1
|
The Aryl Hydrocarbon Receptor (AHR): A Novel Therapeutic Target for Pulmonary Diseases? Int J Mol Sci 2022; 23:ijms23031516. [PMID: 35163440 PMCID: PMC8836075 DOI: 10.3390/ijms23031516] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 01/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a cytoplasmic transcription factor that is well-known for regulating xenobiotic metabolism. Studies in knockout and transgenic mice indicate that the AHR plays a vital role in the development of liver and regulation of reproductive, cardiovascular, hematopoietic, and immune homeostasis. In this focused review on lung diseases associated with acute injury and alveolar development, we reviewed and summarized the current literature on the mechanistic role(s) and therapeutic potential of the AHR in acute lung injury, chronic obstructive pulmonary disease, and bronchopulmonary dysplasia (BPD). Pre-clinical studies indicate that endogenous AHR activation is necessary to protect neonatal and adult lungs against hyperoxia- and cigarette smoke-induced injury. Our goal is to provide insight into the high translational potential of the AHR in the meaningful management of infants and adults with these lung disorders that lack curative therapies.
Collapse
|
2
|
Sahebnasagh A, Hashemi J, Khoshi A, Saghafi F, Avan R, Faramarzi F, Azimi S, Habtemariam S, Sureda A, Khayatkashani M, Safdari M, Rezai Ghaleno H, Soltani H, Khayat Kashani HR. Aromatic hydrocarbon receptors in mitochondrial biogenesis and function. Mitochondrion 2021; 61:85-101. [PMID: 34600156 DOI: 10.1016/j.mito.2021.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022]
Abstract
Mitochondria are ubiquitous membrane-bound organelles that not only play a key role in maintaining cellular energy homeostasis and metabolism but also in signaling and apoptosis. Aryl hydrocarbons receptors (AhRs) are ligand-activated transcription factors that recognize a wide variety of xenobiotics, including polyaromatic hydrocarbons and dioxins, and activate diverse detoxification pathways. These receptors are also activated by natural dietary compounds and endogenous metabolites. In addition, AhRs can modulate the expression of a diverse array of genes related to mitochondrial biogenesis and function. The aim of the present review is to analyze scientific data available on the AhR signaling pathway and its interaction with the intracellular signaling pathways involved in mitochondrial functions, especially those related to cell cycle progression and apoptosis. Various evidence have reported the crosstalk between the AhR signaling pathway and the nuclear factor κB (NF-κB), tyrosine kinase receptor signaling and mitogen-activated protein kinases (MAPKs). The AhR signaling pathway seems to promote cell cycle progression in the absence of exogenous ligands, whereas the presence of exogenous ligands induces cell cycle arrest. However, its effects on apoptosis are controversial since activation or overexpression of AhR has been observed to induce or inhibit apoptosis depending on the cell type. Regarding the mitochondria, although activation by endogenous ligands is related to mitochondrial dysfunction, the effects of endogenous ligands are not well understood but point towards antiapoptotic effects and inducers of mitochondrial biogenesis.
Collapse
Affiliation(s)
- Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Javad Hashemi
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhosein Khoshi
- Department of Clinical Biochemistry, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Razieh Avan
- Assistant Professor of Clinical Pharmacy, Department of Clinical Pharmacy, Medical Toxicology and Drug Abuse Research Center (MTDRC), Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Faramarzi
- Clinical Pharmacy Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Azimi
- Student Research Committee, Department of Clinical Pharmacy, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, School of Science, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, United Kingdom
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands and Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Maryam Khayatkashani
- School of Iranian Traditional Medicine, Tehran University of Medical Sciences, 14155-6559 Tehran, Iran
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hassan Rezai Ghaleno
- Department of Surgery, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hosseinali Soltani
- Department of General Surgery, Imam Ali Hospital, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Shi Y, Zeng Z, Yu J, Tang B, Tang R, Xiao R. The aryl hydrocarbon receptor: An environmental effector in the pathogenesis of fibrosis. Pharmacol Res 2020; 160:105180. [PMID: 32877693 DOI: 10.1016/j.phrs.2020.105180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a highly conserved transcription factor that can be activated by small molecules provided by dietary, plant, or microbial metabolites, and environmental pollutants. AhR is expressed in many cell types and engages in crosstalk with other signaling pathways, and therefore provides a molecular pathway that integrates environmental cues and metabolic processes. Fibrosis, which is defined as an aberrant extracellular matrix formation, is a reparative process in the terminal stage of chronic diseases. Both environmental and internal factors have been shown to participate in the pathogenesis of fibrosis; however, the underlying mechanisms still remain elusive. In this review, the potential role of AhR in the process of fibrosis, as well as potential opportunities and challenges in the development of AhR targeting therapeutics, are summarized.
Collapse
Affiliation(s)
- Yaqian Shi
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhuotong Zeng
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jiangfan Yu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Bingsi Tang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Rui Tang
- Department of Rheumatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
4
|
Nakano N, Sakata N, Katsu Y, Nochise D, Sato E, Takahashi Y, Yamaguchi S, Haga Y, Ikeno S, Motizuki M, Sano K, Yamasaki K, Miyazawa K, Itoh S. Dissociation of the AhR/ARNT complex by TGF-β/Smad signaling represses CYP1A1 gene expression and inhibits benze[a]pyrene-mediated cytotoxicity. J Biol Chem 2020; 295:9033-9051. [PMID: 32409577 PMCID: PMC7335805 DOI: 10.1074/jbc.ra120.013596] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/11/2020] [Indexed: 12/22/2022] Open
Abstract
Cytochrome P450 1A1 (CYP1A1) catalyzes the metabolic activation of polycyclic aromatic hydrocarbons (PAHs) such as benzo[a]pyrene (B[a]P) and is transcriptionally regulated by the aryl hydrocarbon receptor (AhR)/AhR nuclear translocator (ARNT) complex upon exposure to PAHs. Accordingly, inhibition of CYP1A1 expression reduces production of carcinogens from PAHs. Although transcription of the CYP1A1 gene is known to be repressed by transforming growth factor-β (TGF-β), how TGF-β signaling is involved in the suppression of CYP1A1 gene expression has yet to be clarified. In this study, using mammalian cell lines, along with shRNA-mediated gene silencing, CRISPR/Cas9-based genome editing, and reporter gene and quantitative RT-PCR assays, we found that TGF-β signaling dissociates the B[a]P-mediated AhR/ARNT heteromeric complex. Among the examined Smads, Smad family member 3 (Smad3) strongly interacted with both AhR and ARNT via its MH2 domain. Moreover, hypoxia-inducible factor 1α (HIF-1α), which is stabilized upon TGF-β stimulation, also inhibited AhR/ARNT complex formation in the presence of B[a]P. Thus, TGF-β signaling negatively regulated the transcription of the CYP1A1 gene in at least two different ways. Of note, TGF-β abrogated DNA damage in B[a]P-exposed cells. We therefore conclude that TGF-β may protect cells against carcinogenesis because it inhibits CYP1A1-mediated metabolic activation of PAHs as part of its anti-tumorigenic activities.
Collapse
Affiliation(s)
- Naoko Nakano
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Nobuo Sakata
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Yuki Katsu
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Daiki Nochise
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Erika Sato
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Yuta Takahashi
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Saori Yamaguchi
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Yoko Haga
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Souichi Ikeno
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Mitsuyoshi Motizuki
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Keigo Sano
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Kohei Yamasaki
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Susumu Itoh
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan.
| |
Collapse
|
5
|
Liu X, Li X, Tao Y, Li N, Ji M, Zhang X, Chen Y, He Z, Yu K, Yu Z. TCDD inhibited the osteogenic differentiation of human fetal palatal mesenchymal cells through AhR and BMP-2/TGF-β/Smad signaling. Toxicology 2019; 431:152353. [PMID: 31887333 DOI: 10.1016/j.tox.2019.152353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/17/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022]
Abstract
Exposure to environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes cleft palate at high rates, but little is known about the underlying biological mechanisms. In the present study, we cultured osteoblasts from human fetal palate mesenchymal cells (hFPMCs) to explore the effects of TCDD on osteogenic differentiation. The results showed that TCDD significantly decreased cell proliferation, alkaline phosphatase (ALP) activity and calcium deposition. RNA analyses and protein detection demonstrated that TCDD downregulated a wide array of pro-osteogenic biomarkers. Further investigation of the underlying molecular mechanisms revealed that exposure to TCDD activated aryl hydrocarbon receptor (AhR) signaling and inhibited BMP-2/TGF-β1/Smad pathway molecules. The inactivation of AhR signaling using CRISPR/Cas9-mediated AhR deletion or by genetic siRNA knockdown significantly blocked the effects induced by TCDD, suggesting a critical role of AhR activation in the TCDD-mediated inhibition of hFPMC osteogenic differentiation. The cotreatment with TGF-β1 or BMP-2 and TCDD significantly relieved the activation of AhR and rescued the impairment of osteogenesis caused by TCDD. Taken together, our findings indicated that TCDD inhibited the osteogenic differentiation of hFPMCs via crosstalk between AhR and BMP-2/TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Xiaozhuan Liu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xue Li
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuchang Tao
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Ning Li
- College of Food Science and Technology, Henan Agricultural University, China
| | - Mengmeng Ji
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiuli Zhang
- Division of Blood Vessel Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yao Chen
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhidong He
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Kailun Yu
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zengli Yu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China; School of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
6
|
Attafi IM, Bakheet SA, Korashy HM. The role of NF-κB and AhR transcription factors in lead-induced lung toxicity in human lung cancer A549 cells. Toxicol Mech Methods 2019; 30:197-207. [PMID: 31682781 DOI: 10.1080/15376516.2019.1687629] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lead (Pb) is recognized as the first heavy metal of the top six toxic air pollutants threatening human health and the second hazardous substance. Pb exposure is associated with lung impairment and high incidences of lung cancer. Nuclear factor kappa B (NF-κB) and aryl hydrocarbon receptor (AhR) signaling pathways are known to be expressed and play an important role in the lung. However, the link between Pb lung toxicity and NF-κB and/or AhR pathways remains unclear. This study was established to explore the role of NF-κB and AhR modulation in Pb-induced lung toxicity in human lung cancer A549 cells. In the current study, treatment of A549 cells with Pb significantly induced cell apoptosis as evidenced by increasing a) the percentage of cells underwent apoptosis determined by flow cytometry and b) p53 mRNA level. Pb treatment induced oxidative stress by a) increasing the formation of reactive oxygen species and b) decreasing GSTA1 mRNA levels. The toxic effects of Pb on the lung was associated with significant increases in NF-κB and AhR levels which was accompanied with increases in downstream targets genes, iNOS and CYP1A1, respectively. Inhibition of NF-κB or AhR either chemically using resveratrol or genetically using small interfering RNA (siRNA) significantly rescued A549 cells from Pb-mediated lung toxicity. The results clearly indicate that Pb-mediated lung toxicities are NF-κB and AhR-dependent mechanism.
Collapse
Affiliation(s)
- Ibraheem M Attafi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Poison Control & Medical Forensic Chemistry Center, Jazan Health Affairs, Jazan, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, Qatar University, Doha, Qatar
| |
Collapse
|
7
|
McAleer JP, Fan J, Roar B, Primerano DA, Denvir J. Cytokine Regulation in Human CD4 T Cells by the Aryl Hydrocarbon Receptor and Gq-Coupled Receptors. Sci Rep 2018; 8:10954. [PMID: 30026493 PMCID: PMC6053392 DOI: 10.1038/s41598-018-29262-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
Th17 cells contribute to host defense on mucosal surfaces but also provoke autoimmune diseases when directed against self-antigens. Identifying therapeutic targets that regulate Th17 cell differentiation and/or cytokine production has considerable value. Here, we study the aryl hydrocarbon receptor (AhR)-dependent transcriptome in human CD4 T cells treated with Th17-inducing cytokines. We show that the AhR reciprocally regulates IL-17 and IL-22 production in human CD4 T cells. Global gene expression analysis revealed that AhR ligation decreased IL21 expression, correlating with delayed upregulation of RORC during culture with Th17-inducing cytokines. Several of the AhR-dependent genes have known roles in cellular assembly, organization, development, growth and proliferation. We further show that expression of GPR15, GPR55 and GPR68 positively correlates with IL-22 production in the presence of the AhR agonist FICZ. Activation of GPR68 with the lorazepam derivative ogerin resulted in suppression of IL-22 and IL-10 secretion by T cells, with no effect on IL-17. Under neutral Th0 conditions, ogerin and the Gq/11 receptor inhibitor YM254890 blunted IL-22 induction by FICZ. These data reveal the AhR-dependent transcriptome in human CD4 T cells and suggest the mechanism through which the AhR regulates T cell function may be partially dependent on Gq-coupled receptors including GPR68.
Collapse
Affiliation(s)
- Jeremy P McAleer
- Department of Pharmaceutical Science and Research, Marshall University School of Pharmacy, Huntington, WV, 25755, USA.
| | - Jun Fan
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - Bryanna Roar
- Department of Pharmaceutical Science and Research, Marshall University School of Pharmacy, Huntington, WV, 25755, USA
| | - Donald A Primerano
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - James Denvir
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| |
Collapse
|
8
|
Procházková J, Strapáčová S, Svržková L, Andrysík Z, Hýžďalová M, Hrubá E, Pěnčíková K, Líbalová H, Topinka J, Kléma J, Espinosa JM, Vondráček J, Machala M. Adaptive changes in global gene expression profile of lung carcinoma A549 cells acutely exposed to distinct types of AhR ligands. Toxicol Lett 2018; 292:162-174. [PMID: 29704546 DOI: 10.1016/j.toxlet.2018.04.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 12/19/2022]
Abstract
Exposure to persistent ligands of aryl hydrocarbon receptor (AhR) has been found to cause lung cancer in experimental animals, and lung adenocarcinomas are often associated with enhanced AhR expression and aberrant AhR activation. In order to better understand the action of toxic AhR ligands in lung epithelial cells, we performed global gene expression profiling and analyze TCDD-induced changes in A549 transcriptome, both sensitive and non-sensitive to CH223191 co-treatment. Comparison of our data with results from previously reported microarray and ChIP-seq experiments enabled us to identify candidate genes, which expression status reflects exposure of lung cancer cells to TCDD, and to predict processes, pathways (e.g. ER stress, Wnt/β-cat, IFNɣ, EGFR/Erbb1), putative TFs (e.g. STAT, AP1, E2F1, TCF4), which may be implicated in adaptive response of lung cells to TCDD-induced AhR activation. Importantly, TCDD-like expression fingerprint of selected genes was observed also in A549 cells exposed acutely to both toxic (benzo[a]pyrene, benzo[k]fluoranthene) and endogenous AhR ligands (2-(1H-Indol-3-ylcarbonyl)-4-thiazolecarboxylic acid methyl ester and 6-formylindolo[3,2-b]carbazole). Overall, our results suggest novel cellular candidates, which could help to improve monitoring of AhR-dependent transcriptional activity during acute exposure of lung cells to distinct types of environmental pollutants.
Collapse
Affiliation(s)
- Jiřina Procházková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Simona Strapáčová
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Lucie Svržková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Zdeněk Andrysík
- 1 Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Martina Hýžďalová
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Eva Hrubá
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Kateřina Pěnčíková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Helena Líbalová
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Topinka
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Kléma
- Department of Computer Science, Czech Technical University in Prague, Czech Republic
| | - Joaquín M Espinosa
- 1 Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic.
| |
Collapse
|
9
|
Szychowski KA, Wnuk A, Kajta M, Wójtowicz AK. Triclosan activates aryl hydrocarbon receptor (AhR)-dependent apoptosis and affects Cyp1a1 and Cyp1b1 expression in mouse neocortical neurons. ENVIRONMENTAL RESEARCH 2016; 151:106-114. [PMID: 27474938 DOI: 10.1016/j.envres.2016.07.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/20/2016] [Accepted: 07/13/2016] [Indexed: 05/23/2023]
Abstract
Triclosan (TCS) is an antimicrobial agent that is used extensively in personal care and in sanitizing products, such as soaps, toothpastes, and hair products. A number of studies have revealed the presence of TCS in human tissues, such as fat, liver and brain, in addition to blood and breast milk. The aim of the present study was to investigate the impact of TCS on AhR and Cyp1a1/Cyp1b1 signaling in mouse neocortical neurons in primary cultures. In addition to the use of selective ligands and siRNAs, expression levels of mRNA and proteins as well as caspase-3 activity, reactive oxygen species (ROS) formation, and lactate dehydrogenase (LDH) release have been measured. We also studied the involvement of the AhR in TCS-induced LDH release and caspase-3 activation as well as the effect of TCS on ROS generation. Cultures of neocortical neurons were prepared from Swiss mouse embryos on day 15/16 of gestation. The cells were cultured in phenol red-free Neurobasal medium with B27 and glutamine, and the neurons were exposed to 1 and 10µM TCS. Our experiments showed that the expression of AhR and Cyp1a1 mRNA decreased in cells exposed to 10µM TCS for 3 or 6h. In the case of Cyp1b1, mRNA expression remained unchanged compared with the control group following 3h of exposure to TCS, but after 6h, the mRNA expression of Cyp1b1 was decreased. Our results confirmed that the AhR is involved in the TCS mechanism of action, and our data demonstrated that after the cells were transfected with AhR siRNA, the cytotoxic and pro-apoptotic properties of TCS were decreased. The decrease in Cyp1a1 mRNA and protein expression levels accompanied by a decrease in its activity. The stimulation of Cyp1a1 activity produced by the application of an AhR agonist (βNF) was attenuated by TCS, whereas the addition of AhR antagonist (αNF) reversed the inhibitory effects of TCS. In our experiments, TCS diminished Cyp1b1 mRNA and enhanced its protein expression. In case of Cyp1a1 we observed paradoxical effect of TCS action, which caused the decrease in activity and protein expression of Cyp1a1 and the increase in protein level of AhR. Therefore, we determined the effects of TCS on the production of ROS. Our results revealed that TCS increased the production of ROS and that this effect of TCS was reversed by 10µM N-acetyl-L-cysteine (NAC), the ROS scavenger. To confirm an involvement of ROS in TCS-induced neurotoxicity we measured AhR, Cyp1a1, and Cyp1b1 mRNA expression levels in cells co-treated with TCS and NAC. In the presence of NAC, TCS enhanced mRNA expression of the cytochromes and AhR at 3 and 6h, respectively. We postulate that TCS exhibits primary and secondary effects. The primary effects such as impairment of Cyp1a1 signaling are mediated by TCS-induced ROS production, whereas secondary effects of TCS are due to transcriptional activity of AhR and estrogenic properties of TCS.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Public Health, Dietetics and Lifestyle Disorders, Faculty of Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; Department of Animal Biotechnology, Animal Sciences Faculty, University of Agriculture, Redzina 1B, 30-248 Krakow, Poland
| | - Agnieszka Wnuk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Małgorzata Kajta
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Anna K Wójtowicz
- Department of Animal Biotechnology, Animal Sciences Faculty, University of Agriculture, Redzina 1B, 30-248 Krakow, Poland.
| |
Collapse
|
10
|
Miret N, Pontillo C, Ventura C, Carozzo A, Chiappini F, Kleiman de Pisarev D, Fernández N, Cocca C, Randi A. Hexachlorobenzene modulates the crosstalk between the aryl hydrocarbon receptor and transforming growth factor-β1 signaling, enhancing human breast cancer cell migration and invasion. Toxicology 2016; 366-367:20-31. [PMID: 27519288 DOI: 10.1016/j.tox.2016.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 08/03/2016] [Accepted: 08/08/2016] [Indexed: 12/26/2022]
Abstract
Given the number of women affected by breast cancer, considerable interest has been raised in understanding the relationships between environmental chemicals and disease onset. Hexachlorobenzene (HCB) is a dioxin-like compound that is widely distributed in the environment and is a weak ligand of the aryl hydrocarbon receptor (AhR). We previously demonstrated that HCB acts as an endocrine disruptor capable of stimulating cell proliferation, migration, invasion, and metastasis in different breast cancer models. In addition, increasing evidence indicates that transforming growth factor-β1 (TGF-β1) can contribute to tumor maintenance and progression. In this context, this work investigated the effect of HCB (0.005, 0.05, 0.5, and 5μM) on TGF-β1 signaling and AhR/TGF-β1 crosstalk in the human breast cancer cell line MDA-MB-231 and analyzed whether TGF-β1 pathways are involved in HCB-induced cell migration and invasion. RT-qPCR results indicated that HCB reduces AhR mRNA expression through TGF-β1 signaling but enhances TGF-β1 mRNA levels involving AhR signaling. Western blot analysis demonstrated that HCB could increase TGF-β1 protein levels and activation, as well as Smad3, JNK, and p38 phosphorylation. In addition, low and high doses of HCB were determined to exert differential effects on AhR protein levels, localization, and activation, with a high dose (5μM) inducing AhR nuclear translocation and AhR-dependent CYP1A1 expression. These findings also revealed that c-Src and AhR are involved in HCB-mediated activation of Smad3. HCB enhances cell migration (scratch motility assay) and invasion (Transwell assay) through the Smad, JNK, and p38 pathways, while ERK1/2 is only involved in HCB-induced cell migration. These results demonstrate that HCB modulates the crosstalk between AhR and TGF-β1 and consequently exacerbates a pro-migratory phenotype in MDA-MB-231 cells, which contributes to a high degree of malignancy. Taken together, our findings help to characterize the molecular mechanism underlying the effects of HCB on breast cancer progression.
Collapse
Affiliation(s)
- Noelia Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP1121), Buenos Aires, Argentina.
| | - Carolina Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP1121), Buenos Aires, Argentina.
| | - Clara Ventura
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físico-Matemática, Laboratorio de Radioisótopos, Junín 954, subsuelo (CP1113), Buenos Aires, Argentina.
| | - Alejandro Carozzo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, ININFA-CONICET, Laboratorio de Farmacología Molecular, Junín 954, PB, (CP1113), Buenos Aires, Argentina.
| | - Florencia Chiappini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP1121), Buenos Aires, Argentina.
| | - Diana Kleiman de Pisarev
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP1121), Buenos Aires, Argentina.
| | - Natalia Fernández
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, ININFA-CONICET, Laboratorio de Farmacología Molecular, Junín 954, PB, (CP1113), Buenos Aires, Argentina.
| | - Claudia Cocca
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físico-Matemática, Laboratorio de Radioisótopos, Junín 954, subsuelo (CP1113), Buenos Aires, Argentina.
| | - Andrea Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP1121), Buenos Aires, Argentina.
| |
Collapse
|
11
|
The aryl hydrocarbon receptor links integrin signaling to the TGF-β pathway. Oncogene 2015; 35:3260-71. [PMID: 26500056 DOI: 10.1038/onc.2015.387] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/31/2015] [Accepted: 09/08/2015] [Indexed: 01/02/2023]
Abstract
Glioblastoma is the most common and aggressive form of intrinsic brain tumor. Transforming growth factor (TGF)-β represents a central mediator of the malignant phenotype of these tumors by promoting invasiveness and angiogenesis, maintaining tumor cell stemness and inducing profound immunosuppression. Integrins, which are highly expressed in glioma cells, interact with the TGF-β pathway. Furthermore, a link has been described between activity of the transcription factor aryl hydrocarbon receptor (AhR) and TGF-β expression. Here we demonstrate that integrin inhibition, using αv, β3 or β5 neutralizing antibodies, RNA interference-mediated integrin gene silencing or pharmacological inhibition by the cyclic RGD peptide EMD 121974 (cilengitide) or the non-peptidic molecule GLPG0187, inhibits AhR activity. These effects are independent of cell detachment or cell density. While AhR mRNA expression was not affected by integrin inhibition, AhR total and nuclear protein levels were reduced, suggesting that integrin inhibition-mediated regulation of AhR may occur at a post-transcriptional level. AhR-null astrocytes, AhR-null hepatocytes or glioblastoma cells with a transiently silenced AhR gene showed reduced sensitivity to integrin inhibition-mediated alterations in TGF-β signaling, indicating that AhR mediates integrin control of the TGF-β pathway. Accordingly, there was a significant correlation of αv integrin levels with nuclear AhR and pSmad2 levels as determined by immunohistochemistry in human glioblastoma in vivo. In summary, this study identifies a signaling network comprising integrins, AhR and TGF-β and validates integrin inhibition as a promising strategy not only to inhibit angiogenesis, but also to block AhR- and TGF-β-controlled features of malignancy in human glioblastoma.
Collapse
|
12
|
Hecht E, Zago M, Sarill M, Rico de Souza A, Gomez A, Matthews J, Hamid Q, Eidelman DH, Baglole CJ. Aryl hydrocarbon receptor-dependent regulation of miR-196a expression controls lung fibroblast apoptosis but not proliferation. Toxicol Appl Pharmacol 2014; 280:511-25. [PMID: 25178717 DOI: 10.1016/j.taap.2014.08.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 08/20/2014] [Accepted: 08/22/2014] [Indexed: 12/29/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor implicated in the regulation of apoptosis and proliferation. Although activation of the AhR by xenobiotics such as dioxin inhibits the cell cycle and control apoptosis, paradoxically, AhR expression also promotes cell proliferation and survival independent of exogenous ligands. The microRNA (miRNA) miR-196a has also emerged as a regulator of proliferation and apoptosis but a relationship between the AhR and miR-196a is not known. Therefore, we hypothesized that AhR-dependent regulation of endogenous miR-196a expression would promote cell survival and proliferation. Utilizing lung fibroblasts from AhR deficient (AhR(-/-)) and wild-type (AhR(+/+)) mice, we show that there is ligand-independent regulation of miRNA, including low miR-196a in AhR(-/-) cells. Validation by qRT-PCR revealed a significant decrease in basal expression of miR-196a in AhR(-/-) compared to AhR(+/+) cells. Exposure to AhR agonists benzo[a]pyrene (B[a]P) and FICZ as well as AhR antagonist CH-223191 decreased miR-196a expression in AhR(+/+) fibroblasts concomitant with decreased AhR protein levels. There was increased proliferation only in AhR(+/+) lung fibroblasts in response to serum, corresponding to a decrease in p27(KIP1) protein, a cyclin-dependent kinase inhibitor. Increasing the cellular levels of miR-196a had no effect on proliferation or expression of p27(KIP1) in AhR(-/-) fibroblasts but attenuated cigarette smoke-induced apoptosis. This study provides the first evidence that AhR expression is essential for the physiological regulation of cellular miRNA levels- including miR-196a. Future experiments designed to elucidate the functional relationship between the AhR and miR-196a may delineate additional novel ligand-independent roles for the AhR.
Collapse
Affiliation(s)
- Emelia Hecht
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Michela Zago
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Miles Sarill
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Angela Rico de Souza
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Alvin Gomez
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Jason Matthews
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Qutayba Hamid
- Department of Medicine, McGill University, Montreal, Quebec, Canada; Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - David H Eidelman
- Department of Medicine, McGill University, Montreal, Quebec, Canada; Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Carolyn J Baglole
- Department of Medicine, McGill University, Montreal, Quebec, Canada; Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
13
|
Bleck B, Grunig G, Chiu A, Liu M, Gordon T, Kazeros A, Reibman J. MicroRNA-375 regulation of thymic stromal lymphopoietin by diesel exhaust particles and ambient particulate matter in human bronchial epithelial cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:3757-63. [PMID: 23455502 DOI: 10.4049/jimmunol.1201165] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Air pollution contributes to acute exacerbations of asthma and the development of asthma in children and adults. Airway epithelial cells interface innate and adaptive immune responses, and have been proposed to regulate much of the response to pollutants. Thymic stromal lymphopoietin (TSLP) is a pivotal cytokine linking innate and Th2 adaptive immune disorders, and is upregulated by environmental pollutants, including ambient particulate matter (PM) and diesel exhaust particles (DEP). We show that DEP and ambient fine PM upregulate TSLP mRNA and human microRNA (hsa-miR)-375 in primary human bronchial epithelial cells (pHBEC). Moreover, transfection of pHBEC with anti-hsa-miR-375 reduced TSLP mRNA in DEP but not TNF-α-treated cells. In silico pathway evaluation suggested the aryl hydrocarbon receptor (AhR) as one possible target of miR-375. DEP and ambient fine PM (3 μg/cm(2)) downregulated AhR mRNA. Transfection of mimic-hsa-miR-375 resulted in a small downregulation of AhR mRNA compared with resting AhR mRNA. AhR mRNA was increased in pHBEC treated with DEP after transfection with anti-hsa-miR-375. Our data show that two pollutants, DEP and ambient PM, upregulate TSLP in human bronchial epithelial cells by a mechanism that includes hsa-miR-375 with complex regulatory effects on AhR mRNA. The absence of this pathway in TNF-α-treated cells suggests multiple regulatory pathways for TSLP expression in these cells.
Collapse
Affiliation(s)
- Bertram Bleck
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Rico-Leo EM, Alvarez-Barrientos A, Fernandez-Salguero PM. Dioxin receptor expression inhibits basal and transforming growth factor β-induced epithelial-to-mesenchymal transition. J Biol Chem 2013; 288:7841-7856. [PMID: 23382382 DOI: 10.1074/jbc.m112.425009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recent studies have emphasized the role of the dioxin receptor (AhR) in maintaining cell morphology, adhesion, and migration. These novel AhR functions depend on the cell phenotype, and although AhR expression maintains mesenchymal fibroblasts migration, it inhibits keratinocytes motility. These observations prompted us to investigate whether AhR modulates the epithelial-to-mesenchymal transition (EMT). For this, we have used primary AhR(+/+) and AhR(-/-) keratinocytes and NMuMG cells engineered to knock down AhR levels (sh-AhR) or to express a constitutively active receptor (CA-AhR). Both AhR(-/-) keratinocytes and sh-AhR NMuMG cells had increased migration, reduced levels of epithelial markers E-cadherin and β-catenin, and increased expression of mesenchymal markers Snail, Slug/Snai2, vimentin, fibronectin, and α-smooth muscle actin. Consistently, AhR(+/+) and CA-AhR NMuMG cells had reduced migration and enhanced expression of epithelial markers. AhR activation by the agonist FICZ (6-formylindolo[3,2-b]carbazole) inhibited NMuMG migration, whereas the antagonist α-naphthoflavone induced migration as did AhR knockdown. Exogenous TGFβ exacerbated the promigratory mesenchymal phenotype in both AhR-expressing and AhR-depleted cells, although the effects on the latter were more pronounced. Rescuing AhR expression in sh-AhR cells reduced Snail and Slug/Snai2 levels and cell migration and restored E-cadherin levels. Interference of AhR in human HaCaT cells further supported its role in EMT. Interestingly, co-immunoprecipitation and immunofluorescence assays showed that AhR associates in common protein complexes with E-cadherin and β-catenin, suggesting the implication of AhR in cell-cell adhesion. Thus, basal or TGFβ-induced AhR down-modulation could be relevant in the acquisition of a motile EMT phenotype in both normal and transformed epithelial cells.
Collapse
Affiliation(s)
- Eva M Rico-Leo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | | | - Pedro M Fernandez-Salguero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain.
| |
Collapse
|
15
|
Schulz VJ, Smit JJ, Huijgen V, Bol-Schoenmakers M, van Roest M, Kruijssen LJW, Fiechter D, Hassing I, Bleumink R, Safe S, van Duursen MBM, van den Berg M, Pieters RHH. Non-dioxin-like AhR ligands in a mouse peanut allergy model. Toxicol Sci 2012; 128:92-102. [PMID: 22491429 DOI: 10.1093/toxsci/kfs131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recently, we have shown that AhR activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) suppresses sensitization to peanut at least in part by inducing a functional shift toward CD4(+)CD25(+)Foxp3(+) T cells. Next to TCDD, numerous other AhR ligands have been described. In this study, we investigated the effect of three structurally different non-dioxin-like AhR ligands, e.g., 6-formylindolo[3,2-b]carbazole (FICZ), β-naphthoflavone (β-NF), and 6-methyl-1,3,8-trichlorodibenzofuran (6-MCDF), on peanut sensitization. Female C57BL/6 mice were sensitized by administering peanut extract (PE) by gavage in the presence of cholera toxin. Before and during peanut sensitization, mice were treated with FICZ, β-NF, or 6-MCDF. AhR gene transcription in duodenum and liver was investigated on day 5, even as the effect of these AhR ligands on CD4(+)CD25(+)Foxp3(+) T(reg) cells in spleen and mesenteric lymph nodes (MLNs). Mice treated with TCDD were included as a positive control. Furthermore, the murine reporter cell line H1G1.1c3 (CAFLUX) was used to investigate the possible role of metabolism of TCDD, FICZ, β-NF, and 6-MCDF on AhR activation in vitro. TCDD, but not FICZ, β-NF, and 6-MCDF, suppressed sensitization to peanut (measured by PE-specific IgE, IgG1, IgG2a and PE-induced interleukin (IL)-5, IL-10, IL-13, IL-17a, IL-22, and interferon-γ). In addition, FICZ, β-NF, and 6-MCDF treatments less effectively induced AhR gene transcription (measured by gene expression of AhR, AhRR, CYP1A1, CYP1A2, CYP1B1) compared with TCDD-treated mice. Furthermore, FICZ, β-NF and 6-MCDF did not increase the percentage of CD4(+)CD25(+)Foxp3(+) T(reg) cells in spleen and mesenteric lymph nodes compared with PE-sensitized mice, in contrast to TCDD. Inhibition of metabolism in vitro increased AhR activation. Together, these data shows that TCDD, but not FICZ, β-NF, and 6-MCDF suppresses sensitization to peanut. Differences in metabolism, AhR binding and subsequent gene transcription might explain these findings and warrant further studies to investigate the role of the AhR in food allergic responses.
Collapse
Affiliation(s)
- Veronica J Schulz
- Department of Toxicology, Institute for Risk Assessment Sciences, Utrecht University, 3508 TD Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang T, Wyrick KL, Pecka MR, Wills TB, Vorderstrasse BA. Mechanistic exploration of AhR-mediated host protection against Streptococcus pneumoniae infection. Int Immunopharmacol 2012; 13:490-8. [PMID: 22634480 DOI: 10.1016/j.intimp.2012.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/28/2012] [Accepted: 05/10/2012] [Indexed: 12/14/2022]
Abstract
Streptococcus pneumoniae is a primary cause of invasive bacterial infection and pneumonia and is one of the leading causes of death worldwide. In prior studies we showed that pre-treating mice with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent agonist of the aryl hydrocarbon receptor (AhR), protects against S. pneumoniae-induced mortality and reduces pulmonary bacterial burden. The current studies were conducted to help elucidate the mechanism for this protective effect, and to characterize the response in the lung during the first 10h following infection. C57Bl/6 mice were treated with TCDD one day prior to intranasal infection with serotype 3 S. pneumoniae. Monitoring of bacteria in the lung airways revealed that bacterial growth was inhibited in the TCDD-treated animals within 10h of infection. To address the mechanism of this rapid protective response, macrophages, neutrophils, and invariant Natural Killer T (iNKT) cells were quantified, and levels of natural antibodies produced by B-1 B cells were evaluated. Functional assays addressed whether AhR activation reduced the capacity of lung epithelial cells to bind bacteria, and whether TCDD treatment enhanced production of antimicrobial agents in the lung or blood. None of the hypothesized mechanisms was able to explain the protective effect. Finally, the exposure paradigm was manipulated to test whether administration of TCDD after instillation of the bacteria was also protective. Results showed that TCDD must be administered in advance of exposure to bacteria, suggesting that the lung environment is rendered inhospitable to the pathogens.
Collapse
Affiliation(s)
- Tao Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | |
Collapse
|
17
|
Staršíchová A, Hrubá E, Slabáková E, Pernicová Z, Procházková J, Pěnčíková K, Seda V, Kabátková M, Vondráček J, Kozubík A, Machala M, Souček K. TGF-β1 signaling plays a dominant role in the crosstalk between TGF-β1 and the aryl hydrocarbon receptor ligand in prostate epithelial cells. Cell Signal 2012; 24:1665-76. [PMID: 22560882 DOI: 10.1016/j.cellsig.2012.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 04/15/2012] [Accepted: 04/17/2012] [Indexed: 02/06/2023]
Abstract
Crosstalk between the aryl hydrocarbon receptor (AhR) and transforming growth factor-β1 (TGF-β1) signaling has been observed in various experimental models. However, both molecular mechanism underlying this crosstalk and tissue-specific context of this interaction are still only partially understood. In a model of human non-tumorigenic prostate epithelial cells BPH-1, derived from the benign prostatic hyperplasia, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) persistently activates the AhR signaling pathway and induces expression of xenobiotic metabolizing enzymes, such as CYP1A1 or CYP1B1. Here we demonstrate that TGF-β1 suppresses the AhR-mediated gene expression through multiple mechanisms, involving inhibition of AhR expression and down-regulation of nuclear AhR, via a SMAD4-dependent pathway. In contrast, TCDD-induced AhR signaling does not affect either TGF-β1-regulated gene expression or epithelial-to-mesenchymal transition. These observations suggest that, in the context of prostate epithelium, TGF-β1 signaling plays a dominant role in the crosstalk with AhR signaling pathway. Given the importance of TGF-β1 signaling in regulation of prostate epithelial tissue homeostasis, as well as the recently revealed role of AhR in prostate development and tumorigenesis, the above findings contribute to our understanding of the mechanisms underlying the crosstalk between the two signaling pathways in the prostate-specific context.
Collapse
Affiliation(s)
- Andrea Staršíchová
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bebenek IG, Solaimani P, Bui P, Hankinson O. CYP2S1 is negatively regulated by corticosteroids in human cell lines. Toxicol Lett 2011; 209:30-4. [PMID: 22155357 DOI: 10.1016/j.toxlet.2011.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 11/21/2011] [Accepted: 11/22/2011] [Indexed: 01/04/2023]
Abstract
Cytochrome P450s are monooxygenase proteins involved in the metabolism of both exogenous and endogenous compounds. CYP2S1 can metabolize eicosanoids in the absence of both NADPH and NADPH cytochrome P450 reductase, and can also activate the anticancer agent 1 AQ4N [1,4-bis{[2-(dimethylamino-N-oxide)ethyl]amino}-5,8-dihydroxy anthracene-9,10-dione]. CYP2S1 is mainly expressed in extrahepatic tissues such as the trachea, lung, stomach, small intestine, spleen, skin, breast, kidney and placenta. Furthermore, increased expression of CYP2S1 occurs in several tumors of epithelial origin, making the characterization of CYP2S1 regulation relevant to the treatment of disease. We report that the synthetic glucocorticoid receptor ligand dexamethasone (DEX) represses CYP2S1 expression. The ED(50) is between 1 nM and 3 nM and maximal repression is reached by 48 h. Other corticosteroids are also effective at repressing CYP2S1. We show that repression by DEX is mediated by the glucocorticoid receptor and requires histone deacetylase activity.
Collapse
Affiliation(s)
- Ilona G Bebenek
- Molecular Toxicology Interdepartmental Program, Department of Pathology and Laboratory Medicine, and the Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
19
|
Abel J, Haarmann-Stemmann T. An introduction to the molecular basics of aryl hydrocarbon receptor biology. Biol Chem 2011; 391:1235-48. [PMID: 20868221 DOI: 10.1515/bc.2010.128] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Depending on their chemical structure and properties, environmental chemicals and other xenobiotics that enter the cell can affect cellular function by either nonselective binding to cellular macromolecules or by interference with cellular receptors, which would initiate a more defined cell biological response. One of these intracellular chemosensor molecules is the aryl hydrocarbon receptor (AhR), a transcription factor of the bHLH/PAS family that is known to mediate the biochemical and toxic effects of dioxins, polyaromatic hydrocarbons and related compounds. Numerous investigations have revealed that the AhR is not only a master regulator of drug metabolism activated by anthropogenic chemicals, but is also triggered by natural and endogenous ligands and can influence cell biological endpoints such as growth and differentiation. Cutting-edge research has identified new intriguing functions of the AhR, such as during proteasomal degradation of steroid hormone receptors, the cellular UVB stress response and the differentiation of certain T-cell subsets. In this review we provide both a survey of the fundamental basics of AhR biology and an insight into new functional aspects of AhR signaling to further stimulate research on this intriguing transcription factor at the interface between toxicology, cell biology and immunology.
Collapse
Affiliation(s)
- Josef Abel
- Institut für Umweltmedizinische Forschung (IUF) an der Heinrich-Heine-Universität Düsseldorf gGmbH, Auf'm Hennekamp 50, Düsseldorf, Germany
| | | |
Collapse
|
20
|
Platzer B, Richter S, Kneidinger D, Waltenberger D, Woisetschläger M, Strobl H. Aryl hydrocarbon receptor activation inhibits in vitro differentiation of human monocytes and Langerhans dendritic cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:66-74. [PMID: 19535631 DOI: 10.4049/jimmunol.0802997] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The transcription factor aryl hydrocarbon receptor (AhR) represents a promising therapeutic target in allergy and autoimmunity. AhR signaling induced by the newly described ligand VAF347 inhibits allergic lung inflammation as well as suppresses pancreatic islet allograft rejection. These effects are likely mediated via alterations in dendritic cell (DC) function. Moreover, VAF347 induces tolerogenic DCs. Langerhans cells (LCs) are immediate targets of exogenous AhR ligands at epithelial surfaces; how they respond to AhR ligands remained undefined. We studied AhR expression and function in human LCs and myelopoietic cell subsets using a lineage differentiation and gene transduction model of human CD34(+) hematopoietic progenitors. We found that AhR is highly regulated during myeloid subset differentiation. LCs expressed highest AhR levels followed by monocytes. Conversely, neutrophil granulocytes lacked AhR expression. AhR ligands including VAF347 arrested the differentiation of monocytes and LCs at an early precursor cell stage, whereas progenitor cell expansion or granulopoiesis remained unimpaired. AhR expression was coregulated with the transcription factor PU.1 during myeloid subset differentiation. VAF347 inhibited PU.1 induction during initial monocytic differentiation, and ectopic PU.1 restored monocyte and LC generation in the presence of this compound. AhR ligands failed to interfere with cytokine receptor signaling during LC differentiation and failed to impair LC activation/maturation. VAF347-mediated antiproliferative effect on precursors undergoing LC lineage differentiation occurred in a clinically applicable serum-free culture model and was not accompanied by apoptosis induction. In conclusion, AhR agonist signaling interferes with transcriptional processes leading to monocyte/DC lineage commitment of human myeloid progenitor cells.
Collapse
Affiliation(s)
- Barbara Platzer
- Children's Hospital Boston, Harvard Medical School, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
21
|
Ma C, Marlowe JL, Puga A. The aryl hydrocarbon receptor at the crossroads of multiple signaling pathways. EXS 2009; 99:231-57. [PMID: 19157064 DOI: 10.1007/978-3-7643-8336-7_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The aryl hydrocarbon receptor (AHR) has long been recognized as a ligand-activated transcription factor responsible for the induction of drug-metabolizing enzymes. Its role in the combinatorial matrix of cell functions was established long before the first report of an AHR cDNA sequence was published. It is only recently that other functions of this protein have begun to be recognized, and it is now clear that the AHR also functions in pathways outside of its well-characterized role in xenobiotic enzyme induction. Perturbation of these pathways by xenobiotic ligands may ultimately explain much of the toxicity of these compounds. This chapter focuses on the interactions of the AHR in pathways critical to cell cycle regulation, mitogen-activated protein kinase cascades, differentiation and apoptosis. Ultimately, the effect of a particular AHR ligand on the biology of the organism will depend on the milieu of critical pathways and proteins expressed in specific cells and tissues with which the AHR itself interacts.
Collapse
Affiliation(s)
- Ci Ma
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA.
| | | | | |
Collapse
|
22
|
Sohn SH, Lee J, Kim KN, Kim IK, Kim MK. Effect of tobacco compounds on gene expression profiles in human epithelial cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2009; 27:111-119. [PMID: 21783928 DOI: 10.1016/j.etap.2008.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 08/14/2008] [Accepted: 09/10/2008] [Indexed: 05/31/2023]
Abstract
This study was carried out to investigate the effects of the tobacco compounds (TC), nicotine, B(a)P, and 2-naphthylamine, on gene expression profiles in a human epithelial cells (A549). We treated A549 with the TC and analyzed gene expression using microarray and real-time PCR (RTP). Gene expression varied according to the TC used. By microarray, we found that apoptosis-related genes such as apoptosis-associated tyrosine kinase, interleukin 10 receptor beta, caspase 1 and DNA fragmentation factor beta subunit (40kDa) were down-regulated in TC-treated A549 cells. RTP showed significant increases in the expression of Ahr, Arnt, CYP1A1, and CYP1B1 in TC-treated A549 cells. From these results, we suggest that tobacco compounds can influence apoptosis, inflammation, immunity, and the cell cycle in A549 cells. Also, our study demonstrates that a microarray-based genomic survey is a suitable high-throughput approach for the evaluation of gene expression and for the characterization of TC-induced toxicity.
Collapse
Affiliation(s)
- Sung-Hwa Sohn
- Department of Physiology, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | | | |
Collapse
|
23
|
Monteiro P, Gilot D, Langouet S, Fardel O. Activation of the aryl hydrocarbon receptor by the calcium/calmodulin-dependent protein kinase kinase inhibitor 7-oxo-7H-benzimidazo[2,1-a]benz[de]isoquinoline-3-carboxylic acid (STO-609). Drug Metab Dispos 2008; 36:2556-63. [PMID: 18755850 DOI: 10.1124/dmd.108.023333] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was designed to analyze the effects of the Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) inhibitor STO-609 (7-oxo-7H-benzimidazo[2,1-a]benz[de]isoquinoline-3-carboxylic acid) toward the aryl hydrocarbon receptor (AhR) pathway because Ca2+/calmodulin-dependent protein kinase (CaMK) Ialpha, known as a downstream CaMKK effector, has been recently shown to contribute to the AhR cascade. STO-609 failed to alter up-regulation of the AhR target CYP1A1 in response to the potent AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in MCF-7 cells. STO-609, used at a 25 muM concentration known to fully inhibit CaMKK activity, was surprisingly found to markedly induce CYP1A1 expression and activity by itself in MCF-7 cells; it similarly up-regulated various other AhR target genes in human macrophages. STO-609-related CYP1A1 induction was prevented by chemical inhibition or small interfering RNA-mediated knockdown expression of AhR. Moreover, STO-609 was demonstrated to physically interact with the ligand-binding domain of AhR, as assessed by TCDD binding competition assay, and to induce AhR translocation to the nucleus. As already reported for AhR agonists, STO-609 triggered the increase of [Ca2+](i) and activation of CaMKIalpha, whose inhibition through the use of the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester or the CaMK inhibitor KN-93 (2-[N-(2-hydroxyethyl)]-N-(4-methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine), respectively, prevented STO-609-mediated CYP1A1 activity induction. Taken together, these results demonstrate that the CaMKK inhibitor STO-609 can act as an AhR ligand and, in this way, fully activates the Ca2+/CaMKIalpha/AhR cascade. Such data, therefore, make unlikely any contribution of CaMKK activity to the AhR pathway and, moreover, suggest that caution may be required when using STO-609 as a specific inhibitor of CaMKKs.
Collapse
Affiliation(s)
- Patricia Monteiro
- Unité Propre de Recherche et de l'Enseignement Supérieur SeRAIC/Institut National de la Santé et de la Recherche Médicale U620, Université de Rennes 1, Faculté de Pharmacie, IFR140, Rennes, France
| | | | | | | |
Collapse
|
24
|
Goldstone HMH, Stegeman JJ. Molecular Mechanisms of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Cardiovascular Embryotoxicity. Drug Metab Rev 2008; 38:261-89. [PMID: 16684661 DOI: 10.1080/03602530600570099] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
2,3,7,8 Tetrachlorodibenzo-p-dioxin (TCDD) and related planar halogenated aromatic hydrocarbons are widespread environmental contaminants and potent developmental toxicants. Hallmarks of embryonic exposure include edema, hemorrhage, and mortality. Recent studies in zebrafish and chicken have revealed direct impairment of cardiac muscle growth that may underlie these overt symptoms. TCDD toxicity is mediated by the aryl hydrocarbon receptor, but downstream targets remain unclear. Oxidative stress and growth factor modulation have been implicated in TCDD cardiovascular toxicity. Gene expression profiling is elucidating additional pathways by which TCDD might act. We review our understanding of the mechanism of TCDD embryotoxicity at morphological and molecular levels.
Collapse
Affiliation(s)
- Heather M H Goldstone
- The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | | |
Collapse
|
25
|
Haarmann-Stemmann T, Bothe H, Abel J. Growth factors, cytokines and their receptors as downstream targets of arylhydrocarbon receptor (AhR) signaling pathways. Biochem Pharmacol 2008; 77:508-20. [PMID: 18848820 DOI: 10.1016/j.bcp.2008.09.013] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 09/12/2008] [Accepted: 09/12/2008] [Indexed: 01/02/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widespread environmental pollutant, which causes a variety of severe health effects, e.g. immunosuppression, hepatotoxicity, and carcinogenesis. The main mediator of TCDD toxicity is the arylhydrocarbon receptor (AhR), which, upon activation, translocates into the nucleus and enforces gene expression. Since most of the pleiotropic effects caused by TCDD are associated with alterations in cell growth and differentiation, the analysis of the interference of the AhR with factors controlling these cellular functions seems to be a promising target regarding the prevention and treatment of chemical-provoked diseases. Cell growth and differentiation are regulated by numerous growth factors and cytokines. These multifunctional peptides promote or inhibit cell growth and regulate differentiation and other cellular processes, depending on cell-type and developmental stage. They are involved in the regulation of a broad range of physiological processes, including immune response, hematopoiesis, neurogenesis, and tissue remodeling. The complex network of growth factors and cytokines is accurately regulated and disturbances of this system are associated with adverse health effects. The molecular mechanisms by which the AhR interferes with this signaling network are multifaceted and the physiological consequences of this cross-talk are quite enigmatic. The investigation of this complex interaction is an exciting task, especially with respect to the recently described non-genomic and/or ligand-independent activities of AhR. Therefore, we summarize the current knowledge about the interaction of the AhR with three cytokine-/growth factor-related signal transducers -- the epidermal growth factor (EGF) family, tumor necrosis factor-alpha (TNF-alpha), and transforming growth factor-beta (TGF-beta) -- with regard to pathophysiological findings.
Collapse
|
26
|
Gomez-Duran A, Carvajal-Gonzalez JM, Mulero-Navarro S, Santiago-Josefat B, Puga A, Fernandez-Salguero PM. Fitting a xenobiotic receptor into cell homeostasis: how the dioxin receptor interacts with TGFbeta signaling. Biochem Pharmacol 2008; 77:700-12. [PMID: 18812170 DOI: 10.1016/j.bcp.2008.08.032] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 08/07/2008] [Accepted: 08/08/2008] [Indexed: 02/06/2023]
Abstract
As our knowledge on the mechanisms that control cell function increases, more complex signaling pathways and quite intricate cross-talks among regulatory proteins are discovered. Establishing accurate interactions between cellular networks is essential for a healthy cell and different alterations in signaling are known to underline human disease. Transforming growth factor beta (TGFbeta) is an extracellular cytokine that regulates such critical cellular responses as proliferation, apoptosis, differentiation, angiogenesis and migration, and it is assumed that the latency-associated protein LTBP-1 plays a relevant role in TGFbeta targeting and activation in the extracellular matrix (ECM). The dioxin receptor (AhR) is a unique intracellular protein long studied because of its critical role in xenobiotic-induced toxicity and carcinogenesis. Yet, a large set of studies performed in cellular systems and in vivo animal models have suggested important xenobiotic-independent functions for AhR in cell proliferation, differentiation and migration and in tissue homeostasis. Remarkably, AhR activity converges with TGFbeta-dependent signaling through LTBP-1 since cells lacking AhR expression have phenotypic alterations that can be explained, at least in part, by the coordinated regulation of both proteins. Here, we will discuss the existence of functional interactions between AhR and TGFbeta signaling. We will focus on regulatory and functional aspects by analyzing how AhR status determines TGFbeta activity and by proposing a mechanism through which LTBP-1, a novel AhR target gene, mediates such effects. We will integrate ECM proteases in the AhR-LTBP-1-TGFbeta axis and suggest a model that could help explain some in vivo phenotypes associated to AhR deficiency.
Collapse
Affiliation(s)
- Aurea Gomez-Duran
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Interaction between the aryl hydrocarbon receptor and transforming growth factor-beta signaling pathways: evidence of an asymmetrical relationship in rat granulosa cells. Biochem Pharmacol 2008; 76:1165-74. [PMID: 18786509 DOI: 10.1016/j.bcp.2008.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 08/09/2008] [Accepted: 08/14/2008] [Indexed: 12/30/2022]
Abstract
The aryl hydrocarbon receptor (AHR) mediates toxic responses to environmental contaminants and plays pivotal physiological roles in various biological processes as well, particularly in ovarian function. It is well documented that expression and function of the AHR is negatively regulated by transforming growth factor-beta (TGF-beta) in many cell types. In addition, several studies indicate that AHR activity inhibits TGF-beta expression and function in some systems. However, the interplay between these two signals is highly dependent upon the cell type being studied, precluding a generalization about the outcome of such interaction. Therefore, the goal of the present study was to determine the effect of TGF-beta on AHR expression and activation in granulosa cells, an ovarian cell type where the growth factor is mitogenic and AHR activation has been associated with promotion of proliferation as well. In addition, we conducted experiments aimed at evaluating the effect of AHR ligands on TGF-beta action in our system. Results presented herein demonstrate that AHR expression is not regulated by TGF-beta in rat granulosa cells, neither at the mRNA level nor at the protein level. Moreover, we find that the growth factor does not alter the transcriptional function of the AHR. Conversely, we show that activation of AHR by an agonist deregulates TGF-beta function in granulosa cells, inhibiting its transcriptional activity and its mitogenic action. The described one-sided interplay between TGF-beta and AHR signaling pathway may help provide a mechanistic explanation to some of the physiological outcomes of AHR or TGF-beta activation in granulosa cells.
Collapse
|
28
|
Sohn SH, Kim KN, Kim IK, Lee EI, Ryu JJ, Kim MK. Effects of tobacco compounds on gene expression in fetal lung fibroblasts. ENVIRONMENTAL TOXICOLOGY 2008; 23:423-34. [PMID: 18247414 DOI: 10.1002/tox.20335] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 09/06/2007] [Indexed: 05/25/2023]
Abstract
The goal of this study was to determine the effects of tobacco compounds on gene expression in a human fetal lung cell line (WI38). In the present study, we investigated the effects of tobacco compounds (nicotine, benzo(a)pyrene (B(a)P), and 2-Naphthylamine) on gene expression profiles in human fetal fibroblasts using cDNA microarray and real-time PCR. WI38 cells were cultured in Eagle's minimum essential medium (MEM) supplemented with 10% fetal bovine serum, 2% 200 mM L-glutamine, and a 2% penicillin and streptomycin solution. Tissue culture flasks (T-25 cm(2)) containing confluent lung fibroblasts were incubated at 37 degrees C for 24 h with 5 mL of medium supplemented with 10 microM of a tobacco compound (nicotine, B(a)P, or 2-Naphthylamine). The gene expression profiles for the W138 cells varied depending on the tobacco compound. The cDNA microarray analysis revealed that apoptosis-related genes such as DNASE2, MADD, MST1, NME3, RARG, TNFRSF1A, BAD, and DFFB genes were down-regulated in tobacco compound-treated WI38 cells. We also observed significant increases in Arnt gene expression by real-time PCR in tobacco compound-treated WI38 cells. Tobacco compounds can affect apoptosis, immunity, and growth in WI38 cells. A microarray-based genomic survey is a high-throughput approach for the evaluation of gene expression in cell lines treated with tobacco compounds.
Collapse
Affiliation(s)
- Sung-Hwa Sohn
- Department of Biochemistry & Molecular Biology, College of Medicine, Korea University, Seoul 136-705, Korea
| | | | | | | | | | | |
Collapse
|
29
|
Castorena-Torres F, de León MB, Cisneros B, Zapata-Pérez O, Salinas JE, Albores A. Changes in gene expression induced by polycyclic aromatic hydrocarbons in the human cell lines HepG2 and A549. Toxicol In Vitro 2008; 22:411-21. [DOI: 10.1016/j.tiv.2007.10.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Chang X, Fan Y, Karyala S, Schwemberger S, Tomlinson CR, Sartor MA, Puga A. Ligand-independent regulation of transforming growth factor beta1 expression and cell cycle progression by the aryl hydrocarbon receptor. Mol Cell Biol 2007; 27:6127-39. [PMID: 17606626 PMCID: PMC1952156 DOI: 10.1128/mcb.00323-07] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that mediates the toxic effects of its xenobiotic ligands and acts as an environmental checkpoint during the cell cycle. We expressed stably integrated, Tet-Off-regulated AHR variants in fibroblasts from AHR-null mice to further investigate the AHR role in cell cycle regulation. Ahr+/+ fibroblasts proliferated significantly faster than Ahr-/- fibroblasts did, and exposure to a prototypical AHR ligand or deletion of the ligand-binding domain did not change their proliferation rates, indicating that the AHR function in cell cycle was ligand independent. Growth-promoting genes, such as cyclin and cyclin-dependent kinase genes, were significantly down-regulated in Ahr-/- cells, whereas growth-arresting genes, such as the transforming growth factor beta1 (TGF-beta1) gene, extracellular matrix (ECM)-related genes, and cyclin-dependent kinase inhibitor genes, were up-regulated. Ahr-/- fibroblasts secreted significantly more TGF-beta1 into the culture medium than Ahr+/+ fibroblasts did, and Ahr-/- showed increased levels of activated Smad4 and TGF-beta1 mRNA. Inhibition of TGF-beta1 signaling by overexpression of Smad7 reversed the proliferative and gene expression phenotype of Ahr-/- fibroblasts. Changes in TGF-beta1 mRNA accumulation were due to stabilization resulting from decreased activity of TTP, the tristetraprolin RNA-binding protein responsible for mRNA destabilization through AU-rich motifs. These results show that the Ah receptor possesses interconnected intrinsic cellular functions, such as ECM formation, cell cycle control, and TGF-beta1 regulation, that are independent of activation by either exogenous or endogenous ligands and that may play a crucial role during tumorigenesis.
Collapse
Affiliation(s)
- Xiaoqing Chang
- Department of Environmental Health, University of Cincinnati Medical Center, and Shriners Hospital for Children, Cincinnati, OH 45267-0056, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Sakata Y, Yoshioka W, Tohyama C, Ohsako S. Internal genomic sequence of human CYP1A1 gene is involved in superinduction of dioxin-induced CYP1A1 transcription by cycloheximide. Biochem Biophys Res Commun 2007; 355:687-92. [PMID: 17316563 DOI: 10.1016/j.bbrc.2007.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 02/04/2007] [Indexed: 11/25/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces CYP1A1 mRNA expression, and co-treatment with the protein synthesis inhibitor, cycloheximide (CHX) magnifies its expression severalfold further. Although this phenomenon has been reported as superinduction, its molecular mechanism is still obscure. In the present study, we analyzed the influence of the CYP1A1 internal genomic sequence on CHX-mediated superinduction. Partial sequences of the human CYP1A1 were inserted at the 5' end of the internal ribosomal entry site (IRES) connected to luciferase cDNA, and generated constructs were transiently transfected into CHO or HepG2 cells. Intron-1 deletion constructs showed higher inductivity than intron-1 intact constructs by TCDD. Quantitative RT-PCR analyses revealed that the superinduced levels by CHX of the intron-1 intact constructs were greater than those of the intron-1 deletion constructs. The present results indicate that internal genomic sequences of the human CYP1A1 gene, especially the internal sequence of intron-1, are involved in superinduction of the CYP1A1 gene by CHX.
Collapse
Affiliation(s)
- Yoshinori Sakata
- Division of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
32
|
Dung CH, Wu SC, Yen GC. Genotoxicity and oxidative stress of the mutagenic compounds formed in fumes of heated soybean oil, sunflower oil and lard. Toxicol In Vitro 2006; 20:439-47. [PMID: 16216463 DOI: 10.1016/j.tiv.2005.08.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 07/17/2005] [Accepted: 08/31/2005] [Indexed: 10/25/2022]
Abstract
This study was to investigate the genotoxicity and cytotoxicity of the oil fumes formed from heating three common commercial cooking oils (soybean oil, sunflower oil, and lard) on human lung carcinoma pulmonary type II-like epithelium cell (A-549 cell). The major alkenal mutagenic compounds (trans-trans-2,4-decadienal, t-t-2,4-DDE; trans-trans-2,4-nonadienal, t-t-2,4-NDE; trans-2-decenal, t-2-DCA and trans-2-undecenal, t-2-UDA) contained in three oil fumes and their effects on the induction of reactive oxygen species (ROS) were also studied. It was found that the most potent mutagenic compound (t-t-2,4-DDE) of oil fumes was 66.4, 35.9 and 40.3 microg/g in soybean oil, sunflower oil and lard, respectively. The results indicated that the methanolic extracts of oil fumes could apparently lead to cytotoxicity and oxidative DNA damage. Glutathione (GSH) contents and the activities of antioxidant enzymes such as GSH reductase, and GSH S-transferase were adversely reduced by the methanolic extracts of oil fumes. When human A-549 cells were exposed to the methanolic extracts of oil fumes for 30 min, there was an increase in the formation of intracellular ROS, which was determined by dichlorofluorescein assay. Moreover, the methanolic extracts of oil fumes caused significant (p<0.05) oxidative damage through the 8-hydroxy-2'-deoxyguanosine formation in A-549 cells at the concentrations from 50 to 200 microg/ml. These results demonstrated that the DNA damage in A-549 cells, induced by cooking oil fumes, was related to the ROS formation. It is inferred that women exposed to emitted fumes from cooking oil were at higher risk of contracting lung cancer.
Collapse
Affiliation(s)
- Cheng-Huang Dung
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan
| | | | | |
Collapse
|
33
|
Zhu H, Smith C, Ansah C, Gooderham NJ. Responses of genes involved in cell cycle control to diverse DNA damaging chemicals in human lung adenocarcinoma A549 cells. Cancer Cell Int 2005; 5:28. [PMID: 16120219 PMCID: PMC1198235 DOI: 10.1186/1475-2867-5-28] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 08/24/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many anticancer agents and carcinogens are DNA damaging chemicals and exposure to such chemicals results in the deregulation of cell cycle progression. The molecular mechanisms of DNA damage-induced cell cycle alteration are not well understood. We have studied the effects of etoposide (an anticancer agent), cryptolepine (CLP, a cytotoxic alkaloid), benzo [a]pyrene (BaP, a carcinogenic polycyclic aromatic hydrocarbon) and 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP, a cooked-meat derived carcinogen) on the expression of cell cycle regulatory genes to understand the molecular mechanisms of the cell cycle disturbance. RESULTS A549 cells were treated with DMSO or chemicals for up to 72 h and periodically sampled for cell cycle analysis, mRNA and protein expression. DMSO treated cells showed a dominant G1 peak in cell cycle at all times examined. Etoposide and CLP both induced G2/M phase arrest yet the former altered the expression of genes functioning at multiple phases, whilst the latter was more effective in inhibiting the expression of genes in G2-M transition. Both etoposide and CLP induced an accumulation of p53 protein and upregulation of p53 transcriptional target genes. Neither BaP nor PhIP had substantial phase-specific cell cycle effect, however, they induced distinctive changes in gene expression. BaP upregulated the expression of CYP1B1 at 6-24 h and downregulated many cell cycle regulatory genes at 48-72 h. By contrast, PhIP increased the expression of many cell cycle regulatory genes. Changes in the expression of key mRNAs were confirmed at protein level. CONCLUSION Our experiments show that DNA damaging agents with different mechanisms of action induced distinctive changes in the expression pattern of a panel of cell cycle regulatory genes. We suggest that examining the genomic response to chemical exposure provides an exceptional opportunity to understand the molecular mechanism involved in cellular response to toxicants.
Collapse
Affiliation(s)
- Huijun Zhu
- Molecular Toxicology (Biological Chemistry), Division of Biomedical Sciences, Faculty of Life Sciences, Imperial College London, Sir Alexander Fleming Building London, SW7 2AZ, UK
| | - Catherine Smith
- Molecular Toxicology (Biological Chemistry), Division of Biomedical Sciences, Faculty of Life Sciences, Imperial College London, Sir Alexander Fleming Building London, SW7 2AZ, UK
| | - Charles Ansah
- Molecular Toxicology (Biological Chemistry), Division of Biomedical Sciences, Faculty of Life Sciences, Imperial College London, Sir Alexander Fleming Building London, SW7 2AZ, UK
| | - Nigel J Gooderham
- Molecular Toxicology (Biological Chemistry), Division of Biomedical Sciences, Faculty of Life Sciences, Imperial College London, Sir Alexander Fleming Building London, SW7 2AZ, UK
| |
Collapse
|
34
|
Castell JV, Donato MT, Gómez-Lechón MJ. Metabolism and bioactivation of toxicants in the lung. The in vitro cellular approach. ACTA ACUST UNITED AC 2005; 57 Suppl 1:189-204. [PMID: 16092727 DOI: 10.1016/j.etp.2005.05.008] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lung is a target organ for the toxicity of inhalated compounds. The respiratory tract is frequently exposed to elevated concentrations of these compounds and become the primary target site for toxicity. Occupational, accidental or prolonged exposure to a great variety of chemicals may result in acute or delayed injury to cells of the respiratory tract. Nevertheless, lung has a significant capability of biotransforming such compounds with the aim of reducing its potential toxicity. In some instances, the biotransformation of a given compound can result in the generation of more reactive, and frequently more toxic, metabolites. Indeed, lung tissue is known to activate pro-carcinogens (i.e. polycyclic aromatic hydrocarbons or N-nitrosamines) into more reactive intermediates that easily form DNA adducts. Lungs express several enzymes involved in the metabolising of xenobiotics. Among them, cytochrome P450 enzymes are major players in the oxidative metabolism as well metabolic bioactivation of many organic toxicants, including pro-carcinogens. Xenobiotic-metabolising P450 enzymes are expressed in bronchial and bronchiolar epithelium, Clara cells, type II pneumocytes, and alveolar macrophages Individual CYP isoforms have different patterns of localisation within pulmonary tissue. With the aid of sensitive techniques (i.e. reverse transcriptase-polymerase chain reaction, RT-PCR) it has become possible to detect CYP1A1, CYP1B1, CYP2A6, CYP2B6, CYP2E1 and CYP3A5 mRNAs in lung cells. Less conclusive results have been obtained concerning CYP2Cs, CYP2D6 and CYP3A4. CYP3A5 protein appears to be widely present in all lung samples and is localised in the ciliated and mucous cells of the bronchial wall, bronchial glands, bronchiolar ciliated epithelium and in type I and type II alveolar epithelium. Lung cells also express Phase II enzymes such as epoxide hydrolase, UGT1A (glucuronyl transferase) and GST-P1 (glutathione S-transferase), which largely act as detoxifying enzymes. A key question concerning organ-specific chemical toxicity is whether the actual target has the capacity to activate (or efficiently inactivate) chemicals. Results of several studies indicate that the different xenobiotic-metabolising CYPs, present in the human lung and lung-derived cell lines, likely contribute to in situ activation of pulmonary toxins, among them, pro-carcinogens. Some CYPs, in particular CYP1A, are polymorphic and inducible. Interindividual differences in the expression of these CYPs may explain the different risk of developing lung toxicity (possibly cancer), by agents that require metabolic activation. Few cell lines, principally A549, have been used with variable success as an experimental model for investigating the mechanisms of toxicity. Although RT-PCR analysis has evidenced the presence of the major human pulmonary CYP mRNAs, the measurable P450 specific activities are, however, far below those present in human lungs. Detection of the toxicity elicited by reactive metabolites requires the use of metabolically competent cells; consequently, better performing cells are needed to ensure realistic in vitro prediction of toxicity. Genetic manipulation of lung-derived cells allowing them to re-express key biotransformation enzymes appear to be a promising strategy to improve their functionality and metabolic performance.
Collapse
Affiliation(s)
- José V Castell
- Research Center, University Hospital La Fe, Avda de Campanar 21, E-46009 Valencia, Spain.
| | | | | |
Collapse
|
35
|
Lemm F, Wilhelm M, Roos PH. Occupational exposure to polycyclic aromatic hydrocarbons suppresses constitutive expression of CYP1B1 on the transcript level in human leukocytes. Int J Hyg Environ Health 2004; 207:325-35. [PMID: 15471096 DOI: 10.1078/1438-4639-00298] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Expression patterns of the cytochromes P450 CYP1A1 and CYP1B1 have been analyzed on the transcript level in leukocytes of persons (n = 30) occupationally exposed to polycyclic aromatic hydrocarbons (PAH). To assess effects on expression levels results were compared with data obtained from a non-exposed control group (n = 68). CYP1B1 transcripts can be detected in all subjects of the control group but vary largely in their levels (factor 35). Statistical analysis shows that this variability is neither due to the age of the persons nor due to cigarette smoking. Furthermore, there is no difference in expression levels between genders. In contrast to CYP1B1, CYP1A1 is detectable in only 14% of the subjects. People involved in graphite electrode production and exposed to PAH show largely decreased CYP1B1 transcript levels. In 67% of the subjects, CYP1B1 is no more detectable at all. Vice versa, expression of CYP1A1 is increased in exposed persons so that 80% become positive for CYP1A1 vs. 14% of the control group. The results show that occupational exposure to PAH apparently leads to effect-relevant internal doses. Both, suppression of CYP1B1 and induction of CYP1A1 in leukocytes can be used as exposure parameters proving both enzymes to be suitable biomarkers of exposure. The suppression of CYP1B1 is an unexpected effect which needs further investigation. It is discussed that CYP1B1 and CYP1A1 indeed share a common Ah receptor mediated transcriptional regulation but that differences in promoter structure of the two genes and tissue-specific expression profiles of transcription factors may cause a differential expression behaviour.
Collapse
Affiliation(s)
- Friederike Lemm
- Abteilung für Hygiene, Sozial- und Umweltmedizin, Ruhr-Universität Bochum, Bochum, Germany
| | | | | |
Collapse
|
36
|
Wu SC, Yen GC. Effects of cooking oil fumes on the genotoxicity and oxidative stress in human lung carcinoma (A-549) cells. Toxicol In Vitro 2004; 18:571-80. [PMID: 15251174 DOI: 10.1016/j.tiv.2004.01.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Accepted: 01/08/2004] [Indexed: 10/26/2022]
Abstract
This study investigates the genotoxicity and cytotoxicity of oil fumes, formed when peanut oil is heated, on human lung carcinoma pulmonary type II-like epithelium cells. The major mutagenic compound (trans-trans-2,4-decadienal, t-t-2,4-DDE) contained in oil fumes and its effect on the induction of reactive oxygen species (ROS) is also discussed. The results indicate that the methanolic extract of oil fumes can apparently lead to cytotoxicity and oxidative DNA damage. Glutathione (GSH) content, and the activities of antioxidative enzymes such as GSH reductase, GSH peroxidase and GSH S-transferase were adversely reduced by the methanolic extract of oil fumes. t-t-2,4-DDE could produce superoxide anion, hydrogen peroxide and hydroxyl radicals in a phosphate buffer (pH 7.4), and form intracellular ROS, determined by dichlorofluorescein assay in A-549 cells. Moreover, t-t-2,4-DDE caused significant (P <0.05) oxidative damage of the 8-hydroxy-2'-deoxyguanosine formation in A-549 cells at concentrations from 50 to 200 microM. These results demonstrated that the DNA damage in A-549 cells, induced by t-t-2,4-DDE, was related to the ROS formation. The occurrence of t-t-2,4-DDE, therefore, was of significance in the genotoxicity of oxidized oil and fumes.
Collapse
Affiliation(s)
- She-Ching Wu
- Department of Food Science, National Chiayi University, Chiayi, Taiwan
| | | |
Collapse
|
37
|
Hoelper P, Faust D, Oesch F, Dietrich C. Transforming growth factor-?1 is not involved in TCDD-dependent release from contact inhibition in WB-F344 cells. Arch Toxicol 2004; 79:31-6. [PMID: 15448980 DOI: 10.1007/s00204-004-0601-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Indexed: 11/26/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the most potent tumor promoter ever tested in rodents. Although it is known that most of the effects of TCDD are mediated by binding to the aryl hydrocarbon receptor (AhR), the mechanisms leading to tumor promotion still remain to be elucidated. Loss of contact inhibition is one characteristic hallmark in tumorigenesis. In WB-F344 cells TCDD induces a release from contact inhibition which is manifested by a two- to threefold increase in DNA synthesis when TCDD (1 nM) is applied to confluent cells. Since proliferation of epithelial cells is known to be inhibited by TGF-beta, we investigated whether decreased TGF-beta1 mediates TCDD-dependent release from contact inhibition in WB-F344 cells. Expression of TGF-beta (type II) receptor in WB-F344 cells was analyzed by Western blot analysis. Exposure of 0.1 ng/ml TGF-beta1 to exponentially growing WB-F344 cells resulted in a 40% decrease in DNA synthesis, which was blocked by preincubation with a neutralizing anti-TGF-beta1 antibody, indicating that the TGF-beta receptor in WB-F344 cells is functionally active. Preincubation of confluent, G1-arrested cultures with the neutralizing anti-TGF-beta1-antibody did not lead to an increase in DNA synthesis, ruling out an involvement of TGF-beta1 in mediating contact inhibition in WB-F344 cells. In accord with this, Western blot analysis revealed that protein expression of TGF-beta1 is neither upregulated in confluent cultures nor decreased after TCDD treatment. We conclude that TGF-beta1 is not involved in contact inhibition or in TCDD-dependent release from contact inhibition in WB-F344 cells.
Collapse
Affiliation(s)
- Peter Hoelper
- Institute of Toxicology, Johannes Gutenberg-University, Obere Zahlbacherstrasse 67, 55131, Mainz, Germany
| | | | | | | |
Collapse
|
38
|
Hoelper P, Faust D, Oesch F, Dietrich C. Transforming growth factor beta1 is not involved in 2,3,7,8-tetrachlorodibenzo- p-dioxin-dependent release from contact-inhibition in WB-F344 cells. Arch Toxicol 2004; 78:643-8. [PMID: 15292977 DOI: 10.1007/s00204-004-0591-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Accepted: 06/30/2004] [Indexed: 12/11/2022]
Abstract
TCDD (2,3,7,8-tetrachlorodibenzo- p-dioxin) is the most potent tumor promoter ever tested in rodents. Although it is known that most of the effects of TCDD are mediated by binding to the aryl hydrocarbon receptor (AhR), the mechanisms leading to tumor promotion still remain to be elucidated. Loss of contact-inhibition is one characteristic hallmark in tumorigenesis. In WB-F344 cells, TCDD induces a release from contact-inhibition, which is manifested by a two- to three-fold increase in DNA-synthesis when TCDD (1 nM) is given to confluent cells. Since proliferation of epithelial cells is known to be inhibited by transforming growth factor beta (TGF-beta) we investigated whether decreased TGF-beta expression mediates TCDD-dependent release from contact-inhibition in WB-F344 cells. Expression of TGF-beta (type II) receptor in WB-F344 cells was shown by Western blot analysis. Exposure of exponentially growing WB-F344 cells to 0.1 ng/ml TGF-beta1 resulted in a 40% decrease in DNA synthesis, which could be blocked by pre-incubation with a neutralizing anti-TGF-beta1 antibody indicating that the TGF-beta receptor in WB-F344 cells is functionally active. Pre-incubation of confluent, G1-arrested cultures with the neutralizing anti-TGF-beta1 antibody did not lead to an increase in DNA synthesis, ruling out an involvement of TGF-beta1 in mediating contact-inhibition in WB-F344 cells. In accordance with this, Western blot analysis revealed that protein expression of TGF-beta1 was neither upregulated in confluent cultures nor decreased after TCDD treatment. We therefore conclude that TGF-beta1 is not involved in contact-inhibition nor in TCDD-dependent release from contact-inhibition in WB-F344 cells.
Collapse
Affiliation(s)
- Peter Hoelper
- Institute of Toxicology, Johannes Gutenberg-University, Obere Zahlbacherstr. 67, 55131 Mainz, Germany
| | | | | | | |
Collapse
|
39
|
Santiago-Josefat B, Mulero-Navarro S, Dallas SL, Fernandez-Salguero PM. Overexpression of latent transforming growth factor-beta binding protein 1 (LTBP-1) in dioxin receptor-null mouse embryo fibroblasts. J Cell Sci 2004; 117:849-59. [PMID: 14762110 DOI: 10.1242/jcs.00932] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a transcriptional regulator of genes involved in xenobiotic metabolism. Increasingly clear is also the role of the AhR in the control of cell growth and proliferation. By analyzing differential patterns of gene expression between wild-type (AhR+/+) and null (AhR-/-) mouse embryo fibroblasts (MEF), we have identified latent transforming growth factor-beta binding protein 1 (LTBP-1) as a negatively AhR-regulated gene in the absence of xenobiotics. Ltbp-1 mRNA and protein expression were markedly increased in AhR-/- MEF. Furthermore, secreted LTBP-1 was elevated in the culture medium and the extracellular matrix of AhR-null MEF. Actinomycin D inhibited Ltbp-1 mRNA overexpression, suggesting regulation at the transcriptional level. AhR activation by dioxin (TCDD) downregulated Ltbp-1, again suggesting an AhR-regulated mechanism. Treatment of AhR+/+ MEF with transforming growth factor-beta(TGF-beta) downregulated AhR and, simultaneously, increased Ltbp-1, further supporting the role of this receptor in LTBP-1 expression. AhR-/- conditioned medium had higher levels of active and total TGF-beta activity, suggesting a role for LTBP-1 in maintaining extracellular TGF-beta concentrations. TGF-beta did not appear to directly regulate Ltbp-1 given that addition of TGFbeta neutralizing antibody or TGFbeta protein to AhR-/- MEF had no effect on Ltbp-1 expression. AhR-/- MEF had lower levels of matrix metalloproteinase 2 (MMP-2) activity, which could not be attributable to MMP-2 mRNA downregulation or MMP-inhibitors Timp-1 and Timp-2 overexpression. These data identify LTBP-1 as one of the few AhR-regulated genes not involved in xenobiotic metabolism and also support the implication of the AhR in controlling TGFbeta activity and cell proliferation.
Collapse
Affiliation(s)
- Belen Santiago-Josefat
- Departamento de Bioquimica y Biologia Molecular, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071-Badajoz, Spain
| | | | | | | |
Collapse
|
40
|
Guo J, Sartor M, Karyala S, Medvedovic M, Kann S, Puga A, Ryan P, Tomlinson CR. Expression of genes in the TGF-β signaling pathway is significantly deregulated in smooth muscle cells from aorta of aryl hydrocarbon receptor knockout mice. Toxicol Appl Pharmacol 2004; 194:79-89. [PMID: 14728982 DOI: 10.1016/j.taap.2003.09.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The molecular basis for the adverse biological effects of dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin; TCDD), a pervasive environmental toxin, is largely unknown. TCDD is a ligand for the cytosolic aromatic hydrocarbon receptor (AHR) which mediates the transcriptional induction of the xenobiotic metabolizing genes in the CYP1 family of cytochromes P450. Previous studies have suggested that the AHR may carry out important functions in the cell in addition to metabolizing toxins. We present gene expression profiles of smooth muscle cells from wild type and Ahr(-/-) mice that show significant changes in the RNA levels of the transforming growth factor-beta3 (Tgfb3) gene and genes involved in the modulation and processing of TGF-beta. The RNA expression profiles support a hypothesis that in the wild type, the AHR represses Tgfb gene expression and affects the gene expression of several TGF-beta-modulating and processing genes. We also observed that RNA levels increased for TGF-beta2, CYP1b1, and TGF-beta-related genes in Ahr(-/-) smooth muscle cells exposed to TCDD. These data are consistent with a hypothesis that TCDD stimulates the TGF-beta2 signaling pathway in the absence of the AHR to activate the Cyp1b1 gene. The above results provide a possible explanation for some of the multiple biological effects of TCDD and the physiological role played by the AHR in the absence of environmental agents.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Cells, Cultured
- Female
- Gene Expression Profiling
- Gene Expression Regulation/drug effects
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Oligonucleotide Array Sequence Analysis
- Polychlorinated Dibenzodioxins/toxicity
- RNA, Messenger/biosynthesis
- Receptors, Aryl Hydrocarbon/deficiency
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/physiology
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
- Transforming Growth Factor beta/biosynthesis
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/physiology
Collapse
Affiliation(s)
- Junhai Guo
- Division of Biostatistics and Epidemiology, University of Cincinnati, OH 45267-0056, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Hukkanen J, Pelkonen O, Hakkola J, Raunio H. Expression and regulation of xenobiotic-metabolizing cytochrome P450 (CYP) enzymes in human lung. Crit Rev Toxicol 2002; 32:391-411. [PMID: 12389869 DOI: 10.1080/20024091064273] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pathogenesis of lung diseases, such as lung cancer and chronic obstructive pulmonary disease, is tightly linked to exposure to environmental chemicals, most notably tobacco smoke. Many of the compounds associated with these diseases require an enzymatic activation to exert their deleterious effects on pulmonary cells. These activation reactions are mostly catalyzed by cytochrome P450 (CYP) enzymes. Interindividual differences in the in situ activation and inactivation of chemical toxicants may contribute to the risk of developing lung diseases associated with these compounds. This review summarizes in detail the expression of individual CYP forms in human pulmonary tissue and gives a view on the significance of the pulmonary expression of CYP enzymes. The localization of individual CYP enzymes in various cell types of human lung and the emerging field of regulation of human pulmonary CYP enzymes are discussed. At least CYP1A1 (in smokers), CYP1B1, CYP2B6, CYP2E1, CYP2J2, and CYP3A5 proteins are expressed in human lung, and also other CYP forms are likely to be expressed. Xenobiotic-metabolizing CYP enzymes are mostly expressed in bronchial and bronchiolar epithelium, Clara cells, type II pneumocytes, and alveolar macrophages in human lung, although individual CYP forms have different patterns of localization in pulmonary tissues. Problems in animal to human lung toxicity extrapolation and several specific aspects requiring more detailed assessment are identified.
Collapse
|
42
|
Wikman H, Kettunen E, Seppänen JK, Karjalainen A, Hollmén J, Anttila S, Knuutila S. Identification of differentially expressed genes in pulmonary adenocarcinoma by using cDNA array. Oncogene 2002; 21:5804-13. [PMID: 12173052 DOI: 10.1038/sj.onc.1205726] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2002] [Revised: 06/03/2002] [Accepted: 06/10/2002] [Indexed: 01/02/2023]
Abstract
No clear patterns in molecular changes underlying the malignant processes in lung cancer of different histological types have been found so far. To identify critical genes in lung cancer progression we compared the expression profile of cancer related genes in 14 pulmonary adenocarcinoma patients with normal lung tissue by using the cDNA array technique. Principal component analyses (PCA) and permutation test were used to detect the differentially expressed genes. The expression profiles of 10 genes were confirmed by semi-quantitative real-time RT-PCR. In tumour samples, as compared to normal lung tissue, the up-regulated genes included such known tumour markers as CCNB1, PLK, tenascin, KRT8, KRT19 and TOP2A. The down-regulated genes included caveolin 1 and 2, and TIMP3. We also describe, for the first time, down-regulation of the interesting SOCS2 and 3, DOC2 and gravin. We show that silencing of SOCS2 is not caused by methylation of exon 1 of the gene. In conclusion, by using the cDNA array technique we were able to reveal marked differences in the gene expression level between normal lung and tumour tissue and find possible new tumour markers for pulmonary adenocarcinoma.
Collapse
Affiliation(s)
- Harriet Wikman
- Department of Medical Genetics, Haartman Institute and Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
43
|
Hestermann EV, Stegeman JJ, Hahn ME. Serum withdrawal leads to reduced aryl hydrocarbon receptor expression and loss of cytochrome P4501A inducibility in PLHC-1 cells. Biochem Pharmacol 2002; 63:1405-14. [PMID: 11996881 DOI: 10.1016/s0006-2952(02)00892-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Changes in the expression of the aryl hydrocarbon receptor (AHR) have been documented in several systems and in response to a variety of treatments. The significance of these findings is unclear, because the effects of such changes on subsequent responses to AHR ligands seldom have been measured. We tested the ability of changes in serum used in cell culture medium to alter expression of the AHR and induction of cytochrome P4501A (CYP1A) in PLHC-1 teleost hepatoma cells. Culture of early-passage cells in serum-free medium for 2 days led to a loss of CYP1A inducibility by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In contrast, culture in 10% delipidated calf serum increased the TCDD-induced levels of both CYP1A protein and enzymatic activity relative to levels in cells cultured in 10% complete calf serum. These effects were consistent between 8 and 24hr post-treatment, indicating that the kinetics of induction were unaffected. In cells cultured in serum-free medium for 1 and 2 days there was a progressive loss of CYP1A inducibility. This loss of response paralleled a time-dependent decline in AHR protein, as measured by specific binding of [3H]TCDD. Using an operational model for AHR action in PLHC-1 cells, the measured reduction in AHR could be shown to predict the loss of CYP1A induction. Expression of AHR protein was unaffected by culture in 10% delipidated serum. The effects of serum-free medium and delipidated serum were found only in early-passage cells; inducibility of CYP1A and expression of AHR protein in late-passage cells were unaffected by serum withdrawal. Comparison of early- and late-passage cells revealed a 2-fold greater rate of proliferation in the latter, suggesting that a growth advantage is coincident with loss of the serum-dependency of AHR expression. These results provide a quantitative link between changes in receptor expression and a downstream response, establishing a foundation for future studies of receptor expression and sensitivity to toxic responses in vitro and in vivo.
Collapse
Affiliation(s)
- Eli V Hestermann
- Biology Department, Redfield 340, MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | | | | |
Collapse
|
44
|
Franc MA, Pohjanvirta R, Tuomisto J, Okey AB. In vivo up-regulation of aryl hydrocarbon receptor expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in a dioxin-resistant rat model. Biochem Pharmacol 2001; 62:1565-78. [PMID: 11755109 DOI: 10.1016/s0006-2952(01)00820-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The aryl hydrocarbon receptor (AHR) mediates toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and regulates expression of several genes such as CYP1A1. Little is known about what regulates expression of the AHR itself. We tested the ability of TCDD to alter in vivo expression of its own receptor in rat strains that are susceptible to TCDD lethality [Long-Evans (Turku AB) (L-E) and Sprague Dawley (SD)] and in a rat strain that is remarkably resistant to TCDD lethality [Han/Wistar (Kuopio) (H/W)]. Rats were administered a single, intragastric dose of 5 or 50 microg/kg of TCDD. Hepatic cytosol, nuclear extract, and RNA were prepared at 1, 4, and 10 days after TCDD exposure. AHR expression was assessed at three levels: ligand binding function, immunoreactive protein and mRNA. TCDD at 5 microg/kg produced a 2- to 3-fold increase in cytosolic AHR in all strains; 50 microg/kg produced depletion at day 1 followed by recovery in SD and H/W but not L-E rats. Both the increase in AHR above basal levels and the recovery from initial depletion were accompanied by elevations in steady-state AHR mRNA, suggesting a pre-translational mechanism for AHR regulation by its own ligand. This up-regulation in vivo is in contrast to the sustained depletion of AHR caused by TCDD in cell culture. There was no clear relationship between AHR regulation and strain sensitivity; thus, the large inherent strain differences in susceptibility to TCDD lethality probably are not explained by differential regulation of AHR by TCDD.
Collapse
Affiliation(s)
- M A Franc
- Department of Pharmacology, University of Toronto, Medical Sciences Building, 1 King's College Circle, M5S 1A8, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
45
|
Guo M, Joiakim A, Dudley DT, Reiners JJ. Suppression of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated CYP1A1 and CYP1B1 induction by 12-O-tetradecanoylphorbol-13-acetate: role of transforming growth factor beta and mitogen-activated protein kinases. Biochem Pharmacol 2001; 62:1449-57. [PMID: 11728381 DOI: 10.1016/s0006-2952(01)00801-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) enhances or suppresses the transcriptional activation of CYP1A1 by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in a cell/tissue-specific manner. The basis for these effects is not known. Exposure of the immortalized human breast epithelial cell line MCF10A-Neo to TPA at the time of, or up to 12 hr prior to, the addition of TCDD strongly suppressed the transcriptional activation of CYP1A1 and CYP1B1 (IC(50) approximately 0.5 nM). A recent study (Carcinogenesis 2000;21:1303-12) demonstrated that TPA-treated MCF10A-Neo cells rapidly activate the latent transforming growth factor beta (TGFbeta) in the serum used to supplement the culture medium. The suppressive effects of TPA on CYP1A1 induction by TCDD in MCF10A-Neo cultures could be partially suppressed by: (a) co-incubation of TCDD + TPA-treated cultures with a neutralizing TGFbeta pan antibody; (b) prior removal of latent TGFbeta from the culture medium; or (c) switching cultures to serum- and growth factor-free medium immediately before the addition of TPA and TCDD. Exposure of cultures to TPA 24-48 hr prior to subsequent TPA + TCDD treatment not only inhibited the suppressive effects of TPA, but markedly enhanced CYP1A1 mRNA accumulation. TPA caused a rapid and protracted activation of extracellular signal-regulated kinases (ERKs). Pretreatment of cultures with the mitogen-activated protein kinase kinase (MEK) inhibitor PD184352 [2-(2-chloro-4-iodo-phenylamino)-N-cyclopropyl-methoxy-3,4-difluoro-benzamide] completely inhibited ERK activation by TPA. However, PD184352 did not prevent the suppressive effects of TPA on CYP1A1 activation by TCDD. These studies demonstrate that TPA initiates protein kinase C-dependent, ERK-independent processes that suppress CYP1A1 activation by TCDD in MCF10A-Neo cells. Furthermore, TGFbeta mediates a small portion of this suppressive activity.
Collapse
Affiliation(s)
- M Guo
- Institute of Environmental Health Sciences, Wayne State University, 2727 Second Ave., Rm. 4000, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
46
|
Wolff S, Harper PA, Wong JM, Mostert V, Wang Y, Abel J. Cell-specific regulation of human aryl hydrocarbon receptor expression by transforming growth factor-beta(1). Mol Pharmacol 2001; 59:716-24. [PMID: 11259615 DOI: 10.1124/mol.59.4.716] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Previous studies showed that TGF-beta down-regulates aryl hydrocarbon (AhR) expression in human lung carcinoma cells A549. Here we analyzed the molecular mechanisms by which TGF-beta modulates AhR expression. A 5799-nucleotide 5'-flanking region of human AhR gene was isolated. Transient transfection studies of full-length (hAhRP) and deletion promoter constructs indicate the requirement of a cis-regulatory element encompassing -1980 to -1892 for full constitutive activity. Basal hAhRP activity occurs in a cell-specific manner; human hepatoma HepG2 cells possess a 10-fold higher activity compared with A549 cells. TGF-beta exerts cell-specific effects on hAhRP activity. Treatment of cells with 100 pM TGF-beta leads to a 50% inhibition in A549 and a 3-fold induction in HepG2 cells. Deletion mutagenesis identified a TGF-beta-responsive sequence containing a functional conserved Smad-binding element. Transient overexpression of Smad 2, 3, and 4 indicates that these signal transducers modulate hAhRP activity. The down-regulation of AhR by TGF-beta is modulated by 5'-TG-3'-interacting factor (TGIF). Transient overexpression of TGIF in MDA-MB231 and HepG2 cells led to inhibition of hAhRP activity and a similar decrease of AhR mRNA expression. Our findings indicate that Smad proteins are involved in the cell-specific regulation of AhR expression by TGF-beta.
Collapse
MESH Headings
- 5' Untranslated Regions/genetics
- Activin Receptors, Type I
- Binding Sites/genetics
- Carcinoma/genetics
- Carcinoma/metabolism
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Drug
- Down-Regulation/drug effects
- Homeodomain Proteins/metabolism
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Mutagenesis, Site-Directed
- Protein Serine-Threonine Kinases/metabolism
- RNA, Messenger/metabolism
- Receptor, Transforming Growth Factor-beta Type I
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, Transforming Growth Factor beta/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Repressor Proteins
- Smad2 Protein
- Smad3 Protein
- Smad4 Protein
- Trans-Activators/metabolism
- Transfection
- Transforming Growth Factor beta/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- S Wolff
- Department of Experimental Toxicology, Medical Institute of Environmental Hygiene at the Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Hestermann EV, Stegeman JJ, Hahn ME. Relative contributions of affinity and intrinsic efficacy to aryl hydrocarbon receptor ligand potency. Toxicol Appl Pharmacol 2000; 168:160-72. [PMID: 11032772 DOI: 10.1006/taap.2000.9026] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Models of receptor action are valuable for describing properties of ligand-receptor interactions and thereby contribute to mechanism-based risk assessment of receptor-mediated toxic effects. In order to build such a model for the aryl hydrocarbon receptor (AHR), binding affinities and CYP1A induction potencies were measured in PLHC-1 cells and were used to determine intrinsic efficacies for 10 halogenated aromatic hydrocarbons (HAH): 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD), 2,3,7, 8-tetrachlorodibenzofuran (TCDF), and eight polychlorinated biphenyls (PCB). TCDD, TCDF, and non-ortho-substituted PCBs 77, 81, 126, and 169 behaved as full agonists and displayed high-intrinsic efficacy. In contrast, the mono- and di-ortho-substituted PCBs bound to the AHR but displayed lower or no intrinsic efficacy. PCB 156 was a full agonist, but with an intrinsic efficacy 10- to 50-fold lower than non-ortho-substituted PCBs. PCB 118 was a very weak partial agonist. PCBs 105 and 128 were shown to be competitive antagonists in this system. The model was then used to predict CYP1A induction by binary mixtures. These predictions were tested with binary mixtures of PCB 126, 128, or 156 with TCDD. Both PCB 156 (a low-intrinsic efficacy agonist) and PCB 128 (a competitive antagonist) inhibited the response to TCDD, while the response to TCDD and PCB126 was additive. These data support the following conclusions: 1) only 1-2% of the receptors in the cell need be occupied to achieve 50% of maximal CYP1A induction by one of the high-intrinsic efficacy agonists, demonstrating the existence of "spare" receptors in this system; 2) the insensitivity of fish to ortho-substituted PCBs is due to both reduced affinity and reduced intrinsic efficacy compared to non-ortho-substituted PCBs; 3) PCB congeners exhibit distinct structure-affinity and structure-efficacy relationships. Separation of AHR ligand action into the properties of affinity and intrinsic efficacy allows for improved prediction of the behavior of complex mixtures of ligands, as well as mechanistic comparisons across species and toxic endpoints.
Collapse
Affiliation(s)
- E V Hestermann
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 02543, USA
| | | | | |
Collapse
|
48
|
Schuppe HC, Wieneke P, Donat S, Fritsche E, Köhn FM, Abel J. Xenobiotic metabolism, genetic polymorphisms and male infertility. Andrologia 2000; 32:255-62. [PMID: 11021517 DOI: 10.1046/j.1439-0272.2000.00393.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Male reproductive function may be impaired by various occupational and environmental chemical agents. The majority of these xenobiotics, however, require metabolic activation in order to exert adverse effects via covalent interactions between intermediate metabolites and cellular macromolecules such as DNA or protein. In addition, metabolization may alter endocrine-disrupting properties of xenobiotics. Thus tissue-specific expression and regulation of multiple xenobiotic-metabolizing enzymes are likely to play an important role in chemically induced disorders of male reproductive organs. Recent studies suggest that genetic polymorphisms underlying inter-individual and inter-ethnic variability of xenobiotic metabolism modulate susceptibility to male reproductive disorders. For cytochrome P450 1A1 (CYP1A1), a key enzyme in extra-hepatic metabolic activation of lipophilic xenobiotics, increased frequencies of two genetically linked polymorphisms have been found among infertile men.
Collapse
Affiliation(s)
- H C Schuppe
- Department of Dermatology, Heinrich Heine University, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
The Ah receptor (AhR) is a ligand-dependent transcription factor that mediates biological and toxicological actions of halogenated aromatic hydrocarbons such as 2,3,7,8-tetrachlorodibenzo-p-dioxin. Although much is known about the biochemical and molecular mechanisms of AhR action, little is known about the factors and events that control expression of the AhR gene itself. The 5'-flanking region of the murine AhR gene was characterized and deletion analysis demonstrated that regulatory elements necessary for full constitutive promoter activity are contained within a fragment encompassing -184 to +380 of the AhR gene. The murine AhR gene promoter is a GC-rich, TATA-less promoter that which contains at least five putative Spl-like binding sites. Transient transfection experiments not only identified a region between -1431 and -721 that represses constitutive promoter activity by 2- to 3-fold, but also demonstrate that basal AhR promoter activity occurs in a cell- and species-specific manner. n-Butyrate, a nonspecific histone deacetylase inhibitor, increased AhR promoter activity 8-fold, suggesting a role for histone acetylation in AhR gene promoter activity. Overall, this study defines upstream regulatory regions important for constitutive AhR gene expression and identifies a novel activator of AhR gene expression.
Collapse
Affiliation(s)
- P M Garrison
- Department of Environmental Toxicology, University of California, Davis 95616, USA
| | | |
Collapse
|
50
|
Hukkanen J, Lassila A, Päivärinta K, Valanne S, Sarpo S, Hakkola J, Pelkonen O, Raunio H. Induction and regulation of xenobiotic-metabolizing cytochrome P450s in the human A549 lung adenocarcinoma cell line. Am J Respir Cell Mol Biol 2000; 22:360-6. [PMID: 10696073 DOI: 10.1165/ajrcmb.22.3.3845] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Several cytochrome P450 (CYP) enzymes are expressed in the human lung, where they participate in metabolic inactivation and activation of numerous exogenous and endogenous compounds. In this study, the expression pattern of all known xenobiotic-metabolizing CYP genes was characterized in the human alveolar type II cell-derived A549 adenocarcinoma cell line using qualitative reverse transcriptase/polymerase chain reaction (RT-PCR). In addition, the mechanisms of induction by chemicals of members in the CYP1 and CYP3A subfamilies were assessed by quantitative RT-PCR. The expression of messenger RNAs (mRNAs) of CYPs 1A1, 1B1, 2B6, 2C, 2E1, 3A5, and 3A7 was detected in the A549 cells. The amounts of mRNAs of CYPs 1A2, 2A6, 2A7, 2A13, 2F1, 3A4, and 4B1 were below the limit of detection. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced CYP1A1 and CYP1B1 mRNAs 56-fold and 2.5-fold, respectively. CYP3A5 was induced 8-fold by dexamethasone and 11-fold by phenobarbital. CYP3A4 was not induced by any of the typical CYP3A4 inducers used. The tyrosine kinase inhibitor genistein and the protein kinase C inhibitor staurosporine blocked TCDD-elicited induction of CYP1A1, but they did not affect CYP1B1 induction. Protein phosphatase inhibitors okadaic acid and calyculin A enhanced TCDD-induction of CYP1B1 slightly, but had negligible effects on CYP1A1 induction. These results suggest that CYP1A1 and CYP1B1 are differentially regulated in human pulmonary epithelial cells and give the first indication of the induction of CYP3A5 by glucocorticoids in human lung cells. These results establish that having retained several characteristics of human lung epithelial cell CYP expression, the A549 lung cell line is a valuable model for mechanistic studies on induction of the pulmonary CYP system.
Collapse
Affiliation(s)
- J Hukkanen
- Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | | | |
Collapse
|