1
|
Zhang GF, Zhu KL, Li Q, Zhang Y, Waddington JL, Du XD, Zhen XC. The classical D1 dopamine receptor antagonist SCH23390 is a functional sigma-1 receptor allosteric modulator. Acta Pharmacol Sin 2024; 45:1582-1590. [PMID: 38605179 PMCID: PMC11272936 DOI: 10.1038/s41401-024-01256-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/28/2024] [Indexed: 04/13/2024]
Abstract
SCH23390 is a widely used D1 dopamine receptor (D1R) antagonist that also elicits some D1R-independent effects. We previously found that the benzazepine, SKF83959, an analog of SCH23390, produces positive allosteric modulation of the Sigma-1 receptor (Sig1R). SCH23390 does not bind to the orthodoxic site of Sig1R but enhances the binding of 3H (+)-pentazocine to Sig1R. In this study, we investigated whether SCH23390 functions as an allosteric modulator of Sig1R. We detected increased Sig1R dissociation from binding immunoglobulin protein (BiP) and translocation of Sig1R to the plasma membrane in response to SCH23390 in transfected HEK293T and SH-SY5Y cells, respectively. Activation of Sig1R by SCH23390 was further confirmed by inhibition of GSK3β activity in a time- and dose-dependent manner; this effect was blocked by pretreatment with the Sig1R antagonist, BD1047, and by knockdown of Sig1R. SCH23390 also inhibited GSK3β in wild-type mice but not in Sig1R knockout mice. Finally, we showed that SCH23390 allosterically modulated the effect of the Sig1R agonist SKF10047 on inhibition of GSK3β. This positive allosteric effect of SCH23390 was further confirmed via promotion of neuronal protection afforded by SKF10047 in primary cortical neurons challenged with MPP+. These results provide the first evidence that SCH23390 elicits functional allosteric modulation of Sig1R. Our findings not only reveal novel pharmacological effects of SCH23390 but also indicate a potential mechanism for SCH23390-mediated D1R-independent effects. Therefore, attention should be paid to these Sig1R-mediated effects when explaining pharmacological responses to SCH23390.
Collapse
Affiliation(s)
- Gu-Fang Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Kai-Lian Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Qi Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yue Zhang
- Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - John L Waddington
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Xiang-Dong Du
- Department of Psychiatry, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215003, China.
| | - Xue-Chu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
2
|
Crouzier L, Meunier J, Carles A, Morilleau A, Vrigneau C, Schmitt M, Bourguignon JJ, Delprat B, Maurice T. Convolamine, a tropane alkaloid extracted from Convolvulus plauricalis, is a potent sigma-1 receptor-positive modulator with cognitive and neuroprotective properties. Phytother Res 2024; 38:694-712. [PMID: 38011416 DOI: 10.1002/ptr.8068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND AND AIM By using an in vivo phenotypic screening assay in zebrafish, we identified Convolamine, a tropane alkaloid from Convulvus plauricalis, as a positive modulator of the sigma-1 receptor (S1R). The wfs1abKO zebrafish larva, a model of Wolfram syndrome, exhibits an increased visual-motor response due to a mutation in Wolframin, a protein involved in endoplasmic reticulum-mitochondria communication. We previously reported that ligand activating S1R, restored the cellular and behavioral deficits in patient fibroblasts and zebrafish and mouse models. EXPERIMENTAL PROCEDURES We screened a library of 108 repurposing and natural compounds on zebrafish motor response. KEY RESULTS One hit, the tropane alkaloid Convolamine, restored normal mobility in wfs1abKO larvae without affecting wfs1abWT controls. They did not bind to the S1R agonist/antagonist binding site nor dissociated S1R from BiP, an S1R activity assay in vitro, but behaved as a positive modulator by shifting the IC50 value of the reference agonist PRE-084 to lower values. Convolamine restored learning in Wfs1∆Exon8 , Dizocilpine-treated, and Aβ25-35 -treated mice. These effects were observed at low ~1 mg/kg doses, not shared by Convolvine, the desmethyl metabolite, and blocked by an S1R antagonist. CONCLUSION AND IMPLICATIONS Convolamine therefore acts as an S1R positive modulator and this pharmacological action is relevant to the traditional use of Shankhpushpi in memory and cognitive protection.
Collapse
Affiliation(s)
- Lucie Crouzier
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Johann Meunier
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Allison Carles
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Axelle Morilleau
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | | | | | | | - Benjamin Delprat
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| |
Collapse
|
3
|
Ying Z, Ye N, Ma Q, Chen F, Li N, Zhen X. Targeted to neuronal organelles for CNS drug development. Adv Drug Deliv Rev 2023; 200:115025. [PMID: 37516410 DOI: 10.1016/j.addr.2023.115025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/07/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Significant evidences indicate that sub-cellular organelle dynamics is critical for both physiological and pathological events and therefore may be attractive drug targets displaying great therapeutic potential. Although the basic biological mechanism underlying the dynamics of intracellular organelles has been extensively studied, relative drug development is still limited. In the present review, we show that due to the development of technical advanced imaging tools, especially live cell imaging methods, intracellular organelle dynamics (including mitochondrial dynamics and membrane contact sites) can be dissected at the molecular level. Based on these identified molecular targets, we review and discuss the potential of drug development to target organelle dynamics, especially mitochondria dynamics and ER-organelle membrane contact dynamics, in the central nervous system for treating human diseases, including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Zheng Ying
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Na Ye
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qilian Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Fan Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ningning Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
4
|
Ren P, Wang JY, Chen HL, Chang HX, Zeng ZR, Li GX, Ma H, Zhao YQ, Li YF. Sigma-1 receptor agonist properties that mediate the fast-onset antidepressant effect of hypidone hydrochloride (YL-0919). Eur J Pharmacol 2023; 946:175647. [PMID: 36898424 DOI: 10.1016/j.ejphar.2023.175647] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
The most intriguing characteristic of the sigma-1 receptor is its ability to regulate multiple functional proteins directly via protein-protein interactions, giving the sigma-1 receptor the powerful ability to regulate several survival and metabolic functions in cells, fine tune neuronal excitability, and regulate the transmission of information within brain circuits. This characteristic makes sigma-1 receptors attractive candidates for the development of new drugs. Hypidone hydrochloride (YL-0919), a novel structured antidepressant candidate developed in our laboratory, possess a selective sigma-1 receptor agonist profile, as evidenced by molecular docking, radioligand receptor binding assays, and receptor functional experiments. In vivo studies have revealed that YL-0919 elicits a fast-onset antidepressant activity (within one week) that can be attenuated with pretreatment of the selective sigma-1 receptor antagonist, BD-1047. Taken together, the findings of the current study suggest that YL-0919 activates the sigma-1 receptor to partially mediate the rapid onset antidepressant effects of YL-0919. Thus, YL-0919 is a promising candidate as a fast-onset antidepressant that targets the sigma-1 receptor.
Collapse
Affiliation(s)
- Peng Ren
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Jing-Ya Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Hong-Lei Chen
- Graduate Collaborative Training Base of Academy of Military Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China.
| | - Hai-Xia Chang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhi-Rui Zeng
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Guang-Xiang Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hui Ma
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yong-Qi Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Yun-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, China; Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China.
| |
Collapse
|
5
|
Guo L, Gao T, Jia X, Gao C, Tian H, Wei Y, Lu W, Liu Z, Wang Y. SKF83959 Attenuates Memory Impairment and Depressive-like Behavior during the Latent Period of Epilepsy via Allosteric Activation of the Sigma-1 Receptor. ACS Chem Neurosci 2022; 13:3198-3209. [PMID: 36331871 DOI: 10.1021/acschemneuro.2c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Memory impairment and emotional disorder are two common clinical comorbidities in patients with epilepsy. It is imperative to develop a novel therapeutic agent or a strategy. 6-Chloro-7,8-dihydroxy-3-methyl-1-(3-methylphenyl)-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF83959) is a dopamine-1 receptor agonist and sigma-1 receptor allosteric modulator, which displays the neuron-protective and anti-neuroinflammation activity. We examined the effect of SKF83959 on the memory impairment and emotional disorder in the latent period of epilepsy using the mice post-status epilepticus model. We found that SKF83959 ameliorated memory impairment and depressive-like mood, alleviated the neuron damage and the formation of gliosis in hippocampus, suppressed the rise of pro-inflammatory cytokines, including tumor necrosis factor-α and interleukin-1β, and induced nitric oxide synthase in the latent period of epilepsy. Additionally, SKF83959 significantly inhibited the activity of calcineurin and glycogen synthase kinase-3β. All of these protective actions were reversed by BD1047 (a sigma-1 receptor antagonist). In addition, the intra-hippocampus injection of ketoconazole (a dehydroepiandrosterone synthesis inhibitor) also reversed the protective activity of SKF83959. Thus, we concluded that SKF83959 ameliorated the memory impairment and depressive-like mood in epilepsy via allosterically activating the sigma-1 receptor and subsequently inhibiting the calcineurin/glycogen synthase kinase-3β pathway.
Collapse
Affiliation(s)
- Lin Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu Province, China.,Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou 221004, Jiangsu Province, China
| | - Tianyu Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu Province, China
| | - Xiaoxia Jia
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu Province, China
| | - Ce Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu Province, China
| | - Hao Tian
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming 650000, Yunnan Province, China
| | - Yaqin Wei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu Province, China
| | - Wenchun Lu
- Psychology Laboratory School of Management, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu Province, China
| | - Zhidong Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu Province, China.,Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou 221004, Jiangsu Province, China
| | - Yun Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu Province, China
| |
Collapse
|
6
|
Chen J, Li G, Qin P, Chen J, Ye N, Waddington JL, Zhen X. Allosteric Modulation of the Sigma-1 Receptor Elicits Antipsychotic-like Effects. Schizophr Bull 2022; 48:474-484. [PMID: 34865170 PMCID: PMC8886599 DOI: 10.1093/schbul/sbab137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Allosteric modulation represents an important approach in drug discovery because of its advantages in safety and selectivity. SOMCL-668 is the first selective and potent sigma-1 receptor allosteric modulator, discovered in our laboratory. The present work investigates the potential therapeutic effects of SOMCL-668 on phencyclidine (PCP)-induced schizophrenia-related behavior in mice and further elucidates underlying mechanisms for its antipsychotic-like effects. SOMCL-668 not only attenuated acute PCP-induced hyperactivity and PPI disruption, but also ameliorated social deficits and cognitive impairment induced by chronic PCP treatment. Pretreatment with the selective sigma-1 receptor antagonist BD1047 blocked the effects of SOMCL-668, indicating sigma-1 receptor-mediated responses. This was confirmed using sigma-1 receptor knockout mice, in which SOMCL-668 failed to ameliorate PPI disruption and hyperactivity induced by acute PCP and social deficits and cognitive impairment induced by chronic PCP treatment. Additionally, in vitro SOMCL-668 exerted positive modulation of sigma-1 receptor agonist-induced intrinsic plasticity in brain slices recorded by patch-clamp. Furthermore, in vivo lower dose of SOMCL-668 exerted positive modulation of improvement in social deficits and cognitive impairment induced by the selective sigma-1 agonist PRE084. Also, SOMCL-668 reversed chronic PCP-induced down-regulation in expression of frontal cortical p-AKT/AKT, p-CREB/CREB and BDNF in wide-type but not sigma-1 knockout mice. Moreover, administration of the PI3K/AKT inhibitor LY294002 abolished amelioration by SOMCL-668 of chronic PCP-induced schizophrenia-related behaviors by inhibition of BDNF expression. The present data provide initial, proof-of-concept evidence that allosteric modulation of the sigma-1 receptor may be a novel approach for the treatment of psychotic illness.
Collapse
Affiliation(s)
- Jiali Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Guangying Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Pingping Qin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jiaojiao Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Na Ye
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - John L Waddington
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
7
|
Jones-Tabah J, Mohammad H, Paulus EG, Clarke PBS, Hébert TE. The Signaling and Pharmacology of the Dopamine D1 Receptor. Front Cell Neurosci 2022; 15:806618. [PMID: 35110997 PMCID: PMC8801442 DOI: 10.3389/fncel.2021.806618] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
The dopamine D1 receptor (D1R) is a Gαs/olf-coupled GPCR that is expressed in the midbrain and forebrain, regulating motor behavior, reward, motivational states, and cognitive processes. Although the D1R was initially identified as a promising drug target almost 40 years ago, the development of clinically useful ligands has until recently been hampered by a lack of suitable candidate molecules. The emergence of new non-catechol D1R agonists, biased agonists, and allosteric modulators has renewed clinical interest in drugs targeting this receptor, specifically for the treatment of motor impairment in Parkinson's Disease, and cognitive impairment in neuropsychiatric disorders. To develop better therapeutics, advances in ligand chemistry must be matched by an expanded understanding of D1R signaling across cell populations in the brain, and in disease states. Depending on the brain region, the D1R couples primarily to either Gαs or Gαolf through which it activates a cAMP/PKA-dependent signaling cascade that can regulate neuronal excitability, stimulate gene expression, and facilitate synaptic plasticity. However, like many GPCRs, the D1R can signal through multiple downstream pathways, and specific signaling signatures may differ between cell types or be altered in disease. To guide development of improved D1R ligands, it is important to understand how signaling unfolds in specific target cells, and how this signaling affects circuit function and behavior. In this review, we provide a summary of D1R-directed signaling in various neuronal populations and describe how specific pathways have been linked to physiological and behavioral outcomes. In addition, we address the current state of D1R drug development, including the pharmacology of newly developed non-catecholamine ligands, and discuss the potential utility of D1R-agonists in Parkinson's Disease and cognitive impairment.
Collapse
|
8
|
Xiong B, Jin G, Xu Y, You W, Luo Y, Fang M, Chen B, Huang H, Yang J, Lin X, Yu C. Identification of Koumine as a Translocator Protein 18 kDa Positive Allosteric Modulator for the Treatment of Inflammatory and Neuropathic Pain. Front Pharmacol 2021; 12:692917. [PMID: 34248642 PMCID: PMC8264504 DOI: 10.3389/fphar.2021.692917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/07/2021] [Indexed: 01/08/2023] Open
Abstract
Koumine is an alkaloid that displays notable activity against inflammatory and neuropathic pain, but its therapeutic target and molecular mechanism still need further study. Translocator protein 18 kDa (TSPO) is a vital therapeutic target for pain treatment, and recent research implies that there may be allostery in TSPO. Our previous competitive binding assay hint that koumine may function as a TSPO positive allosteric modulator (PAM). Here, for the first time, we report the pharmacological characterization of koumine as a TSPO PAM. The results imply that koumine might be a high-affinity ligand of TSPO and that it likely acts as a PAM since it could delay the dissociation of 3H-PK11195 from TSPO. Importantly, the allostery was retained in vivo, as koumine augmented Ro5-4864-mediated analgesic and anti-inflammatory effects in several acute and chronic inflammatory and neuropathic pain models. Moreover, the positive allosteric modulatory effect of koumine on TSPO was further demonstrated in cell proliferation assays in T98G human glioblastoma cells. In summary, we have identified and characterized koumine as a TSPO PAM for the treatment of inflammatory and neuropathic pain. Our data lay a solid foundation for the use of the clinical candidate koumine to treat inflammatory and neuropathic pain, further demonstrate the allostery in TSPO, and provide the first proof of principle that TSPO PAM may be a novel avenue for the discovery of analgesics.
Collapse
Affiliation(s)
- Bojun Xiong
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Guilin Jin
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Ying Xu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Wenbing You
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yufei Luo
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Menghan Fang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Bing Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Huihui Huang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jian Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xu Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Changxi Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
9
|
Ye N, Qin W, Tian S, Xu Q, Wold EA, Zhou J, Zhen XC. Small Molecules Selectively Targeting Sigma-1 Receptor for the Treatment of Neurological Diseases. J Med Chem 2020; 63:15187-15217. [PMID: 33111525 DOI: 10.1021/acs.jmedchem.0c01192] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The sigma-1 (σ1) receptor, an enigmatic protein originally classified as an opioid receptor subtype, is now understood to possess unique structural and functional features of its own and play critical roles to widely impact signaling transduction by interacting with receptors, ion channels, lipids, and kinases. The σ1 receptor is implicated in modulating learning, memory, emotion, sensory systems, neuronal development, and cognition and accordingly is now an actively pursued drug target for various neurological and neuropsychiatric disorders. Evaluation of the five selective σ1 receptor drug candidates (pridopidine, ANAVEX2-73, SA4503, S1RA, and T-817MA) that have entered clinical trials has shown that reaching clinical approval remains an evasive and important goal. This review provides up-to-date information on the selective targeting of σ1 receptors, including their history, function, reported crystal structures, and roles in neurological diseases, as well as a useful collation of new chemical entities as σ1 selective orthosteric ligands or allosteric modulators.
Collapse
Affiliation(s)
- Na Ye
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wangzhi Qin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Sheng Tian
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qingfeng Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Eric A Wold
- Chemical Biology Program, Department of Pharmacology and Toxicology, and Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, and Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Xue-Chu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
10
|
SKF83959, an agonist of phosphatidylinositol-linked dopamine receptors, prevents renewal of extinguished conditioned fear and facilitates extinction. Brain Res 2020; 1749:147136. [PMID: 32980332 DOI: 10.1016/j.brainres.2020.147136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Fear-related anxiety disorders, such as social phobia and post-traumatic stress disorder, are partly explained by an uncontrollable state of fear. An emerging literature suggests dopamine receptor-1 (D1 receptor) in the amygdala is involved in the regulation of fear memory. An early study has reported that amygdaloid D1 receptor (D1R) is not coupled to the classic cAMP-dependent signal transduction. Here, we investigated whether SKF83959, a typical D1R agonist that mainly activates a D1-like receptor-dependent phosphatidylinositol (PI) signal pathway, facilitates fear extinction and reduces the return of extinguished fear. Interestingly, long-term loss of fearful memories can be induced through a combination of SKF83959 (1 mg/kg/day, i.p., once daily for one week) pharmacotherapy and extinction training. Furthermore, sub-chronic administration of SKF83959 after fear conditioning reduced fear renewal and reinstatement in the mice. We found that the activation D1R and PI signaling in the amygdala was responsible for the effect of SKF83959 on fear extinction. Additionally, SKF83959 significantly promoted the elevation of brain-derived neurotrophic factor (BDNF) expression, possibly by the cAMP response element binding protein (CREB) -directed gene transcription. Given the beneficial effects on extinction, SKF83959 may emerge as a candidate pharmacological approach for improving cognitive-behavioral therapy on fear-related anxiety disorders.
Collapse
|
11
|
Vela JM. Repurposing Sigma-1 Receptor Ligands for COVID-19 Therapy? Front Pharmacol 2020; 11:582310. [PMID: 33364957 PMCID: PMC7751758 DOI: 10.3389/fphar.2020.582310] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022] Open
Abstract
Outbreaks of emerging infections, such as COVID-19 pandemic especially, confront health professionals with the unique challenge of treating patients. With no time to discover new drugs, repurposing of approved drugs or in clinical development is likely the only solution. Replication of coronaviruses (CoVs) occurs in a modified membranous compartment derived from the endoplasmic reticulum (ER), causes host cell ER stress and activates pathways to facilitate adaptation of the host cell machinery to viral needs. Accordingly, modulation of ER remodeling and ER stress response might be pivotal in elucidating CoV-host interactions and provide a rationale for new therapeutic, host-based antiviral approaches. The sigma-1 receptor (Sig-1R) is a ligand-operated, ER membrane-bound chaperone that acts as an upstream modulator of ER stress and thus a candidate host protein for host-based repurposing approaches to treat COVID-19 patients. Sig-1R ligands are frequently identified in in vitro drug repurposing screens aiming to identify antiviral compounds against CoVs, including severe acute respiratory syndrome CoV-2 (SARS-CoV-2). Sig-1R regulates key mechanisms of the adaptive host cell stress response and takes part in early steps of viral replication. It is enriched in lipid rafts and detergent-resistant ER membranes, where it colocalizes with viral replicase proteins. Indeed, the non-structural SARS-CoV-2 protein Nsp6 interacts with Sig-1R. The activity of Sig-1R ligands against COVID-19 remains to be specifically assessed in clinical trials. This review provides a rationale for targeting Sig-1R as a host-based drug repurposing approach to treat COVID-19 patients. Evidence gained using Sig-1R ligands in unbiased in vitro antiviral drug screens and the potential mechanisms underlying the modulatory effect of Sig-1R on the host cell response are discussed. Targeting Sig-1R is not expected to reduce dramatically established viral replication, but it might interfere with early steps of virus-induced host cell reprogramming, aid to slow down the course of infection, prevent the aggravation of the disease and/or allow a time window to mature a protective immune response. Sig-1R-based medicines could provide benefit not only as early intervention, preventive but also as adjuvant therapy.
Collapse
Affiliation(s)
- José Miguel Vela
- Drug Discovery and Preclinical Development, ESTEVE Pharmaceuticals, Barcelona, Spain
| |
Collapse
|
12
|
Ryskamp DA, Korban S, Zhemkov V, Kraskovskaya N, Bezprozvanny I. Neuronal Sigma-1 Receptors: Signaling Functions and Protective Roles in Neurodegenerative Diseases. Front Neurosci 2019; 13:862. [PMID: 31551669 PMCID: PMC6736580 DOI: 10.3389/fnins.2019.00862] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Sigma-1 receptor (S1R) is a multi-functional, ligand-operated protein situated in endoplasmic reticulum (ER) membranes and changes in its function and/or expression have been associated with various neurological disorders including amyotrophic lateral sclerosis/frontotemporal dementia, Alzheimer's (AD) and Huntington's diseases (HD). S1R agonists are broadly neuroprotective and this is achieved through a diversity of S1R-mediated signaling functions that are generally pro-survival and anti-apoptotic; yet, relatively little is known regarding the exact mechanisms of receptor functioning at the molecular level. This review summarizes therapeutically relevant mechanisms by which S1R modulates neurophysiology and implements neuroprotective functions in neurodegenerative diseases. These mechanisms are diverse due to the fact that S1R can bind to and modulate a large range of client proteins, including many ion channels in both ER and plasma membranes. We summarize the effect of S1R on its interaction partners and consider some of the cell type- and disease-specific aspects of these actions. Besides direct protein interactions in the endoplasmic reticulum, S1R is likely to function at the cellular/interorganellar level by altering the activity of several plasmalemmal ion channels through control of trafficking, which may help to reduce excitotoxicity. Moreover, S1R is situated in lipid rafts where it binds cholesterol and regulates lipid and protein trafficking and calcium flux at the mitochondrial-associated membrane (MAM) domain. This may have important implications for MAM stability and function in neurodegenerative diseases as well as cellular bioenergetics. We also summarize the structural and biochemical features of S1R proposed to underlie its activity. In conclusion, S1R is incredibly versatile in its ability to foster neuronal homeostasis in the context of several neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniel A. Ryskamp
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Svetlana Korban
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| | - Vladimir Zhemkov
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Nina Kraskovskaya
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| | - Ilya Bezprozvanny
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, United States
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| |
Collapse
|
13
|
Maurice T, Volle JN, Strehaiano M, Crouzier L, Pereira C, Kaloyanov N, Virieux D, Pirat JL. Neuroprotection in non-transgenic and transgenic mouse models of Alzheimer's disease by positive modulation of σ 1 receptors. Pharmacol Res 2019; 144:315-330. [PMID: 31048034 DOI: 10.1016/j.phrs.2019.04.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/28/2019] [Accepted: 04/21/2019] [Indexed: 01/30/2023]
Abstract
The sigma-1 (σ1) receptor is an endoplasmic reticulum (ER) chaperone protein, enriched in mitochondria-associated membranes. Its activation triggers physiological responses to ER stress and modulate Ca2+ mobilization in mitochondria. Small σ1 agonist molecules activate the protein and act behaviorally as antidepressant, anti-amnesic and neuroprotective agents. Recently, several chemically unrelated molecules were shown to be σ1 receptor positive modulators (PMs), with some of them a clear demonstration of their allostericity. We here examined whether a σ1 PM also shows neuroprotective potentials in pharmacological and genetic models of Alzheimer's disease (AD). For this aim, we describe (±)-2-(3-chlorophenyl)-3,3,5,5-tetramethyl-2-oxo-[1,4,2]-oxazaphosphinane (OZP002) as a novel σ1 PM. OZP002 does not bind σ1 sites but induces σ1 effects in vivo and boosts σ1 agonist activity. OZP002 was antidepressant in the forced swim test and its effect was blocked by the σ1 antagonist NE-100 or in σ1 receptor knockout mice. It potentiated the antidepressant effect of the σ1 agonist igmesine. In mice tested for Y-maze alternation or passive avoidance, OZP002 prevented scopolamine-induced learning deficits, in a NE-100 sensitive manner. Pre-administered IP before an ICV injection of amyloid Aβ25-35 peptide, a pharmacological model of Alzheimer's disease, OZP002 prevented the learning deficits induced by the peptide after one week in the Y-maze, passive avoidance and novel object tests. Biochemical analyses of the mouse hippocampi showed that OZP002 significantly decreased Aβ25-35-induced increases in reactive oxygen species, lipid peroxidation, and increases in Bax, TNFα and IL-6 levels. Immunohistochemically, OZP002 prevented Aβ25-35-induced reactive astrogliosis and microgliosis in the hippocampus. It also alleviated Aβ25-35-induced decreases in synaptophysin level and choline acetyltransferase activity. Moreover, chronically administered in APPswe mice during 2 months, OZP002 prevented learning deficits (in all tests plus place learning in the water-maze) and increased biochemical markers. This study shows that σ1 PM with high neuropotective potential can be identified, combining pharmacological efficacy, selectivity and therapeutic safety, and identifies a novel promising compound, OZP002.
Collapse
Affiliation(s)
- Tangui Maurice
- MMDN, Univ Montpellier, INSERM, EPHE, UMR-S1198, Montpellier, France.
| | - Jean-Noël Volle
- Institut Charles Gerhardt, ENSCM, CNRS, UMR5253, Montpellier, France.
| | - Manon Strehaiano
- MMDN, Univ Montpellier, INSERM, EPHE, UMR-S1198, Montpellier, France.
| | - Lucie Crouzier
- MMDN, Univ Montpellier, INSERM, EPHE, UMR-S1198, Montpellier, France.
| | - Claire Pereira
- MMDN, Univ Montpellier, INSERM, EPHE, UMR-S1198, Montpellier, France.
| | - Nikolay Kaloyanov
- Institut Charles Gerhardt, ENSCM, CNRS, UMR5253, Montpellier, France.
| | - David Virieux
- Institut Charles Gerhardt, ENSCM, CNRS, UMR5253, Montpellier, France.
| | - Jean-Luc Pirat
- Institut Charles Gerhardt, ENSCM, CNRS, UMR5253, Montpellier, France.
| |
Collapse
|
14
|
Lever JR, Fergason-Cantrell EA. Allosteric modulation of sigma receptors by BH3 mimetics ABT-737, ABT-263 (Navitoclax) and ABT-199 (Venetoclax). Pharmacol Res 2019; 142:87-100. [PMID: 30721730 DOI: 10.1016/j.phrs.2019.01.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/12/2018] [Accepted: 01/21/2019] [Indexed: 11/21/2022]
Abstract
ABT-737, ABT-263 (Navitoclax) and ABT-199 (Venetoclax) are under intensive preclinical and clinical investigation as treatments for hematologic and other malignancies. These small molecules mimic pro-death B-cell lymphoma-2 (Bcl-2) Homology 3 (BH3) domain-only proteins. They also bear a structural resemblance to certain sigma (σ) receptor ligands. Moreover, the Bcl-2 and σ receptor protein families are both located primarily at the endoplasmic reticulum, mediate cell death and survival through protein-protein interactions, and physically associate. Accordingly, we examined the ability of the ABT series of BH3 mimetics to interact with σ receptors using radioligand-binding techniques. Negative allosteric modulation of [3H](+)-pentazocine, an agonist, binding to σ1 receptors in guinea pig brain membranes was observed for ABT-737, ABT-263 and ABT-199. Findings included reduction of specific binding to distinct plateaus in concentration-dependent fashion, significant slowing of radioligand dissociation kinetics, and decreases in radioligand affinity with no or modest changes in maximal receptor densities. Using a ternary complex model, dissociation constants (KX) for modulator binding to the σ1 receptor ranged from 1 to 2.5 μM, while negative cooperativity factors (α), representing the changes in affinity of ligand and modulator when bound as a ternary complex with the receptor, ranged from 0.15 to 0.42. These observations were extended and reinforced by studies using intact small cell (NCI-H69) and non-small cell (NCI-H23) lung cancer cells, and by using an antagonist σ1 receptor radioligand, E-N-1-(3'-[125I]iodoallyl)-N'-4-(3″,4″-dimethoxyphenethyl)piperazine, in mouse brain membranes. By contrast, exploratory studies indicate marked enhancement of the σ2 receptor binding of [3H]1,3-di-(o-tolyl)guanidine/(+)-pentazocine in NCI-H23 cells and guinea pig brain membranes. These findings raise intriguing questions regarding mechanism and potential functional outcomes.
Collapse
Affiliation(s)
- John R Lever
- Department of Radiology, University of Missouri, Columbia, MO 65211, USA; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA.
| | - Emily A Fergason-Cantrell
- Department of Radiology, University of Missouri, Columbia, MO 65211, USA; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA
| |
Collapse
|
15
|
Vavers E, Zvejniece L, Maurice T, Dambrova M. Allosteric Modulators of Sigma-1 Receptor: A Review. Front Pharmacol 2019; 10:223. [PMID: 30941035 PMCID: PMC6433746 DOI: 10.3389/fphar.2019.00223] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/22/2019] [Indexed: 11/13/2022] Open
Abstract
Allosteric modulators of sigma-1 receptor (Sig1R) are described as compounds that can increase the activity of some Sig1R ligands that compete with (+)-pentazocine, one of the classic prototypical ligands that binds to the orthosteric Sig1R binding site. Sig1R is an endoplasmic reticulum membrane protein that, in addition to its promiscuous high-affinity ligand binding, has been shown to have chaperone activity. Different experimental approaches have been used to describe and validate the activity of allosteric modulators of Sig1R. Sig1R-modulatory activity was first found for phenytoin, an anticonvulsant drug that primarily acts by blocking the voltage-gated sodium channels. Accumulating evidence suggests that allosteric Sig1R modulators affect processes involved in the pathophysiology of depression, memory and cognition disorders as well as convulsions. This review will focus on the description of selective and non-selective allosteric modulators of Sig1R, including molecular structure properties and pharmacological activity both in vitro and in vivo, with the aim of providing the latest overview from compound discovery approaches to eventual clinical applications. In this review, the possible mechanisms of action will be discussed, and future challenges in the development of novel compounds will be addressed.
Collapse
Affiliation(s)
- Edijs Vavers
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Liga Zvejniece
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Tangui Maurice
- MMDN, University of Montpellier, INSERM, EPHE, UMR-S1198, Montpellier, France
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| |
Collapse
|
16
|
Jia J, Cheng J, Wang C, Zhen X. Sigma-1 Receptor-Modulated Neuroinflammation in Neurological Diseases. Front Cell Neurosci 2018; 12:314. [PMID: 30294261 PMCID: PMC6158303 DOI: 10.3389/fncel.2018.00314] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/29/2018] [Indexed: 02/02/2023] Open
Abstract
A large body of evidence indicates that sigma-1 receptors (Sig-1R) are important drug targets for a number of neuropsychiatric disorders. Sig-1Rs are enriched in central nervous system (CNS). In addition to neurons, both cerebral microglia and astrocytes express Sig-1Rs. Activation of Sig-1Rs is known to elicit potent neuroprotective effects and promote neuronal survival via multiple mechanisms, including promoting mitochondrial functions, decreasing oxidative stress and regulating neuroimmnological functions. In this review article, we focus on the emerging role of Sig-1Rs in regulating neuroinflammation and discuss the recent advances on the Sig-1R-modulating neuroinflammation in the pathophysiology and therapy of neurodegenerative disorders.
Collapse
Affiliation(s)
- Jia Jia
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jian Cheng
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Cheng Wang
- Department of Pharmacy, Suzhou Science and Technology Town Hospital, Suzhou, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
17
|
Hasbi A, Perreault ML, Shen MYF, Fan T, Nguyen T, Alijaniaram M, Banasikowski TJ, Grace AA, O'Dowd BF, Fletcher PJ, George SR. Activation of Dopamine D1-D2 Receptor Complex Attenuates Cocaine Reward and Reinstatement of Cocaine-Seeking through Inhibition of DARPP-32, ERK, and ΔFosB. Front Pharmacol 2018; 8:924. [PMID: 29354053 PMCID: PMC5758537 DOI: 10.3389/fphar.2017.00924] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/05/2017] [Indexed: 12/12/2022] Open
Abstract
A significant subpopulation of neurons in rat nucleus accumbens (NAc) coexpress dopamine D1 and D2 receptors, which can form a D1-D2 receptor complex, but their relevance in addiction is not known. The existence of the D1-D2 heteromer in the striatum of rat and monkey was established using in situ PLA, in situ FRET and co-immunoprecipitation. In rat, D1-D2 receptor heteromer activation led to place aversion and abolished cocaine CPP and locomotor sensitization, cocaine intravenous self-administration and reinstatement of cocaine seeking, as well as inhibited sucrose preference and abolished the motivation to seek palatable food. Selective disruption of this heteromer by a specific interfering peptide induced reward-like effects and enhanced the above cocaine-induced effects, including at a subthreshold dose of cocaine. The D1-D2 heteromer activated Cdk5/Thr75-DARPP-32 and attenuated cocaine-induced pERK and ΔFosB accumulation, together with inhibition of cocaine-enhanced local field potentials in NAc, blocking thus the signaling pathway activated by cocaine: D1R/cAMP/PKA/Thr34-DARPP-32/pERK with ΔFosB accumulation. In conclusion, our results show that the D1-D2 heteromer exerted tonic inhibitory control of basal natural and cocaine reward, and therefore initiates a fundamental physiologic function that limits the liability to develop cocaine addiction.
Collapse
Affiliation(s)
- Ahmed Hasbi
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | | | - Maurice Y F Shen
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Theresa Fan
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Tuan Nguyen
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | | | - Tomek J Banasikowski
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brian F O'Dowd
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Paul J Fletcher
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Susan R George
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Penke B, Fülöp L, Szűcs M, Frecska E. The Role of Sigma-1 Receptor, an Intracellular Chaperone in Neurodegenerative Diseases. Curr Neuropharmacol 2018; 16:97-116. [PMID: 28554311 PMCID: PMC5771390 DOI: 10.2174/1570159x15666170529104323] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/15/2017] [Accepted: 05/25/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Widespread protein aggregation occurs in the living system under stress or during aging, owing to disturbance of endoplasmic reticulum (ER) proteostasis. Many neurodegenerative diseases may have a common mechanism: the failure of protein homeostasis. Perturbation of ER results in unfolded protein response (UPR). Prolonged chronical UPR may activate apoptotic pathways and cause cell death. METHODS Research articles on Sigma-1 receptor were reviewed. RESULTS ER is associated to mitochondria by the mitochondria-associated ER-membrane, MAM. The sigma-1 receptor (Sig-1R), a well-known ER-chaperone localizes in the MAM. It serves for Ca2+-signaling between the ER and mitochondria, involved in ion channel activities and especially important during neuronal differentiation. Sig-1R acts as central modulator in inter-organelle signaling. Sig-1R helps cell survival by attenuating ER-stress. According to sequence based predictions Sig-1R is a 223 amino acid protein with two transmembrane (2TM) domains. The X-ray structure of the Sig-1R [1] showed a membrane-bound trimeric assembly with one transmembrane (1TM) region. Despite the in vitro determined assembly, the results of in vivo studies are rather consistent with the 2TM structure. The receptor has unique and versatile pharmacological profile. Dimethyl tryptamine (DMT) and neuroactive steroids are endogenous ligands that activate Sig-1R. The receptor has a plethora of interacting client proteins. Sig-1R exists in oligomeric structures (dimer-trimer-octamer-multimer) and this fact may explain interaction with diverse proteins. CONCLUSION Sig-1R agonists have been used in the treatment of different neurodegenerative diseases, e.g. Alzheimer's and Parkinson's diseases (AD and PD) and amyotrophic lateral sclerosis. Utilization of Sig-1R agents early in AD and similar other diseases has remained an overlooked therapeutic opportunity.
Collapse
Affiliation(s)
- Botond Penke
- University of Szeged, Department of Medical Chemistry, Faculty of Medicine, Szeged, Hungary
| | - Lívia Fülöp
- University of Szeged, Department of Medical Chemistry, Faculty of Medicine, Szeged, Hungary
| | - Mária Szűcs
- University of Szeged, Department of Medical Chemistry, Faculty of Medicine, Szeged, Hungary
| | - Ede Frecska
- University of Debrecen, Department of Psychiatry, Faculty of Medicine, Debrecen, Hungary
| |
Collapse
|
19
|
Perreault ML, Fan T, Banasikowski TJ, Grace AA, George SR. The atypical dopamine receptor agonist SKF 83959 enhances hippocampal and prefrontal cortical neuronal network activity in a rat model of cognitive dysfunction. Eur J Neurosci 2017; 46:2015-2025. [PMID: 28677227 DOI: 10.1111/ejn.13635] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/23/2017] [Accepted: 06/25/2017] [Indexed: 12/11/2022]
Abstract
Deficits in neuronal network synchrony in hippocampus and prefrontal cortex have been widely demonstrated in disorders of cognitive dysfunction, including schizophrenia and Alzheimer's disease. The atypical dopamine agonist SKF 83959 has been shown to increase brain-derived neurotrophic factor signalling and suppress activity of glycogen synthase kinase-3 in PFC, two processes important to learning and memory. The purpose of this study was to therefore evaluate the impact of SKF 83959 on oscillatory deficits in methylazoxymethanol acetate (MAM) rat model of schizophrenia. To achieve this, local field potentials were recorded simultaneously from the hippocampus and prefrontal cortex of anesthetized rats at 15 and 90 min following both acute and repeated administration of SKF 83959 (0.4 mg/kg). In MAM rats, but not controls, repeated SKF 83959 treatment increased signal amplitude in hippocampus and enhanced the spectral power of low frequency delta and theta oscillations in this region. In PFC, SKF 83959 increased delta, theta and gamma spectral power. Increased HIP-PFC theta coherence was also evident following acute and repeated SKF 83959. In apparent contradiction to these oscillatory effects, in MAM rats, SKF 83959 inhibited spatial learning and induced a significant increase in thigmotactic behaviour. These findings have uncovered a previously unknown role for SKF 83959 in the positive regulation of hippocampal-prefrontal cortical oscillatory network activity. As SKF 83959 is known to have affinity for a number of receptors, delineating the receptor mechanisms that mediate the positive drug effects on neuronal oscillations could have significant future implications in disorders associated with cognitive dysfunction.
Collapse
Affiliation(s)
- Melissa L Perreault
- Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Bldg. Room 4358, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Theresa Fan
- Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Bldg. Room 4358, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Tomek J Banasikowski
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Susan R George
- Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Bldg. Room 4358, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Remesic M, Hruby VJ, Porreca F, Lee YS. Recent Advances in the Realm of Allosteric Modulators for Opioid Receptors for Future Therapeutics. ACS Chem Neurosci 2017; 8:1147-1158. [PMID: 28368571 DOI: 10.1021/acschemneuro.7b00090] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Opioids, and more specifically μ-opioid receptor (MOR) agonists such as morphine, have long been clinically used as therapeutics for severe pain states but often come with serious side effects such as addiction and tolerance. Many studies have focused on bringing about analgesia from the MOR with attenuated side effects, but its underlying mechanism is not fully understood. Recently, focus has been geared toward the design and elucidation of the orthosteric site with ligands of various biological profiles and mixed subtype opioid activities and selectivities, but targeting the allosteric site is an area of increasing interest. It has been shown that allosteric modulators play key roles in influencing receptor function such as its tolerance to a ligand and affect downstream pathways. There has been a high variance of chemical structures that provide allosteric modulation at a given receptor, but recent studies and reviews tend to focus on the altered cellular mechanisms instead of providing a more rigorous description of the allosteric ligand's structure-function relationship. In this review, we aim to explore recent developments in the structural motifs that potentiate orthosteric binding and their influences on cellular pathways in an effort to present novel approaches to opioid therapeutic design.
Collapse
Affiliation(s)
- Michael Remesic
- Department
of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Victor J. Hruby
- Department
of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Frank Porreca
- Department
of Pharmacology, University of Arizona, Tucson, Arizona 85719, United States
| | - Yeon Sun Lee
- Department
of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
21
|
Vavers E, Svalbe B, Lauberte L, Stonans I, Misane I, Dambrova M, Zvejniece L. The activity of selective sigma-1 receptor ligands in seizure models in vivo. Behav Brain Res 2017; 328:13-18. [PMID: 28389336 DOI: 10.1016/j.bbr.2017.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/06/2017] [Accepted: 04/03/2017] [Indexed: 12/12/2022]
Abstract
Sigma-1 receptor (Sig1R) is a ligand-regulated protein which, since its discovery, has been widely studied as a novel target to treat neurological disorders, including seizures. However, the roles and mechanisms of Sig1R in the regulation of seizures are not fully understood. The aim of the present study was to test and compare effects of often used selective Sig1R ligands in models of experimentally induced seizures. The anti-seizure activities and interactions of selective Sig1R agonist PRE-084, selective Sig1R antagonist NE-100 and novel positive allosteric Sig1R modulator E1R were evaluated in pentylenetetrazol (PTZ) and (+)-bicuculline (BIC)-induced seizure models in mice. Sig1R antagonist NE-100 at a dose of 25mg/kg demonstrated pro-convulsive activity on PTZ-induced seizures. Agonist PRE-084 did not change the thresholds of chemoconvulsant-induced seizures. Positive allosteric modulator E1R at a dose of 50mg/kg showed anti-convulsive effects on PTZ- and BIC-induced clonic and tonic seizures. The anti-seizure activity of E1R was blocked by NE-100. Surprisingly, NE-100 at a dose of 50mg/kg induced convulsions, but E1R significantly alleviated the convulsive behaviour induced by NE-100. In conclusion, the selective Sig1R antagonist NE-100 induced seizures that could be partially attenuated by positive allosteric Sig1R modulator. Our results confirm that Sig1R could be a novel molecular target for new anti-convulsive drugs.
Collapse
Affiliation(s)
- Edijs Vavers
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia; Riga Stradins University, Dzirciema Str. 16, Riga, LV-1007, Latvia.
| | - Baiba Svalbe
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia
| | - Lasma Lauberte
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia
| | | | - Ilga Misane
- JSC Grindeks, Krustpils Str. 53, Riga, LV-1057, Latvia
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia; Riga Stradins University, Dzirciema Str. 16, Riga, LV-1007, Latvia
| | - Liga Zvejniece
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia
| |
Collapse
|
22
|
Helbing C, Tischmeyer W, Angenstein F. Late effect of dopamine D 1/5 receptor activation on stimulus-induced BOLD responses in the hippocampus and its target regions depends on the history of previous stimulations. Neuroimage 2017; 152:119-129. [DOI: 10.1016/j.neuroimage.2017.02.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/23/2017] [Accepted: 02/25/2017] [Indexed: 10/20/2022] Open
|
23
|
Maurice T, Goguadze N. Role of σ 1 Receptors in Learning and Memory and Alzheimer's Disease-Type Dementia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 964:213-233. [PMID: 28315274 DOI: 10.1007/978-3-319-50174-1_15] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The present chapter will review the role of σ1 receptor in learning and memory and neuroprotection , against Alzheimer's type dementia. σ1 Receptor agonists have been tested in a variety of pharmacological and pathological models of learning impairments in rodents these last past 20 years. Their anti-amnesic effects have been explained by the wide-range modulatory role of σ1 receptors on Ca2+ mobilizations, neurotransmitter responses, and particularly glutamate and acetylcholine systems, and neurotrophic factors. Recent observations from genetic and pharmacological studies have shown that σ1 receptor can also be targeted in neurodegenerative diseases, and particularly Alzheimer's disease . Several compounds, acting partly through the σ1 receptor, have showed effective neuroprotection in transgenic mouse models of Alzheimer's disease . We will review the data and discuss the possible mechanisms of action, particularly focusing on oxidative stress and mitochondrial integrity, trophic factors and a novel hypothesis suggesting a functional interaction between the σ1 receptor and α7 nicotinic acetylcholine receptor. Finally, we will discuss the pharmacological peculiarities of non-selective σ1 receptor ligands, now developed as neuroprotectants in Alzheimer's disease , and positive modulators, recently described and that showed efficacy against learning and memory deficits.
Collapse
Affiliation(s)
- Tangui Maurice
- INSERM U1198, University of Montpellier, 34095, Montpellier, France.
| | - Nino Goguadze
- INSERM U1198, University of Montpellier, 34095, Montpellier, France
- Institute of Chemical Biology, Ilia State University, Tbilisi, 0162, GA, USA
| |
Collapse
|
24
|
Yang Z, Li L, Zheng J, Ma H, Tian S, Li J, Zhang H, Zhen X, Zhang X. Identification of a New Series of Potent Adenosine A 2A Receptor Antagonists Based on 4-Amino-5-carbonitrile Pyrimidine Template for the Treatment of Parkinson's Disease. ACS Chem Neurosci 2016; 7:1575-1584. [PMID: 27569066 DOI: 10.1021/acschemneuro.6b00218] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Adenosine receptor A2A antagonists have emerged as potential treatment for Parkinson's disease in the past decade. We have recently reported a series of adenosine receptor antagonists using heterocycles as bioisosteres for a potentially unstable acetamide. These compounds, while showing excellent potency and ligand efficiency, suffered from moderate cytochrome P450 inhibition and high clearance. Here we report a new series of adenosine receptor A2A antagonists based on a 4-amino-5-carbonitrile pyrimidine template. Compounds from this new template exhibit excellent potency and ligand efficiency with low cytochrome P450 inhibition. Although the clearance remains moderate to high, the leading compound, when dosed orally as low as 3 mg/kg, demonstrated excellent efficacy in the haloperidol induced catalepsy rat model for Parkinson's disease.
Collapse
Affiliation(s)
- Zhaohui Yang
- Jiangsu Key Laboratory of
Translational Research and Therapy for Neuro-Psychiatric-Diseases
and College of Pharmaceutical Sciences, Soochow University, Su Zhou, Jiangsu 215021, P. R. China
| | - Linlang Li
- Jiangsu Key Laboratory of
Translational Research and Therapy for Neuro-Psychiatric-Diseases
and College of Pharmaceutical Sciences, Soochow University, Su Zhou, Jiangsu 215021, P. R. China
| | - Jiyue Zheng
- Jiangsu Key Laboratory of
Translational Research and Therapy for Neuro-Psychiatric-Diseases
and College of Pharmaceutical Sciences, Soochow University, Su Zhou, Jiangsu 215021, P. R. China
| | - Haikuo Ma
- Jiangsu Key Laboratory of
Translational Research and Therapy for Neuro-Psychiatric-Diseases
and College of Pharmaceutical Sciences, Soochow University, Su Zhou, Jiangsu 215021, P. R. China
| | - Sheng Tian
- Jiangsu Key Laboratory of
Translational Research and Therapy for Neuro-Psychiatric-Diseases
and College of Pharmaceutical Sciences, Soochow University, Su Zhou, Jiangsu 215021, P. R. China
| | - Jiajun Li
- Jiangsu Key Laboratory of
Translational Research and Therapy for Neuro-Psychiatric-Diseases
and College of Pharmaceutical Sciences, Soochow University, Su Zhou, Jiangsu 215021, P. R. China
| | - Hongjian Zhang
- Jiangsu Key Laboratory of
Translational Research and Therapy for Neuro-Psychiatric-Diseases
and College of Pharmaceutical Sciences, Soochow University, Su Zhou, Jiangsu 215021, P. R. China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of
Translational Research and Therapy for Neuro-Psychiatric-Diseases
and College of Pharmaceutical Sciences, Soochow University, Su Zhou, Jiangsu 215021, P. R. China
| | - Xiaohu Zhang
- Jiangsu Key Laboratory of
Translational Research and Therapy for Neuro-Psychiatric-Diseases
and College of Pharmaceutical Sciences, Soochow University, Su Zhou, Jiangsu 215021, P. R. China
| |
Collapse
|
25
|
Perreault ML, Hasbi A, Shen MYF, Fan T, Navarro G, Fletcher PJ, Franco R, Lanciego JL, George SR. Disruption of a dopamine receptor complex amplifies the actions of cocaine. Eur Neuropsychopharmacol 2016; 26:1366-1377. [PMID: 27480020 DOI: 10.1016/j.euroneuro.2016.07.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/04/2016] [Accepted: 07/13/2016] [Indexed: 11/27/2022]
Abstract
Cocaine-induced increases in dopamine signaling in nucleus accumbens (NAc) play a significant role in cocaine seeking behavior. The majority of cocaine addiction research has focused on neuroanatomically segregated dopamine D1 and D2 receptor-expressing neurons, yet an involvement for those NAc neurons coexpressing D1 and D2 receptors in cocaine addiction has never been explored. In situ proximity ligation assay, confocal fluorescence resonance energy transfer and coimmunoprecipitation were used to show native D1 and D2 receptors formed a heteromeric complex in D1/D2 receptor-coexpressing neurons in rat and non-human primate NAc. D1-D2 heteromer expression was lower in NAc of adolescent rats compared to their adult counterparts. Functional disruption of the dopamine D1-D2 receptor heteromer, using a peptide targeting the site of interaction between the D1 and D2 receptor, induced conditioned place preference and increased NAc expression of ∆FosB. D1-D2 heteromer disruption also resulted in the promotion, exacerbation and acceleration of the locomotor activating and incentive motivational effects of cocaine in the self-administration paradigm. These findings support a model for tonic inhibition of basal and cocaine-induced reward processes by the D1-D2 heteromer thus highlighting its potential value as a novel target for drug discovery in cocaine addiction. Given that adolescents show increased drug abuse susceptibility, an involvement for reduced D1-D2 heteromer function in the heightened sensitivity to the rewarding effects of cocaine in adolescence is also implicated.
Collapse
Affiliation(s)
- Melissa L Perreault
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Ahmed Hasbi
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Maurice Y F Shen
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Theresa Fan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Gemma Navarro
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Paul J Fletcher
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Rafael Franco
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain; CIBERNED, Centro de Investigación en Red. Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - José L Lanciego
- CIBERNED, Centro de Investigación en Red. Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain; Department of Neurosciences, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Susan R George
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
26
|
Butini S, Nikolic K, Kassel S, Brückmann H, Filipic S, Agbaba D, Gemma S, Brogi S, Brindisi M, Campiani G, Stark H. Polypharmacology of dopamine receptor ligands. Prog Neurobiol 2016; 142:68-103. [PMID: 27234980 DOI: 10.1016/j.pneurobio.2016.03.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 01/26/2016] [Accepted: 03/15/2016] [Indexed: 01/11/2023]
Abstract
Most neurological diseases have a multifactorial nature and the number of molecular mechanisms discovered as underpinning these diseases is continuously evolving. The old concept of developing selective agents for a single target does not fit with the medical need of most neurological diseases. The development of designed multiple ligands holds great promises and appears as the next step in drug development for the treatment of these multifactorial diseases. Dopamine and its five receptor subtypes are intimately involved in numerous neurological disorders. Dopamine receptor ligands display a high degree of cross interactions with many other targets including G-protein coupled receptors, transporters, enzymes and ion channels. For brain disorders like Parkinsońs disease, schizophrenia and depression the dopaminergic system, being intertwined with many other signaling systems, plays a key role in pathogenesis and therapy. The concept of designed multiple ligands and polypharmacology, which perfectly meets the therapeutic needs for these brain disorders, is herein discussed as a general ligand-based concept while focusing on dopaminergic agents and receptor subtypes in particular.
Collapse
Affiliation(s)
- S Butini
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - K Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - S Kassel
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - H Brückmann
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - S Filipic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - D Agbaba
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - S Gemma
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - S Brogi
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - M Brindisi
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - G Campiani
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - H Stark
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany.
| |
Collapse
|
27
|
Wang Y, Guo L, Jiang HF, Zheng LT, Zhang A, Zhen XC. Allosteric Modulation of Sigma-1 Receptors Elicits Rapid Antidepressant Activity. CNS Neurosci Ther 2016; 22:368-77. [PMID: 26854125 PMCID: PMC6492821 DOI: 10.1111/cns.12502] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/27/2015] [Accepted: 11/28/2015] [Indexed: 02/06/2023] Open
Abstract
AIMS Sigma-1 receptors are involved in the pathophysiological process of several neuropsychiatric diseases such as epilepsy, depression. Allosteric modulation represents an important mechanism for receptor functional regulation. In this study, we examined antidepressant activity of the latest identified novel and selective allosteric modulator of sigma-1 receptor 3-methyl-phenyl-2, 3, 4, 5-tetrahydro-1H-benzo[d]azepin-7-ol (SOMCL-668). METHODS AND RESULTS A single administration of SOMCL-668 decreased the immobility time in the forced swimming test (FST) and tailing suspended test in mice, which were abolished by pretreatment of sigma-1 receptor antagonist BD1047. In the chronic unpredicted mild stress (CUMS) model, chronic application of SOMCL-668 rapidly ameliorated anhedonia-like behavior (within a week), accompanying with the enhanced expression of brain-derived neurotrophic factor (BDNF) and phosphorylation of glycogen synthase kinase 3β (GSK3β) (Ser-9) in the hippocampus. SOMCL-668 also rapidly promoted the phosphorylation of GSK3β (Ser-9) in an allosteric manner in vitro. In the cultured primary neurons, SOMCL-668 enhanced the sigma-1 receptor agonist-induced neurite outgrowth and the secretion of BDNF. CONCLUSION SOMCL-668, a novel allosteric modulator of sigma-1 receptors, elicits a potent and rapid acting antidepressant effect. The present data provide the first evidence that allosteric modulation of sigma-1 receptors may represent a new approach for antidepressant drug discovery.
Collapse
Affiliation(s)
- Yun Wang
- Jiangsu Key laboratory for Translational Research for Neuropsychiatric Diseases, The Collaborative Innovation Center for Brain Science, College of Pharmaceutical Sciences, Soochow University, Jiangsu, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmacology, Xuzhou Medical College, Jiangsu, China
| | - Lin Guo
- Jiangsu Key laboratory for Translational Research for Neuropsychiatric Diseases, The Collaborative Innovation Center for Brain Science, College of Pharmaceutical Sciences, Soochow University, Jiangsu, China
| | - Hua-Feng Jiang
- Jiangsu Key laboratory for Translational Research for Neuropsychiatric Diseases, The Collaborative Innovation Center for Brain Science, College of Pharmaceutical Sciences, Soochow University, Jiangsu, China
| | - Long-Tai Zheng
- Jiangsu Key laboratory for Translational Research for Neuropsychiatric Diseases, The Collaborative Innovation Center for Brain Science, College of Pharmaceutical Sciences, Soochow University, Jiangsu, China
| | - Ao Zhang
- Department of Medicinal chemistry, Shanghai Institute of Material Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xue-Chu Zhen
- Jiangsu Key laboratory for Translational Research for Neuropsychiatric Diseases, The Collaborative Innovation Center for Brain Science, College of Pharmaceutical Sciences, Soochow University, Jiangsu, China
| |
Collapse
|
28
|
Hiranita T. Identification of the Sigma-2 Receptor: Distinct from the Progesterone Receptor Membrane Component 1 (PGRMC1). ACTA ACUST UNITED AC 2016; 4. [PMID: 27376101 PMCID: PMC4930110 DOI: 10.4172/2329-6488.1000e130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Takato Hiranita
- Division of Neurotoxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), USA
| |
Collapse
|
29
|
Zhao J, Tao H, Xian W, Cai Y, Cheng W, Yin M, Liang G, Li K, Cui L, Zhao B. A Highly Selective Inhibitor of Glycine Transporter-1 Elevates the Threshold for Maximal Electroshock-Induced Tonic Seizure in Mice. Biol Pharm Bull 2016; 39:174-80. [DOI: 10.1248/bpb.b15-00501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jianghao Zhao
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University
| | - Hua Tao
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University
| | - Wenchuan Xian
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University
| | - Yujie Cai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University
| | - Wanwen Cheng
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University
| | - Mingkang Yin
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University
| | - Guocong Liang
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University
| | - Keshen Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University
| | - Bin Zhao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University
| |
Collapse
|
30
|
Thompson JL, Yang J, Lau B, Liu S, Baimel C, Kerr LE, Liu F, Borgland SL. Age-Dependent D1-D2 Receptor Coactivation in the Lateral Orbitofrontal Cortex Potentiates NMDA Receptors and Facilitates Cognitive Flexibility. Cereb Cortex 2015; 26:4524-4539. [PMID: 26405054 DOI: 10.1093/cercor/bhv222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The orbitofrontal cortex (OFC) integrates information about the environment to guide decision-making. Glutamatergic synaptic transmission mediated through N-methyl-d-aspartate receptors is required for optimal functioning of the OFC. Additionally, abnormal dopamine signaling in this region has been implicated in impulsive behavior and poor cognitive flexibility. Yet, despite the high prevalence of psychostimulants prescribed for attention deficit/hyperactivity disorder, there is little information on how dopamine modulates synaptic transmission in the juvenile or the adult OFC. Using whole-cell patch-clamp recordings in OFC pyramidal neurons, we demonstrated that while dopamine or selective D2-like receptor (D2R) agonists suppress excitatory synaptic transmission of juvenile or adult lateral OFC neurons; in juvenile lateral OFC neurons, higher concentrations of dopamine can target dopamine receptors that couple to a phospholipase C (PLC) signaling pathway to enhance excitatory synaptic transmission. Interfering with the formation of a putative D1R-D2R interaction blocked the potentiation of excitatory synaptic transmission. Furthermore, targeting the putative D1R-D2R complex with a biased agonist, SKF83959, not only enhanced excitatory synaptic transmission in a PLC-dependent manner, but also improved the performance of juvenile rats on a reversal-learning task. Our results demonstrate that dopamine signaling in the lateral OFC differs between juveniles and adults, through potential crosstalk between dopamine receptor subtypes.
Collapse
Affiliation(s)
- Jennifer L Thompson
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada V6T 1Z3.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Jinhui Yang
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Benjamin Lau
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Shuai Liu
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Corey Baimel
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada V6T 1Z3.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Lauren E Kerr
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Fang Liu
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | |
Collapse
|
31
|
Wu Z, Li L, Zheng LT, Xu Z, Guo L, Zhen X. Allosteric modulation of sigma-1 receptors by SKF83959 inhibits microglia-mediated inflammation. J Neurochem 2015; 134:904-14. [PMID: 26031312 DOI: 10.1111/jnc.13182] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 01/02/2023]
Abstract
Recent studies have shown that sigma-1 receptor orthodox agonists can inhibit neuroinflammation. SKF83959 (3-methyl-6-chloro-7,8-hydroxy-1-[3-methylphenyl]-2,3,4,5-tetrahydro-1H-3-benzazepine), an atypical dopamine receptor-1 agonist, has been recently identified as a potent allosteric modulator of sigma-1 receptor. Here, we investigated the anti-inflammatory effects of SKF83959 in lipopolysaccharide (LPS)-stimulated BV2 microglia. Our results indicated that SKF83959 significantly suppressed the expression/release of the pro-inflammatory mediators, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS), and inhibited the generation of reactive oxygen species. All of these responses were blocked by selective sigma-1 receptor antagonists (BD1047 or BD1063) and by ketoconazole (an inhibitor of enzyme cytochrome c17 to inhibit the synthesis of endogenous dehydroepiandrosterone, DHEA). Additionally, we found that SKF83959 promoted the binding activity of DHEA with sigma-1 receptors, and enhanced the inhibitory effects of DHEA on LPS-induced microglia activation in a synergic manner. Furthermore, in a microglia-conditioned media system, SKF83959 inhibited the cytotoxicity of conditioned medium generated by LPS-activated microglia toward HT-22 neuroblastoma cells. Taken together, our study provides the first evidence that allosteric modulation of sigma-1 receptors by SKF83959 inhibits microglia-mediated inflammation. SKF83959 is a potent allosteric modulator of sigma-1 receptor. Our results indicated that SKF83959 enhanced the activity of endogenous dehydroepiandrosterone (DHEA) in a synergic manner, and inhibited the activation of BV2 microglia and the expression/release of the pro-inflammatory mediators, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS).
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Allosteric Regulation
- Animals
- Anti-Inflammatory Agents/pharmacology
- Cell Line
- Culture Media, Conditioned/pharmacology
- Dehydroepiandrosterone/metabolism
- Enzyme Induction/drug effects
- Ethylenediamines/pharmacology
- Interleukin-10/metabolism
- Ketoconazole/pharmacology
- Lipopolysaccharides/pharmacology
- Male
- Mice
- Microglia/drug effects
- Microglia/pathology
- Narcotic Antagonists/pharmacology
- Neuroblastoma/pathology
- Neuroimmunomodulation/drug effects
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type II/biosynthesis
- Nitric Oxide Synthase Type II/genetics
- Piperazines/pharmacology
- Protein Binding/drug effects
- Rats
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Receptors, sigma/antagonists & inhibitors
- Receptors, sigma/drug effects
- Tumor Necrosis Factor-alpha/metabolism
- Sigma-1 Receptor
Collapse
Affiliation(s)
- Zhuang Wu
- Jiangsu Key laboratory of Translational Research and Therapy for Neuropsychiatric-disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Linlang Li
- Jiangsu Key laboratory of Translational Research and Therapy for Neuropsychiatric-disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Long-Tai Zheng
- Jiangsu Key laboratory of Translational Research and Therapy for Neuropsychiatric-disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zhihong Xu
- Jiangsu Huayi Technology Co, Changshu, Jiangsu, China
| | - Lin Guo
- Jiangsu Key laboratory of Translational Research and Therapy for Neuropsychiatric-disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xuechu Zhen
- Jiangsu Key laboratory of Translational Research and Therapy for Neuropsychiatric-disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
32
|
Guo L, Chen Y, Zhao R, Wang G, Friedman E, Zhang A, Zhen X. Allosteric modulation of sigma-1 receptors elicits anti-seizure activities. Br J Pharmacol 2015; 172:4052-65. [PMID: 25989224 PMCID: PMC4543612 DOI: 10.1111/bph.13195] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Application of orthosteric sigma-1 receptor agonists as anti-seizure drugs has been hindered by questionable efficacy and potential adverse effects. Here, we have investigated the anti-seizure effects of the novel and potent allosteric modulator of sigma-1 receptors, SKF83959 and its derivative SOMCL-668 (3-methyl-phenyl-2,3,4,5-tetrahydro-1H-benzo[d]azepin-7-ol). EXPERIMENTAL APPROACH The anti-seizure effects of SKF83959 were investigated in three mouse models, maximal electroshock seizures, pentylenetetrazole-induced convulsions and kainic acid-induced 'status epilepticus'. Also, in rats, the cortical epileptiform activity induced by topical application of picrotoxin was recorded in electrocorticograms. In rat hippocampal brain slices, effects of the drugs on the high potassium-evoked epileptiform local field potentials were studied. Anti-seizure activities of SOMCL-668, a newly developed sigma-1 receptor selective allosteric modulator, were also investigated. KEY RESULTS SKF83959 (20, 40 mg·kg(-1) ) exhibited anti -seizure actitity in the three mouse models and reduced the cortical epileptiform activity without alteration of spontaneous motor activity and motor coordination. These effects were blocked by the sigma-1 receptor antagonist BD1047, but not the dopamine D1 receptor antagonist SCH23390. SKF83959 alone did not directly inhibit the epileptiform firing of CA3 neurons induced by high potassium in hippocampal slices, but did potentiate inhibition by the orthosteric sigma-1 receptor agonist SKF10047. Lastly, a selective sigma-1 receptor allosteric modulator SOMCL-668, which does not bind to dopamine receptors, exerted similar anti-seizure activities. CONCLUSIONS AND IMPLICATIONS SKF83959 and SOMCL-668 displayed anti-seizure activities, indicating that allosteric modulation of sigma-1 receptors may provide a novel approach for discovering new anti-seizure drugs.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/therapeutic use
- Animals
- Anticonvulsants/pharmacology
- Anticonvulsants/therapeutic use
- Benzazepines/pharmacology
- Benzazepines/therapeutic use
- Hippocampus/drug effects
- Hippocampus/physiology
- Male
- Mice, Inbred C57BL
- Motor Activity/drug effects
- Rats, Sprague-Dawley
- Receptors, sigma/metabolism
- Seizures/drug therapy
- Seizures/metabolism
- Sigma-1 Receptor
Collapse
Affiliation(s)
- Lin Guo
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsycho-Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow UniversitySuzhou, Jiangsu Province, China
| | - Yanke Chen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsycho-Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow UniversitySuzhou, Jiangsu Province, China
| | - Rui Zhao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsycho-Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow UniversitySuzhou, Jiangsu Province, China
| | - Guanghui Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsycho-Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow UniversitySuzhou, Jiangsu Province, China
| | - Eitan Friedman
- Department of Pharmacology and Neuroscience, School of Medicine at CCNY, City University of New YorkNew York, NY, USA
| | - Ao Zhang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghai, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsycho-Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow UniversitySuzhou, Jiangsu Province, China
| |
Collapse
|
33
|
Ma J, Long LH, Hu ZL, Zhang H, Han J, Ni L, Wang F, Chen JG, Wu PF. Activation of D1-like receptor-dependent phosphatidylinositol signal pathway by SKF83959 inhibits voltage-gated sodium channels in cultured striatal neurons. Brain Res 2015; 1615:71-79. [PMID: 25912434 DOI: 10.1016/j.brainres.2015.04.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 04/07/2015] [Accepted: 04/16/2015] [Indexed: 11/15/2022]
Abstract
Dopamine, a key neurotransmitter mediating the rewarding effects, exerts some of its effects by modulating neuronal excitability of striatal medium spiny neurons. A D1-like dopamine receptor-dependent phosphatidylinositol signal pathway exists in the striatum, however little is known about its role in the dopaminergic modulation of striatal neuronal excitability. 3-Methyl-6-chloro-7, 8-hydroxy-1-(3-methylphenyl)-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF83959) is a selective D1 receptor agonist with high-affinity. Here, we observed its effect on the voltage-gated sodium channels (VGSCs) in primary cultured striatal neurons by whole cell patch-clamp technique. We found that SKF83959 induced an inhibition on VGSCs in a dose-dependent manner in striatal neurons (IC50 value: 3.31 ± 0.39 μM), which could be prevented by antagonist of D1 receptor, but not that of D2, α1 adrenergic, or cholinoceptor. The effect of SKF83959 on VGSCs was also prevented by pretreatment with inhibitors of phospholipase C (PLC) and protein kinases C (PKC), but the inositol-1,4,5-phosphate 3 (IP3) antagonist did not occlude SKF83959 (1μM)-induced reduction of VGSCs. These data indicate that SKF83959 inhibits VGSCs in cultured striatal neurons via D1-like receptor-phosphatidylinositol-PKC pathway, which may underlie the dopaminergic modulation on striatal neuronal excitability.
Collapse
Affiliation(s)
- Jin Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China
| | - Li-Hong Long
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Wuhan City, Hubei 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan City, Hubei 430030, China; The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuang-Li Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Wuhan City, Hubei 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan City, Hubei 430030, China
| | - Hai Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China
| | - Jun Han
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China
| | - Lan Ni
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Wuhan City, Hubei 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan City, Hubei 430030, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Wuhan City, Hubei 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan City, Hubei 430030, China; The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Wuhan City, Hubei 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan City, Hubei 430030, China; The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peng-Fei Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Wuhan City, Hubei 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan City, Hubei 430030, China; The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
34
|
Conroy JL, Free RB, Sibley DR. Identification of G protein-biased agonists that fail to recruit β-arrestin or promote internalization of the D1 dopamine receptor. ACS Chem Neurosci 2015; 6:681-92. [PMID: 25660762 DOI: 10.1021/acschemneuro.5b00020] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The D1 dopamine receptor (D1R) has been implicated in numerous neuropsychiatric disorders, and D1R-selective ligands have potential as therapeutic agents. Previous studies have identified substituted benzazepines as D1R-selective agonists, but the in vivo effects of these compounds have not correlated well with their in vitro pharmacological activities. A series of substituted benzazepines, and structurally dissimilar D1R-selective agonists, were tested for their functional effects on D1R-mediated cAMP accumulation, D1R-promoted β-arrestin recruitment, and D1R internalization using live cell functional assays. All compounds tested elicited an increase in the level of cAMP accumulation, albeit with a range of efficacies. However, when the compounds were evaluated for β-arrestin recruitment, a subset of substituted benzazepines, SKF83959, SKF38393, SKF82957, SKF77434, and SKF75670, failed to activate this pathway, whereas the others showed similar activation efficacies as seen with cAMP accumulation. When tested as antagonists, the five biased compounds all inhibited dopamine-stimulated β-arrestin recruitment. Further, D1R internalization assays revealed a corroborating pattern of activity in that the G protein-biased compounds failed to promote D1R internalization. Interestingly, the biased signaling was unique for the D1R, as the same compounds were agonists of the related D5 dopamine receptor (D5R), but revealed no signaling bias. We have identified a group of substituted benzazepine ligands that are agonists at D1R-mediated G protein signaling, but antagonists of D1R recruitment of β-arrestin, and also devoid of agonist-induced receptor endocytosis. These data may be useful for interpreting the contrasting effects of these compounds in vitro versus in vivo, and also for the understanding of pathway-selective signaling of the D1R.
Collapse
Affiliation(s)
- Jennie L. Conroy
- Molecular Neuropharmacology Section,
National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-9405, United States
| | - R. Benjamin Free
- Molecular Neuropharmacology Section,
National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-9405, United States
| | - David R. Sibley
- Molecular Neuropharmacology Section,
National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-9405, United States
| |
Collapse
|
35
|
Jiang B, Wang F, Yang S, Fang P, Deng ZF, Xiao JL, Hu ZL, Chen JG. SKF83959 produces antidepressant effects in a chronic social defeat stress model of depression through BDNF-TrkB pathway. Int J Neuropsychopharmacol 2015; 18:pyu096. [PMID: 25522427 PMCID: PMC4438541 DOI: 10.1093/ijnp/pyu096] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 11/12/2014] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND SKF83959 stimulates the phospholipase Cβ/inositol phosphate 3 pathway, resulting in the activation of Ca(2+)/calmodulin-dependent kinase IIα, which affects the synthesis of brain-derived neurotrophic factor, a neurotrophic factor critical for the pathophysiology of depression. Previous reports showed that SKF83959 elicited antidepressant activity in the forced swim test and tail suspension test as a novel triple reuptake inhibitor. However, there are no studies showing the effects of SKF83959 in a chronic stress model of depression and the role of phospholipase C/inositol phosphate 3/calmodulin-dependent kinase IIα/brain-derived neurotrophic factor pathway in SKF83959-mediated antidepressant effects. METHODS In this study, SKF83959 was firstly investigated in the chronic social defeat stress model of depression. The changes in hippocampal neurogenesis, dendrite spine density, and brain-derived neurotrophic factor signaling pathway after chronic social defeat stress and SKF83959 treatment were then investigated. Pharmacological inhibitors and small interfering RNA/short hairpin RNA methods were further used to explore the antidepressive mechanisms of SKF83959. RESULTS We found that SKF83959 produced antidepressant effects in the chronic social defeat stress model and also restored the chronic social defeat stress-induced decrease in hippocampal brain-derived neurotrophic factor signaling pathway, dendritic spine density, and neurogenesis. By using various inhibitors and siRNA/shRNA methods, we further demonstrated that the hippocampal dopamine D5 receptor, phospholipase C/inositol phosphate 3/ calmodulin-dependent kinase IIα pathway, and brain-derived neurotrophic factor system are all necessary for the SKF83959 effects. CONCLUSION These results suggest that SKF83959 can be developed as a novel antidepressant and produces antidepressant effects via the hippocampal D5/ phospholipase C/inositol phosphate 3/calmodulin-dependent kinase IIα/brain-derived neurotrophic factor pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Drs Jiang, Wang, Yang, Fang, Deng, Xiao, and Chen); Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China (Drs Wang, Hu, and Chen); The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China (Drs Wang, Hu, and Chen); The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China (Drs Wang and Chen).
| |
Collapse
|
36
|
Shen MYF, Perreault ML, Fan T, George SR. The dopamine D1-D2 receptor heteromer exerts a tonic inhibitory effect on the expression of amphetamine-induced locomotor sensitization. Pharmacol Biochem Behav 2015; 128:33-40. [PMID: 25444866 PMCID: PMC4460003 DOI: 10.1016/j.pbb.2014.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 11/04/2014] [Accepted: 11/08/2014] [Indexed: 01/08/2023]
Abstract
A role for the dopamine D1-D2 receptor heteromer in the regulation of reward and addiction-related processes has been previously implicated. In the present study, we examined the effects of D1-D2 heteromer stimulation by the agonist SKF 83959 and its disruption by a selective TAT-D1 peptide on amphetamine-induced locomotor sensitization, a behavioral model widely used to study the neuroadaptations associated with psychostimulant addiction. D1-D2 heteromer activation by SKF 83959 did not alter the acute locomotor effects of amphetamine but significantly inhibited amphetamine-induced locomotor responding across the 5day treatment regimen. In addition, a single injection of SKF 83959 was sufficient to abolish the expression of locomotor sensitization induced by a priming injection of amphetamine after a 72-hour withdrawal. Conversely, inhibition of D1-D2 heteromer activity by the TAT-D1 peptide enhanced subchronic amphetamine-induced locomotion and the expression of amphetamine locomotor sensitization. Treatment solely with the TAT-D1 disrupting peptide during the initial 5day treatment phase was sufficient to induce a sensitized locomotor phenotype in response to the priming injection of amphetamine. Together these findings demonstrate that the dopamine D1-D2 receptor heteromer exerts a tonic inhibitory control on neurobiological processes involved in sensitization to amphetamine, indicating that the dopamine D1-D2 receptor heteromer may be a novel molecular substrate in addiction processes involving psychostimulants.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Amphetamine/pharmacology
- Amphetamine-Related Disorders/physiopathology
- Amphetamine-Related Disorders/psychology
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Central Nervous System Stimulants/pharmacology
- Dopamine Antagonists/pharmacology
- Dopamine D2 Receptor Antagonists/pharmacology
- Male
- Motor Activity/drug effects
- Motor Activity/physiology
- Multiprotein Complexes/chemistry
- Multiprotein Complexes/physiology
- Peptide Fragments/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/antagonists & inhibitors
- Receptors, Dopamine D1/chemistry
- Receptors, Dopamine D1/physiology
- Receptors, Dopamine D2/chemistry
- Receptors, Dopamine D2/physiology
- Reward
Collapse
Affiliation(s)
- Maurice Y F Shen
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | - Melissa L Perreault
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | - Theresa Fan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | - Susan R George
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
37
|
Perreault ML, Shen MYF, Fan T, George SR. Regulation of c-fos expression by the dopamine D1-D2 receptor heteromer. Neuroscience 2014; 285:194-203. [PMID: 25446350 DOI: 10.1016/j.neuroscience.2014.11.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/03/2014] [Accepted: 11/10/2014] [Indexed: 11/24/2022]
Abstract
The dopamine D1 and D2 receptors form the D1-D2 receptor heteromer in a subset of neurons and couple to the Gq protein to regulate intracellular calcium signaling. In the present study the effect of D1-D2 heteromer activation and disruption on neuronal activation in the rat brain was mapped. This was accomplished using the dopamine agonist SKF 83959 to activate the D1-D2 heteromer in combination with a TAT-D1 disrupting peptide we developed, and which has been shown to disrupt the D1/D2 receptor interaction and antagonize D1-D2 heteromer-induced cell signaling and behavior. Acute SKF 83959 administration to rats induced significant c-fos expression in the nucleus accumbens that was significantly inhibited by TAT-D1 pretreatment. No effects of SKF 83959 were seen in caudate putamen. D1-D2 heteromer disruption by TAT-D1 did not have any effects in any striatal subregions, but induced significant c-fos immunoreactivity in a number of cortical regions including the orbitofrontal cortex, prelimbic and infralimbic cortices and piriform cortex. The induction of c-fos by TAT-D1 was also evident in the anterior olfactory nucleus, as well as the lateral habenula and thalamic nuclei. These findings show for the first time that the D1-D2 heteromer can differentially regulate c-fos expression in a region-dependent manner either through its activation or through tonic inhibition of neuronal activity.
Collapse
Affiliation(s)
- M L Perreault
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - M Y F Shen
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - T Fan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - S R George
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
38
|
Lee SM, Yang Y, Mailman RB. Dopamine D1 receptor signaling: does GαQ-phospholipase C actually play a role? J Pharmacol Exp Ther 2014; 351:9-17. [PMID: 25052835 PMCID: PMC4165024 DOI: 10.1124/jpet.114.214411] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/21/2014] [Indexed: 12/19/2022] Open
Abstract
Despite numerous studies showing therapeutic potential, no central dopamine D1 receptor ligand has ever been approved, because of potential limitations, such as hypotension, seizures, and tolerance. Functional selectivity has been widely recognized as providing a potential mechanism to develop novel therapeutics from existing targets, and a highly biased, functionally selective D1 ligand might overcome some of the past limitations. SKF-83959 [6-chloro-3-methyl-1-(m-tolyl)-2,3,4,5-tetrahydro-1H-benzo[d]azepine-7,8-diol] is reported to be a highly biased D1 ligand, having full agonism at D1-mediated activation of phospholipase C (PLC) signaling (via GαQ) and antagonism at D1-mediated adenylate cyclase signaling (via GαOLF/S). For this reason, numerous studies have used this compound to elucidate the physiologic role of D1-PLC signaling, including a novel molecular mechanism (GαQ-PLC activation via D1-D2 heterodimers). There is, however, contradictory literature that suggests that SKF-83959 is actually a partial agonist at both D1-mediated adenylate cyclase and β-arrestin recruitment. Moreover, the D1-mediated PLC stimulation has also been questioned. This Minireview examines 30 years of relevant literature and proposes that the data strongly favor alternate hypotheses: first, that SKF-83959 is a typical D1 partial agonist; and second, that the reported activation of PLC by SKF-83959 and related benzazepines likely is due to off-target effects, not actions at D1 receptors. If these hypotheses are supported by future studies, it would suggest that caution should be used regarding the role of PLC and downstream pathways in D1 signaling.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Dopamine Agonists/pharmacology
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Humans
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/metabolism
- Signal Transduction
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Sang-Min Lee
- Departments of Pharmacology (S.-M.L., Y.Y., R.B.M.) and Neurology (Y.Y., R.B.M.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Yang Yang
- Departments of Pharmacology (S.-M.L., Y.Y., R.B.M.) and Neurology (Y.Y., R.B.M.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Richard B Mailman
- Departments of Pharmacology (S.-M.L., Y.Y., R.B.M.) and Neurology (Y.Y., R.B.M.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
39
|
SKF-83959 is not a highly-biased functionally selective D1 dopamine receptor ligand with activity at phospholipase C. Neuropharmacology 2014; 86:145-54. [PMID: 24929112 DOI: 10.1016/j.neuropharm.2014.05.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/23/2014] [Accepted: 05/29/2014] [Indexed: 11/21/2022]
Abstract
SKF-83959 [6-chloro-7,8-dihydroxy-3-methyl-1-(3-methylphenyl)-2,3,4,5-tetrahydro-1H-3-benzazepine] is reported to be a functionally selective dopamine D1 receptor ligand with high bias for D1-mediated phospholipase C (PLC) versus D1-coupled adenylate cyclase signaling. This signaling bias is proposed to explain behavioral activity in both rat and primate Parkinson's disease models, and a D1-D2 heterodimer has been proposed as the underlying mechanism. We have conducted an in-depth pharmacological characterization of this compound in dopamine D1 and D2 receptors in both rat brain and heterologous systems expressing human D1 or D2 receptors. Contrary to common assumptions, SKF-83959 is similar to the classical, well-characterized partial agonist SKF38393 in all systems. It is a partial agonist (not an antagonist) at adenylate cyclase in vitro and ex vivo, and is a partial agonist in D1-mediated β-arrestin recruitment. Contrary to earlier reports, it does not have D1-mediated effects on PLC signaling in heterologous systems. Because drug metabolites can also contribute, its 3-N-demethylated analog also was synthesized and tested. As expected from the known structure-activity relationships of the benzazepines, this compound also had high affinity for the D1 receptor and somewhat higher intrinsic activity than the parent ligand, and also might contribute to in vivo effects of SKF-83959. Together, these data demonstrate that SKF-83959 is not a highly-biased functionally selective D1 ligand, and that its reported behavioral data can be explained solely by its partial D1 agonism in canonical signaling pathway(s). Mechanisms that have been proposed based on the purported signaling novelty of SKF-83959 at PLC should be reconsidered.
Collapse
|
40
|
Effects of SKF83959 on the excitability of hippocampal CA1 pyramidal neurons: a modeling study. Acta Pharmacol Sin 2014; 35:738-51. [PMID: 24858313 DOI: 10.1038/aps.2014.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/03/2014] [Indexed: 12/31/2022]
Abstract
AIM 3-Methyl-6-chloro-7,8-hydroxy-1-(3-methylphenyl)-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF83959) have been shown to affect several types of voltage-dependent channels in hippocampal pyramidal neurons. The aim of this study was to determine how modulation of a individual type of the channels by SKF83959 contributes to the overall excitability of CA1 pyramidal neurons during either direct current injections or synaptic activation. METHODS Rat hippocampal slices were prepared. The kinetics of voltage-dependent Na(+) channels and neuronal excitability and depolarization block in CA1 pyramidal neurons were examined using whole-cell recording. A realistic mathematical model of hippocampal CA1 pyramidal neuron was used to simulate the effects of SKF83959 on neuronal excitability. RESULTS SKF83959 (50 μmol/L) shifted the inactivation curve of Na(+) current by 10.3 mV but had no effect on the activation curve in CA1 pyramidal neurons. The effects of SKF83959 on passive membrane properties, including a decreased input resistance and depolarized resting potential, predicted by our simulations were in agreement with the experimental data. The simulations showed that decreased excitability of the soma by SKF83959 (examined with current injection at the soma) was only observed when the membrane potential was compensated to the control levels, whereas the decreased dendritic excitability (examined with current injection at the dendrite) was found even without membrane potential compensation, which led to a decreased number of action potentials initiated at the soma. Moreover, SKF83959 significantly facilitated depolarization block in CA1 pyramidal neurons. SKF83959 decreased EPSP temporal summation and, of physiologically greater relevance, the synaptic-driven firing frequency. CONCLUSION SKF83959 decreased the excitability of CA1 pyramidal neurons even though the drug caused the membrane potential depolarization. The results may reveal a partial mechanism for the drug's anti-Parkinsonian effects and may also suggest that SKF83959 has a potential antiepileptic effect.
Collapse
|
41
|
Almansa C, Vela JM. Selective sigma-1 receptor antagonists for the treatment of pain. Future Med Chem 2014; 6:1179-99. [PMID: 25078137 DOI: 10.4155/fmc.14.54] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The sigma-1 receptor (σ1R) is located in areas of the CNS key for pain control and belongs to a unique target class with chaperoning functions over different molecular targets involved in transmission and amplification of nociceptive messages. Preclinical evidence supports a role for σ1R antagonists in the treatment of pain states where hypersensitivity develops as hyperalgesia and allodynia, two common symptoms encountered in neuropathic and other chronic pain conditions. Additionally, σ1R antagonists increase opioid analgesia without increasing opioid-related unwanted effects, which point to their potential use as opioid adjuvant therapy. This review summarizes the structure and function of the σ1R as well as the medicinal chemistry and pharmacological studies directed to the identification of σ1R antagonists for the treatment of pain.
Collapse
Affiliation(s)
- Carmen Almansa
- Drug Discovery and Preclinical Development, ESTEVE, Baldiri Reixach, 4-8, 08028 Barcelona, Spain
| | | |
Collapse
|
42
|
Zvejniece L, Vavers E, Svalbe B, Vilskersts R, Domracheva I, Vorona M, Veinberg G, Misane I, Stonans I, Kalvinsh I, Dambrova M. The cognition-enhancing activity of E1R, a novel positive allosteric modulator of sigma-1 receptors. Br J Pharmacol 2014; 171:761-71. [PMID: 24490863 PMCID: PMC3969087 DOI: 10.1111/bph.12506] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 10/16/2013] [Accepted: 10/27/2013] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Here, we describe the in vitro and in vivo effects of (4R,5S)-2-(5-methyl-2-oxo-4-phenyl-pyrrolidin-1-yl)-acetamide (E1R), a novel positive allosteric modulator of sigma-1 receptors. EXPERIMENTAL APPROACH E1R was tested for sigma receptor binding activity in a [³H](+)-pentazocine assay, in bradykinin (BK)-induced intracellular Ca²⁺ concentration ([Ca²⁺](i)) assays and in an electrically stimulated rat vas deferens model. E1R's effects on cognitive function were tested using passive avoidance (PA) and Y-maze tests in mice. A selective sigma-1 receptor antagonist (NE-100), was used to study the involvement of the sigma-1 receptor in the effects of E1R. The open-field test was used to detect the effects of E1R on locomotion. KEY RESULTS Pretreatment with E1R enhanced the selective sigma-1 receptor agonist PRE-084's stimulating effect during a model study employing electrically stimulated rat vasa deferentia and an assay measuring the BK-induced [Ca²⁺](i) increase. Pretreatment with E1R facilitated PA retention in a dose-related manner. Furthermore, E1R alleviated the scopolamine-induced cognitive impairment during the PA and Y-maze tests in mice. The in vivo and in vitro effects of E1R were blocked by treatment with the selective sigma-1 receptor antagonist NE-100. E1R did not affect locomotor activity. CONCLUSION AND IMPLICATIONS E1R is a novel 4,5-disubstituted derivative of piracetam that enhances cognition and demonstrates efficacy against scopolamine-induced cholinergic dysfunction in mice. These effects are attributed to its positive modulatory action on the sigma-1 receptor and this activity may be relevant when developing new drugs for treating cognitive symptoms related to neurodegenerative diseases.
Collapse
Affiliation(s)
- L Zvejniece
- Latvian Institute of Organic SynthesisRiga, Latvia
| | - E Vavers
- Latvian Institute of Organic SynthesisRiga, Latvia
- Riga Stradins UniversityRiga, Latvia
| | - B Svalbe
- Latvian Institute of Organic SynthesisRiga, Latvia
- Faculty of Medicine, University of LatviaRiga, Latvia
| | - R Vilskersts
- Latvian Institute of Organic SynthesisRiga, Latvia
- Riga Stradins UniversityRiga, Latvia
| | - I Domracheva
- Latvian Institute of Organic SynthesisRiga, Latvia
| | - M Vorona
- Latvian Institute of Organic SynthesisRiga, Latvia
| | - G Veinberg
- Latvian Institute of Organic SynthesisRiga, Latvia
| | | | | | - I Kalvinsh
- Latvian Institute of Organic SynthesisRiga, Latvia
| | - M Dambrova
- Latvian Institute of Organic SynthesisRiga, Latvia
- Riga Stradins UniversityRiga, Latvia
| |
Collapse
|
43
|
Chun LS, Free RB, Doyle TB, Huang XP, Rankin ML, Sibley DR. D1-D2 dopamine receptor synergy promotes calcium signaling via multiple mechanisms. Mol Pharmacol 2013; 84:190-200. [PMID: 23680635 PMCID: PMC3716318 DOI: 10.1124/mol.113.085175] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/16/2013] [Indexed: 01/11/2023] Open
Abstract
The D(1) dopamine receptor (D(1)R) has been proposed to form a hetero-oligomer with the D(2) dopamine receptor (D(2)R), which in turn results in a complex that couples to phospholipase C-mediated intracellular calcium release. We have sought to elucidate the pharmacology and mechanism of action of this putative signaling pathway. Dopamine dose-response curves assaying intracellular calcium mobilization in cells heterologously expressing the D(1) and D(2) subtypes, either alone or in combination, and using subtype selective ligands revealed that concurrent stimulation is required for coupling. Surprisingly, characterization of a putative D(1)-D(2) heteromer-selective ligand, 6-chloro-2,3,4,5-tetrahydro-3-methyl-1-(3-methylphenyl)-1H-3-benzazepine-7,8-diol (SKF83959), found no stimulation of calcium release, but it did find a broad range of cross-reactivity with other G protein-coupled receptors. In contrast, SKF83959 appeared to be an antagonist of calcium mobilization. Overexpression of G(qα) with the D(1) and D(2) dopamine receptors enhanced the dopamine-stimulated calcium response. However, this was also observed in cells expressing G(qα) with only the D1R. Inactivation of Gi or Gs with pertussis or cholera toxin, respectively, largely, but not entirely, reduced the calcium response in D(1)R and D(2)R cotransfected cells. Moreover, sequestration of G(βγ) subunits through overexpression of G protein receptor kinase 2 mutants either completely or largely eliminated dopamine-stimulated calcium mobilization. Our data suggest that the mechanism of D(1)R/D(2)R-mediated calcium signaling involves more than receptor-mediated G(q) protein activation, may largely involve downstream signaling pathways, and may not be completely heteromer-specific. In addition, SKF83959 may not exhibit selective activation of D(1)-D(2) heteromers, and its significant cross-reactivity to other receptors warrants careful interpretation of its use in vivo.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Calcium/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Cell Line
- Dopamine/pharmacology
- GTP-Binding Proteins/metabolism
- HEK293 Cells
- Humans
- Ligands
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/metabolism
Collapse
Affiliation(s)
- Lani S Chun
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-9405, USA
| | | | | | | | | | | |
Collapse
|