1
|
Horonyova P, Durisova I, Cermakova P, Babelova L, Buckova B, Sofrankova L, Valachovic M, Hsu YHH, Balazova M. The subtherapeutic dose of valproic acid induces the activity of cardiolipin-dependent proteins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149501. [PMID: 39079622 DOI: 10.1016/j.bbabio.2024.149501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/29/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
A mood-stabilizing anticonvulsant valproic acid (VPA) is a drug with a pleiotropic effect on cells. Here, we describe the impact of VPA on the metabolic function of human HAP1 cells. We show that VPA altered the biosynthetic pathway of cardiolipin (CL) and affected the activities of mitochondrial enzymes such as pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and NADH dehydrogenase. We demonstrate that a therapeutic dose of VPA (0.6 mM) has a harmful effect on cell growth and increases the production of reactive oxygen species and superoxides. On the contrary, less concentrated VPA (0.06 mM) increased the activities of CL-dependent enzymes leading to an increased level of oxidative phosphorylation and ATP production. The effect of VPA was also tested on the Barth syndrome model, which is characterized by a reduced amount of CL and an increased level of monolyso-CL. In this model, VPA treatment slightly attenuated the mitochondrial defects by altering the activities of CL-dependent enzymes. However, the presence of CL was essential for the increase in ATP production by VPA. Our findings highlight the potential therapeutic role of VPA in normalizing mitochondrial function in BTHS and shed light on the intricate interplay between lipid metabolism and mitochondrial physiology in health and disease. SUMMARY: This study investigates the dose-dependent effect of valproate, a mood-stabilizing drug, on mitochondrial function. The therapeutic concentration reduced overall cellular metabolic activity, while a subtherapeutic concentration notably improved the function of cardiolipin-dependent proteins within mitochondria. These findings shed light on novel aspects of valproate's effect and suggest potential practical applications for its use. By elucidating the differential effects of valproate doses on mitochondrial activity, this research underscores the drug's multifaceted role in cellular metabolism and highlights avenues for further exploration in therapeutic interventions.
Collapse
Affiliation(s)
- Paulina Horonyova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ivana Durisova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Petra Cermakova
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Lenka Babelova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbora Buckova
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Lucia Sofrankova
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Slovakia
| | - Martin Valachovic
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Maria Balazova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
2
|
Chen J, Gao Y, Liu N, Hai D, Wei W, Liu Y, Lan X, Jin X, Yu J, Ma L. Mechanism of NLRP3 Inflammasome in Epilepsy and Related Therapeutic Agents. Neuroscience 2024; 546:157-177. [PMID: 38574797 DOI: 10.1016/j.neuroscience.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/05/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Epilepsy is one of the most widespread and complex diseases in the central nervous system (CNS), affecting approximately 65 million people globally, an important factor resulting in neurological disability-adjusted life year (DALY) and progressive cognitive dysfunction. Medication is the most essential treatment. The currently used drugs have shown drug resistance in some patients and only control symptoms; the development of novel and more efficacious pharmacotherapy is imminent. Increasing evidence suggests neuroinflammation is involved in the occurrence and development of epilepsy, and high expression of NLRP3 inflammasome has been observed in the temporal lobe epilepsy (TLE) brain tissue of patients and animal models. The inflammasome is a crucial cause of neuroinflammation by activating IL-1β and IL-18. Many preclinical studies have confirmed that regulating NLRP3 inflammasome pathway can prevent the development of epilepsy, reduce the severity of epilepsy, and play a neuroprotective role. Therefore, regulating NLRP3 inflammasome could be a potential target for epilepsy treatment. In summary, this review describes the priming and activation of inflammasome and its biological function in the progression of epilepsy. In addition, we reviewes the current pharmacological researches for epilepsy based on the regulation of NLRP3 inflammasome, aiming to provide a basis and reference for developing novel antiepileptic drugs.
Collapse
Affiliation(s)
- Juan Chen
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Yuan Gao
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Ning Liu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Dongmei Hai
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Wei Wei
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Yue Liu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaobing Lan
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Xueqin Jin
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Jianqiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Lin Ma
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
3
|
Jamal M, Azam M, Simjee SU. Combination of metformin and sub-therapeutic dose of valproic acid prevent valproic acid-induced toxicity in animal model of epilepsy. Drug Chem Toxicol 2024; 47:287-295. [PMID: 36650908 DOI: 10.1080/01480545.2023.2168689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/18/2022] [Accepted: 10/31/2022] [Indexed: 01/19/2023]
Abstract
Valproic acid (VPA) is one of the most prescribed drugs for epilepsy. Extended use of VPA not only induces hepatotoxicity but also impairs the cognitive functions. Metformin has been reported to prevent epileptogenesis and enhance memory. To counter the VPA-induced adverse events, it is hypothesized that combination of sub-therapeutic dose of VPA with metformin may attenuate the toxicity stemming from the therapeutic dose of VPA. Pentylenetetrazole (PTZ)-induced kindling model of epilepsy in mice was used to assess the combined effects of sub-therapeutic dose of VPA (100 mg/kg) and metformin (200 mg/kg). The memory performance was analyzed by passive avoidance test, while alkaline comet assay was used to determine genotoxicity. Histopathological examination and serum biochemical analysis was performed to determine hepatotoxicity. Results showed that combination dose of VPA with metformin reduced seizure scores. VPA (300 mg/kg) administered as a single agent did not enhance memory impairment caused by PTZ, however, combination of sub-therapeutic dose of VPA with metformin enhanced memory function. Furthermore, in alkaline comet assay, combination therapy demonstrated reduced genotoxicity compared to the VPA 300 mg/kg. Histopathological examination of liver and analysis of serum hepatic enzymes revealed that combination therapy (VPA + metformin) reversed the toxicity as seen in case of PTZ or VPA (300 mg/kg) treated animals with no other treatment given. Based on the study data, it is concluded that the combination of sub-therapeutic dose of VPA with metformin might be used for epileptic seizures. This will prevent the hepatotoxicity and enhanced memory functions as compared to the VPA given as a single agent therapy.
Collapse
Affiliation(s)
- Muhammad Jamal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Azam
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Shabana Usman Simjee
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
4
|
Zhang M, Wang W, Ye Q, Fu Y, Li X, Yang K, Gao F, Zhou A, Wei Y, Tian S, Li S, Wei F, Shi W, Li WD. Histone deacetylase inhibitors VPA and WT161 ameliorate the pathological features and cognitive impairments of the APP/PS1 Alzheimer's disease mouse model by regulating the expression of APP secretases. Alzheimers Res Ther 2024; 16:15. [PMID: 38245771 PMCID: PMC10799458 DOI: 10.1186/s13195-024-01384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a degenerative neurological disorder. Recent studies have indicated that histone deacetylases (HDACs) are among the most prominent epigenetic therapy targets and that HDAC inhibitors have therapeutic effects on AD. Here, we identified sodium valproate (VPA), a pan-HDAC inhibitor, and WT161, a novel HDAC6 selective inhibitor, as potential therapeutic agents for AD. Underlying molecular mechanisms were investigated. METHODS A cellular model, N2a-APPswe, was established via lentiviral infection, and the APPswe/PSEN1dE9 transgenic mouse model was employed in the study. LC-MS/MS was applied to quantify the concentration of WT161 in the mouse brain. Western blotting, immunohistochemical staining, thioflavin-S staining and ELISA were applied to detect protein expression in cells, tissues, or serum. RNA interference was utilized to knockdown the expression of specific genes in cells. The cognitive function of mice was assessed via the nest-building test, novel object recognition test and Morris water maze test. RESULTS Previous studies have focused mainly on the impact of HDAC inhibitors on histone deacetylase activity. Our study discovered that VPA and WT161 can downregulate the expression of multiple HDACs, such as HDAC1 and HDAC6, in both AD cell and mouse models. Moreover, they also affect the expression of APP and APP secretases (BACE1, PSEN1, ADAM10). RNA interference and subsequent vitamin C induction further confirmed that the expression of APP and APP secretases is indeed regulated by HDAC1 and HDAC6, with the JNK pathway being the intermediate link in this regulatory process. Through the above pathways, VPA and WT161 effectively reduced Aβ deposition in both AD cell and mouse models and significantly improved cognitive function in AD mice. CONCLUSIONS In general, we have discovered that the HDAC6-JNK-APP secretases cascade is an important pathway for VPA and WT161 to exert their therapeutic effects on AD. Investigations into the safety and efficacy of VPA and WT161 were also conducted, providing essential preclinical evidence for assessing these two epigenetic drugs for the treatment of AD.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Prenatal Diagnostic Center, Yiwu Maternity and Children Hospital, Yiwu, 322000, China
| | - Wanyao Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Qun Ye
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yun Fu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Xuemin Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ke Yang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Fan Gao
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - An Zhou
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yonghui Wei
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Shuang Tian
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Shen Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
| | - Fengjiang Wei
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Wentao Shi
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Wei-Dong Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
5
|
Kaiser J, Nay K, Horne CR, McAloon LM, Fuller OK, Muller AG, Whyte DG, Means AR, Walder K, Berk M, Hannan AJ, Murphy JM, Febbraio MA, Gundlach AL, Scott JW. CaMKK2 as an emerging treatment target for bipolar disorder. Mol Psychiatry 2023; 28:4500-4511. [PMID: 37730845 PMCID: PMC10914626 DOI: 10.1038/s41380-023-02260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Current pharmacological treatments for bipolar disorder are inadequate and based on serendipitously discovered drugs often with limited efficacy, burdensome side-effects, and unclear mechanisms of action. Advances in drug development for the treatment of bipolar disorder remain incremental and have come largely from repurposing drugs used for other psychiatric conditions, a strategy that has failed to find truly revolutionary therapies, as it does not target the mood instability that characterises the condition. The lack of therapeutic innovation in the bipolar disorder field is largely due to a poor understanding of the underlying disease mechanisms and the consequent absence of validated drug targets. A compelling new treatment target is the Ca2+-calmodulin dependent protein kinase kinase-2 (CaMKK2) enzyme. CaMKK2 is highly enriched in brain neurons and regulates energy metabolism and neuronal processes that underpin higher order functions such as long-term memory, mood, and other affective functions. Loss-of-function polymorphisms and a rare missense mutation in human CAMKK2 are associated with bipolar disorder, and genetic deletion of Camkk2 in mice causes bipolar-like behaviours similar to those in patients. Furthermore, these behaviours are ameliorated by lithium, which increases CaMKK2 activity. In this review, we discuss multiple convergent lines of evidence that support targeting of CaMKK2 as a new treatment strategy for bipolar disorder.
Collapse
Affiliation(s)
- Jacqueline Kaiser
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, Fitzroy, VIC, 3065, Australia
| | - Kevin Nay
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
| | - Christopher R Horne
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Luke M McAloon
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, Fitzroy, VIC, 3065, Australia
| | - Oliver K Fuller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
| | - Abbey G Muller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
| | - Douglas G Whyte
- School of Behavioural and Health Sciences, Australian Catholic University, Fitzroy, VIC, 3065, Australia
| | - Anthony R Means
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ken Walder
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, 3052, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Anthony J Hannan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - James M Murphy
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Mark A Febbraio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
| | - Andrew L Gundlach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia
- St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - John W Scott
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, 3052, Australia.
- St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia.
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
6
|
Jin G, Wang K, Zhao Y, Yuan S, He Z, Zhang J. Targeting histone deacetylases for heart diseases. Bioorg Chem 2023; 138:106601. [PMID: 37224740 DOI: 10.1016/j.bioorg.2023.106601] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Histone deacetylases (HDACs) are responsible for the deacetylation of lysine residues in histone or non-histone substrates, leading to the regulation of many biological functions, such as gene transcription, translation and remodeling chromatin. Targeting HDACs for drug development is a promising way for human diseases, including cancers and heart diseases. In particular, numerous HDAC inhibitors have revealed potential clinical value for the treatment of cardiac diseases in recent years. In this review, we systematically summarize the therapeutic roles of HDAC inhibitors with different chemotypes on heart diseases. Additionally, we discuss the opportunities and challenges in developing HDAC inhibitors for the treatment of cardiac diseases.
Collapse
Affiliation(s)
- Gang Jin
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, China
| | - Kaiyue Wang
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, China
| | - Yaohui Zhao
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, China
| | - Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Zhangxu He
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, China.
| | - Jingyu Zhang
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, China.
| |
Collapse
|
7
|
Tien N, Wu TY, Lin CL, Chu FY, Wang CCN, Hsu CY, Tsai FJ, Fang YJ, Lim YP. Association of epilepsy, anti-epileptic drugs (AEDs), and type 2 diabetes mellitus (T2DM): a population-based cohort retrospective study, impact of AEDs on T2DM-related molecular pathway, and via peroxisome proliferator-activated receptor γ transactivation. Front Endocrinol (Lausanne) 2023; 14:1156952. [PMID: 37334286 PMCID: PMC10272786 DOI: 10.3389/fendo.2023.1156952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/04/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction A potential association between epilepsy and subsequent type 2 diabetes mellitus (T2DM) has emerged in recent studies. However, the association between epilepsy, anti-epileptic drugs (AEDs), and the risk of T2DM development remains controversial. We aimed to conduct a nationwide, population-based, retrospective, cohort study to evaluate this relationship. Methods We extracted data from the Taiwan Longitudinal Generation Tracking Database of patients with new-onset epilepsy and compared it with that of a comparison cohort of patients without epilepsy. A Cox proportional hazards regression model was used to analyze the difference in the risk of developing T2DM between the two cohorts. Next-generation RNA sequencing was used to characterize T2DM-related molecularchanges induced by AEDs and the T2DM-associated pathways they alter. The potential of AEDs to induce peroxisome proliferator-activated receptor γ (PPARγ) transactivation was also evaluated. Results After adjusting for comorbidities and confounding factors, the case group (N = 14,089) had a higher risk for T2DM than the control group (N = 14,089) [adjusted hazards ratio (aHR), 1.27]. Patients with epilepsy not treated with AEDs exhibited a significantly higher risk of T2DM (aHR, 1.70) than non-epileptic controls. In those treated with AEDs, the risk of developing T2DM was significantly lower than in those not treated (all aHR ≤ 0.60). However, an increase in the defined daily dose of phenytoin (PHE), but not of valproate (VPA), increased the risk of T2DM development (aHR, 2.28). Functional enrichment analysis of differentially expressed genes showed that compared to PHE, VPA induced multiple beneficial genes associated with glucose homeostasis. Among AEDs, VPA induced the specific transactivation of PPARγ. Discussion Our study shows epilepsy increases the risk of T2DM development, however, some AEDs such as VPA might yield a protective effect against it. Thus, screening blood glucose levels in patients with epilepsy is required to explore the specific role and impact of AEDs in the development of T2DM. Future in depth research on the possibility to repurpose VPA for the treatment of T2DM, will offer valuable insight regarding the relationship between epilepsy and T2DM.
Collapse
Affiliation(s)
- Ni Tien
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Tien-Yuan Wu
- Graduate Institute of Clinical Pharmacy, College of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Pharmacy, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Fang-Yi Chu
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Charles C. N. Wang
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
- Center for Precision Health Research, Asia University, Taichung, Taiwan
| | - Chung Y. Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Division of Medical Genetics, China Medical University Children’s Hospital, Taichung, Taiwan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Yi-Jen Fang
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung, Taiwan
- Department of Environmental Health, Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung-Hsing University, Taichung, Taiwan
- Digestive Disease Center, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Yun-Ping Lim
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
8
|
Pieróg M, Socała K, Nieoczym D, Wyska E, Samorek-Pieróg M, Wlaź P. Anticonvulsant Profile of Selected Medium-Chain Fatty Acids (MCFAs) Co-Administered with Metformin in Mice in Acute and Chronic Treatment. Molecules 2023; 28:molecules28093810. [PMID: 37175220 PMCID: PMC10179922 DOI: 10.3390/molecules28093810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
In contrast to the other components of the medium-chain triglycerides ketogenic diet (MCT KD), i.e., caprylic acid (CA8), a comprehensive evaluation of caproic (CA6) and lauric acids' (CA12) properties in standard chemical and electrical seizure tests in mice has not yet been performed. We investigated their effects in maximal electroshock seizure threshold (MEST), 6 Hz seizure threshold and intravenous (i.v.) pentylenetetrazole (PTZ) seizure tests. Since ketone body production can be regulated by the activation of 5'AMP-activated protein kinase (AMPK), we hypothesized that metformin (an AMPK activator) enhance ketogenesis and would act synergistically with the fatty acids to inhibit convulsions. We assessed the effects of acute and chronic co-treatment with metformin and CA6/CA8 on seizures. CA6 and CA12 (p.o.) increased seizure threshold in the 6 Hz seizure test. CA6 at the highest tested dose (30 mmol/kg) developed toxicity in several mice, impaired motor performance and induced ketoacidosis. Acute and chronic co-treatment with metformin and CA6/CA8 did not affect seizure thresholds. Moreover, we observed the pro-convulsive effect of the acute co-administration of CA8 (5 mmol/kg) and metformin (100 mg/kg). Since this co-treatment was pro-convulsive, the safety profile and risk/benefit ratio of MCT KD and metformin concomitant therapy in epileptic patients should be further evaluated.
Collapse
Affiliation(s)
- Mateusz Pieróg
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Dorota Nieoczym
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Małgorzata Samorek-Pieróg
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
9
|
Alterations in Cerebellar Microtubule Cytoskeletal Network in a ValproicAcid-Induced Rat Model of Autism Spectrum Disorders. Biomedicines 2022; 10:biomedicines10123031. [PMID: 36551785 PMCID: PMC9776106 DOI: 10.3390/biomedicines10123031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental diseases characterised by deficits in social communication, restricted interests, and repetitive behaviours. The growing body of evidence points to a role for cerebellar changes in ASD pathology. Some of the findings suggest that not only motor problems but also social deficits, repetitive behaviours, and mental inflexibility associated with ASD are connected with damage to the cerebellum. However, the understanding of this brain structure's functions in ASD pathology needs future investigations. Therefore, in this study, we generated a rodent model of ASD through a single prenatal administration of valproic acid (VPA) into pregnant rats, followed by cerebellar morphological studies of the offspring, focusing on the alterations of key cytoskeletal elements. The expression (Western blot) of α/β-tubulin and the major neuronal MT-associated proteins (MAP) such as MAP-Tau and MAP1B, MAP2, MAP6 (STOP) along with actin-crosslinking αII-spectrin and neurofilament light polypeptide (NF-L) was investigated. We found that maternal exposure to VPA induces a significant decrease in the protein levels of α/β-tubulin, MAP-Tau, MAP1B, MAP2, and αII-spectrin. Moreover, excessive MAP-Tau phosphorylation at (Ser396) along with key Tau-kinases activation was indicated. Immunohistochemical staining showed chromatolysis in the cerebellum of autistic-like rats and loss of Purkinje cells shedding light on one of the possible molecular mechanisms underpinning neuroplasticity alterations in the ASD brain.
Collapse
|
10
|
Feleke R, Jazayeri D, Abouzeid M, Powell KL, Srivastava PK, O’Brien TJ, Jones NC, Johnson MR. Integrative genomics reveals pathogenic mediator of valproate-induced neurodevelopmental disability. Brain 2022; 145:3832-3842. [PMID: 36071595 PMCID: PMC9679160 DOI: 10.1093/brain/awac296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/22/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Prenatal exposure to the anti-seizure medication sodium valproate (VPA) is associated with an increased risk of adverse postnatal neurodevelopmental outcomes, including lowered intellectual ability, autism spectrum disorder and attention-deficit hyperactivity disorder. In this study, we aimed to clarify the molecular mechanisms underpinning the neurodevelopmental consequences of gestational VPA exposure using integrative genomics. We assessed the effect of gestational VPA on foetal brain gene expression using a validated rat model of valproate teratogenicity that mimics the human scenario of chronic oral valproate treatment during pregnancy at doses that are therapeutically relevant to the treatment of epilepsy. Two different rat strains were studied-inbred Genetic Absence Epilepsy Rats from Strasbourg, a model of genetic generalized epilepsy, and inbred non-epileptic control rats. Female rats were fed standard chow or VPA mixed in standard chow for 2 weeks prior to conception and then mated with same-strain males. In the VPA-exposed rats maternal oral treatment was continued throughout pregnancy. Foetuses were extracted via C-section on gestational Day 21 (1 day prior to birth) and foetal brains were snap-frozen and genome-wide gene expression data generated. We found that gestational VPA exposure via chronic maternal oral dosing was associated with substantial drug-induced differential gene expression in the pup brains, including dysregulated splicing, and observed that this occurred in the absence of evidence for significant neuronal gain or loss. The functional consequences of VPA-induced gene expression were explored using pathway analysis and integration with genetic risk data for psychiatric disease and behavioural traits. The set of genes downregulated by VPA in the pup brains were significantly enriched for pathways related to neurodevelopment and synaptic function and significantly enriched for heritability to human intelligence, schizophrenia and bipolar disorder. Our results provide a mechanistic link between chronic foetal VPA exposure and neurodevelopmental disability mediated by VPA-induced transcriptional dysregulation.
Collapse
Affiliation(s)
- Rahel Feleke
- Department of Brain Sciences, Imperial College London, London, UK
| | - Dana Jazayeri
- The Departments of Medicine and Neurology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
- The ALIVE National Centre for Mental Health Research Translation, The Department of General Practice, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
| | - Maya Abouzeid
- Department of Brain Sciences, Imperial College London, London, UK
| | - Kim L Powell
- The Departments of Medicine and Neurology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
- Department of Neuroscience, The Central Clinical School, Alfred Health, Monash University, Melbourne, Victoria, Australia
| | | | - Terence J O’Brien
- The Departments of Medicine and Neurology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
- Department of Neuroscience, The Central Clinical School, Alfred Health, Monash University, Melbourne, Victoria, Australia
| | - Nigel C Jones
- The Departments of Medicine and Neurology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
- Department of Neuroscience, The Central Clinical School, Alfred Health, Monash University, Melbourne, Victoria, Australia
| | | |
Collapse
|
11
|
Lazcano P, Schmidtke MW, Onu C, Greenberg ML. Phosphatidic acid inhibits inositol synthesis by inducing nuclear translocation of kinase IP6K1 and repression of myo-inositol-3-P synthase. J Biol Chem 2022; 298:102363. [PMID: 35963434 PMCID: PMC9478396 DOI: 10.1016/j.jbc.2022.102363] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Inositol is an essential metabolite that serves as a precursor for structural and signaling molecules. Although perturbation of inositol homeostasis has been implicated in numerous human disorders, surprisingly little is known about how inositol levels are regulated in mammalian cells. A recent study in mouse embryonic fibroblasts demonstrated that nuclear translocation of inositol hexakisphosphate kinase 1 (IP6K1) mediates repression of myo-inositol-3-P synthase (MIPS), the rate-limiting inositol biosynthetic enzyme. Binding of IP6K1 to phosphatidic acid (PA) is required for this repression. Here, we elucidate the role of PA in IP6K1 repression. Our results indicate that increasing PA levels through pharmacological stimulation of phospholipase D (PLD) or direct supplementation of 18:1 PA induces nuclear translocation of IP6K1 and represses expression of the MIPS protein. We found that this effect was specific to PA synthesized in the plasma membrane, as endoplasmic reticulum–derived PA did not induce IP6K1 translocation. Furthermore, we determined that PLD-mediated PA synthesis can be stimulated by the master metabolic regulator 5′ AMP-activated protein kinase (AMPK). We show that activation of AMPK by glucose deprivation or by treatment with the mood-stabilizing drugs valproate or lithium recapitulated IP6K1 nuclear translocation and decreased MIPS expression. This study demonstrates for the first time that modulation of PA levels through the AMPK-PLD pathway regulates IP6K1-mediated repression of MIPS.
Collapse
Affiliation(s)
- Pablo Lazcano
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Michael W Schmidtke
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Chisom Onu
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States.
| |
Collapse
|
12
|
Duan P, Wang H, Yi X, Zhang H, Chen H, Pan Z. C/EBPα regulates the fate of bone marrow mesenchymal stem cells and steroid-induced avascular necrosis of the femoral head by targeting the PPARγ signalling pathway. Stem Cell Res Ther 2022; 13:342. [PMID: 35883192 PMCID: PMC9327281 DOI: 10.1186/s13287-022-03027-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 07/02/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The imbalance of osteogenic/adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is closely related to steroid-induced avascular necrosis of the femoral head (SANFH). We aimed to investigate the epigenetic mechanism of intramedullary fat accumulation and continuous osteonecrosis after glucocorticoid (GC) withdrawal in SANFH. METHODS An SANFH model was established in SD rats, which received an intermittent high GC dose for the first 4 weeks followed by an additional 4 weeks without GC. We explored the synergistic effects and mechanisms of C/EBPα and PPARγ on the differentiation of BMSCs by lentivirus-mediated gene knockdown and overexpression assays. A chromatin immunoprecipitation assay was performed to identify epigenetic modification sites on PPARγ in vivo and in vitro. RESULTS In the SANFH model, intramedullary fat was significantly increased, and the transcription factors C/EBPα and PPARγ were upregulated simultaneously in the femoral head. In vitro, C/EBPα promoted adipogenic differentiation of BMSCs by targeting the PPARγ signalling pathway, while overexpression of C/EBPα significantly impaired osteogenic differentiation. Further studies demonstrated that histone H3K27 acetylation of PPARγ played an important role in the epigenetic mechanism underlying SANFH. C/EBPα upregulates the histone H3K27 acetylation level in the PPARγ promoter region by inhibiting HDAC1. Additionally, inhibiting the histone acetylation level of PPARγ effectively prevented adipogenic differentiation, thus slowing the progression of SANFH. CONCLUSIONS Our results demonstrate the molecular mechanism by which C/EBPα regulates PPARγ expression by acetylating histones and revealed the epigenetic phenomenon in SANFH for the first time.
Collapse
Affiliation(s)
- Ping Duan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hanyu Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xinzeyu Yi
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hao Zhang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hui Chen
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhenyu Pan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
13
|
Alsemeh AE, Ahmed MM, Fawzy A, Samy W, Tharwat M, Rezq S. Vitamin E rescues valproic acid-induced testicular injury in rats: Role of autophagy. Life Sci 2022; 296:120434. [DOI: 10.1016/j.lfs.2022.120434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/13/2022] [Accepted: 02/22/2022] [Indexed: 12/19/2022]
|
14
|
Mahmoud AM. An Overview of Epigenetics in Obesity: The Role of Lifestyle and Therapeutic Interventions. Int J Mol Sci 2022; 23:ijms23031341. [PMID: 35163268 PMCID: PMC8836029 DOI: 10.3390/ijms23031341] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity has become a global epidemic that has a negative impact on population health and the economy of nations. Genetic predispositions have been demonstrated to have a substantial role in the unbalanced energy metabolism seen in obesity. However, these genetic variations cannot entirely explain the massive growth in obesity over the last few decades. Accumulating evidence suggests that modern lifestyle characteristics such as the intake of energy-dense foods, adopting sedentary behavior, or exposure to environmental factors such as industrial endocrine disruptors all contribute to the rising obesity epidemic. Recent advances in the study of DNA and its alterations have considerably increased our understanding of the function of epigenetics in regulating energy metabolism and expenditure in obesity and metabolic diseases. These epigenetic modifications influence how DNA is transcribed without altering its sequence. They are dynamic, reflecting the interplay between the body and its surroundings. Notably, these epigenetic changes are reversible, making them appealing targets for therapeutic and corrective interventions. In this review, I discuss how these epigenetic modifications contribute to the disordered energy metabolism in obesity and to what degree lifestyle and weight reduction strategies and pharmacological drugs can restore energy balance by restoring normal epigenetic profiles.
Collapse
Affiliation(s)
- Abeer M Mahmoud
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
15
|
Das D, Karthik N, Taneja R. Epigenetic Small-Molecule Modulators Targeting Metabolic Pathways in Cancer. Subcell Biochem 2022; 100:523-555. [PMID: 36301505 DOI: 10.1007/978-3-031-07634-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metabolic deregulation is a key factor in cancer progression. Epigenetic changes and metabolic rewiring are intertwined in cancer. Deregulated epigenetic modifiers cause metabolic aberrations by targeting the expression of metabolic enzymes. Conversely, metabolites and cofactors affect the expression and activity of epigenetic regulators. Small molecules are promising therapeutic approaches to target the epigenetic-metabolomic crosstalk in cancer. Here, we focus on the interplay between metabolic rewiring and epigenetic landscape in the context of tumourigenesis and highlight recent advances in the use of small-molecule drug targets for therapy.
Collapse
Affiliation(s)
- Dipanwita Das
- Department of Physiology and Healthy Longevity Translational Research Program Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nandini Karthik
- Department of Physiology and Healthy Longevity Translational Research Program Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology and Healthy Longevity Translational Research Program Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
16
|
Zhou C, Hu S, Botchway BOA, Zhang Y, Liu X. Valproic Acid: A Potential Therapeutic for Spinal Cord Injury. Cell Mol Neurobiol 2021; 41:1441-1452. [PMID: 32725456 PMCID: PMC11448682 DOI: 10.1007/s10571-020-00929-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
The lack of an effective pharmaceutical agent for spinal cord injury (SCI) is a current problematic situation for clinicians, as the rate of motor vehicle accidents among young adults is on the rise. SCI contributes to the high disability rate. Presently, evidences detailing the precise pathological mechanisms in SCI are limited, compounding to the unavailability of an effective treatment method. Surgery, though not a complete curative method, is useful in managing some of the associated symptoms of secondary SCI. Autophagy and inflammation are contributive factors to both exacerbation and improvement of SCI. The mammalian target of rapamycin (mTOR) signaling pathway is a key player in the regulation of inflammatory response and autophagy. Valproic acid (VPA), a clinically used antiepileptic drug, has been suggested to improve neurological conditions, including SCI. This report reviewed the correlation between mTOR and autophagy, as well as autophagy's role and the therapeutic effects of VPA in SCI. VPA regulates autophagy by potentially inhibiting mTORC1, a complex of mTOR, while also hindering inflammatory response. Conclusively, an effective treatment for SCI could lie in the timely regulation of mTOR signaling pathway, and VPA could be the potential drug that improves SCI owing to its propensity to regulate the mTOR signaling pathway.
Collapse
Affiliation(s)
- Conghui Zhou
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Songfeng Hu
- Department of Orthopedics, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, 312000, Zhejiang Province, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China.
| |
Collapse
|
17
|
Salsaa M, Aziz K, Lazcano P, Schmidtke MW, Tarsio M, Hüttemann M, Reynolds CA, Kane PM, Greenberg ML. Valproate activates the Snf1 kinase in Saccharomyces cerevisiae by decreasing the cytosolic pH. J Biol Chem 2021; 297:101110. [PMID: 34428448 PMCID: PMC8449051 DOI: 10.1016/j.jbc.2021.101110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/27/2022] Open
Abstract
Valproate (VPA) is a widely used mood stabilizer, but its therapeutic mechanism of action is not understood. This knowledge gap hinders the development of more effective drugs with fewer side effects. Using the yeast model to elucidate the effects of VPA on cellular metabolism, we determined that the drug upregulated expression of genes normally repressed during logarithmic growth on glucose medium and increased levels of activated (phosphorylated) Snf1 kinase, the major metabolic regulator of these genes. VPA also decreased the cytosolic pH (pHc) and reduced glycolytic production of 2/3-phosphoglycerate. ATP levels and mitochondrial membrane potential were increased, and glucose-mediated extracellular acidification decreased in the presence of the drug, as indicated by a smaller glucose-induced shift in pH, suggesting that the major P-type proton pump Pma1 was inhibited. Interestingly, decreasing the pHc by omeprazole-mediated inhibition of Pma1 led to Snf1 activation. We propose a model whereby VPA lowers the pHc causing a decrease in glycolytic flux. In response, Pma1 is inhibited and Snf1 is activated, resulting in increased expression of normally repressed metabolic genes. These findings suggest a central role for pHc in regulating the metabolic program of yeast cells.
Collapse
Affiliation(s)
- Michael Salsaa
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Kerestin Aziz
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Pablo Lazcano
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Michael W Schmidtke
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Maureen Tarsio
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Christian A Reynolds
- Department of Emergency Medicine, School of Medicine, Wayne State University, Detroit, Michigan, USA; Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA.
| |
Collapse
|
18
|
Pedro Ferreira J, Pitt B, Zannad F. Histone deacetylase inhibitors for cardiovascular conditions and healthy longevity. THE LANCET. HEALTHY LONGEVITY 2021; 2:e371-e379. [DOI: 10.1016/s2666-7568(21)00061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/19/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022] Open
|
19
|
Pang B, Zhang J, Zhang X, Yuan J, Shi Y, Qiao L. Inhibition of lipogenesis and induction of apoptosis by valproic acid in prostate cancer cells via the C/EBPα/SREBP-1 pathway. Acta Biochim Biophys Sin (Shanghai) 2021; 53:354-364. [PMID: 33471067 DOI: 10.1093/abbs/gmab002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Lipid metabolism reprogramming is now accepted as a new hallmark of cancer. Hence, targeting the lipogenesis pathway may be a potential avenue for cancer treatment. Valproic acid (VPA) emerges as a promising drug for cancer therapy; however, the underlying mechanisms are not yet fully understood. In this study, we aimed to investigate the effects and mechanisms of VPA on cell viability, lipogenesis, and apoptosis in human prostate cancer PC-3 and LNCaP cells. The results showed that VPA significantly reduced lipid accumulation and induced apoptosis of PC-3 and LNCaP cells. Moreover, the expression of CCAAT/enhancer-binding protein α (C/EBPα), as well as sterol regulatory element-binding protein 1 (SREBP-1) and its downstream effectors, including fatty acid synthase (FASN), acetyl CoA carboxylase 1 (ACC1), and anti-apoptotic B-cell lymphoma 2 (Bcl-2), was markedly decreased in PC-3 and LNCaP cells after VPA administration. Mechanistically, the overexpression of C/EBPα rescued the levels of SREBP-1, FASN, ACC1, and Bcl-2, enhanced lipid accumulation, and attenuated apoptosis of VPA-treated PC-3 cells. Conversely, knockdown of C/EBPα by siRNA further decreased lipid accumulation, enhanced apoptosis, and reduced the levels of SREBP-1, FASN, ACC1, and Bcl-2. In addition, SREBP-1a and 1c enhanced the expressions of FASN and ACC1, but only SREBP-1a had a significant effect on Bcl-2 expression in VPA-treated PC-3 cells. Based on the results, we concluded that VPA significantly inhibits cell viability via decreasing lipogenesis and inducing apoptosis via the C/EBPα/SREBP-1 pathway in prostate cancer cells. Therefore, VPA that targets lipid metabolism and apoptosis is a promising candidate for PCa chemotherapy.
Collapse
Affiliation(s)
- Bo Pang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Juanjuan Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Xi Zhang
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Jihong Yuan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Yanan Shi
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Ling Qiao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| |
Collapse
|
20
|
Valproic acid influences the expression of genes implicated with hyperglycaemia-induced complement and coagulation pathways. Sci Rep 2021; 11:2163. [PMID: 33495488 PMCID: PMC7835211 DOI: 10.1038/s41598-021-81794-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/11/2021] [Indexed: 01/04/2023] Open
Abstract
Because the liver plays a major role in metabolic homeostasis and secretion of clotting factors and inflammatory innate immune proteins, there is interest in understanding the mechanisms of hepatic cell activation under hyperglycaemia and whether this can be attenuated pharmacologically. We have previously shown that hyperglycaemia stimulates major changes in chromatin organization and metabolism in hepatocytes, and that the histone deacetylase inhibitor valproic acid (VPA) is able to reverse some of these metabolic changes. In this study, we have used RNA-sequencing (RNA-seq) to investigate how VPA influences gene expression in hepatocytes. Interesting, we observed that VPA attenuates hyperglycaemia-induced activation of complement and coagulation cascade genes. We also observe that many of the gene activation events coincide with changes to histone acetylation at the promoter of these genes indicating that epigenetic regulation is involved in VPA action.
Collapse
|
21
|
Zhang H, Ji L, Yang Y, Zhang X, Gang Y, Bai L. The Role of HDACs and HDACi in Cartilage and Osteoarthritis. Front Cell Dev Biol 2020; 8:560117. [PMID: 33102472 PMCID: PMC7554620 DOI: 10.3389/fcell.2020.560117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/27/2020] [Indexed: 12/22/2022] Open
Abstract
Epigenetics plays an important role in the pathogenesis and treatment of osteoarthritis (OA). In recent decades, HDAC family members have been associated with OA. This paper aims to describe the different role of HDACs in the pathogenesis of OA through interaction with microRNAs and the regulation of relevant signaling pathways. We found that HDACs are involved in cartilage and chondrocyte development but also play a crucial role in OA. However, the distinct HDAC mechanism in the pathogenesis and treatment of OA require further investigation. Furthermore, HDAC inhibitors (HDACi) can protect cartilage from disease, which may represent a potential therapeutic approach against OA.
Collapse
Affiliation(s)
- He Zhang
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Lu Ji
- Department of Gynecology and Obstetrics, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yue Yang
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xiaoning Zhang
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yi Gang
- Department of Orthopedic Surgery, Panjin Central Hospital, Panjin, China
| | - Lunhao Bai
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
22
|
Case KC, Salsaa M, Yu W, Greenberg ML. Regulation of Inositol Biosynthesis: Balancing Health and Pathophysiology. Handb Exp Pharmacol 2020; 259:221-260. [PMID: 30591968 DOI: 10.1007/164_2018_181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Inositol is the precursor for all inositol compounds and is essential for viability of eukaryotic cells. Numerous cellular processes and signaling functions are dependent on inositol compounds, and perturbation of their synthesis leads to a wide range of human diseases. Although considerable research has been directed at understanding the function of inositol compounds, especially phosphoinositides and inositol phosphates, a focus on regulatory and homeostatic mechanisms controlling inositol biosynthesis has been largely neglected. Consequently, little is known about how synthesis of inositol is regulated in human cells. Identifying physiological regulators of inositol synthesis and elucidating the molecular mechanisms that regulate inositol synthesis will contribute fundamental insight into cellular processes that are mediated by inositol compounds and will provide a foundation to understand numerous disease processes that result from perturbation of inositol homeostasis. In addition, elucidating the mechanisms of action of inositol-depleting drugs may suggest new strategies for the design of second-generation pharmaceuticals to treat psychiatric disorders and other illnesses.
Collapse
Affiliation(s)
- Kendall C Case
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Michael Salsaa
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Wenxi Yu
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
23
|
Scholz B, Schulte JS, Hamer S, Himmler K, Pluteanu F, Seidl MD, Stein J, Wardelmann E, Hammer E, Völker U, Müller FU. HDAC (Histone Deacetylase) Inhibitor Valproic Acid Attenuates Atrial Remodeling and Delays the Onset of Atrial Fibrillation in Mice. Circ Arrhythm Electrophysiol 2019; 12:e007071. [PMID: 30879335 PMCID: PMC6426346 DOI: 10.1161/circep.118.007071] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Supplemental Digital Content is available in the text. Background: A structural, electrical and metabolic atrial remodeling is central in the development of atrial fibrillation (AF) contributing to its initiation and perpetuation. In the heart, HDACs (histone deacetylases) control remodeling associated processes like hypertrophy, fibrosis, and energy metabolism. Here, we analyzed, whether the HDAC class I/IIa inhibitor valproic acid (VPA) is able to attenuate atrial remodeling in CREM-IbΔC-X (cAMP responsive element modulator isoform IbΔC-X) transgenic mice, a mouse model of extensive atrial remodeling with age-dependent progression from spontaneous atrial ectopy to paroxysmal and finally long-lasting AF. Methods: VPA was administered for 7 or 25 weeks to transgenic and control mice. Atria were analyzed macroscopically and using widefield and electron microscopy. Action potentials were recorded from atrial cardiomyocytes using patch-clamp technique. ECG recordings documented the onset of AF. A proteome analysis with consecutive pathway mapping identified VPA-mediated proteomic changes and related pathways. Results: VPA attenuated many components of atrial remodeling that are present in transgenic mice, animal AF models, and human AF. VPA significantly (P<0.05) reduced atrial dilatation, cardiomyocyte enlargement, atrial fibrosis, and the disorganization of myocyte’s ultrastructure. It significantly reduced the occurrence of atrial thrombi, reversed action potential alterations, and finally delayed the onset of AF by 4 to 8 weeks. Increased histone H4-acetylation in atria from VPA-treated transgenic mice verified effective in vivo HDAC inhibition. Cardiomyocyte-specific genetic inactivation of HDAC2 in transgenic mice attenuated the ultrastructural disorganization of myocytes comparable to VPA. Finally, VPA restrained dysregulation of proteins in transgenic mice that are involved in a multitude of AF relevant pathways like oxidative phosphorylation or RhoA (Ras homolog gene family, member A) signaling and disease functions like cardiac fibrosis and apoptosis of muscle cells. Conclusions: Our results suggest that VPA, clinically available, well-tolerated, and prescribed to many patients for years, has the therapeutic potential to delay the development of atrial remodeling and the onset of AF in patients at risk.
Collapse
Affiliation(s)
- Beatrix Scholz
- Institute of Pharmacology and Toxicology, University of Münster, Germany (B.S., J.S.S., S.H., K.H., F.P., M.D.S., J.S., F.U.M.)
| | - Jan Sebastian Schulte
- Institute of Pharmacology and Toxicology, University of Münster, Germany (B.S., J.S.S., S.H., K.H., F.P., M.D.S., J.S., F.U.M.)
| | - Sabine Hamer
- Institute of Pharmacology and Toxicology, University of Münster, Germany (B.S., J.S.S., S.H., K.H., F.P., M.D.S., J.S., F.U.M.)
| | - Kirsten Himmler
- Institute of Pharmacology and Toxicology, University of Münster, Germany (B.S., J.S.S., S.H., K.H., F.P., M.D.S., J.S., F.U.M.)
| | - Florentina Pluteanu
- Institute of Pharmacology and Toxicology, University of Münster, Germany (B.S., J.S.S., S.H., K.H., F.P., M.D.S., J.S., F.U.M.)
| | - Matthias Dodo Seidl
- Institute of Pharmacology and Toxicology, University of Münster, Germany (B.S., J.S.S., S.H., K.H., F.P., M.D.S., J.S., F.U.M.)
| | - Juliane Stein
- Institute of Pharmacology and Toxicology, University of Münster, Germany (B.S., J.S.S., S.H., K.H., F.P., M.D.S., J.S., F.U.M.)
| | - Eva Wardelmann
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Germany (E.W.)
| | - Elke Hammer
- Interfaculty Institute of Genetics und Functional Genomics, University Medicine Greifswald, Germany (E.H., U.V.).,DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Germany (E.H., U.V.)
| | - Uwe Völker
- Interfaculty Institute of Genetics und Functional Genomics, University Medicine Greifswald, Germany (E.H., U.V.).,DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Germany (E.H., U.V.)
| | - Frank Ulrich Müller
- Institute of Pharmacology and Toxicology, University of Münster, Germany (B.S., J.S.S., S.H., K.H., F.P., M.D.S., J.S., F.U.M.)
| |
Collapse
|
24
|
Parrillo L, Spinelli R, Nicolò A, Longo M, Mirra P, Raciti GA, Miele C, Beguinot F. Nutritional Factors, DNA Methylation, and Risk of Type 2 Diabetes and Obesity: Perspectives and Challenges. Int J Mol Sci 2019; 20:ijms20122983. [PMID: 31248068 PMCID: PMC6627657 DOI: 10.3390/ijms20122983] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 12/17/2022] Open
Abstract
A healthy diet improves life expectancy and helps to prevent common chronic diseases such as type 2 diabetes (T2D) and obesity. The mechanisms driving these effects are not fully understood, but are likely to involve epigenetics. Epigenetic mechanisms control gene expression, maintaining the DNA sequence, and therefore the full genomic information inherited from our parents, unchanged. An interesting feature of epigenetic changes lies in their dynamic nature and reversibility. Accordingly, they are susceptible to correction through targeted interventions. Here we will review the evidence supporting a role for nutritional factors in mediating metabolic disease risk through DNA methylation changes. Special emphasis will be placed on the potential of using DNA methylation traits as biomarkers to predict risk of obesity and T2D as well as on their response to dietary and pharmacological (epi-drug) interventions.
Collapse
Affiliation(s)
- Luca Parrillo
- Department of Translation Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Rosa Spinelli
- Department of Translation Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Antonella Nicolò
- Department of Translation Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Michele Longo
- Department of Translation Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Paola Mirra
- Department of Translation Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Gregory Alexander Raciti
- Department of Translation Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Claudia Miele
- Department of Translation Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Francesco Beguinot
- Department of Translation Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| |
Collapse
|
25
|
Metabolic and Epigenetic Action Mechanisms of Antidiabetic Medicinal Plants. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3583067. [PMID: 31191707 PMCID: PMC6525884 DOI: 10.1155/2019/3583067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022]
Abstract
Diabetes is a predominant metabolic disease nowadays due to the off-beam lifestyle of diet and reduced physical activity. Complications of the illness include the gene-environment interactions and the downstream genetic and epigenetic consequences, e.g., cardiovascular diseases, tumor progression, retinopathy, nephropathy, neuropathy, polydipsia, polyphagia, polyuria, and weight loss. This review sheds the light on the mechanistic insights of antidiabetic medicinal plants in targeting key organs and tissues involved in regulating blood glucose homeostasis including the pancreas, liver, muscles, adipose tissues, and glucose absorption in the intestine. Diabetes is also involved in modulating major epigenetic pathways such as DNA methylation and histone modification. In this respect, we will discuss the phytochemicals as current and future epigenetic drugs in the treatment of diabetes. In addition, several proteins are common targets for the treatment of diabetes. Some phytochemicals are expected to directly interact with these targets. We lastly uncover modeling studies that predict such plausible interactions. In conclusion, this review article presents the mechanistic insight of phytochemicals in the treatment of diabetes by combining both the cellular systems biology and molecular modeling.
Collapse
|
26
|
Epigenetic Modifications Linked to T2D, the Heritability Gap, and Potential Therapeutic Targets. Biochem Genet 2018; 56:553-574. [DOI: 10.1007/s10528-018-9863-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/16/2018] [Indexed: 12/22/2022]
|
27
|
Altered Brain Cholesterol/Isoprenoid Metabolism in a Rat Model of Autism Spectrum Disorders. Neuroscience 2018; 372:27-37. [PMID: 29309878 DOI: 10.1016/j.neuroscience.2017.12.053] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/28/2017] [Accepted: 12/28/2017] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorders (ASDs) present a wide range of symptoms characterized by altered sociability, compromised communication and stereotypic/repetitive behaviors. These symptoms are caused by developmental changes, but the mechanisms remain largely unknown. Some lines of evidence suggest an impairment of the cholesterol/isoprenoid metabolism in the brain as a possible cause, but systematic analyses in rodent models of ASDs are lacking. Prenatal exposure to the antiepileptic drug valproate (VPA) is a risk factor for ASDs in humans and generates a well-established model for the disease in rodents. Here, we studied cholesterol/isoprenoid metabolism in different brain areas of infant, adolescent and adult rats prenatally exposed to VPA. VPA-treated rats present autistic-like symptoms, they show changes in cholesterol/isoprenoid homeostasis in some brain areas, a decreased number of oligodendrocytes and impaired myelination in the hippocampus. Together, our data suggest a relation between brain cholesterol/isoprenoid homeostasis and ASDs.
Collapse
|
28
|
Khan S, Kowluru A. CD36 mediates lipid accumulation in pancreatic beta cells under the duress of glucolipotoxic conditions: Novel roles of lysine deacetylases. Biochem Biophys Res Commun 2017; 495:2221-2226. [PMID: 29274335 DOI: 10.1016/j.bbrc.2017.12.111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022]
Abstract
The cluster of differentiation 36 (CD36) is implicated in the intake of long-chain fatty acids and fat storage in various cell types including the pancreatic beta cell, thus contributing to the pathogenesis of metabolic stress and diabetes. Recent evidence indicates that CD36 undergoes post-translational modifications such as acetylation-deacetylation. However, putative roles of such modifications in its functional activation and onset of beta cell dysregulation under the duress of glucolipotoxicity (GLT) remain largely unknown. Using pharmacological approaches, we validated, herein, the hypothesis that acetylation-deacetylation signaling steps are involved in CD36-mediated lipid accumulation and downstream apoptotic signaling in pancreatic beta (INS-1832/13) cells under GLT. Exposure of these cells to GLT resulted in significant lipid accumulation without affecting the CD36 expression. Sulfo-n-succinimidyl oleate (SSO), an irreversible inhibitor of CD36, significantly attenuated lipid accumulation under GLT conditions, thus implicating CD36 in this metabolic step. Furthermore, trichostatin A (TSA) or valproic acid (VPA), known inhibitors of lysine deacetylases, markedly suppressed GLT-associated lipid accumulation with no discernible effects on CD36 expression. Lastly, SSO or TSA prevented caspase 3 activation in INS-1832/13 cells exposed to GLT conditions. Based on these findings, we conclude that an acetylation-deacetylation signaling step might regulate CD36 functional activity and subsequent lipid accumulation and caspase 3 activation in pancreatic beta cells exposed to GLT conditions. Identification of specific lysine deacetylases that control CD36 function should provide novel clues for the prevention of beta-cell dysfunction under GLT.
Collapse
Affiliation(s)
- Sabbir Khan
- β-Cell Biochemistry Laboratory, John D. Dingell VA Medical Center, and Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Anjaneyulu Kowluru
- β-Cell Biochemistry Laboratory, John D. Dingell VA Medical Center, and Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
29
|
Bahna SG, Niles LP. Epigenetic regulation of melatonin receptors in neuropsychiatric disorders. Br J Pharmacol 2017; 175:3209-3219. [PMID: 28967098 DOI: 10.1111/bph.14058] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/17/2017] [Accepted: 09/20/2017] [Indexed: 12/29/2022] Open
Abstract
Melatonin, the primary indoleamine hormone of the mammalian pineal gland, is known to have a plethora of neuroregulatory, neuroprotective and other properties. Melatonergic signalling is mediated by its two GPCRs, MT1 and MT2 , which are widely expressed in the mammalian CNS. Melatonin levels and receptor expression often show a decrease during normal ageing, and this reduction may be accelerated in some disease states. Depleted melatonergic signalling has been associated with neuropsychiatric dysfunction and impairments in cognition, memory, neurogenesis and neurorestorative processes. The anticonvulsant and mood stabilizer, valproic acid (VPA), up-regulates melatonin MT1 and/or MT2 receptor expression in cultured cells and in the rat brain. VPA is known to affect gene expression through several mechanisms, including the modulation of intracellular kinase pathways and transcription factors, as well as the inhibition of histone deacetylase (HDAC) activity. Interestingly, other HDAC inhibitors, such as trichostatin A, which are structurally distinct from VPA, can also up-regulate melatonin receptor expression, unlike a VPA analogue, valpromide, which lacks HDAC inhibitory activity. Moreover, VPA increases histone H3 acetylation along the length of the MT1 gene promoter in rat C6 cells. These findings indicate that an epigenetic mechanism, linked to histone hyperacetylation/chromatin remodelling and associated changes in gene transcription, is involved in the up-regulation of melatonin receptors by VPA. Epigenetic induction of MT1 and/or MT2 receptor expression, in areas where these receptors are lost because of ageing, injury or disease, may be a promising therapeutic avenue for the management of CNS dysfunction and other disorders. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.
Collapse
Affiliation(s)
- Sarra G Bahna
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Lennard P Niles
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
30
|
Xu Z, Tong Q, Zhang Z, Wang S, Zheng Y, Liu Q, Qian LB, Chen SY, Sun J, Cai L. Inhibition of HDAC3 prevents diabetic cardiomyopathy in OVE26 mice via epigenetic regulation of DUSP5-ERK1/2 pathway. Clin Sci (Lond) 2017; 131:1841-1857. [PMID: 28533215 PMCID: PMC5737625 DOI: 10.1042/cs20170064] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 02/07/2023]
Abstract
Inhibition of total histone deacetylases (HDACs) was phenomenally associated with the prevention of diabetic cardiomyopathy (DCM). However, which specific HDAC plays the key role in DCM remains unclear. The present study was designed to determine whether DCM can be prevented by specific inhibition of HDAC3 and to elucidate the mechanisms by which inhibition of HDAC3 prevents DCM. Type 1 diabetes OVE26 and age-matched wild-type (WT) mice were given the selective HDAC3 inhibitor RGFP966 or vehicle for 3 months. These mice were then killed immediately or 3 months later for cardiac function and pathological examination. HDAC3 activity was significantly increased in the heart of diabetic mice. Administration of RGFP966 significantly prevented DCM, as evidenced by improved diabetes-induced cardiac dysfunction, hypertrophy, and fibrosis, along with diminished cardiac oxidative stress, inflammation, and insulin resistance, not only in the mice killed immediately or 3 months later following the 3-month treatment. Furthermore, phosphorylated extracellular signal-regulated kinases (ERK) 1/2, a well-known initiator of cardiac hypertrophy, was significantly increased, while dual specificity phosphatase 5 (DUSP5), an ERK1/2 nuclear phosphatase, was substantially decreased in diabetic hearts. Both of these changes were prevented by RGFP966. Chromatin immunoprecipitation (ChIP) assay showed that HDAC3 inhibition elevated histone H3 acetylation on the DUSP5 gene promoter at both two time points. These findings suggest that diabetes-activated HDAC3 inhibits DUSP5 expression through deacetylating histone H3 on the primer region of DUSP5 gene, leading to the derepression of ERK1/2 and the initiation of DCM. The present study indicates the potential application of HDAC3 inhibitor for the prevention of DCM.
Collapse
MESH Headings
- Acrylamides/therapeutic use
- Animals
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/genetics
- Diabetic Cardiomyopathies/etiology
- Diabetic Cardiomyopathies/genetics
- Diabetic Cardiomyopathies/prevention & control
- Drug Evaluation, Preclinical/methods
- Dual-Specificity Phosphatases/metabolism
- Epigenesis, Genetic/drug effects
- Histone Deacetylase Inhibitors/pharmacology
- Histone Deacetylase Inhibitors/therapeutic use
- Histone Deacetylases/drug effects
- Histone Deacetylases/metabolism
- Histone Deacetylases/physiology
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/genetics
- Male
- Mice, Transgenic
- Myocardium/enzymology
- Oxidative Stress/drug effects
- Phenylenediamines/therapeutic use
- Receptor, Insulin/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Zheng Xu
- Cardiovascular Center, the First Hospital of Jilin University, Changchun 130021, China
- Pediatric Research Institute at the Department of Pediatrics, the University of Louisville, Louisville, KY 40202, U.S.A
| | - Qian Tong
- Cardiovascular Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Zhiguo Zhang
- Cardiovascular Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Shudong Wang
- Cardiovascular Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Yang Zheng
- Cardiovascular Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Qiuju Liu
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Ling-Bo Qian
- Pediatric Research Institute at the Department of Pediatrics, the University of Louisville, Louisville, KY 40202, U.S.A
- Department of Basic Medical Sciences, Hangzhou Medical College, Hangzhou 310053, China
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, Alcohol Research Center, University of Louisville, Louisville, KY 40202, U.S.A
| | - Jian Sun
- Cardiovascular Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Lu Cai
- Cardiovascular Center, the First Hospital of Jilin University, Changchun 130021, China
- Pediatric Research Institute at the Department of Pediatrics, the University of Louisville, Louisville, KY 40202, U.S.A
| |
Collapse
|
31
|
Bai X, Hong W, Cai P, Chen Y, Xu C, Cao D, Yu W, Zhao Z, Huang M, Jin J. Valproate induced hepatic steatosis by enhanced fatty acid uptake and triglyceride synthesis. Toxicol Appl Pharmacol 2017; 324:12-25. [PMID: 28366540 DOI: 10.1016/j.taap.2017.03.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/06/2017] [Accepted: 03/28/2017] [Indexed: 02/07/2023]
Abstract
Steatosis is the characteristic type of VPA-induced hepatotoxicity and may result in life-threatening hepatic lesion. Approximately 61% of patients treated with VPA have been diagnosed with hepatic steatosis through ultrasound examination. However, the mechanisms underlying VPA-induced intracellular fat accumulation are not yet fully understood. Here we demonstrated the involvement of fatty acid uptake and lipogenesis in VPA-induced hepatic steatosis in vitro and in vivo by using quantitative real-time PCR (qRT-PCR) analysis, western blotting analysis, fatty acid uptake assays, Nile Red staining assays, and Oil Red O staining assays. Specifically, we found that the expression of cluster of differentiation 36 (CD36), an important fatty acid transport, and diacylglycerol acyltransferase 2 (DGAT2) were significantly up-regulated in HepG2 cells and livers of C57B/6J mice after treatment with VPA. Furthermore, VPA treatment remarkably enhanced the efficiency of fatty acid uptake mediated by CD36, while this effect was abolished by the interference with CD36-specific siRNA. Also, VPA treatment significantly increased DGAT2 expression as a result of the inhibition of mitogen-activated protein kinase kinase (MEK) - extracellular regulated kinase (ERK) pathway; however, DGAT2 knockdown significantly alleviated VPA-induced intracellular lipid accumulation. Additionally, we also found that sterol regulatory element binding protein-1c (SREBP-1c)-mediated fatty acid synthesis may be not involved in VPA-induced hepatic steatosis. Overall, VPA-triggered over-regulation of CD36 and DGAT2 could be helpful for a better understanding of the mechanisms underlying VPA-induced hepatic steatosis and may offer novel therapeutic strategies to combat VPA-induced hepatotoxicity.
Collapse
Affiliation(s)
- Xupeng Bai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weipeng Hong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiheng Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yibei Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chuncao Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Di Cao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weibang Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhongxiang Zhao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Jin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
32
|
Chronic metformin treatment facilitates seizure termination. Biochem Biophys Res Commun 2017; 484:450-455. [PMID: 28137587 DOI: 10.1016/j.bbrc.2017.01.157] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 01/08/2023]
Abstract
The AMP-activated protein kinase (AMPK) is a key energy sensor. Its activator metformin could suppress epileptogenesis in the pentylenetetrazol (PTZ) kindling model. However, the effect of metformin on the acute and chronic seizures has not been studied. We first detected the expression of AMPK in the brain tissue of human and mice with chronic seizures, as well as in mice with acute seizures. Second, using behavioral assay and local filed potentials (LFPs) recording, we investigated the effect of chronic metformin treatment on seizures in a acute seizure model and a chronic seizure model. Our results showed that AMPK was expressed in neurons in the epileptic brain. The expression level was decreased in the brain tissue that experienced chronic and acute seizures. In PTZ-induced acute seizures model, behavioral assay showed that chronic metformin treatment decreased the mortality, and LFPs recording showed that chronic metformin treatment shortened the duration of generalized tonic-clonic seizures and prolonged the duration of postictal depression. Moreover, in kainic acid-induced chronic seizures model, LFPs recording showed that chronic metformin treatment shortened the duration of epileptic activity. Our study suggests that chronic metformin treatment could facilitate seizure termination.
Collapse
|
33
|
Dhasarathy A, Roemmich JN, Claycombe KJ. Influence of maternal obesity, diet and exercise on epigenetic regulation of adipocytes. Mol Aspects Med 2016; 54:37-49. [PMID: 27825817 DOI: 10.1016/j.mam.2016.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/25/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Archana Dhasarathy
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - James N Roemmich
- USDA-ARS-PA, Grand Forks Human Nutrition Research Center, 2420 2nd Avenue North, Grand Forks, ND 58203, USA
| | - Kate J Claycombe
- USDA-ARS-PA, Grand Forks Human Nutrition Research Center, 2420 2nd Avenue North, Grand Forks, ND 58203, USA.
| |
Collapse
|
34
|
Chen J, Wu W, Fu Y, Yu S, Cui D, Zhao M, Du Y, Li J, Li X. Increased expression of fatty acid synthase and acetyl-CoA carboxylase in the prefrontal cortex and cerebellum in the valproic acid model of autism. Exp Ther Med 2016; 12:1293-1298. [PMID: 27602061 PMCID: PMC4998172 DOI: 10.3892/etm.2016.3508] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 05/03/2016] [Indexed: 12/13/2022] Open
Abstract
The primary aim of the present study was to investigate alterations in enzymes associated with fatty acid synthesis, namely fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC), in the prefrontal cortex and cerebellum of the valproic acid (VPA)-induced animal model of autism. In this model, pregnant rats were given a single intraperitoneal injection of VPA, and prefrontal cortex and cerebellum samples from their pups were analyzed. The results of western blotting and reverse transcription-quantitative polymerase chain reaction analyses demonstrated that the protein and mRNA expression levels of FASN, ACC and phospho-ACC (pACC) were increased in the prefrontal cortex and cerebellum of the VPA model of autism. Furthermore, in the prefrontal cortex and cerebellum of the VPA model of autism, AMPK expression is increased, whereas PI3K and Akt expression are unchanged. This suggests that disorder of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt/FASN and/or adenosine 5'-monophosphate-activated protein kinase (AMPK)/ACC pathway may be involved in the pathogenesis of autism. It is hypothesized that fatty acid synthesis participates in autism through PI3K/Akt/FASN and AMPK/ACC pathways.
Collapse
Affiliation(s)
- Jianling Chen
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Wei Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, P.R. China
| | - Yingmei Fu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Shunying Yu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Donghong Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Min Zhao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Yasong Du
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Jijun Li
- Department of Integrative Medicine on Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Xiaohong Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| |
Collapse
|
35
|
Lho Y, le Roux CW, Park HS, Kim GS, Jung J, Hwang GS, Seo YK, Ha TK, Ha E. Changes in Glucose Metabolism in Vertical Sleeve Gastrectomy. Obes Surg 2016; 25:2002-10. [PMID: 25726321 DOI: 10.1007/s11695-015-1636-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND We evaluated metabolic changes after vertical sleeve gastrectomy (VSG) surgery in a rat model using proteomics and metabolomic profiling in liver and serum. METHODS Rats were randomly divided into two groups: sham (n = 10) and VSG (n = 12). Food intake, body weight, blood glucose, insulin, and thyroid hormone levels were measured. Two-dimensional electrophoresis, nuclear resonance spectroscopy, mass spectroscopy, immunofluorescence, and immunoblot analyses were used to determine and validate changes in metabolites and proteins in liver tissue and serum samples. RESULTS Food intake and body weight decreased after VSG group (p < 0.05 and p < 0.05, respectively). Random blood glucose (sham, 183.3 ± 5.6 mg/dL; VSG, 138.5 ± 3.7 mg/dL) decreased while random insulin (sham, 0.45 ± 0.16 μg/L; VSG, 1.05 ± 0.18 μg/L) increased after VSG (p < 0.05 and p < 0.01, respectively). We found that expressions of gluconeogenic enzymes (phosphoenolpyruvate carboxykinase-1 and glucose-6-phosphatase) and concentrations of pyruvate and malate decreased while lactate, NADH, NADPH, glucose, and AMP/ATP ratio increased after VSG. Thyroid hormones, triiodothyronine (T3) and free thyroxine (fT4), decreased after VSG. CONCLUSION This study proves that VSG suppresses hepatic glucose production.
Collapse
Affiliation(s)
- Yunmee Lho
- Department of Biochemistry, Pain Research Center, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Carel W le Roux
- Diabetes Complications Research Center, UCD Conway Institute, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Hyeon Soo Park
- Research Institute of Life Science, College of Veterinary Medicine (BK21 plus project), Kyeongsang National University, Jinju, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine (BK21 plus project), Kyeongsang National University, Jinju, Republic of Korea
| | - Jeeyoun Jung
- KM Health Technology Research Group, Medical Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group of Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Youn Kyoung Seo
- Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Tae Kyung Ha
- Department of Surgery, College of Medicine, Hanyang University, Seoul, Republic of Korea.
| | - Eunyoung Ha
- Department of Biochemistry, Pain Research Center, School of Medicine, Keimyung University, Daegu, Republic of Korea.
| |
Collapse
|
36
|
Khan S, Kumar S, Jena G. Valproic acid reduces insulin-resistance, fat deposition and FOXO1-mediated gluconeogenesis in type-2 diabetic rat. Biochimie 2016; 125:42-52. [DOI: 10.1016/j.biochi.2016.02.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 02/29/2016] [Indexed: 10/22/2022]
|
37
|
Are epigenetic drugs for diabetes and obesity at our door step? Drug Discov Today 2016; 21:499-509. [DOI: 10.1016/j.drudis.2015.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/18/2015] [Accepted: 12/02/2015] [Indexed: 01/04/2023]
|
38
|
Li H, Wang X, Zhou Y, Ni G, Su Q, Chen Z, Chen Z, Li J, Chen X, Hou X, Xie W, Xin S, Zhou L, Huang M. Association of LEPR and ANKK1 Gene Polymorphisms with Weight Gain in Epilepsy Patients Receiving Valproic Acid. Int J Neuropsychopharmacol 2015; 18:pyv021. [PMID: 25740917 PMCID: PMC4540110 DOI: 10.1093/ijnp/pyv021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Weight gain is the most frequent adverse effect of valproic acid (VPA) treatment, resulting in poor compliance and many endocrine disturbances. Similarities in the weight change of monozygotic twins receiving VPA strongly suggests that genetic factors are involved in this effect. However, few studies have been conducted to identify the relevant genetic polymorphisms. Additionally, the causal relationship between the VPA concentration and weight gain has been controversial. Thus, we investigated the effects of single nucleotide polymorphisms (SNPs) in several appetite stimulation and energy homeostasis genes and the steady state plasma concentrations (Css) of VPA on the occurrence of weight gain in patients. METHODS A total of 212 epilepsy patients receiving VPA were enrolled. Nineteen SNPs in 11 genes were detected using the Sequenom MassArray iPlex platform, and VPA Css was determined by high-performance liquid chromatography (HPLC). RESULTS After 6 months of treatment, 20.28% of patients were found to gain a significant amount of weight (weight gained ≥7%). Three SNPs in the leptin receptor (LEPR), ankyrin repeat kinase domain containing 1 (ANKK1), and α catalytic subunit of adenosine monophosphate-activated protein kinase (AMPK) showed significant associations with VPA-induced weight gain (p < 0.001, p = 0.017 and p = 0.020, respectively). After Bonferroni correction for multiple tests, the genotypic association of LEPR rs1137101, the allelic association of LEPR rs1137101, and ANKK1 rs1800497 with weight gain remained significant. However, the VPA Css in patents who gained weight were not significantly different from those who did not gain weight (p = 0.121). CONCLUSIONS LEPR and ANKK1 genetic polymorphisms may have value in predicting VPA-induced weight gain.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Min Huang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (Drs H Li, Wang, Y Zhou; Zhuojia Chen, J Li, X Chen, Hou, Xin, and Huang); The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (Drs Ni, Ziyi Chen, and L Zhou); Guangdong Pharmaceutical University, Guangzhou, China (Dr Su); Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (Dr Xie).
| |
Collapse
|
39
|
Landgraf D, Achten C, Dallmann F, Oster H. Embryonic development and maternal regulation of murine circadian clock function. Chronobiol Int 2014; 32:416-27. [DOI: 10.3109/07420528.2014.986576] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
A study of the experimental and theoretical infrared, Raman, 1H and 13C NMR spectra of the biochemicals valeric and valproic acids. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Abstract
Chronic kidney disease (CKD) is becoming a worldwide epidemic, driven largely by the dramatic rise in the prevalence of diabetes and obesity. Novel targets and treatments for CKD are, therefore, desperately needed-to both mitigate the burden of this disease in the general population and reduce the necessity for renal replacement therapy in individual patients. This Review highlights new insights into the mechanisms that contribute to CKD, and approaches that might facilitate the development of disease-arresting therapies for CKD. Particular focus is given to therapeutic approaches using antifibrotic agents that target the transforming growth factor β superfamily. In addition, we discuss new insights regarding the roles of vascular calcification, the NADPH oxidase family, and inflammation in the pathogenesis of CKD. We also highlight a new understanding regarding kidney energy sensing pathways (AMPK, sirtuins, and mTOR) in a variety of kidney diseases and how they are linked to inflammation and fibrosis. Finally, exciting new insights have been made into the role of mitochondrial function and mitochondrial biogenesis in relation to progressive kidney disease. Prospective therapeutics based on these findings will hopefully renew hope for clinicians and patients in the near future.
Collapse
Affiliation(s)
- Anne-Emilie Declèves
- Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles (ULB), CP603, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Kumar Sharma
- Center for Renal Translational Medicine, University of California, San Diego and Veterans Affairs San Diego Healthcare System, Stein Clinical Research Building, 4th Floor, 9500 Gilman Drive, La Jolla, CA 92093-0711, USA
| |
Collapse
|