1
|
Hill SJ, Kilpatrick LE. Kinetic analysis of fluorescent ligand binding to cell surface receptors: Insights into conformational changes and allosterism in living cells. Br J Pharmacol 2024; 181:4091-4102. [PMID: 37386806 DOI: 10.1111/bph.16185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/02/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
Equilibrium binding assays are one of the mainstays of current drug discovery efforts to evaluate the interaction of drugs with receptors in membranes and intact cells. However, in recent years, there has been increased focus on the kinetics of the drug-receptor interaction to gain insight into the lifetime of drug-receptor complexes and the rate of association of a ligand with its receptor. Furthermore, drugs that act on topically distinct sites (allosteric) from those occupied by the endogenous ligand (orthosteric site) can induce conformational changes in the orthosteric binding site leading to changes in the association and/or dissociation rate constants of orthosteric ligands. Conformational changes in the orthosteric ligand binding site can also be induced through interaction with neighbouring accessory proteins and receptor homodimerisation and heterodimerisation. In this review, we provide an overview of the use of fluorescent ligand technologies to interrogate ligand-receptor kinetics in living cells and the novel insights that they can provide into the conformational changes induced by drugs acting on a variety of cell surface receptors including G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and cytokine receptors.
Collapse
Affiliation(s)
- Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
| | - Laura E Kilpatrick
- Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
- Division of Bimolecular Science and Medicinal Chemistry, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| |
Collapse
|
2
|
Abhishek S, Deeksha W, Nethravathi KR, Davari MD, Rajakumara E. Allosteric crosstalk in modular proteins: Function fine-tuning and drug design. Comput Struct Biotechnol J 2023; 21:5003-5015. [PMID: 37867971 PMCID: PMC10589753 DOI: 10.1016/j.csbj.2023.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023] Open
Abstract
Modular proteins are regulatory proteins that carry out more than one function. These proteins upregulate or downregulate a biochemical cascade to establish homeostasis in cells. To switch the function or alter the efficiency (based on cellular needs), these proteins require different facilitators that bind to a site different from the catalytic (active/orthosteric) site, aka 'allosteric site', and fine-tune their function. These facilitators (or effectors) are allosteric modulators. In this Review, we have discussed the allostery, characterized them based on their mechanisms, and discussed how allostery plays an important role in the activity modulation and function fine-tuning of proteins. Recently there is an emergence in the discovery of allosteric drugs. We have also emphasized the role, significance, and future of allostery in therapeutic applications.
Collapse
Affiliation(s)
- Suman Abhishek
- Macromolecular Structural Biology lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana 502284, India
| | - Waghela Deeksha
- Macromolecular Structural Biology lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana 502284, India
| | | | - Mehdi D. Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle 06120, Germany
| | - Eerappa Rajakumara
- Macromolecular Structural Biology lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana 502284, India
| |
Collapse
|
3
|
IJzerman AP, Jacobson KA, Müller CE, Cronstein BN, Cunha RA. International Union of Basic and Clinical Pharmacology. CXII: Adenosine Receptors: A Further Update. Pharmacol Rev 2022; 74:340-372. [PMID: 35302044 PMCID: PMC8973513 DOI: 10.1124/pharmrev.121.000445] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Our previous International Union of Basic and Clinical Pharmacology report on the nomenclature and classification of adenosine receptors (2011) contained a number of emerging developments with respect to this G protein-coupled receptor subfamily, including protein structure, protein oligomerization, protein diversity, and allosteric modulation by small molecules. Since then, a wealth of new data and results has been added, allowing us to explore novel concepts such as target binding kinetics and biased signaling of adenosine receptors, to examine a multitude of receptor structures and novel ligands, to gauge new pharmacology, and to evaluate clinical trials with adenosine receptor ligands. This review should therefore be considered a further update of our previous reports from 2001 and 2011. SIGNIFICANCE STATEMENT: Adenosine receptors (ARs) are of continuing interest for future treatment of chronic and acute disease conditions, including inflammatory diseases, neurodegenerative afflictions, and cancer. The design of AR agonists ("biased" or not) and antagonists is largely structure based now, thanks to the tremendous progress in AR structural biology. The A2A- and A2BAR appear to modulate the immune response in tumor biology. Many clinical trials for this indication are ongoing, whereas an A2AAR antagonist (istradefylline) has been approved as an anti-Parkinson agent.
Collapse
Affiliation(s)
- Adriaan P IJzerman
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (A.P.IJ.); National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Molecular Recognition Section, Bethesda, Maryland (K.A.J.); Universität Bonn, Bonn, Germany (C.E.M.); New York University School of Medicine, New York, New York (B.N.C.); and Center for Neurosciences and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal (R.A.C.)
| | - Kenneth A Jacobson
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (A.P.IJ.); National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Molecular Recognition Section, Bethesda, Maryland (K.A.J.); Universität Bonn, Bonn, Germany (C.E.M.); New York University School of Medicine, New York, New York (B.N.C.); and Center for Neurosciences and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal (R.A.C.)
| | - Christa E Müller
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (A.P.IJ.); National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Molecular Recognition Section, Bethesda, Maryland (K.A.J.); Universität Bonn, Bonn, Germany (C.E.M.); New York University School of Medicine, New York, New York (B.N.C.); and Center for Neurosciences and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal (R.A.C.)
| | - Bruce N Cronstein
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (A.P.IJ.); National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Molecular Recognition Section, Bethesda, Maryland (K.A.J.); Universität Bonn, Bonn, Germany (C.E.M.); New York University School of Medicine, New York, New York (B.N.C.); and Center for Neurosciences and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal (R.A.C.)
| | - Rodrigo A Cunha
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (A.P.IJ.); National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Molecular Recognition Section, Bethesda, Maryland (K.A.J.); Universität Bonn, Bonn, Germany (C.E.M.); New York University School of Medicine, New York, New York (B.N.C.); and Center for Neurosciences and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal (R.A.C.)
| |
Collapse
|
4
|
Comeo E, Trinh P, Nguyen AT, Nowell CJ, Kindon ND, Soave M, Stoddart LA, White JM, Hill SJ, Kellam B, Halls ML, May LT, Scammells PJ. Development and Application of Subtype-Selective Fluorescent Antagonists for the Study of the Human Adenosine A 1 Receptor in Living Cells. J Med Chem 2021; 64:6670-6695. [PMID: 33724031 DOI: 10.1021/acs.jmedchem.0c02067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The adenosine A1 receptor (A1AR) is a G-protein-coupled receptor (GPCR) that provides important therapeutic opportunities for a number of conditions including congestive heart failure, tachycardia, and neuropathic pain. The development of A1AR-selective fluorescent ligands will enhance our understanding of the subcellular mechanisms underlying A1AR pharmacology facilitating the development of more efficacious and selective therapies. Herein, we report the design, synthesis, and application of a novel series of A1AR-selective fluorescent probes based on 8-functionalized bicyclo[2.2.2]octylxanthine and 3-functionalized 8-(adamant-1-yl) xanthine scaffolds. These fluorescent conjugates allowed quantification of kinetic and equilibrium ligand binding parameters using NanoBRET and visualization of specific receptor distribution patterns in living cells by confocal imaging and total internal reflection fluorescence (TIRF) microscopy. As such, the novel A1AR-selective fluorescent antagonists described herein can be applied in conjunction with a series of fluorescence-based techniques to foster understanding of A1AR molecular pharmacology and signaling in living cells.
Collapse
Affiliation(s)
- Eleonora Comeo
- Medicinal Chemistry, Monash University, Parkville, Victoria 3052, Australia.,Division of Biomolecular Sciences and Medicinal Chemistry, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, B15 2TT and University of Nottingham, Birmingham NG7 2UH, United Kingdom
| | - Phuc Trinh
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Anh T Nguyen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Nicholas D Kindon
- Division of Biomolecular Sciences and Medicinal Chemistry, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, B15 2TT and University of Nottingham, Birmingham NG7 2UH, United Kingdom
| | - Mark Soave
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, B15 2TT and University of Nottingham, Birmingham NG7 2UH, United Kingdom
| | - Leigh A Stoddart
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, B15 2TT and University of Nottingham, Birmingham NG7 2UH, United Kingdom
| | - Jonathan M White
- School of Chemistry and the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, B15 2TT and University of Nottingham, Birmingham NG7 2UH, United Kingdom
| | - Barrie Kellam
- Division of Biomolecular Sciences and Medicinal Chemistry, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, B15 2TT and University of Nottingham, Birmingham NG7 2UH, United Kingdom
| | - Michelle L Halls
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Peter J Scammells
- Medicinal Chemistry, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
5
|
Allikalt A, Laasfeld T, Ilisson M, Kopanchuk S, Rinken A. Quantitative analysis of fluorescent ligand binding to dopamine D 3 receptors using live-cell microscopy. FEBS J 2020; 288:1514-1532. [PMID: 32783364 DOI: 10.1111/febs.15519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022]
Abstract
Dopamine receptors are G protein-coupled receptors that have several essential functions in the central nervous system. A better understanding of the regulatory mechanisms of ligand binding to the receptor may open new possibilities to affect the downstream signal transduction pathways. The majority of the available ligand binding assays use either membrane preparations, cell suspensions, or genetically modified receptors, which may give at least partially incorrect understanding of ligand binding. In this study, we implemented an assay combining fluorescence and bright-field microscopy to measure ligand binding to dopamine D3 receptors in live mammalian cells. For membrane fluorescence intensity quantification from microscopy images, we developed a machine learning-based user-friendly software membrane tools and incorporated it into a data management software aparecium that has been previously developed in our workgroup. For the experiments, a fluorescent ligand NAPS-Cy3B was synthesized by conjugating a dopaminergic antagonist N-(p-aminophenethyl)spiperone with a fluorophore Cy3B. The subnanomolar affinity of NAPS-Cy3B makes it a suitable ligand for the characterization of D3 receptors in live HEK293 cells. Using a microplate compatible automated widefield fluorescence microscope, together with the membrane tools software, enables the detection and quantification of ligand binding with a high-throughput. The live cell assay is suitable for the characterization of fluorescent ligand binding and also in the competition experiments for the screening of novel unlabeled dopaminergic ligands. We propose that this simple yet more native-like approach is feasible in GPCR research, as it enables the detection of ligand binding in an environment containing more components involved in the signal transduction cascade.
Collapse
Affiliation(s)
- Anni Allikalt
- Institute of Chemistry, University of Tartu, Estonia.,Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | | | | | | | - Ago Rinken
- Institute of Chemistry, University of Tartu, Estonia
| |
Collapse
|
6
|
Robers MB, Friedman-Ohana R, Huber KVM, Kilpatrick L, Vasta JD, Berger BT, Chaudhry C, Hill S, Müller S, Knapp S, Wood KV. Quantifying Target Occupancy of Small Molecules Within Living Cells. Annu Rev Biochem 2020; 89:557-581. [PMID: 32208767 DOI: 10.1146/annurev-biochem-011420-092302] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The binding affinity and kinetics of target engagement are fundamental to establishing structure-activity relationships (SARs) for prospective therapeutic agents. Enhancing these binding parameters for operative targets, while minimizing binding to off-target sites, can translate to improved drug efficacy and a widened therapeutic window. Compound activity is typically assessed through modulation of an observed phenotype in cultured cells. Quantifying the corresponding binding properties under common cellular conditions can provide more meaningful interpretation of the cellular SAR analysis. Consequently, methods for assessing drug binding in living cells have advanced and are now integral to medicinal chemistry workflows. In this review, we survey key technological advancements that support quantitative assessments of target occupancy in cultured cells, emphasizing generalizable methodologies able to deliver analytical precision that heretofore required reductionist biochemical approaches.
Collapse
Affiliation(s)
- M B Robers
- Promega Corporation, Madison, Wisconsin 53711, USA; , ,
| | | | - K V M Huber
- Target Discovery Institute and Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom; .,Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - L Kilpatrick
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom; , .,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, United Kingdom
| | - J D Vasta
- Promega Corporation, Madison, Wisconsin 53711, USA; , ,
| | - B-T Berger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany; ,
| | - C Chaudhry
- Lead Discovery and Optimization, Bristol-Myers Squibb, Princeton, New Jersey 08648, USA;
| | - S Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom; , .,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, United Kingdom
| | - S Müller
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany; , .,Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, 60438 Frankfurt, Germany;
| | - S Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany; , .,Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, 60438 Frankfurt, Germany; .,German Cancer Network (DKTK), Frankfurt/Mainz, 60438 Frankfurt, Germany.,Frankfurt Cancer Institute (FCI), Goethe University, 60596 Frankfurt am Main, Germany
| | - K V Wood
- Promega Corporation, Madison, Wisconsin 53711, USA; , , .,Current affiliation: Light Bio, Inc., Mount Horeb, Wisconsin 53572, USA;
| |
Collapse
|
7
|
Chemical Probes for the Adenosine Receptors. Pharmaceuticals (Basel) 2019; 12:ph12040168. [PMID: 31726680 PMCID: PMC6958474 DOI: 10.3390/ph12040168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
Abstract
Research on the adenosine receptors has been supported by the continuous discovery of new chemical probes characterized by more and more affinity and selectivity for the single adenosine receptor subtypes (A1, A2A, A2B and A3 adenosine receptors). Furthermore, the development of new techniques for the detection of G protein-coupled receptors (GPCR) requires new specific probes. In fact, if in the past radioligands were the most important GPCR probes for detection, compound screening and diagnostic purposes, nowadays, increasing importance is given to fluorescent and covalent ligands. In fact, advances in techniques such as fluorescence resonance energy transfer (FRET) and fluorescent polarization, as well as new applications in flow cytometry and different fluorescence-based microscopic techniques, are at the origin of the extensive research of new fluorescent ligands for these receptors. The resurgence of covalent ligands is due in part to a change in the common thinking in the medicinal chemistry community that a covalent drug is necessarily more toxic than a reversible one, and in part to the useful application of covalent ligands in GPCR structural biology. In this review, an updated collection of available chemical probes targeting adenosine receptors is reported.
Collapse
|
8
|
Abstract
The kinetics of drug binding and unbinding is assuming an increasingly crucial role in the long, costly process of bringing a new medicine to patients. For example, the time a drug spends in contact with its biological target is known as residence time (the inverse of the kinetic constant of the drug-target unbinding, 1/ koff). Recent reports suggest that residence time could predict drug efficacy in vivo, perhaps even more effectively than conventional thermodynamic parameters (free energy, enthalpy, entropy). There are many experimental and computational methods for predicting drug-target residence time at an early stage of drug discovery programs. Here, we review and discuss the methodological approaches to estimating drug binding kinetics and residence time. We first introduce the theoretical background of drug binding kinetics from a physicochemical standpoint. We then analyze the recent literature in the field, starting from the experimental methodologies and applications thereof and moving to theoretical and computational approaches to the kinetics of drug binding and unbinding. We acknowledge the central role of molecular dynamics and related methods, which comprise a great number of the computational methods and applications reviewed here. However, we also consider kinetic Monte Carlo. We conclude with the outlook that drug (un)binding kinetics may soon become a go/no go step in the discovery and development of new medicines.
Collapse
Affiliation(s)
- Mattia Bernetti
- Department of Pharmacy and Biotechnology, University of Bologna, I-40126 Bologna, Italy
| | - Matteo Masetti
- Department of Pharmacy and Biotechnology, University of Bologna, I-40126 Bologna, Italy
| | - Walter Rocchia
- CONCEPT Laboratory, Istituto Italiano di Tecnologia, I-16163 Genova, Italy
| | - Andrea Cavalli
- Department of Pharmacy and Biotechnology, University of Bologna, I-40126 Bologna, Italy
- Computational Sciences Domain, Istituto Italiano di Tecnologia, I-16163 Genova, Italy
| |
Collapse
|
9
|
Sykes DA, Stoddart LA, Kilpatrick LE, Hill SJ. Binding kinetics of ligands acting at GPCRs. Mol Cell Endocrinol 2019; 485:9-19. [PMID: 30738950 PMCID: PMC6406023 DOI: 10.1016/j.mce.2019.01.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/19/2019] [Accepted: 01/19/2019] [Indexed: 12/31/2022]
Abstract
The influence of drug-receptor binding kinetics has often been overlooked during the development of new therapeutics that target G protein-coupled receptors (GPCRs). Over the last decade there has been a growing understanding that an in-depth knowledge of binding kinetics at GPCRs is required to successfully target this class of proteins. Ligand binding to a GPCR is often not a simple single step process with ligand freely diffusing in solution. This review will discuss the experiments and equations that are commonly used to measure binding kinetics and how factors such as allosteric regulation, rebinding and ligand interaction with the plasma membrane may influence these measurements. We will then consider the molecular characteristics of a ligand and if these can be linked to association and dissociation rates.
Collapse
Affiliation(s)
- David A Sykes
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Leigh A Stoddart
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Laura E Kilpatrick
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Stephen J Hill
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.
| |
Collapse
|
10
|
Cooper SL, Soave M, Jörg M, Scammells PJ, Woolard J, Hill SJ. Probe dependence of allosteric enhancers on the binding affinity of adenosine A 1 -receptor agonists at rat and human A 1 -receptors measured using NanoBRET. Br J Pharmacol 2019; 176:864-878. [PMID: 30644086 PMCID: PMC6433648 DOI: 10.1111/bph.14575] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/02/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Adenosine is a local mediator that regulates a number of physiological and pathological processes via activation of adenosine A1 -receptors. The activity of adenosine can be regulated at the level of its target receptor via drugs that bind to an allosteric site on the A1 -receptor. Here, we have investigated the species and probe dependence of two allosteric modulators on the binding characteristics of fluorescent and nonfluorescent A1 -receptor agonists. EXPERIMENTAL APPROACH A Nano-luciferase (Nluc) BRET (NanoBRET) methodology was used. This used N-terminal Nluc-tagged A1 -receptors expressed in HEK293T cells in conjunction with both fluorescent A1 -receptor agonists (adenosine and NECA analogues) and a fluorescent antagonist CA200645. KEY RESULTS PD 81,723 and VCP171 elicited positive allosteric effects on the binding affinity of orthosteric agonists at both the rat and human A1 -receptors that showed clear probe dependence. Thus, the allosteric effect on the highly selective partial agonist capadenoson was much less marked than for the full agonists NECA, adenosine, and CCPA in both species. VCP171 and, to a lesser extent, PD 81,723, also increased the specific binding of three fluorescent A1 -receptor agonists in a species-dependent manner that involved increases in Bmax and pKD . CONCLUSIONS AND IMPLICATIONS These results demonstrate the power of the NanoBRET ligand-binding approach to study the effect of allosteric ligands on the binding of fluorescent agonists to the adenosine A1 -receptor in intact living cells. Furthermore, our studies suggest that VCP171 and PD 81,723 may switch a proportion of A1 -receptors to an active agonist conformation (R*).
Collapse
Affiliation(s)
- Samantha L Cooper
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Mark Soave
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Manuela Jörg
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Peter J Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| |
Collapse
|
11
|
Vecchio EA, Baltos JA, Nguyen ATN, Christopoulos A, White PJ, May LT. New paradigms in adenosine receptor pharmacology: allostery, oligomerization and biased agonism. Br J Pharmacol 2018; 175:4036-4046. [PMID: 29679502 DOI: 10.1111/bph.14337] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 12/17/2022] Open
Abstract
Adenosine receptors are a family of GPCRs containing four subtypes (A1 , A2A , A2B and A3 receptors), all of which bind the ubiquitous nucleoside adenosine. These receptors play an important role in physiology and pathophysiology and therefore represent attractive drug targets for a range of conditions. The theoretical framework surrounding drug action at adenosine receptors now extends beyond the notion of prototypical agonism and antagonism to encompass more complex pharmacological concepts. New paradigms include allostery, in which ligands bind a topographically distinct receptor site from that of the endogenous agonist, homomeric or heteromeric interactions across receptor oligomers and biased agonism, that is, ligand-dependent differential intracellular signalling. This review provides a concise overview of allostery, oligomerization and biased agonism at adenosine receptors and outlines how these paradigms may enhance future drug discovery endeavours focussed on the development of novel therapeutic agents acting at adenosine receptors. LINKED ARTICLES This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.
Collapse
Affiliation(s)
- Elizabeth A Vecchio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.,Department of Pharmacology, Monash University, Melbourne, VIC, Australia
| | - Jo-Anne Baltos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.,Department of Pharmacology, Monash University, Melbourne, VIC, Australia
| | - Anh T N Nguyen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.,Department of Pharmacology, Monash University, Melbourne, VIC, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.,Department of Pharmacology, Monash University, Melbourne, VIC, Australia
| | - Paul J White
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.,Department of Pharmacology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Arruda MA, Stoddart LA, Gherbi K, Briddon SJ, Kellam B, Hill SJ. A Non-imaging High Throughput Approach to Chemical Library Screening at the Unmodified Adenosine-A 3 Receptor in Living Cells. Front Pharmacol 2017; 8:908. [PMID: 29321740 PMCID: PMC5733478 DOI: 10.3389/fphar.2017.00908] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/28/2017] [Indexed: 12/29/2022] Open
Abstract
Recent advances in fluorescent ligand technology have enabled the study of G protein-coupled receptors in their native environment without the need for genetic modification such as addition of N-terminal fluorescent or bioluminescent tags. Here, we have used a non-imaging plate reader (PHERAstar FS) to monitor the binding of fluorescent ligands to the human adenosine-A3 receptor (A3AR; CA200645 and AV039), stably expressed in CHO-K1 cells. To verify that this method was suitable for the study of other GPCRs, assays at the human adenosine-A1 receptor, and β1 and β2 adrenoceptors (β1AR and β2AR; BODIPY-TMR-CGP-12177) were also carried out. Affinity values determined for the binding of the fluorescent ligands CA200645 and AV039 to A3AR for a range of classical adenosine receptor antagonists were consistent with A3AR pharmacology and correlated well (R2 = 0.94) with equivalent data obtained using a confocal imaging plate reader (ImageXpress Ultra). The binding of BODIPY-TMR-CGP-12177 to the β1AR was potently inhibited by low concentrations of the β1-selective antagonist CGP 20712A (pKi 9.68) but not by the β2-selective antagonist ICI 118551(pKi 7.40). Furthermore, in experiments conducted in CHO K1 cells expressing the β2AR this affinity order was reversed with ICI 118551 showing the highest affinity (pKi 8.73) and CGP20712A (pKi 5.68) the lowest affinity. To determine whether the faster data acquisition of the non-imaging plate reader (~3 min per 96-well plate) was suitable for high throughput screening (HTS), we screened the LOPAC library for inhibitors of the binding of CA200645 to the A3AR. From the initial 1,263 compounds evaluated, 67 hits (defined as those that inhibited the total binding of 25 nM CA200645 by ≥40%) were identified. All compounds within the library that had medium to high affinity for the A3AR (pKi ≥6) were successfully identified. We found three novel compounds in the library that displayed unexpected sub-micromolar affinity for the A3AR. These were K114 (pKi 6.43), retinoic acid p-hydroxyanilide (pKi 6.13) and SU 6556 (pKi 6.17). Molecular docking of these latter three LOPAC library members provided a plausible set of binding poses within the vicinity of the established orthosteric A3AR binding pocket. A plate reader based library screening using an untagged receptor is therefore possible using fluorescent ligand opening the possibility of its use in compound screening at natively expressed receptors.
Collapse
Affiliation(s)
- Maria Augusta Arruda
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom
- Vice-Diretoria de Ensino, Pesquisa e Inovacao, Farmanguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Leigh A. Stoddart
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom
| | - Karolina Gherbi
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom
| | - Stephen J. Briddon
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom
| | - Barrie Kellam
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Stephen J. Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom
| |
Collapse
|
13
|
Schuetz DA, de Witte WEA, Wong YC, Knasmueller B, Richter L, Kokh DB, Sadiq SK, Bosma R, Nederpelt I, Heitman LH, Segala E, Amaral M, Guo D, Andres D, Georgi V, Stoddart LA, Hill S, Cooke RM, De Graaf C, Leurs R, Frech M, Wade RC, de Lange ECM, IJzerman AP, Müller-Fahrnow A, Ecker GF. Kinetics for Drug Discovery: an industry-driven effort to target drug residence time. Drug Discov Today 2017; 22:896-911. [PMID: 28412474 DOI: 10.1016/j.drudis.2017.02.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/24/2017] [Accepted: 02/17/2017] [Indexed: 01/05/2023]
Abstract
A considerable number of approved drugs show non-equilibrium binding characteristics, emphasizing the potential role of drug residence times for in vivo efficacy. Therefore, a detailed understanding of the kinetics of association and dissociation of a target-ligand complex might provide crucial insight into the molecular mechanism-of-action of a compound. This deeper understanding will help to improve decision making in drug discovery, thus leading to a better selection of interesting compounds to be profiled further. In this review, we highlight the contributions of the Kinetics for Drug Discovery (K4DD) Consortium, which targets major open questions related to binding kinetics in an industry-driven public-private partnership.
Collapse
Affiliation(s)
- Doris A Schuetz
- Department of Pharmaceutical Chemistry, University of Vienna, UZA 2, Althanstrasse 14, 1090 Vienna, Austria
| | | | - Yin Cheong Wong
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Bernhard Knasmueller
- Department of Pharmaceutical Chemistry, University of Vienna, UZA 2, Althanstrasse 14, 1090 Vienna, Austria
| | - Lars Richter
- Department of Pharmaceutical Chemistry, University of Vienna, UZA 2, Althanstrasse 14, 1090 Vienna, Austria
| | - Daria B Kokh
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - S Kashif Sadiq
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Reggie Bosma
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, P.O. Box 7161, 1007 MC Amsterdam, The Netherlands
| | - Indira Nederpelt
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, Leiden, Einsteinweg 55, Leiden, 2300RA, The Netherlands
| | - Laura H Heitman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, Leiden, Einsteinweg 55, Leiden, 2300RA, The Netherlands
| | - Elena Segala
- Heptares Therapeutics,Biopark, Broadwater Road, Welwyn Garden City, Hertfordshire, AL7 3AX, UK
| | - Marta Amaral
- Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany; Instituto de Biologia Experimental e Tecnológica, Avenida da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal
| | - Dong Guo
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, Leiden, Einsteinweg 55, Leiden, 2300RA, The Netherlands
| | - Dorothee Andres
- Bayer AG, Drug Discovery, Pharmaceuticals, Lead Discovery Berlin, Müllerstr. 178, 13353 Berlin, Germany
| | - Victoria Georgi
- Bayer AG, Drug Discovery, Pharmaceuticals, Lead Discovery Berlin, Müllerstr. 178, 13353 Berlin, Germany
| | - Leigh A Stoddart
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Steve Hill
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Robert M Cooke
- Heptares Therapeutics,Biopark, Broadwater Road, Welwyn Garden City, Hertfordshire, AL7 3AX, UK
| | - Chris De Graaf
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, P.O. Box 7161, 1007 MC Amsterdam, The Netherlands
| | - Rob Leurs
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, P.O. Box 7161, 1007 MC Amsterdam, The Netherlands
| | - Matthias Frech
- Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany; Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Elizabeth Cunera Maria de Lange
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Adriaan P IJzerman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, Leiden, Einsteinweg 55, Leiden, 2300RA, The Netherlands
| | - Anke Müller-Fahrnow
- Bayer AG, Drug Discovery, Pharmaceuticals, Lead Discovery Berlin, Müllerstr. 178, 13353 Berlin, Germany
| | - Gerhard F Ecker
- Department of Pharmaceutical Chemistry, University of Vienna, UZA 2, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
14
|
Small-molecule-biased formyl peptide receptor agonist compound 17b protects against myocardial ischaemia-reperfusion injury in mice. Nat Commun 2017; 8:14232. [PMID: 28169296 PMCID: PMC5309721 DOI: 10.1038/ncomms14232] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 12/09/2016] [Indexed: 12/11/2022] Open
Abstract
Effective treatment for managing myocardial infarction (MI) remains an urgent, unmet clinical need. Formyl peptide receptors (FPR) regulate inflammation, a major contributing mechanism to cardiac injury following MI. Here we demonstrate that FPR1/FPR2-biased agonism may represent a novel therapeutic strategy for the treatment of MI. The small-molecule FPR1/FPR2 agonist, Compound 17b (Cmpd17b), exhibits a distinct signalling fingerprint to the conventional FPR1/FPR2 agonist, Compound-43 (Cmpd43). In Chinese hamster ovary (CHO) cells stably transfected with human FPR1 or FPR2, Compd17b is biased away from potentially detrimental FPR1/2-mediated calcium mobilization, but retains the pro-survival signalling, ERK1/2 and Akt phosphorylation, relative to Compd43. The pathological importance of the biased agonism of Cmpd17b is demonstrable as superior cardioprotection in both in vitro (cardiomyocytes and cardiofibroblasts) and MI injury in mice in vivo. These findings reveal new insights for development of small molecule FPR agonists with an improved cardioprotective profile for treating MI. G Protein-Coupled Receptors (GPCRs) can adopt different conformations, each linked to distinct cellular outcomes. Here the authors show that compound 17b, a novel agonist of the GPCR family member FPR, robustly activates cardioprotective but not detrimental FPR signalling, showing beneficial therapeutic effect in a mouse model of cardiac infarction.
Collapse
|
15
|
The use of fluorescence correlation spectroscopy to characterize the molecular mobility of fluorescently labelled G protein-coupled receptors. Biochem Soc Trans 2016; 44:624-9. [PMID: 27068980 PMCID: PMC5264494 DOI: 10.1042/bst20150285] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 01/10/2023]
Abstract
The membranes of living cells have been shown to be highly organized into distinct microdomains, which has spatial and temporal consequences for the interaction of membrane bound receptors and their signalling partners as complexes. Fluorescence correlation spectroscopy (FCS) is a technique with single cell sensitivity that sheds light on the molecular dynamics of fluorescently labelled receptors, ligands or signalling complexes within small plasma membrane regions of living cells. This review provides an overview of the use of FCS to probe the real time quantification of the diffusion and concentration of G protein-coupled receptors (GPCRs), primarily to gain insights into ligand–receptor interactions and the molecular composition of signalling complexes. In addition we document the use of photon counting histogram (PCH) analysis to investigate how changes in molecular brightness (ε) can be a sensitive indicator of changes in molecular mass of fluorescently labelled moieties.
Collapse
|
16
|
Ford BM, Franks LN, Radominska-Pandya A, Prather PL. Tamoxifen Isomers and Metabolites Exhibit Distinct Affinity and Activity at Cannabinoid Receptors: Potential Scaffold for Drug Development. PLoS One 2016; 11:e0167240. [PMID: 27936172 PMCID: PMC5147891 DOI: 10.1371/journal.pone.0167240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/10/2016] [Indexed: 01/29/2023] Open
Abstract
Tamoxifen (Tam) is a selective estrogen receptor (ER) modulator (SERM) that is an essential drug to treat ER-positive breast cancer. Aside from known actions at ERs, recent studies have suggested that some SERMs like Tam also exhibit novel activity at cannabinoid subtype 1 and 2 receptors (CB1R and CB2Rs). Interestingly, cis- (E-Tam) and trans- (Z-Tam) isomers of Tam exhibit over a 100-fold difference in affinity for ERs. Therefore, the current study assessed individual isomers of Tam and subsequent cytochrome P450 metabolic products, 4-hydroxytamoxifen (4OHT) and 4-hydroxy-N-desmethyl tamoxifen (End) for affinity and activity at CBRs. Results showed that Z-4OHT, but not Z-Tam or Z-End, exhibits higher affinity for both CB1 and CB2Rs relative to the E-isomer. Furthermore, Z- and E-isomers of Tam and 4OHT show slightly higher affinity for CB2Rs, while both End isomers are relatively CB1R-selective. When functional activity was assessed by G-protein activation and regulation of the downstream effector adenylyl cyclase, all isomers examined act as full CB1 and CB2R inverse agonists. Interestingly, Z-Tam appears to be more efficacious than the full inverse agonist AM630 at CB2Rs, while both Z-Tam and Z-End exhibit characteristics of insurmountable antagonism at CB1 and CB2Rs, respectively. Collectively, these results suggest that the SERMs Tam, 4OHT and End elicit ER-independent actions via CBRs in an isomer-specific manner. As such, this novel structural scaffold might be used to develop therapeutically useful drugs for treatment of a variety of diseases mediated via CBRs.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Animals
- Binding, Competitive
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- CHO Cells
- Cannabinoid Receptor Agonists/metabolism
- Cannabinoid Receptor Agonists/pharmacology
- Cannabinoid Receptor Antagonists/metabolism
- Cannabinoid Receptor Antagonists/pharmacology
- Colforsin/metabolism
- Colforsin/pharmacology
- Cricetinae
- Cricetulus
- Cyclic AMP/metabolism
- Cyclohexanols/metabolism
- Cyclohexanols/pharmacology
- Female
- GTP-Binding Proteins/metabolism
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- Humans
- Indoles/metabolism
- Indoles/pharmacology
- Isomerism
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Selective Estrogen Receptor Modulators/chemistry
- Selective Estrogen Receptor Modulators/metabolism
- Selective Estrogen Receptor Modulators/pharmacology
- Tamoxifen/analogs & derivatives
- Tamoxifen/chemistry
- Tamoxifen/metabolism
- Tamoxifen/pharmacology
Collapse
Affiliation(s)
- Benjamin M. Ford
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Lirit N. Franks
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Anna Radominska-Pandya
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Paul L. Prather
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- * E-mail:
| |
Collapse
|
17
|
Nguyen ATN, Vecchio EA, Thomas T, Nguyen TD, Aurelio L, Scammells PJ, White PJ, Sexton PM, Gregory KJ, May LT, Christopoulos A. Role of the Second Extracellular Loop of the Adenosine A1 Receptor on Allosteric Modulator Binding, Signaling, and Cooperativity. Mol Pharmacol 2016; 90:715-725. [PMID: 27683013 DOI: 10.1124/mol.116.105015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/27/2016] [Indexed: 02/05/2023] Open
Abstract
Allosteric modulation of adenosine A1 receptors (A1ARs) offers a novel therapeutic approach for the treatment of numerous central and peripheral disorders; however, despite decades of research, there is a relative paucity of structural information regarding the A1AR allosteric site and mechanisms governing cooperativity with orthosteric ligands. We combined alanine-scanning mutagenesis of the A1AR second extracellular loop (ECL2) with radioligand binding and functional interaction assays to quantify effects on allosteric ligand affinity, cooperativity, and efficacy. Docking and molecular dynamics (MD) simulations were performed using an A1AR homology model based on an agonist-bound A2AAR structure. Substitution of E172ECL2 for alanine reduced the affinity of the allosteric modulators PD81723 and VCP171 for the unoccupied A1AR. Residues involved in cooperativity with the orthosteric agonist NECA were different in PD81723 and VCP171; positive cooperativity between PD81723 and NECA was reduced on alanine substitution of a number of ECL2 residues, including E170ECL2 and K173ECL2, whereas mutation of W146ECL2 and W156ECL2 decreased VCP171 cooperativity with NECA. Molecular modeling localized a likely allosteric pocket for both modulators to an extracellular vestibule that overlaps with a region used by orthosteric ligands as they transit into the canonical A1AR orthosteric site. MD simulations confirmed a key interaction between E172ECL2 and both modulators. Bound PD81723 is flanked by another residue, E170ECL2, which forms hydrogen bonds with adjacent K168ECL2 and K173ECL2. Collectively, our data suggest E172ECL2 is a key allosteric ligand-binding determinant, whereas hydrogen-bonding networks within the extracellular vestibule may facilitate the transmission of cooperativity between orthosteric and allosteric sites.
Collapse
Affiliation(s)
- Anh T N Nguyen
- Monash Institute of Pharmaceutical Sciences (A.T.N.N., E.A.V., T.T., L.A., P.J.S., P.J.W., P.M.S., K.J.G., L.T.M., A.C.), Monash e-Research Centre (T.D.N.), and Department of Pharmacology (A.T.N.N., E.A.V., P.M.S., K.J.G., L.T.M., A.C), Monash University, Victoria, Australia
| | - Elizabeth A Vecchio
- Monash Institute of Pharmaceutical Sciences (A.T.N.N., E.A.V., T.T., L.A., P.J.S., P.J.W., P.M.S., K.J.G., L.T.M., A.C.), Monash e-Research Centre (T.D.N.), and Department of Pharmacology (A.T.N.N., E.A.V., P.M.S., K.J.G., L.T.M., A.C), Monash University, Victoria, Australia
| | - Trayder Thomas
- Monash Institute of Pharmaceutical Sciences (A.T.N.N., E.A.V., T.T., L.A., P.J.S., P.J.W., P.M.S., K.J.G., L.T.M., A.C.), Monash e-Research Centre (T.D.N.), and Department of Pharmacology (A.T.N.N., E.A.V., P.M.S., K.J.G., L.T.M., A.C), Monash University, Victoria, Australia
| | - Toan D Nguyen
- Monash Institute of Pharmaceutical Sciences (A.T.N.N., E.A.V., T.T., L.A., P.J.S., P.J.W., P.M.S., K.J.G., L.T.M., A.C.), Monash e-Research Centre (T.D.N.), and Department of Pharmacology (A.T.N.N., E.A.V., P.M.S., K.J.G., L.T.M., A.C), Monash University, Victoria, Australia
| | - Luigi Aurelio
- Monash Institute of Pharmaceutical Sciences (A.T.N.N., E.A.V., T.T., L.A., P.J.S., P.J.W., P.M.S., K.J.G., L.T.M., A.C.), Monash e-Research Centre (T.D.N.), and Department of Pharmacology (A.T.N.N., E.A.V., P.M.S., K.J.G., L.T.M., A.C), Monash University, Victoria, Australia
| | - Peter J Scammells
- Monash Institute of Pharmaceutical Sciences (A.T.N.N., E.A.V., T.T., L.A., P.J.S., P.J.W., P.M.S., K.J.G., L.T.M., A.C.), Monash e-Research Centre (T.D.N.), and Department of Pharmacology (A.T.N.N., E.A.V., P.M.S., K.J.G., L.T.M., A.C), Monash University, Victoria, Australia
| | - Paul J White
- Monash Institute of Pharmaceutical Sciences (A.T.N.N., E.A.V., T.T., L.A., P.J.S., P.J.W., P.M.S., K.J.G., L.T.M., A.C.), Monash e-Research Centre (T.D.N.), and Department of Pharmacology (A.T.N.N., E.A.V., P.M.S., K.J.G., L.T.M., A.C), Monash University, Victoria, Australia
| | - Patrick M Sexton
- Monash Institute of Pharmaceutical Sciences (A.T.N.N., E.A.V., T.T., L.A., P.J.S., P.J.W., P.M.S., K.J.G., L.T.M., A.C.), Monash e-Research Centre (T.D.N.), and Department of Pharmacology (A.T.N.N., E.A.V., P.M.S., K.J.G., L.T.M., A.C), Monash University, Victoria, Australia
| | - Karen J Gregory
- Monash Institute of Pharmaceutical Sciences (A.T.N.N., E.A.V., T.T., L.A., P.J.S., P.J.W., P.M.S., K.J.G., L.T.M., A.C.), Monash e-Research Centre (T.D.N.), and Department of Pharmacology (A.T.N.N., E.A.V., P.M.S., K.J.G., L.T.M., A.C), Monash University, Victoria, Australia
| | - Lauren T May
- Monash Institute of Pharmaceutical Sciences (A.T.N.N., E.A.V., T.T., L.A., P.J.S., P.J.W., P.M.S., K.J.G., L.T.M., A.C.), Monash e-Research Centre (T.D.N.), and Department of Pharmacology (A.T.N.N., E.A.V., P.M.S., K.J.G., L.T.M., A.C), Monash University, Victoria, Australia
| | - Arthur Christopoulos
- Monash Institute of Pharmaceutical Sciences (A.T.N.N., E.A.V., T.T., L.A., P.J.S., P.J.W., P.M.S., K.J.G., L.T.M., A.C.), Monash e-Research Centre (T.D.N.), and Department of Pharmacology (A.T.N.N., E.A.V., P.M.S., K.J.G., L.T.M., A.C), Monash University, Victoria, Australia
| |
Collapse
|
18
|
Stoddart LA, White CW, Nguyen K, Hill SJ, Pfleger KDG. Fluorescence- and bioluminescence-based approaches to study GPCR ligand binding. Br J Pharmacol 2016; 173:3028-37. [PMID: 26317175 PMCID: PMC5125978 DOI: 10.1111/bph.13316] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/01/2015] [Accepted: 08/20/2015] [Indexed: 01/15/2023] Open
Abstract
Ligand binding is a vital component of any pharmacologist's toolbox and allows the detailed investigation of how a molecule binds to its receptor. These studies enable the experimental determination of binding affinity of labelled and unlabelled compounds through kinetic, saturation (Kd ) and competition (Ki ) binding assays. Traditionally, these studies have used molecules labelled with radioisotopes; however, more recently, fluorescent ligands have been developed for this purpose. This review will briefly cover receptor ligand binding theory and then discuss the use of fluorescent ligands with some of the different technologies currently employed to examine ligand binding. Fluorescent ligands can be used for direct measurement of receptor-associated fluorescence using confocal microscopy and flow cytometry as well as in assays such as fluorescence polarization, where ligand binding is monitored by changes in the free rotation when a fluorescent ligand is bound to a receptor. Additionally, fluorescent ligands can act as donors or acceptors for fluorescence resonance energy transfer (FRET) with the development of assays based on FRET and time-resolved FRET (TR-FRET). Finally, we have recently developed a novel bioluminescence resonance energy transfer (BRET) ligand binding assay utilizing a small (19 kDa), super-bright luciferase subunit (NanoLuc) from a deep sea shrimp. In combination with fluorescent ligands, measurement of RET now provides an array of methodologies to study ligand binding. While each method has its own advantages and drawbacks, binding studies using fluorescent ligands are now a viable alternative to the use of radioligands. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- Leigh A Stoddart
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Carl W White
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia
| | - Kim Nguyen
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia
| | - Stephen J Hill
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Nottingham, UK
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia
| | - Kevin D G Pfleger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia.
- Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
19
|
Vecchio EA, Chuo CH, Baltos JA, Ford L, Scammells PJ, Wang BH, Christopoulos A, White PJ, May LT. The hybrid molecule, VCP746, is a potent adenosine A2B receptor agonist that stimulates anti-fibrotic signalling. Biochem Pharmacol 2016; 117:46-56. [PMID: 27520486 DOI: 10.1016/j.bcp.2016.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/08/2016] [Indexed: 01/12/2023]
Abstract
We have recently described the rationally-designed adenosine receptor agonist, 4-(5-amino-4-benzoyl-3-(3-(trifluoromethyl)phenyl)thiophen-2-yl)-N-(6-(9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxylmethyl)tetrahydro-furan-2-yl)-9H-purin-6-ylamino)hexyl)benzamide (VCP746), a hybrid molecule consisting of an adenosine moiety linked to an adenosine A1 receptor (A1AR) allosteric modulator moiety. At the A1AR, VCP746 mediated cardioprotection in the absence of haemodynamic side effects such as bradycardia. The current study has now identified VCP746 as an important pharmacological tool for the adenosine A2B receptor (A2BAR). The binding and function of VCP746 at the A2BAR was rigorously characterised in a heterologous expression system, in addition to examination of its anti-fibrotic signalling in cardiac- and renal-derived cells. In FlpInCHO cells stably expressing the human A2BAR, VCP746 was a high affinity, high potency A2BAR agonist that stimulated Gs- and Gq-mediated signal transduction, with an apparent lack of system bias relative to prototypical A2BAR agonists. The distinct agonist profile may result from an atypical binding mode of VCP746 at the A2BAR, which was consistent with a bivalent mechanism of receptor interaction. In isolated neonatal rat cardiac fibroblasts (NCF), VCP746 stimulated potent inhibition of both TGF-β1- and angiotensin II-mediated collagen synthesis. Similar attenuation of TGF-β1-mediated collagen synthesis was observed in renal mesangial cells (RMC). The anti-fibrotic signalling mediated by VCP746 in NCF and RMC was selectively reversed in the presence of an A2BAR antagonist. Thus, we believe, VCP746 represents an important tool to further investigate the role of the A2BAR in cardiac (patho)physiology.
Collapse
Affiliation(s)
- Elizabeth A Vecchio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia.
| | - Chung Hui Chuo
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia.
| | - Jo-Anne Baltos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia.
| | - Leigh Ford
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | - Peter J Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | - Bing H Wang
- Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3004, Australia.
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia.
| | - Paul J White
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia.
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
20
|
Soave M, Stoddart LA, Brown A, Woolard J, Hill SJ. Use of a new proximity assay (NanoBRET) to investigate the ligand-binding characteristics of three fluorescent ligands to the human β1-adrenoceptor expressed in HEK-293 cells. Pharmacol Res Perspect 2016; 4:e00250. [PMID: 27588207 PMCID: PMC4988514 DOI: 10.1002/prp2.250] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/27/2016] [Accepted: 07/01/2016] [Indexed: 12/12/2022] Open
Abstract
Previous research has indicated that allosteric interactions across the dimer interface of β1‐adrenoceptors may be responsible for a secondary low affinity binding conformation. Here we have investigated the potential for probe dependence, in the determination of antagonist pKi values at the human β1‐adenoceptor, which may result from such allosterism interactions. Three fluorescent β1‐adrenoceptor ligands were used to investigate this using bioluminescence energy transfer (BRET) between the receptor‐bound fluorescent ligand and the N‐terminal NanoLuc tag of a human β1‐adrenoceptor expressed in HEK 293 cells (NanoBRET). This proximity assay showed high‐affinity‐specific binding to the NanoLuc‐ β1‐adrenoceptor with each of the three fluorescent ligands yielding KD values of 87.1 ± 10 nmol/L (n = 8), 38.1 ± 12 nmol/L (n = 7), 13.4 ± 2 nmol/L (n = 14) for propranolol‐Peg8‐BY630, propranolol‐ β(Ala‐Ala)‐BY630 and CGP‐12177‐TMR, respectively. Parallel radioligand‐binding studies with 3H‐CGP12177 and TIRF microscopy, to monitor NanoLuc bioluminescence, confirmed a high cell surface expression of the NanoLuc‐ β1‐adrenoceptor in HEK 293 cells (circa 1500 fmol.mg protein−1). Following a 1 h incubation with fluorescent ligands and β1‐adrenoceptor competing antagonists, there were significant differences (P < 0.001) in the pKi values obtained for CGP20712a and CGP 12177 with the different fluorescent ligands and 3H‐CGP 12177. However, increasing the incubation time to 2 h removed these significant differences. The data obtained show that the NanoBRET assay can be applied successfully to study ligand‐receptor interactions at the human β1‐adrenoceptor. However, the study also emphasizes the importance of ensuring that both the fluorescent and competing ligands are in true equilibrium before interpretations regarding probe dependence can be made.
Collapse
Affiliation(s)
- Mark Soave
- Cell Signalling and Pharmacology Research Group School of Life Sciences University of Nottingham Nottingham NG7 2UH United Kingdom
| | - Leigh A Stoddart
- Cell Signalling and Pharmacology Research Group School of Life Sciences University of Nottingham Nottingham NG7 2UH United Kingdom
| | - Alastair Brown
- Heptares Therapeutics Ltd. Bio Park Welwyn Garden City AL7 3AX United Kingdom
| | - Jeanette Woolard
- Cell Signalling and Pharmacology Research Group School of Life Sciences University of Nottingham Nottingham NG7 2UH United Kingdom
| | - Stephen J Hill
- Cell Signalling and Pharmacology Research Group School of Life Sciences University of Nottingham Nottingham NG7 2UH United Kingdom
| |
Collapse
|
21
|
Guo D, Heitman LH, IJzerman AP. Kinetic Aspects of the Interaction between Ligand and G Protein-Coupled Receptor: The Case of the Adenosine Receptors. Chem Rev 2016; 117:38-66. [DOI: 10.1021/acs.chemrev.6b00025] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dong Guo
- Division of Medicinal Chemistry,
Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Laura H. Heitman
- Division of Medicinal Chemistry,
Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Adriaan P. IJzerman
- Division of Medicinal Chemistry,
Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
22
|
Gherbi K, Briddon SJ, Hill SJ. Detection of the secondary, low-affinity β1 -adrenoceptor site in living cells using the fluorescent CGP 12177 derivative BODIPY-TMR-CGP. Br J Pharmacol 2015; 171:5431-45. [PMID: 25052258 PMCID: PMC4261997 DOI: 10.1111/bph.12858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/11/2014] [Accepted: 07/18/2014] [Indexed: 02/06/2023] Open
Abstract
Background and Purpose CGP 12177 not only inhibits agonist effects mediated through the catecholamine site of the β1-adrenoceptor with high affinity, but also exhibits agonist effects of its own at higher concentrations through a secondary, low-affinity β1-adrenoceptor site or conformation. β-blocker affinities for this ‘CGP 12177’ site of the human β1-adrenoceptor have thus far only been characterized in functional studies. Here, we used the fluorescent CGP 12177 analogue BODIPY-TMR-CGP to directly investigate receptor–ligand interactions at the secondary binding site of the β1-adrenoceptor. Experimental Approach The human β1-adrenoceptor was stably expressed in CHO cells containing a cAMP response element (CRE)-secreted placental alkaline phosphatase (SPAP) reporter gene construct. Functional responses of BODIPY-TMR-CGP were determined in the CRE-SPAP reporter gene assay, and manual and automated confocal microscopy platforms used to investigate the binding properties of BODIPY-TMR-CGP. Key Results BODIPY-TMR-CGP displayed a pharmacological profile similar to that of CGP 12177, retaining agonist activity at the secondary β1-adrenoceptor site. In confocal microscopy studies, specific BODIPY-TMR-CGP binding allowed clear visualization of β1-adrenoceptors in live cells. Using a wider concentration range of labelled ligand in a high-content fluorescence-based binding assay than is possible in radioligand binding assays, two-site inhibition binding curves of β-adrenoceptor antagonists were revealed in CHO cells expressing the human β1-adrenoceptor, but not the β2-adrenoceptor. Conclusions and Implications The fluorescent CGP 12177 analogue allowed the detection of the β1-adrenoceptor secondary site in both functional and binding studies. This suggests that BODIPY-TMR-CGP presents an important and novel fluorescent tool to investigate the nature of the secondary β1-adrenoceptor site.
Collapse
Affiliation(s)
- K Gherbi
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | | |
Collapse
|
23
|
Stoddart LA, Kilpatrick LE, Briddon SJ, Hill SJ. Probing the pharmacology of G protein-coupled receptors with fluorescent ligands. Neuropharmacology 2015; 98:48-57. [PMID: 25979488 DOI: 10.1016/j.neuropharm.2015.04.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/23/2015] [Accepted: 04/29/2015] [Indexed: 01/01/2023]
Abstract
G protein-coupled receptors control a wide range of physiological processes and are the target for many clinically used drugs. Understanding the way in which receptors bind agonists and antagonists, their organisation in the membrane and their regulation after agonist binding are important properties which are key to developing new drugs. One way to achieve this knowledge is through the use of fluorescent ligands, which have been used to study the expression and function of receptors in endogenously expressing systems. Fluorescent ligands with appropriate imaging properties can be used in conjunction with confocal microscopy to investigate the regulation of receptors after activation. Alternatively, through the use of single molecule microscopy, they can probe the spatial organisation of receptors within the membrane. This review focuses on the techniques in which fluorescent ligands have been used and the novel aspects of G protein-coupled receptor pharmacology which have been uncovered. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'.
Collapse
Affiliation(s)
- Leigh A Stoddart
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Laura E Kilpatrick
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Stephen J Briddon
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Stephen J Hill
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
24
|
Ciruela F, Fernández-Dueñas V, Jacobson KA. Lighting up G protein-coupled purinergic receptors with engineered fluorescent ligands. Neuropharmacology 2015; 98:58-67. [PMID: 25890205 DOI: 10.1016/j.neuropharm.2015.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/23/2015] [Accepted: 04/01/2015] [Indexed: 12/31/2022]
Abstract
The use of G protein-coupled receptors fluorescent ligands is undergoing continuous expansion. In line with this, fluorescent agonists and antagonists of high affinity for G protein-coupled adenosine and P2Y receptors have been shown to be useful pharmacological probe compounds. Fluorescent ligands for A1R, A2AR, and A3R (adenosine receptors) and P2Y2R, P2Y4R, P2Y6R, and P2Y14R (nucleotide receptors) have been reported. Such ligands have been successfully applied to drug discovery and to GPCR characterization by flow cytometry, fluorescence correlation spectroscopy, fluorescence microscopy, fluorescence polarization, fluorescence resonance energy transfer and scanning confocal microscopy. Here we summarize recently reported and readily available representative fluorescent ligands of purinergic receptors. In addition, we pay special attention on the use of this family of fluorescent ligands revealing two main aspects of purinergic receptor biology, namely ligand binding and receptor oligomerization. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'.
Collapse
Affiliation(s)
- Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, 08907 L'Hospitalet de Llobregat, Spain; Department of Physiology, Faculty of Sciences, University of Ghent, 9000 Gent, Belgium.
| | - Víctor Fernández-Dueñas
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, 08907 L'Hospitalet de Llobregat, Spain
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 20892 Bethesda, USA.
| |
Collapse
|
25
|
Gherbi K, May LT, Baker JG, Briddon SJ, Hill SJ. Negative cooperativity across β1-adrenoceptor homodimers provides insights into the nature of the secondary low-affinity CGP 12177 β1-adrenoceptor binding conformation. FASEB J 2015; 29:2859-71. [PMID: 25837585 PMCID: PMC4478806 DOI: 10.1096/fj.14-265199] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/02/2015] [Indexed: 01/30/2023]
Abstract
At the β1-adrenoceptor, CGP 12177 potently antagonizes agonist responses at the primary high-affinity catecholamine conformation while also exerting agonist effects of its own through a secondary low-affinity conformation. A recent mutagenesis study identified transmembrane region (TM)4 of the β1-adrenoceptor as key for this low-affinity conformation. Others suggested that TM4 has a role in β1-adrenoceptor oligomerization. Here, assessment of the dissociation rate of a fluorescent analog of CGP 12177 [bordifluoropyrromethane-tetramethylrhodamine-(±)CGP 12177 (BODIPY-TMR-CGP)] at the human β1-adrenoceptor expressed in Chinese hamster ovary cells revealed negative cooperative interactions between 2 distinct β1-adrenoceptor conformations. The dissociation rate of 3 nM BODIPY-TMR-CGP was 0.09 ± 0.01 min−1 in the absence of competitor ligands, and this was enhanced 2.2- and 2.1-fold in the presence of 1 µM CGP 12177 and 1 µM propranolol, respectively. These effects on the BODIPY-TMR-CGP dissociation rate were markedly enhanced in β1-adrenoceptor homodimers constrained by bimolecular fluorescence complementation (9.8- and 9.9-fold for 1 µM CGP 12177 and 1 µM propranolol, respectively) and abolished in β1-adrenoceptors containing TM4 mutations vital for the second conformation pharmacology. This study suggests that negative cooperativity across a β1-adrenoceptor homodimer may be responsible for generating the low-affinity pharmacology of the secondary β1-adrenoceptor conformation.—Gherbi, K., May, L. T., Baker, J. G., Briddon, S. J., Hill, S. J. Negative cooperativity across β1-adrenoceptor homodimers provides insights into the nature of the secondary low-affinity CGP 12177 β1-adrenoceptor binding conformation.
Collapse
Affiliation(s)
- Karolina Gherbi
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Lauren T May
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Jillian G Baker
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Stephen J Briddon
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Stephen J Hill
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
26
|
Hill S. Investigation of GPCR allosterism and dimerization in single living cells using fluorescent ligands. SPRINGERPLUS 2015; 4:L8. [PMID: 27386225 PMCID: PMC4797649 DOI: 10.1186/2193-1801-4-s1-l8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Guo D, Venhorst SN, Massink A, van Veldhoven JPD, Vauquelin G, IJzerman AP, Heitman LH. Molecular mechanism of allosteric modulation at GPCRs: insight from a binding kinetics study at the human A1 adenosine receptor. Br J Pharmacol 2014; 171:5295-312. [PMID: 25040887 PMCID: PMC4294041 DOI: 10.1111/bph.12836] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 06/27/2014] [Accepted: 07/03/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Many GPCRs can be allosterically modulated by small-molecule ligands. This modulation is best understood in terms of the kinetics of the ligand-receptor interaction. However, many current kinetic assays require at least the (radio)labelling of the orthosteric ligand, which is impractical for studying a range of ligands. Here, we describe the application of a so-called competition association assay at the adenosine A1 receptor for this purpose. EXPERIMENTAL APPROACH We used a competition association assay to examine the binding kinetics of several unlabelled orthosteric agonists of the A1 receptor in the absence or presence of two allosteric modulators. We also tested three bitopic ligands, in which an orthosteric and an allosteric pharmacophore were covalently linked with different spacer lengths. The relevance of the competition association assay for the binding kinetics of the bitopic ligands was also explored by analysing simulated data. KEY RESULTS The binding kinetics of an unlabelled orthosteric ligand were affected by the addition of an allosteric modulator and such effects were probe- and concentration-dependent. Covalently linking the orthosteric and allosteric pharmacophores into one bitopic molecule had a substantial effect on the overall on- or off-rate. CONCLUSION AND IMPLICATIONS The competition association assay is a useful tool for exploring the allosteric modulation of the human adenosine A1 receptor. This assay may have general applicability to study allosteric modulation at other GPCRs as well.
Collapse
Affiliation(s)
- Dong Guo
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden UniversityLeiden, The Netherlands
| | - Suzanne N Venhorst
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden UniversityLeiden, The Netherlands
| | - Arnault Massink
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden UniversityLeiden, The Netherlands
| | - Jacobus P D van Veldhoven
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden UniversityLeiden, The Netherlands
| | - Georges Vauquelin
- Institute for Molecular Biology and Biotechnology, Free University of Brussels (VUB)Brussel, Belgium
| | - Adriaan P IJzerman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden UniversityLeiden, The Netherlands
| | - Laura H Heitman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden UniversityLeiden, The Netherlands
| |
Collapse
|
28
|
Hill SJ, May LT, Kellam B, Woolard J. Allosteric interactions at adenosine A(1) and A(3) receptors: new insights into the role of small molecules and receptor dimerization. Br J Pharmacol 2014; 171:1102-13. [PMID: 24024783 DOI: 10.1111/bph.12345] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/09/2013] [Accepted: 07/12/2013] [Indexed: 12/22/2022] Open
Abstract
The purine nucleoside adenosine is present in all cells in tightly regulated concentrations. It is released under a variety of physiological and pathophysiological conditions to facilitate protection and regeneration of tissues. Adenosine acts via specific GPCRs to either stimulate cyclic AMP formation, as exemplified by Gs -protein-coupled adenosine receptors (A2A and A2B ), or inhibit AC activity, in the case of Gi/o -coupled adenosine receptors (A1 and A3 ). Recent advances in our understanding of GPCR structure have provided insights into the conformational changes that occur during receptor activation following binding of agonists to orthosteric (i.e. at the same binding site as an endogenous modulator) and allosteric regulators to allosteric sites (i.e. at a site that is topographically distinct from the endogenous modulator). Binding of drugs to allosteric sites may lead to changes in affinity or efficacy, and affords considerable potential for increased selectivity in new drug development. Herein, we provide an overview of the properties of selective allosteric regulators of the adenosine A1 and A3 receptors, focusing on the impact of receptor dimerization, mechanistic approaches to single-cell ligand-binding kinetics and the effects of A1 - and A3 -receptor allosteric modulators on in vivo pharmacology.
Collapse
Affiliation(s)
- Stephen J Hill
- Cell Signalling Research Group, School of Biomedical Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | | | | | | |
Collapse
|
29
|
Ciruela F, Jacobson KA, Fernández-Dueñas V. Portraying G protein-coupled receptors with fluorescent ligands. ACS Chem Biol 2014; 9:1918-28. [PMID: 25010291 PMCID: PMC4168789 DOI: 10.1021/cb5004042] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
The
thermodynamics of ligand–receptor interactions at the
surface of living cells represents a fundamental aspect of G protein-coupled
receptor (GPCR) biology; thus, its detailed elucidation constitutes
a challenge for modern pharmacology. Interestingly, fluorescent ligands
have been developed for a variety of GPCRs in order to monitor ligand–receptor
binding in living cells. Accordingly, new methodological strategies
derived from noninvasive fluorescence-based approaches, especially
fluorescence resonance energy transfer (FRET), have been successfully
developed to characterize ligand–receptor interactions. Importantly,
these technologies are supplanting more hazardous and expensive radioactive
binding assays. In addition, FRET-based tools have also become extremely
powerful approaches for visualizing receptor–receptor interactions
(i.e., GPCR oligomerization) in living cells. Thus, by means of the
synthesis of compatible fluorescent ligands these novel techniques
can be implemented to demonstrate the existence of GPCR oligomerization
not only in heterologous systems but also in native tissues. Finally,
there is no doubt that these methodologies would also be relevant
in drug discovery in order to develop new high-throughput screening
approaches or to identify new therapeutic targets. Overall, herein,
we provide a thorough assessment of all technical and biological aspects,
including strengths and weaknesses, of these fluorescence-based methodologies
when applied to the study of GPCR biology at the plasma membrane of
living cells.
Collapse
Affiliation(s)
- Francisco Ciruela
- Unitat
de Farmacologia, Departament Patologia i Terapèutica Experimental,
Facultat de Medicina, IDIBELL, Universitat de Barcelona, L’Hospitalet
de Llobregat, 08907 Barcelona, Spain
| | - Kenneth A. Jacobson
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Víctor Fernández-Dueñas
- Unitat
de Farmacologia, Departament Patologia i Terapèutica Experimental,
Facultat de Medicina, IDIBELL, Universitat de Barcelona, L’Hospitalet
de Llobregat, 08907 Barcelona, Spain
| |
Collapse
|
30
|
Corriden R, Kilpatrick LE, Kellam B, Briddon SJ, Hill SJ. Kinetic analysis of antagonist-occupied adenosine-A3 receptors within membrane microdomains of individual cells provides evidence of receptor dimerization and allosterism. FASEB J 2014; 28:4211-22. [PMID: 24970394 PMCID: PMC4202110 DOI: 10.1096/fj.13-247270] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In our previous work, using a fluorescent adenosine-A3 receptor (A3AR) agonist and fluorescence correlation spectroscopy (FCS), we demonstrated high-affinity labeling of the active receptor (R*) conformation. In the current study, we used a fluorescent A3AR antagonist (CA200645) to study the binding characteristics of antagonist-occupied inactive receptor (R) conformations in membrane microdomains of individual cells. FCS analysis of CA200645-occupied A3ARs revealed 2 species, τD2 and τD3, that diffused at 2.29 ± 0.35 and 0.09 ± 0.03 μm(2)/s, respectively. FCS analysis of a green fluorescent protein (GFP)-tagged A3AR exhibited a single diffusing species (0.105 μm(2)/s). The binding of CA200645 to τD3 was antagonized by nanomolar concentrations of the A3 antagonist MRS 1220, but not by the agonist NECA (up to 300 nM), consistent with labeling of R. CA200645 normally dissociated slowly from the A3AR, but inclusion of xanthine amine congener (XAC) or VUF 5455 during washout markedly accelerated the reduction in the number of particles exhibiting τD3 characteristics. It is notable that this effect was accompanied by a significant increase in the number of particles with τD2 diffusion. These data show that FCS analysis of ligand-occupied receptors provides a unique means of monitoring ligand A3AR residence times that are significantly reduced as a consequence of allosteric interaction across the dimer interface
Collapse
Affiliation(s)
- Ross Corriden
- Institute of Cell Signalling, School of Life Sciences, Medical School, and
| | - Laura E Kilpatrick
- Institute of Cell Signalling, School of Life Sciences, Medical School, and
| | - Barrie Kellam
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Stephen J Briddon
- Institute of Cell Signalling, School of Life Sciences, Medical School, and
| | - Stephen J Hill
- Institute of Cell Signalling, School of Life Sciences, Medical School, and
| |
Collapse
|
31
|
Sridharan R, Zuber J, Connelly SM, Mathew E, Dumont ME. Fluorescent approaches for understanding interactions of ligands with G protein coupled receptors. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1838:15-33. [PMID: 24055822 PMCID: PMC3926105 DOI: 10.1016/j.bbamem.2013.09.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 09/03/2013] [Accepted: 09/08/2013] [Indexed: 11/18/2022]
Abstract
G protein coupled receptors are responsible for a wide variety of signaling responses in diverse cell types. Despite major advances in the determination of structures of this class of receptors, the underlying mechanisms by which binding of different types of ligands specifically elicits particular signaling responses remain unclear. The use of fluorescence spectroscopy can provide important information about the process of ligand binding and ligand dependent conformational changes in receptors, especially kinetic aspects of these processes that can be difficult to extract from X-ray structures. We present an overview of the extensive array of fluorescent ligands that have been used in studies of G protein coupled receptors and describe spectroscopic approaches for assaying binding and probing the environment of receptor-bound ligands with particular attention to examples involving yeast pheromone receptors. In addition, we discuss the use of fluorescence spectroscopy for detecting and characterizing conformational changes in receptors induced by the binding of ligands. Such studies have provided strong evidence for diversity of receptor conformations elicited by different ligands, consistent with the idea that GPCRs are not simple on and off switches. This diversity of states constitutes an underlying mechanistic basis for biased agonism, the observation that different stimuli can produce different responses from a single receptor. It is likely that continued technical advances will allow fluorescence spectroscopy to play an important role in continued probing of structural transitions in G protein coupled receptors. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding.
Collapse
Affiliation(s)
- Rajashri Sridharan
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
| | - Jeffrey Zuber
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
| | - Sara M. Connelly
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
| | - Elizabeth Mathew
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
| | - Mark E. Dumont
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
- Department of Pediatrics, P.O. Box 777, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
32
|
Jaeger WC, Armstrong SP, Hill SJ, Pfleger KDG. Biophysical Detection of Diversity and Bias in GPCR Function. Front Endocrinol (Lausanne) 2014; 5:26. [PMID: 24634666 PMCID: PMC3943086 DOI: 10.3389/fendo.2014.00026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/19/2014] [Indexed: 12/27/2022] Open
Abstract
Guanine nucleotide binding protein (G protein)-coupled receptors (GPCRs) function in complexes with a range of molecules and proteins including ligands, G proteins, arrestins, ubiquitin, and other receptors. Elements of these complexes may interact constitutively or dynamically, dependent upon factors such as ligand binding, phosphorylation, and dephosphorylation. They may also be allosterically modulated by other proteins in a manner that changes temporally and spatially within the cell. Elucidating how these complexes function has been greatly enhanced by biophysical technologies that are able to monitor proximity and/or binding, often in real time and in live cells. These include resonance energy transfer approaches such as bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET). Furthermore, the use of fluorescent ligands has enabled novel insights into allosteric interactions between GPCRs. Consequently, biophysical approaches are helping to unlock the amazing diversity and bias in G protein-coupled receptor signaling.
Collapse
Affiliation(s)
- Werner C. Jaeger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Stephen P. Armstrong
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Stephen J. Hill
- Cell Signalling Research Group, School of Life Sciences, Queen’s Medical Centre, University of Nottingham Medical School, Nottingham, UK
| | - Kevin D. G. Pfleger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- Dimerix Bioscience Pty Ltd, Perth, WA, Australia
- *Correspondence: Kevin D. G. Pfleger, Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, QEII Medical Centre, QQ Block, 6 Verdun Street, Nedlands, Perth, WA 6009, Australia e-mail:
| |
Collapse
|
33
|
Fluorescent ligands for G protein-coupled receptors: illuminating receptor–ligand interactions for drug discovery. Future Med Chem 2013; 5:1367-9. [DOI: 10.4155/fmc.13.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
34
|
Kozma E, Jayasekara PS, Squarcialupi L, Paoletta S, Moro S, Federico S, Spalluto G, Jacobson KA. Fluorescent ligands for adenosine receptors. Bioorg Med Chem Lett 2013; 23:26-36. [PMID: 23200243 PMCID: PMC3557833 DOI: 10.1016/j.bmcl.2012.10.112] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/05/2012] [Accepted: 10/28/2012] [Indexed: 10/27/2022]
Abstract
Interest is increasing in developing fluorescent ligands for characterization of adenosine receptors (ARs), which hold a promise of usefulness in the drug discovery process. The size of a strategically labeled AR ligand can be greatly increased after the attachment of a fluorophore. The choice of dye moiety (e.g. Alexa Fluor 488), attachment point and linker length can alter the selectivity and potency of the parent molecule. Fluorescent derivatives of adenosine agonists and antagonists (e.g. XAC and other heterocyclic antagonist scaffolds) have been synthesized and characterized pharmacologically. Some are useful AR probes for flow cytometry, fluorescence correlation spectroscopy, fluorescence microscopy, fluorescence polarization, fluorescence resonance energy transfer, and scanning confocal microscopy. Thus, the approach of fluorescent labeled GPCR ligands, including those for ARs, is a growing dynamic research field.
Collapse
Affiliation(s)
- Eszter Kozma
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - P Suresh Jayasekara
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - Lucia Squarcialupi
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - Silvia Paoletta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - Stefano Moro
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università di Padova, via Marzolo 5, I-35131 Padova, Italy
| | - Stephanie Federico
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Piazzale Europa 1, I-34127 Trieste, Italy
| | - Giampiero Spalluto
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Piazzale Europa 1, I-34127 Trieste, Italy
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| |
Collapse
|
35
|
Vernall AJ, Stoddart LA, Briddon SJ, Ng HW, Laughton CA, Doughty SW, Hill SJ, Kellam B. Conversion of a non-selective adenosine receptor antagonist into A3-selective high affinity fluorescent probes using peptide-based linkers. Org Biomol Chem 2013; 11:5673-82. [DOI: 10.1039/c3ob41221k] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Stoddart L, Vernall A, Denman J, Briddon S, Kellam B, Hill S. Fragment screening at adenosine-A(3) receptors in living cells using a fluorescence-based binding assay. CHEMISTRY & BIOLOGY 2012; 19:1105-15. [PMID: 22999879 PMCID: PMC3456874 DOI: 10.1016/j.chembiol.2012.07.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/22/2012] [Accepted: 07/17/2012] [Indexed: 10/31/2022]
Abstract
G protein-coupled receptors (GPCRs) comprise the largest family of transmembrane proteins. For GPCR drug discovery, it is important that ligand affinity is determined in the correct cellular environment and preferably using an unmodified receptor. We developed a live cell high-content screening assay that uses a fluorescent antagonist, CA200645, to determine binding affinity constants of competing ligands at human adenosine-A(1) and -A(3) receptors. This method was validated as a tool to screen a library of low molecular weight fragments, and identified a hit with submicromolar binding affinity (K(D)). This fragment was structurally unrelated to substructures of known adenosine receptor antagonists and was optimized to show selectivity for the adenosine-A(3) receptor. This technology represents a significant advance that will allow the determination of ligand and fragment affinities at receptors in their native membrane environment.
Collapse
Affiliation(s)
- Leigh A. Stoddart
- Institute of Cell Signalling, School of Biomedical Science, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Andrea J. Vernall
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jessica L. Denman
- Institute of Cell Signalling, School of Biomedical Science, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Stephen J. Briddon
- Institute of Cell Signalling, School of Biomedical Science, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Barrie Kellam
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Stephen J. Hill
- Institute of Cell Signalling, School of Biomedical Science, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
37
|
Lohse MJ, Nuber S, Hoffmann C. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharmacol Rev 2012; 64:299-336. [PMID: 22407612 DOI: 10.1124/pr.110.004309] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Fluorescence and bioluminescence resonance energy transfer (FRET and BRET) techniques allow the sensitive monitoring of distances between two labels at the nanometer scale. Depending on the placement of the labels, this permits the analysis of conformational changes within a single protein (for example of a receptor) or the monitoring of protein-protein interactions (for example, between receptors and G-protein subunits). Over the past decade, numerous such techniques have been developed to monitor the activation and signaling of G-protein-coupled receptors (GPCRs) in both the purified, reconstituted state and in intact cells. These techniques span the entire spectrum from ligand binding to the receptors down to intracellular second messengers. They allow the determination and the visualization of signaling processes with high temporal and spatial resolution. With these techniques, it has been demonstrated that GPCR signals may show spatial and temporal patterning. In particular, evidence has been provided for spatial compartmentalization of GPCRs and their signals in intact cells and for distinct physiological consequences of such spatial patterning. We review here the FRET and BRET technologies that have been developed for G-protein-coupled receptors and their signaling proteins (G-proteins, effectors) and the concepts that result from such experiments.
Collapse
Affiliation(s)
- Martin J Lohse
- Institute of Pharmacology and Toxicology, Versbacher Str. 9, 97078 Würzburg, Germany.
| | | | | |
Collapse
|
38
|
Fanelli F, De Benedetti PG. Update 1 of: computational modeling approaches to structure-function analysis of G protein-coupled receptors. Chem Rev 2011; 111:PR438-535. [PMID: 22165845 DOI: 10.1021/cr100437t] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena, Italy.
| | | |
Collapse
|
39
|
Salon JA, Lodowski DT, Palczewski K. The significance of G protein-coupled receptor crystallography for drug discovery. Pharmacol Rev 2011; 63:901-37. [PMID: 21969326 PMCID: PMC3186081 DOI: 10.1124/pr.110.003350] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Crucial as molecular sensors for many vital physiological processes, seven-transmembrane domain G protein-coupled receptors (GPCRs) comprise the largest family of proteins targeted by drug discovery. Together with structures of the prototypical GPCR rhodopsin, solved structures of other liganded GPCRs promise to provide insights into the structural basis of the superfamily's biochemical functions and assist in the development of new therapeutic modalities and drugs. One of the greatest technical and theoretical challenges to elucidating and exploiting structure-function relationships in these systems is the emerging concept of GPCR conformational flexibility and its cause-effect relationship for receptor-receptor and receptor-effector interactions. Such conformational changes can be subtle and triggered by relatively small binding energy effects, leading to full or partial efficacy in the activation or inactivation of the receptor system at large. Pharmacological dogma generally dictates that these changes manifest themselves through kinetic modulation of the receptor's G protein partners. Atomic resolution information derived from increasingly available receptor structures provides an entrée to the understanding of these events and practically applying it to drug design. Supported by structure-activity relationship information arising from empirical screening, a unified structural model of GPCR activation/inactivation promises to both accelerate drug discovery in this field and improve our fundamental understanding of structure-based drug design in general. This review discusses fundamental problems that persist in drug design and GPCR structural determination.
Collapse
Affiliation(s)
- John A Salon
- Department of Molecular Structure, Amgen Incorporated, Thousand Oaks, California, USA
| | | | | |
Collapse
|
40
|
Baker JG, Adams LA, Salchow K, Mistry SN, Middleton RJ, Hill SJ, Kellam B. Synthesis and characterization of high-affinity 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene-labeled fluorescent ligands for human β-adrenoceptors. J Med Chem 2011; 54:6874-87. [PMID: 21870877 PMCID: PMC3188295 DOI: 10.1021/jm2008562] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The growing practice of exploiting noninvasive fluorescence-based techniques to study G protein-coupled receptor pharmacology at the single cell and single molecule level demands the availability of high-quality fluorescent ligands. To this end, this study evaluated a new series of red-emitting ligands for the human β-adrenoceptor family. Upon the basis of the orthosteric ligands propranolol, alprenolol, and pindolol, the synthesized linker-modified congeners were coupled to the commercially available fluorophore BODIPY 630/650-X. This yielded high-affinity β-adrenoceptor fluorescent ligands for both the propranolol and alprenolol derivatives; however, the pindolol-based products displayed lower affinity. A fluorescent diethylene glycol linked propranolol derivative (18a) had the highest affinity (log KD of −9.53 and −8.46 as an antagonist of functional β2- and β1-mediated responses, respectively). Imaging studies with this compound further confirmed that it can be employed to selectively label the human β2-adrenoceptor in single living cells, with receptor-associated binding prevented by preincubation with the nonfluorescent β2-selective antagonist 3-(isopropylamino)-1-[(7-methyl-4-indanyl)oxy]butan-2-ol (ICI 118551) (J. Cardiovasc. Pharmacol.1983, 5, 430–437.)
Collapse
Affiliation(s)
- Jillian G Baker
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
41
|
May LT, Bridge LJ, Stoddart LA, Briddon SJ, Hill SJ. Allosteric interactions across native adenosine-A3 receptor homodimers: quantification using single-cell ligand-binding kinetics. FASEB J 2011; 25:3465-76. [PMID: 21715680 PMCID: PMC3177574 DOI: 10.1096/fj.11-186296] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A growing awareness indicates that many G-protein-coupled receptors (GPCRs) exist as homodimers, but the extent of the cooperativity across the dimer interface has been largely unexplored. Here, measurement of the dissociation kinetics of a fluorescent agonist (ABA-X-BY630) from the human A1 or A3 adenosine receptors expressed in CHO-K1 cells has provided evidence for highly cooperative interactions between protomers of the A3-receptor dimer in single living cells. In the absence of competitive ligands, the dissociation rate constants of ABA-X-BY630 from A1 and A3 receptors were 1.45 ± 0.05 and 0.57 ± 0.07 min−1, respectively. At the A3 receptor, this could be markedly increased by both orthosteric agonists and antagonists [15-, 9-, and 19-fold for xanthine amine congener (XAC), 5′-(N-ethyl carboxamido)adenosine (NECA), and adenosine, respectively] and reduced by coexpression of a nonbinding (N250A) A3-receptor mutant. The changes in ABA-X-BY630 dissociation were much lower at the A1 receptor (1.5-, 1.4-, and 1.5-fold). Analysis of the pEC50 values of XAC, NECA, and adenosine for the ABA-X-BY630-occupied A3-receptor dimer yielded values of 6.0 ± 0.1, 5.9 ± 0.1, and 5.2 ± 0.1, respectively. This study provides new insight into the spatial and temporal specificity of drug action that can be provided by allosteric modulation across a GPCR homodimeric interface.—May, L. T., Bridge, L. J., Stoddart, L. A., Briddon, S. J., Hill, S. J. Allosteric interactions across native adenosine-A3 receptor homodimers: quantification using single-cell ligand-binding kinetics.
Collapse
Affiliation(s)
- Lauren T May
- Institute of Cell Signalling, School of Biomedical Sciences, The University of Nottingham, Nottingham, UK, NG7 2UH
| | | | | | | | | |
Collapse
|
42
|
Jacobson KA, Gao ZG, Göblyös A, IJzerman AP. Allosteric modulation of purine and pyrimidine receptors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:187-220. [PMID: 21586360 PMCID: PMC3165024 DOI: 10.1016/b978-0-12-385526-8.00007-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Among the purine and pyrimidine receptors, the discovery of small molecular allosteric modulators has been most highly advanced for the A(1) and A(3) adenosine receptors (ARs). These AR modulators have allosteric effects that are structurally separated from the orthosteric effects in SAR studies. The benzoylthiophene derivatives tend to act as allosteric agonists as well as selective positive allosteric modulators (PAMs) of the A(1) AR. A 2-amino-3-aroylthiophene derivative T-62 has been under development as a PAM of the A(1) AR for the treatment of chronic pain. Several structurally distinct classes of allosteric modulators of the human A(3) AR have been reported: 3-(2-pyridinyl)isoquinolines, 2,4-disubstituted quinolines, 1H-imidazo-[4,5-c]quinolin-4-amines, endocannabinoid 2-arachidonylglycerol, and the food dye Brilliant Black BN. Site-directed mutagenesis of A(1) and A(3) ARs has identified residues associated with the allosteric effect, distinct from those that affect orthosteric binding. A few small molecular allosteric modulators have been reported for several of the P2X ligand-gated ion channels and the G protein-coupled P2Y receptor nucleotides. Metal ion modulation of the P2X receptors has been extensively explored. The allosteric approach to modulation of purine and pyrimidine receptors looks promising for development of drugs that are event and site specific in action.
Collapse
Affiliation(s)
- Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anikó Göblyös
- Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Adriaan P. IJzerman
- Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| |
Collapse
|