1
|
Jamshed L, Jamshed S, Frank RA, Hewitt LM, Thomas PJ, Holloway AC. Assessing Receptor Activation in 2D and 3D Cultured Hepatocytes: Responses to a Single Compound and a Complex Mixture. TOXICS 2024; 12:631. [PMID: 39330559 PMCID: PMC11436198 DOI: 10.3390/toxics12090631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024]
Abstract
Responding to global standards and legislative updates in Canada, including Bill S-5 (2023), toxicity testing is shifting towards more ethical, in vitro methods. Traditional two-dimensional (2D) monolayer cell cultures, limited in replicating the complex in vivo environment, have prompted the development of more relevant three-dimensional (3D) spheroidal hepatocyte cultures. This study introduces the first 3D spheroid model for McA-RH7777 cells, assessing xenobiotic receptor activation, cellular signaling, and toxicity against dexamethasone and naphthenic acid (NA)-fraction components; NAFCs. Our findings reveal that 3D McA-RH7777 spheroids demonstrate enhanced sensitivity and more uniform dose-response patterns in gene expression related to xenobiotic metabolism (AhR and PPAR) for both single compounds and complex mixtures. Specifically, 3D cultures showed significant gene expression changes upon dexamethasone exposure and exhibited varying degrees of sensitivity and resistance to the apoptotic effects induced by NAFCs, in comparison to 2D cultures. The optimization of 3D culture conditions enhances the model's physiological relevance and enables the identification of genomic signatures under varied exposures. This study highlights the potential of 3D spheroid cultures in providing a more accurate representation of the liver's microenvironment and advancing our understanding of cellular mechanisms in toxicity testing.
Collapse
Affiliation(s)
- Laiba Jamshed
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4L8, Canada; (L.J.); (S.J.)
| | - Shanza Jamshed
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4L8, Canada; (L.J.); (S.J.)
| | - Richard A. Frank
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada; (R.A.F.); (L.M.H.)
| | - L. Mark Hewitt
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada; (R.A.F.); (L.M.H.)
| | - Philippe J. Thomas
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON K1S 5B6, Canada;
| | - Alison C. Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4L8, Canada; (L.J.); (S.J.)
| |
Collapse
|
2
|
Clarisse D, Van Moortel L, Van Leene C, Gevaert K, De Bosscher K. Glucocorticoid receptor signaling: intricacies and therapeutic opportunities. Trends Biochem Sci 2024; 49:431-444. [PMID: 38429217 DOI: 10.1016/j.tibs.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/10/2024] [Accepted: 01/31/2024] [Indexed: 03/03/2024]
Abstract
The glucocorticoid receptor (GR) is a major nuclear receptor (NR) drug target for the treatment of inflammatory disorders and several cancers. Despite the effectiveness of GR ligands, their systemic action triggers a plethora of side effects, limiting long-term use. Here, we discuss new concepts of and insights into GR mechanisms of action to assist in the identification of routes toward enhanced therapeutic benefits. We zoom in on the communication between different GR domains and how this is influenced by different ligands. We detail findings on the interaction between GR and chromatin, and highlight how condensate formation and coregulator confinement can perturb GR transcriptional responses. Last, we discuss the potential of novel ligands and the therapeutic exploitation of crosstalk with other NRs.
Collapse
Affiliation(s)
- Dorien Clarisse
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Laura Van Moortel
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Chloé Van Leene
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Karolien De Bosscher
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
3
|
Martinez GJ, Appleton M, Kipp ZA, Loria AS, Min B, Hinds TD. Glucocorticoids, their uses, sexual dimorphisms, and diseases: new concepts, mechanisms, and discoveries. Physiol Rev 2024; 104:473-532. [PMID: 37732829 PMCID: PMC11281820 DOI: 10.1152/physrev.00021.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/07/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
The normal stress response in humans is governed by the hypothalamic-pituitary-adrenal (HPA) axis through heightened mechanisms during stress, raising blood levels of the glucocorticoid hormone cortisol. Glucocorticoids are quintessential compounds that balance the proper functioning of numerous systems in the mammalian body. They are also generated synthetically and are the preeminent therapy for inflammatory diseases. They act by binding to the nuclear receptor transcription factor glucocorticoid receptor (GR), which has two main isoforms (GRα and GRβ). Our classical understanding of glucocorticoid signaling is from the GRα isoform, which binds the hormone, whereas GRβ has no known ligands. With glucocorticoids being involved in many physiological and cellular processes, even small disruptions in their release via the HPA axis, or changes in GR isoform expression, can have dire ramifications on health. Long-term chronic glucocorticoid therapy can lead to a glucocorticoid-resistant state, and we deliberate how this impacts disease treatment. Chronic glucocorticoid treatment can lead to noticeable side effects such as weight gain, adiposity, diabetes, and others that we discuss in detail. There are sexually dimorphic responses to glucocorticoids, and women tend to have a more hyperresponsive HPA axis than men. This review summarizes our understanding of glucocorticoids and critically analyzes the GR isoforms and their beneficial and deleterious mechanisms and the sexual differences that cause a dichotomy in responses. We also discuss the future of glucocorticoid therapy and propose a new concept of dual GR isoform agonist and postulate why activating both isoforms may prevent glucocorticoid resistance.
Collapse
Affiliation(s)
- Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Malik Appleton
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
4
|
Li X, Li R, Niu Y, Du M, Yang H, Liu D. Mitigating abortion risk of synthetic musk-contained body wash in pregnant women: Risk assessment and mechanism analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122672. [PMID: 37797926 DOI: 10.1016/j.envpol.2023.122672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/26/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
Synthetic musks (SMs), the widely used odor component in personal care products have attracted attention due to their environmental impacts, especially the abortion risks. Given that women comprise a significant consumer demographic for personal care products, it is imperative to promptly initiate research on avoidance strategies for pregnant women concerning their exposure to synthetic chemicals (SMs). This study tried to establish novel theoretical approaches to eliminate the abortion risks of SM-contained body wash by designing the SM-contained proportioning scheme and analyzing the abortion risk mechanisms. The binding energy of SMs to estrogen-progesterone protein complex was used as an indicator of the abortion risk. A total of 324 SM-contained body wash proportioning schemes were designed using full factorial design and No. 218 was found as the most effective formula for body wash proportioning with the binding energy value of 68.6 kJ/mol. Results showed the abortion risk could be effectively alleviated (reduced 0.6%-163.4%) by regulating the proportioning scheme of SM-contained body wash. In addition, the mechanism analysis of SM-contained proportioning scheme proportioning scheme found that xanthan gum and disodium EDTA played essential roles in reducing the abortion risk in pregnant women after exposure. The selection of proper body wash components for reducing the abortion risk of SMs on pregnant women was first proposed. It sheds lights on the potential risks of people's daily life and proposes risk-eliminating strategies.
Collapse
Affiliation(s)
- Xixi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, A1B 3X5, Canada.
| | - Rui Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yong Niu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Meijin Du
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Hao Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Di Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
5
|
Fadel L, Dacic M, Fonda V, Sokolsky BA, Quagliarini F, Rogatsky I, Uhlenhaut NH. Modulating glucocorticoid receptor actions in physiology and pathology: Insights from coregulators. Pharmacol Ther 2023; 251:108531. [PMID: 37717739 PMCID: PMC10841922 DOI: 10.1016/j.pharmthera.2023.108531] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Glucocorticoids (GCs) are a class of steroid hormones that regulate key physiological processes such as metabolism, immune function, and stress responses. The effects of GCs are mediated by the glucocorticoid receptor (GR), a ligand-dependent transcription factor that activates or represses the expression of hundreds to thousands of genes in a tissue- and physiological state-specific manner. The activity of GR is modulated by numerous coregulator proteins that interact with GR in response to different stimuli assembling into a multitude of DNA-protein complexes and facilitate the integration of these signals, helping GR to communicate with basal transcriptional machinery and chromatin. Here, we provide a brief overview of the physiological and molecular functions of GR, and discuss the roles of GR coregulators in the immune system, key metabolic tissues and the central nervous system. We also present an analysis of the GR interactome in different cells and tissues, which suggests tissue-specific utilization of GR coregulators, despite widespread functions shared by some of them.
Collapse
Affiliation(s)
- Lina Fadel
- Institute for Diabetes and Endocrinology IDE, Helmholtz Munich, Ingolstaedter Landstr. 1, 857649 Neuherberg, Germany
| | - Marija Dacic
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA; Graduate Program in Physiology, Biophysics and Systems Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Vlera Fonda
- Institute for Diabetes and Endocrinology IDE, Helmholtz Munich, Ingolstaedter Landstr. 1, 857649 Neuherberg, Germany
| | - Baila A Sokolsky
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Fabiana Quagliarini
- Institute for Diabetes and Endocrinology IDE, Helmholtz Munich, Ingolstaedter Landstr. 1, 857649 Neuherberg, Germany
| | - Inez Rogatsky
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| | - N Henriette Uhlenhaut
- Institute for Diabetes and Endocrinology IDE, Helmholtz Munich, Ingolstaedter Landstr. 1, 857649 Neuherberg, Germany; Metabolic Programming, TUM School of Life Sciences & ZIEL Institute for Food and Health, Gregor11 Mendel-Str. 2, 85354 Freising, Germany.
| |
Collapse
|
6
|
Mao L, Wei W, Chen J. Biased regulation of glucocorticoid receptors signaling. Biomed Pharmacother 2023; 165:115145. [PMID: 37454592 DOI: 10.1016/j.biopha.2023.115145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Glucocorticoids (GCs), steroid hormones that depend on glucocorticoid receptor (GR) binding for their action, are essential for regulating numerous homeostatic functions in the body.GR signals are biased, that is, GR signals are various in different tissue cells, disease states and ligands. This biased regulation of GR signaling appears to depend on ligand-induced metameric regulation, protein post-translational modifications, assembly at response elements, context-specific assembly (recruitment of co-regulators) and intercellular differences. Based on the bias regulation of GR, selective GR agonists and modulators (SEGRAMs) were developed to bias therapeutic outcomes toward expected outcomes (e.g., anti-inflammation and immunoregulation) by influencing GR-mediated gene expression. This paper provides a review of the bias regulation and mechanism of GR and the research progress of drugs.
Collapse
Affiliation(s)
- Lijuan Mao
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Cooperative Innovation Center for Anti-inflammatory Immune Drugs, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Cooperative Innovation Center for Anti-inflammatory Immune Drugs, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China.
| | - Jingyu Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Cooperative Innovation Center for Anti-inflammatory Immune Drugs, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
7
|
Deploey N, Van Moortel L, Rogatsky I, Peelman F, De Bosscher K. The Biologist's Guide to the Glucocorticoid Receptor's Structure. Cells 2023; 12:1636. [PMID: 37371105 PMCID: PMC10297449 DOI: 10.3390/cells12121636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The glucocorticoid receptor α (GRα) is a member of the nuclear receptor superfamily and functions as a glucocorticoid (GC)-responsive transcription factor. GR can halt inflammation and kill off cancer cells, thus explaining the widespread use of glucocorticoids in the clinic. However, side effects and therapy resistance limit GR's therapeutic potential, emphasizing the importance of resolving all of GR's context-specific action mechanisms. Fortunately, the understanding of GR structure, conformation, and stoichiometry in the different GR-controlled biological pathways is now gradually increasing. This information will be crucial to close knowledge gaps on GR function. In this review, we focus on the various domains and mechanisms of action of GR, all from a structural perspective.
Collapse
Affiliation(s)
- Nick Deploey
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; (N.D.); (L.V.M.); (F.P.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Translational Nuclear Receptor Research (TNRR) Laboratory, VIB, 9052 Ghent, Belgium
| | - Laura Van Moortel
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; (N.D.); (L.V.M.); (F.P.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Translational Nuclear Receptor Research (TNRR) Laboratory, VIB, 9052 Ghent, Belgium
| | - Inez Rogatsky
- Hospital for Special Surgery Research Institute, The David Z. Rosensweig Genomics Center, New York, NY 10021, USA;
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Frank Peelman
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; (N.D.); (L.V.M.); (F.P.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Karolien De Bosscher
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; (N.D.); (L.V.M.); (F.P.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Translational Nuclear Receptor Research (TNRR) Laboratory, VIB, 9052 Ghent, Belgium
| |
Collapse
|
8
|
Elhalag RH, Motawea KR, Talat NE, Rouzan SS, Shah J. Efficacy of vamorolone in treatment of Duchene muscle dystrophy. A meta-analysis. Front Neurol 2023; 14:1107474. [PMID: 36816559 PMCID: PMC9929286 DOI: 10.3389/fneur.2023.1107474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/10/2023] [Indexed: 02/04/2023] Open
Abstract
Background and aim Recent studies evaluated the role of vamorolone in treating Duchenne muscular dystrophy (DMD), so we aimed in our Meta-analysis to assess the efficacy of vamorolone in comparison with placebo and corticosteroids for treating DMD patients. Methods We searched PubMed, Web of Science, Scopus, and Cochrane library databases. We included any randomized control trials and controlled observational studies that investigated the role of vamorolone in treating DMD patients. We used RevMan software, version 5.4. to perform our meta-analysis. Results After a search of the literature, 4 studies were included in the meta-analysis; the total number of patients included in the study is 277 patients, 125 patients in the vamorolone group, 106 in the glucocorticoids group, and 46 in placebo (steroid naïve) group. The pooled analysis showed a statistically significant association between the vamorolone group and increased TTSTAND velocity, TTRW velocity and TTCLIMB velocity compared with the placebo group (MD = 0.04, 95% CI = 0.02-0.07, p = 0.002), (MD = 0.24, 95% CI = 0.11-0.37, p = 0.0003), and (MD = 0.06, 95% CI = 0.05-0.06, p < 0.00001), respectively. Also, the analysis showed a statistically significant association between vamorolone and increased TTRW velocity and increased Height percentile for age compared with the glucocorticoid group (MD = -0.14, 95% CI = -0.26 to -0.01, p = 0.03) and (MD = 17.82, 95% CI = 3.89-31.75, p = 0.01), respectively. Conclusion Our study revealed a significant association between vamorolone and increased TTSTAND velocity, TTRW velocity, and TTCLIMB velocity compared with the placebo (steroid naïve), also showed a statistically significant association between increased TTRW velocity and increased Height percentile for age compared with the glucocorticoid that enhances the privilege of vamorolone over glucocorticoid in treating DMD patients. More multicenter randomized studies are needed to support our results.
Collapse
Affiliation(s)
| | | | | | - Samah S. Rouzan
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Jaffer Shah
- New York State Department of Health, New York, NY, United States,*Correspondence: Jaffer Shah ✉
| |
Collapse
|
9
|
Liu Y, Ma L, Li M, Tian Z, Yang M, Wu X, Wang X, Shang G, Xie M, Chen Y, Liu X, Jiang L, Wu W, Xu C, Xia L, Li G, Dai S, Chen Z. Structures of human TR4LBD-JAZF1 and TR4DBD-DNA complexes reveal the molecular basis of transcriptional regulation. Nucleic Acids Res 2023; 51:1443-1457. [PMID: 36651297 PMCID: PMC9943680 DOI: 10.1093/nar/gkac1259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Testicular nuclear receptor 4 (TR4) modulates the transcriptional activation of genes and plays important roles in many diseases. The regulation of TR4 on target genes involves direct interactions with DNA molecules via the DNA-binding domain (DBD) and recruitment of coregulators by the ligand-binding domain (LBD). However, their regulatory mechanisms are unclear. Here, we report high-resolution crystal structures of TR4DBD, TR4DBD-DNA complexes and the TR4LBD-JAZF1 complex. For DNA recognition, multiple factors come into play, and a specific mutual selectivity between TR4 and target genes is found. The coactivators SRC-1 and CREBBP can bind at the interface of TR4 originally occupied by the TR4 activation function region 2 (AF-2); however, JAZF1 suppresses the binding through a novel mechanism. JAZF1 binds to an unidentified surface of TR4 and stabilizes an α13 helix never reported in the nuclear receptor family. Moreover, the cancer-associated mutations affect the interactions and the transcriptional activation of TR4 in vitro and in vivo, respectively. Overall, our results highlight the crucial role of DNA recognition and a novel mechanism of how JAZF1 reinforces the autorepressed conformation and influences the transcriptional activation of TR4, laying out important structural bases for drug design for a variety of diseases, including diabetes and cancers.
Collapse
Affiliation(s)
- Yunlong Liu
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lulu Ma
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Min Li
- National Protein Science Facility, Tsinghua University, Beijing 100084, China
| | - Zizi Tian
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meiting Yang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xi Wu
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xue Wang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guohui Shang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Mengjia Xie
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiyun Chen
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Xin Liu
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lun Jiang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wei Wu
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chaoqun Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Shaodong Dai
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zhongzhou Chen
- To whom correspondence should be addressed. Tel: +86 10 62734078; Fax: +86 10 62734078;
| |
Collapse
|
10
|
Jiménez-Panizo A, Alegre-Martí A, Tettey T, Fettweis G, Abella M, Antón R, Johnson T, Kim S, Schiltz R, Núñez-Barrios I, Font-Díaz J, Caelles C, Valledor A, Pérez P, Rojas A, Fernández-Recio J, Presman D, Hager G, Fuentes-Prior P, Estébanez-Perpiñá E. The multivalency of the glucocorticoid receptor ligand-binding domain explains its manifold physiological activities. Nucleic Acids Res 2022; 50:13063-13082. [PMID: 36464162 PMCID: PMC9825158 DOI: 10.1093/nar/gkac1119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
The glucocorticoid receptor (GR) is a ubiquitously expressed transcription factor that controls metabolic and homeostatic processes essential for life. Although numerous crystal structures of the GR ligand-binding domain (GR-LBD) have been reported, the functional oligomeric state of the full-length receptor, which is essential for its transcriptional activity, remains disputed. Here we present five new crystal structures of agonist-bound GR-LBD, along with a thorough analysis of previous structural work. We identify four distinct homodimerization interfaces on the GR-LBD surface, which can associate into 20 topologically different homodimers. Biologically relevant homodimers were identified by studying a battery of GR point mutants including crosslinking assays in solution, quantitative fluorescence microscopy in living cells, and transcriptomic analyses. Our results highlight the relevance of non-canonical dimerization modes for GR, especially of contacts made by loop L1-3 residues such as Tyr545. Our work illustrates the unique flexibility of GR's LBD and suggests different dimeric conformations within cells. In addition, we unveil pathophysiologically relevant quaternary assemblies of the receptor with important implications for glucocorticoid action and drug design.
Collapse
Affiliation(s)
| | | | | | - Gregory Fettweis
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, USA
| | - Montserrat Abella
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain,Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Rosa Antón
- Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Thomas A Johnson
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, USA
| | - Sohyoung Kim
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, USA
| | - R Louis Schiltz
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, USA
| | - Israel Núñez-Barrios
- Andalusian Center for Developmental Biology (CABD-CSIC). Campus Universitario Pablo de Olavide, 41013 Sevilla, Spain
| | - Joan Font-Díaz
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Carme Caelles
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain,Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain
| | - Annabel F Valledor
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010, Valencia, Spain
| | - Ana M Rojas
- Andalusian Center for Developmental Biology (CABD-CSIC). Campus Universitario Pablo de Olavide, 41013 Sevilla, Spain
| | - Juan Fernández-Recio
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Universidad de La Rioja - Gobierno de La Rioja, 26007 Logroño, Spain
| | - Diego M Presman
- IFIBYNE, UBA-CONICET, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Gordon L Hager
- Correspondence may also be addressed to Gordon L. Hager. Tel: +1 240 760 6618;
| | | | | |
Collapse
|
11
|
Cryo-EM reveals the architecture of the PELP1-WDR18 molecular scaffold. Nat Commun 2022; 13:6783. [PMID: 36351913 PMCID: PMC9646879 DOI: 10.1038/s41467-022-34610-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
PELP1 (Proline-, Glutamic acid-, Leucine-rich protein 1) is a large scaffolding protein that functions in many cellular pathways including steroid receptor (SR) coactivation, heterochromatin maintenance, and ribosome biogenesis. PELP1 is a proto-oncogene whose expression is upregulated in many human cancers, but how the PELP1 scaffold coordinates its diverse cellular functions is poorly understood. Here we show that PELP1 serves as the central scaffold for the human Rix1 complex whose members include WDR18, TEX10, and SENP3. We reconstitute the mammalian Rix1 complex and identified a stable sub-complex comprised of the conserved PELP1 Rix1 domain and WDR18. We determine a 2.7 Å cryo-EM structure of the subcomplex revealing an interconnected tetrameric assembly and the architecture of PELP1's signaling motifs, including eleven LxxLL motifs previously implicated in SR signaling and coactivation of Estrogen Receptor alpha (ERα) mediated transcription. However, the structure shows that none of these motifs is in a conformation that would support SR binding. Together this work establishes that PELP1 scaffolds the Rix1 complex, and association with WDR18 may direct PELP1's activity away from SR coactivation.
Collapse
|
12
|
Shi Y, Cao S, Ni D, Fan J, Lu S, Xue M. The Role of Conformational Dynamics and Allostery in the Control of Distinct Efficacies of Agonists to the Glucocorticoid Receptor. Front Mol Biosci 2022; 9:933676. [PMID: 35874618 PMCID: PMC9300934 DOI: 10.3389/fmolb.2022.933676] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Glucocorticoid receptor (GR) regulates various cellular functions. Given its broad influence on metabolic activities, it has been the target of drug discovery for decades. However, how drugs induce conformational changes in GR has remained elusive. Herein, we used five GR agonists (dex, AZ938, pred, cor, and dibC) with different efficacies to investigate which aspect of the ligand induced the differences in efficacy. We performed molecular dynamics simulations on the five systems (dex-, AZ938-, pred-, cor-, and dibC-bound systems) and observed a distinct discrepancy in the conformation of the cofactor TIF2. Moreover, we discovered ligand-induced differences regarding the level of conformational changes posed by the binding of cofactor TIF2 and identified a pair of essential residues D590 and T39. We further found a positive correlation between the efficacies of ligands and the interaction of the two binding pockets' domains, where D590 and T739 were involved, implying their significance in the participation of allosteric communication. Using community network analysis, two essential communities containing D590 and T739 were identified with their connectivity correlating to the efficacy of ligands. The potential communication pathways between these two residues were revealed. These results revealed the underlying mechanism of allosteric communication between the ligand-binding and cofactor-binding pockets and identified a pair of important residues in the allosteric communication pathway, which can serve as a guide for future drug discovery.
Collapse
Affiliation(s)
- Yuxin Shi
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Cao
- Department of Urology, Ezhou Central Hospital, Hubei, China
| | - Duan Ni
- The Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Jigang Fan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mintao Xue
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
13
|
Zhang C, Wu J, Chen Q, Tan H, Huang F, Guo J, Zhang X, Yu H, Shi W. Allosteric binding on nuclear receptors: Insights on screening of non-competitive endocrine-disrupting chemicals. ENVIRONMENT INTERNATIONAL 2022; 159:107009. [PMID: 34883459 DOI: 10.1016/j.envint.2021.107009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) can compete with endogenous hormones and bind to the orthosteric site of nuclear receptors (NRs), affecting normal endocrine system function and causing severe symptoms. Recently, a series of pharmaceuticals and personal care products (PPCPs) have been discovered to bind to the allosteric sites of NRs and induce similar effects. However, it remains unclear how diverse EDCs work in this new way. Therefore, we have systematically summarized the allosteric sites and underlying mechanisms based on existing studies, mainly regarding drugs belonging to the PPCP class. Advanced methods, classified as structural biology, biochemistry and computational simulation, together with their advantages and hurdles for allosteric site recognition and mechanism insight have also been described. Furthermore, we have highlighted two available strategies for virtual screening of numerous EDCs, relying on the structural features of allosteric sites and lead compounds, respectively. We aim to provide reliable theoretical and technical support for a broader view of various allosteric interactions between EDCs and NRs, and to drive high-throughput and accurate screening of potential EDCs with non-competitive effects.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Jinqiu Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Qinchang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Haoyue Tan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Fuyan Huang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Jing Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
14
|
McCastlain K, Howell CR, Welsh CE, Wang Z, Wilson CL, Mulder HL, Easton J, Mertens AC, Zhang J, Yasui Y, Hudson MM, Robison LL, Kundu M, Ness KK. The Association of Mitochondrial Copy Number With Sarcopenia in Adult Survivors of Childhood Cancer. J Natl Cancer Inst 2021; 113:1570-1580. [PMID: 33871611 PMCID: PMC8562958 DOI: 10.1093/jnci/djab084] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Adult childhood cancer survivors are at risk for frailty, including low muscle mass and weakness (sarcopenia). Using peripheral blood mitochondrial DNA copy number (mtDNAcn) as a proxy for functional mitochondria, this study describes cross-sectional associations between mtDNAcn and sarcopenia among survivors. METHODS Among 1762 adult childhood cancer survivors (51.6% male; median age = 29.4 years, interquartile range [IQR] = 23.3-36.8), with a median of 20.6 years from diagnosis (IQR = 15.2-28.2), mtDNAcn estimates were derived from whole-genome sequencing. A subset was validated by quantitative polymerase chain reaction and evaluated cross-sectionally using multivariable logistic regression for their association with sarcopenia, defined by race-, age-, and sex-specific low lean muscle mass or weak grip strength. All statistical tests were 2-sided. RESULTS The prevalence of sarcopenia was 27.0%, higher among female than male survivors (31.5% vs 22.9%; P < .001) and associated with age at diagnosis; 51.7% of survivors with sarcopenia were diagnosed ages 4-13 years (P = .01). Sarcopenia was most prevalent (39.0%) among central nervous system tumor survivors. Cranial radiation (odds ratio [OR] = 1.84, 95% confidence interval [CI] = 1.32 to 2.59) and alkylating agents (OR = 1.34, 95% CI = 1.04 to 1.72) increased, whereas glucocorticoids decreased odds (OR = 0.72, 95% CI = 0.56 to 0.93) of sarcopenia. mtDNAcn decreased with age (β = -0.81, P = .002) and was higher among female survivors (β = 9.23, P = .01) and among survivors with a C allele at mt.204 (β = -17.9, P = .02). In adjusted models, every standard deviation decrease in mtDNAcn increased the odds of sarcopenia 20% (OR = 1.20, 95% CI = 1.07 to 1.34). CONCLUSIONS A growing body of evidence supports peripheral blood mtDNAcn as a biomarker for adverse health outcomes; however, this study is the first to report an association between mtDNAcn and sarcopenia among childhood cancer survivors.
Collapse
Affiliation(s)
- Kelly McCastlain
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Carrie R Howell
- Department of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Catherine E Welsh
- Department of Mathematics & Computer Science, Rhodes College, Memphis, TN, USA
| | - Zhaoming Wang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Carmen L Wilson
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Heather L Mulder
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Ann C Mertens
- Aflac Cancer & Blood Disorders Center at Children’s Healthcare of Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yutaka Yasui
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Melissa M Hudson
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Leslie L Robison
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Mondira Kundu
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Kirsten K Ness
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
15
|
Structural insights into glucocorticoid receptor function. Biochem Soc Trans 2021; 49:2333-2343. [PMID: 34709368 DOI: 10.1042/bst20210419] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 01/02/2023]
Abstract
The glucocorticoid receptor (GR) is a steroid hormone-activated transcription factor that binds to various glucocorticoid response elements to up- or down- regulate the transcription of thousands of genes involved in metabolism, development, stress and inflammatory responses. GR consists of two domains enabling interaction with glucocorticoids, DNA response elements and coregulators, as well as a large intrinsically disordered region that mediates condensate formation. A growing body of structural studies during the past decade have shed new light on GR interactions, providing a new understanding of the mechanisms driving context-specific GR activity. Here, we summarize the established and emerging mechanisms of action of GR, primarily from a structural perspective. This minireview also discusses how the current state of knowledge of GR function may guide future glucocorticoid design with an improved therapeutic index for different inflammatory disorders.
Collapse
|
16
|
Frank F, Liu X, Ortlund EA. Glucocorticoid receptor condensates link DNA-dependent receptor dimerization and transcriptional transactivation. Proc Natl Acad Sci U S A 2021; 118:e2024685118. [PMID: 34285072 PMCID: PMC8325269 DOI: 10.1073/pnas.2024685118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The glucocorticoid receptor (GR) is a ligand-regulated transcription factor (TF) that controls the tissue- and gene-specific transactivation and transrepression of thousands of target genes. Distinct GR DNA-binding sequences with activating or repressive activities have been identified, but how they modulate transcription in opposite ways is not known. We show that GR forms phase-separated condensates that specifically concentrate known coregulators via their intrinsically disordered regions (IDRs) in vitro. A combination of dynamic, multivalent (between IDRs) and specific, stable interactions (between LxxLL motifs and the GR ligand-binding domain) control the degree of recruitment. Importantly, GR DNA binding directs the selective partitioning of coregulators within GR condensates such that activating DNAs cause enhanced recruitment of coactivators. Our work shows that condensation controls GR function by modulating coregulator recruitment and provides a mechanism for the up- and down-regulation of GR target genes controlled by distinct DNA recognition elements.
Collapse
Affiliation(s)
- Filipp Frank
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Xu Liu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
17
|
La Sala G, Gunnarsson A, Edman K, Tyrchan C, Hogner A, Frolov AI. Unraveling the Allosteric Cross-Talk between the Coactivator Peptide and the Ligand-Binding Site in the Glucocorticoid Receptor. J Chem Inf Model 2021; 61:3667-3680. [PMID: 34156843 DOI: 10.1021/acs.jcim.1c00323] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The glucocorticoid receptor (GR) is a nuclear receptor that controls critical biological processes by regulating the transcription of specific genes. There is a known allosteric cross-talk between the ligand and coregulator binding sites within the GR ligand-binding domain that is crucial for the control of the functional response. However, the molecular mechanisms underlying such an allosteric control remain elusive. Here, molecular dynamics (MD) simulations, bioinformatic analysis, and biophysical measurements are integrated to capture the structural and dynamic features of the allosteric cross-talk within the GR. We identified a network of evolutionarily conserved residues that enables the allosteric signal transduction, in agreement with experimental data. MD simulations clarify how such a network is dynamically interconnected and offer a mechanistic explanation of how different peptides affect the intensity of the allosteric signal. This study provides useful insights to elucidate the GR allosteric regulation, ultimately providing a foundation for designing novel drugs.
Collapse
Affiliation(s)
- Giuseppina La Sala
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anders Gunnarsson
- Discovery Science, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Karl Edman
- Discovery Science, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Christian Tyrchan
- Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anders Hogner
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Andrey I Frolov
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
18
|
Mays SG, Stec J, Liu X, D'Agostino EH, Whitby RJ, Ortlund EA. Enantiomer-specific activities of an LRH-1 and SF-1 dual agonist. Sci Rep 2020; 10:22279. [PMID: 33335203 PMCID: PMC7747700 DOI: 10.1038/s41598-020-79251-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/09/2020] [Indexed: 12/28/2022] Open
Abstract
Chirality is an important consideration in drug development: it can influence recognition of the intended target, pharmacokinetics, and off-target effects. Here, we investigate how chirality affects the activity and mechanism of action of RJW100, a racemic agonist of the nuclear receptors liver receptor homolog-1 (LRH-1) and steroidogenic factor-1 (SF-1). LRH-1 and SF-1 modulators are highly sought as treatments for metabolic and neoplastic diseases, and RJW100 has one of the few scaffolds shown to activate them. However, enantiomer-specific effects on receptor activation are poorly understood. We show that the enantiomers have similar binding affinities, but RR-RJW100 stabilizes both receptors and is 46% more active than SS-RJW100 in LRH-1 luciferase reporter assays. We present an LRH-1 crystal structure that illuminates striking mechanistic differences: SS-RJW100 adopts multiple configurations in the pocket and fails to make an interaction critical for activation by RR-RJW100. In molecular dynamics simulations, SS-RJW100 attenuates intramolecular signalling important for coregulator recruitment, consistent with previous observations that it weakly recruits coregulators in vitro. These studies provide a rationale for pursuing enantiomerically pure RJW100 derivatives: they establish RR-RJW100 as the stronger LRH-1 agonist and identify a potential for optimizing the SS-RJW100 scaffold for antagonist design.
Collapse
Affiliation(s)
- Suzanne G Mays
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
- Centre for Genomic Regulation, Carrer Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Józef Stec
- School of Chemistry, University of Southampton, Southampton, Hants, SO17, United Kingdom
- Department of Pharmaceutical Sciences, College of Pharmacy, Marshall B. Ketchum University, 2575 Yorba Linda Blvd, Fullerton, CA, 82831, USA
| | - Xu Liu
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Emma H D'Agostino
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Richard J Whitby
- School of Chemistry, University of Southampton, Southampton, Hants, SO17, United Kingdom
| | - Eric A Ortlund
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
19
|
Disruption of a key ligand-H-bond network drives dissociative properties in vamorolone for Duchenne muscular dystrophy treatment. Proc Natl Acad Sci U S A 2020; 117:24285-24293. [PMID: 32917814 DOI: 10.1073/pnas.2006890117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Duchenne muscular dystrophy is a genetic disorder that shows chronic and progressive damage to skeletal and cardiac muscle leading to premature death. Antiinflammatory corticosteroids targeting the glucocorticoid receptor (GR) are the current standard of care but drive adverse side effects such as deleterious bone loss. Through subtle modification to a steroidal backbone, a recently developed drug, vamorolone, appears to preserve beneficial efficacy but with significantly reduced side effects. We use combined structural, biophysical, and biochemical approaches to show that loss of a receptor-ligand hydrogen bond drives these remarkable therapeutic effects. Moreover, vamorolone uniformly weakens coactivator associations but not corepressor associations, implicating partial agonism as the main driver of its dissociative properties. Additionally, we identify a critical and evolutionarily conserved intramolecular network connecting the ligand to the coregulator binding surface. Interruption of this allosteric network by vamorolone selectively reduces GR-driven transactivation while leaving transrepression intact. Our results establish a mechanistic understanding of how vamorolone reduces side effects, guiding the future design of partial agonists as selective GR modulators with an improved therapeutic index.
Collapse
|
20
|
Smith EC, Conklin LS, Hoffman EP, Clemens PR, Mah JK, Finkel RS, Guglieri M, Tulinius M, Nevo Y, Ryan MM, Webster R, Castro D, Kuntz NL, Kerchner L, Morgenroth LP, Arrieta A, Shimony M, Jaros M, Shale P, Gordish-Dressman H, Hagerty L, Dang UJ, Damsker JM, Schwartz BD, Mengle-Gaw LJ, McDonald CM, the CINRG VBP15 and DNHS Investigators. Efficacy and safety of vamorolone in Duchenne muscular dystrophy: An 18-month interim analysis of a non-randomized open-label extension study. PLoS Med 2020; 17:e1003222. [PMID: 32956407 PMCID: PMC7505441 DOI: 10.1371/journal.pmed.1003222] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Treatment with corticosteroids is recommended for Duchenne muscular dystrophy (DMD) patients to slow the progression of weakness. However, chronic corticosteroid treatment causes significant morbidities. Vamorolone is a first-in-class anti-inflammatory investigational drug that has shown evidence of efficacy in DMD after 24 weeks of treatment at 2.0 or 6.0 mg/kg/day. Here, open-label efficacy and safety experience of vamorolone was evaluated over a period of 18 months in trial participants with DMD. METHODS AND FINDINGS A multicenter, open-label, 24-week trial (VBP15-003) with a 24-month long-term extension (VBP15-LTE) was conducted by the Cooperative International Neuromuscular Research Group (CINRG) and evaluated drug-related effects of vamorolone on motor outcomes and corticosteroid-associated safety concerns. The study was carried out in Canada, US, UK, Australia, Sweden, and Israel, from 2016 to 2019. This report covers the initial 24-week trial and the first 12 months of the VBP15-LTE trial (total treatment period 18 months). DMD trial participants (males, 4 to <7 years at entry) treated with 2.0 or 6.0 mg/kg/day vamorolone for the full 18-month period (n = 23) showed clinical improvement of all motor outcomes from baseline to month 18 (time to stand velocity, p = 0.012 [95% CI 0.010, 0.068 event/second]; run/walk 10 meters velocity, p < 0.001 [95% CI 0.220, 0.491 meters/second]; climb 4 stairs velocity, p = 0.001 [95% CI 0.034, 0.105 event/second]; 6-minute walk test, p = 0.001 [95% CI 31.14, 93.38 meters]; North Star Ambulatory Assessment, p < 0.001 [95% CI 2.702, 6.662 points]). Outcomes in vamorolone-treated DMD patients (n = 46) were compared to group-matched participants in the CINRG Duchenne Natural History Study (corticosteroid-naïve, n = 19; corticosteroid-treated, n = 68) over a similar 18-month period. Time to stand was not significantly different between vamorolone-treated and corticosteroid-naïve participants (p = 0.088; least squares [LS] mean 0.042 [95% CI -0.007, 0.091]), but vamorolone-treated participants showed significant improvement compared to group-matched corticosteroid-naïve participants for run/walk 10 meters velocity (p = 0.003; LS mean 0.286 [95% CI 0.104, 0.469]) and climb 4 stairs velocity (p = 0.027; LS mean 0.059 [95% CI 0.007, 0.111]). The vamorolone-related improvements were similar in magnitude to corticosteroid-related improvements. Corticosteroid-treated participants showed stunting of growth, whereas vamorolone-treated trial participants did not (p < 0.001; LS mean 15.86 [95% CI 8.51, 23.22]). Physician-reported incidences of adverse events (AEs) for Cushingoid appearance, hirsutism, weight gain, and behavior change were less for vamorolone than published incidences for prednisone and deflazacort. Key limitations to the study were the open-label design, and use of external comparators. CONCLUSIONS We observed that vamorolone treatment was associated with improvements in some motor outcomes as compared with corticosteroid-naïve individuals over an 18-month treatment period. We found that fewer physician-reported AEs occurred with vamorolone than have been reported for treatment with prednisone and deflazacort, and that vamorolone treatment did not cause the stunting of growth seen with these corticosteroids. This Phase IIa study provides Class III evidence to support benefit of motor function in young boys with DMD treated with vamorolone 2.0 to 6.0 mg/kg/day, with a favorable safety profile. A Phase III RCT is underway to further investigate safety and efficacy. TRIAL REGISTRATION Clinical trials were registered at www.clinicaltrials.gov, and the links to each trial are as follows (as provided in manuscript text): VBP15-002 [NCT02760264] VBP15-003 [NCT02760277] VBP15-LTE [NCT03038399].
Collapse
Affiliation(s)
- Edward C. Smith
- Duke University, Durham, North Carolina, United States of America
| | - Laurie S. Conklin
- ReveraGen Biopharma, Rockville, Maryland, United States of America
- Children’s National Hospital, Washington, District of Columbia, United States of America
| | - Eric P. Hoffman
- ReveraGen Biopharma, Rockville, Maryland, United States of America
- Binghamton University–SUNY, Binghamton, New York, United States of America
| | - Paula R. Clemens
- University of Pittsburgh and Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Jean K. Mah
- Alberta Children’s Hospital, Calgary, Alberta, Canada
| | - Richard S. Finkel
- Nemours Children’s Hospital, Orlando, Florida, United States of America
| | - Michela Guglieri
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Mar Tulinius
- Queen Silvia Children’s Hospital, Gothenburg, Sweden
| | - Yoram Nevo
- Schneider Children’s Medical Center, Tel Aviv University, Petah Tikvah, Israel
| | - Monique M. Ryan
- Royal Children’s Hospital and Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Richard Webster
- The Children’s Hospital at Westmead, Sydney, New South Wales, Australia
| | - Diana Castro
- University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Nancy L. Kuntz
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
| | | | | | | | - Maya Shimony
- TRiNDS, Pittsburgh, Pennsylvania, United States of America
| | - Mark Jaros
- Summit Analytical, Denver, Colorado, United States of America
| | - Phil Shale
- Summit Analytical, Denver, Colorado, United States of America
| | | | - Laura Hagerty
- ReveraGen Biopharma, Rockville, Maryland, United States of America
| | - Utkarsh J. Dang
- Binghamton University–SUNY, Binghamton, New York, United States of America
| | - Jesse M. Damsker
- ReveraGen Biopharma, Rockville, Maryland, United States of America
| | | | | | - Craig M. McDonald
- University of California, Davis, Davis, California, United States of America
- * E-mail:
| | | |
Collapse
|