregulation of p53 in neuroblastoma cells. Targeting GRP may be postulated as a potential novel agent for combinational treatment to treat aggressive neuroblastomas.
Collapse
Affiliation(s)
- Pritha Paul
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
30
|
Zhang HT, Luo H, Wu J, Lan LB, Fan DH, Zhu KD, Chen XY, Wen M, Liu HM. Galangin induces apoptosis of hepatocellular carcinoma cells via the mitochondrial pathway. World J Gastroenterol 2010; 16:3377-84. [PMID: 20632439 PMCID: PMC2904883 DOI: 10.3748/wjg.v16.i27.3377] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the mechanism by which galangin, a polyphenolic compound derived from medicinal herbs, induces apoptosis of hepatocellular carcinoma (HCC) cells.
METHODS: The 3-(4,5-Dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay was used to measure cell viability. Apoptosis was evaluated by in situ uptake of propidium iodide and Hoechst 33258 and was then detected by fluorescence microscopy. Protein expressions were detected by Western blotting. To confirm the apoptotic pathway mediated by galangin, cells were transfected by bcl-2 gene to overexpress Bcl-2 or siRNA to down-regulate Bcl-2 expression.
RESULTS: Galangin (46.25-370.0 μmol/L) exerted an anti-proliferative effect, induced apoptosis, and decreased mitochondrial membrane potential in a dose and time-dependent manner. Treatment with galangin induced apoptosis by translocating the pro-apoptotic protein Bax to the mitochondria, which released apoptosis-inducing factor and cytochrome c into the cytosol. Overexpression of Bcl-2 attenuated galangin-induced HepG2 cell apoptosis, while decreasing Bcl-2 expression enhanced galangin-induced cell apoptosis.
CONCLUSION: Our data suggests that galangin mediates apoptosis through a mitochondrial pathway, and may be a potential chemotherapeutic drug for the treatment of HCC.
Collapse
|
31
|
Soares GA, de Oliveira RB, de Andrade SF, Alves RJ, Zani CL, de Souza-Fagundes EM. Synthesis and in vitro cytotoxic activity of compounds with pro-apoptotic potential. Molecules 2009; 15:12-26. [PMID: 20110868 PMCID: PMC6256932 DOI: 10.3390/molecules15010012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 12/12/2009] [Accepted: 12/18/2009] [Indexed: 11/23/2022] Open
Abstract
In our search for new anticancer therapies, some compounds synthesized in our lab were selected and their potential cytotoxic activity was evaluated in vitro against two cancer cells lines including a solid tumor (UACC-62, melanoma) and a human lymphoma (JURKAT). Compounds showing cytotoxic activity were subjected to an apoptosis assay. Two compounds showed promising results.
Collapse
Affiliation(s)
- Giselle Apicela Soares
- Laboratório de Química de Produtos Naturais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Av. Augusto de Lima 1715, Belo Horizonte, MG, 30190-002, Brazil
| | - Renata Barbosa de Oliveira
- Laboratório de Química de Produtos Naturais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Av. Augusto de Lima 1715, Belo Horizonte, MG, 30190-002, Brazil
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31.270-901, Brazil
| | - Saulo Fernandes de Andrade
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31.270-901, Brazil
| | - Ricardo José Alves
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31.270-901, Brazil
| | - Carlos Leomar Zani
- Laboratório de Química de Produtos Naturais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Av. Augusto de Lima 1715, Belo Horizonte, MG, 30190-002, Brazil
| | - Elaine Maria de Souza-Fagundes
- Laboratório de Química de Produtos Naturais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Av. Augusto de Lima 1715, Belo Horizonte, MG, 30190-002, Brazil
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31.270-901, Brazil
| |
Collapse
|